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Abstract

U This paper describes the techniques used to optimize
relational queries in the SDD-, distributed database
system. Queries are submitted to SDD-1 in a high-level
procedural language called Datalanguage. Optimization
begins by translating each Datalanguage query into a
relational calculus form called an enve ope, which is
essentially an aggregate-free QUEL qury. This paper is
primarily concerned with the optimization of envelopes.

Envelopes are processed in two phases. The first phase
executes relational operations at various sites of the
distributed database in order to delimit a subset of the
database that contains all data relevant to the envelope.
This subset is called a reduction of the database. The
second phase transmits the , eduction to one designated
site, and the query is executed\,locally at that site.

The critical optimization problem is to perform the
reduction phase efficiently. Success depends on designing
a good repertoire of operators to use during this phase,
and an effective algorithm for deciding which of these
operators to use in processing a given envelope against a
given database. The principal reduction operator that we
employ is called semi-join. In this paper we define the
semi-join operator, explain why semi-join is an effective
reduction operator, and'\ present an algorithm that
constructs a cost effective)program of semi-joins given an
envelope and a database. /
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I

1. Introduction

SDD-1 is a prototype distributed database management

system being developed by Computer Corporation of America.
S

SDD-1 permits a database to be distributed among the sites

of a computer network, yet accessed as if it were stored

at a single site. Users interact with SDD-1 by submitting

transactions written in a high-level procedural language

called Datalanguage [CCA]. Query processing in SDD-1

amounts to translating each transaction into a sequence of

commands that access data at local sites and move data

between sites to perform the transaction's computation.

This translation is the subject of this paper. Other

aspects of SDD-1 are presented in [BSR, HS, RBFG].

The SDD-1 system architecture is described in [RBFG]. For

purposes of this paper a simplified model will suffice.

The system consists of a collection of sites fully

connected by a communication network. Each site is a

full-scale computer (as opposed to a micro-computer) and

manages a portion of the database using a local database

management system (abbr. DBMS). The database and each

local DBMS are assumed to be relational; a review of

'0"
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K relational terminology appears in Figure 1.1. The network

is logically a point-to-point network (i.e., it does not

support point-to-multipoint broadcast), and is assumed to

0 have Arpanet-like performance characteristics

*, The critical query processing problem in this environment

is one of query optimization. Sustainable bandwidth on

Arpanet is at most 10,000 bits per second; this is some

three orders of magnitude lower than transfer rates

between disk and main memory in typical full-scale

computers. As a consequence, processing strategies with

good performance in a centralized DBMS can easily explode

in a distributed environment, running hundreds of times

more slowly. Our principle objective is to avoid this

performance degradation.

Stating our query optimization problem more precisely, we

are given a transaction T and a database D which is

2statically distributed without replication ; our goal is

to compute T(D) with a minimum quantity of inter-site data

transfer. That is, we assume network bandwidth to be the

system bottleneck, and our optimization objective is to

minimize use of this resource. Other resources, notably

1. SDD-1 is implemented on Arpanet.
2. SDD-1's handling of replicated data is discussed in
Section 5.

0
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Review of the Relational Data Model Figure 1.1

(a) Relational Data Objects

Term Definition

domain a set of values
attribute an alternate name for a domain
relation schema a description of a relation, consisting

of a relation name and list of
attributes

relation a subset of the cartesian product of
the domains of the attributes of the
corresponding relation schema

tuple an element (or row) of a relation
database a set of relations

(b) Relational Algebraic Operations

Selection: R[A=x] = {rGR 1 r.A=x}
where r.A is the value of the A-domain
in tuple r

Projection: R[A1,A2,...,A n ]

{<r.A 1 ,r.A2, ..,r.A n> rCR}

Join: R[A=B]S = {rslrGR, sGS, and r.A = s.B}

local DBMS computation, are assumed to be free; in

practice, local DBMS activity would be optimized as a

secondary objective, but this issue will not be considered

here.

Cther cost factors we ignore include distance effects, the

effects of network loading, and the overhead costs

incurred whenever sites interact. We believe the first

two effects to have second-order importance only. The
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third factor has much greater importance and precludes

query processing strategies that employ large numbers of

interactions [RGM]. Although we do not consider this

factor explicitly, it is taken into account by the

structure of the processing strategies we consider. As

the reader will see, we always translate transactions into

programs with relatively few interactions.

Our solution has two main steps. The first step

translates the user's Datalanguage transaction into an

internal QUEL-like form [HSW]. All aspects of query

processing that depend on Datalanguage are handled in this

first step. The second step optimizes the processing of

the internal form. This step is quite general and can be

used without modification in other distributed database

systems. This paper emphasizes the optimization

techniques of step two which we consider to be our

principal contrib ition.

The paper is organized in six sections. Section 2

develops our paradigm for transaction execution, and

defines the internal form that we subsequently optimize.

Sections 3 and 4 describe the optimization of this

internal form: Section 3 defines the "solution space" of

the optimization -- i.e., the types of operations

available for processing the internal form; and Section 4

I'
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presents our optimization algorithm for producing

efficient sequences of these operations. The mapping from

Datalanguage to internal form is explained in Section 5.

U Section 6 summarizes our technique and suggests

extensions.

An early version of the SDD-1 query processing algorithm

is described in [Wong]. Other approaches to distributed

query processing appear in [ESW, HY, Willcox].

S2
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*2. Query Processing Paradigm

Perhaps the simplest strategy for processing a transaction

T against a distributed database is to move all relations

S referenced by T to a single site, and then execute T at

that site. The disadvantage of this strategy is that it

incurs unacceptably high communication cost. Our query

processing paradigm is to perturb this simple strategy

into an efficient one by using relational operations to

reduce the size of each relation before moving it.
S

Distributed query optimization in our paradigm is

concerned with performing this "reduction" process

correctly and efficiently.

2.1 Reduction

Database state D':{RI,...,RA} is a sub-state of
D={RI,...,R n } if R1 can be obtained from Ri by selection

and projection operations, for i=1,...,n. A reduction of

database state D relative to transaction T is any

sub-state D' such that T(D')=T(D). Intuitively, a
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reduction eliminates portions of the database that are

irrelevant to T. In general, many reductions exist for

each T and D. Given T and D our optimization task is to

compile T into a program RHO such that

a. RHO(D) is a reduction of D relative to T,

b. all relations in RHO(D) are present at a single

site, and

c. RHO incurs minimum cost (when applied to D) over

all programs satisfying (a) and (b).

If RHO satisfies (a) and (b) for all D, then RHO is called

a reducer for T.

2.2 Envelopes

To construct the desired program RHO, we find it necessary

to analyze the body of T. However, Datalanguage

transactions are approximately as general as programs

written in a high-level programming language and it is

difficult to analyze them directly. Therefore, we map

each Datalanguage transaction into a QUEL-like internal

form called an envelope, and optimize the envelope instead

of the transaction. The mapping from transaction to

envelope is dependent, of course, on details of

p
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Datalanguage, and hence is specific to SDD-1; this

transformation is described in Section 5. Having obtained

an envelope, however, the remainder of our technique is

applicable to other distributed relational DBMSs.

Syntactically, an envelope is essentially a QUEL query.

An envelope, Eq,t, consists of a qualification, q, and a

target list, t. A qualification is a boolean combination

of selection clauses of the form (R.A=constant) and join

clauses of the form (R.A=S.B), where R.A and S.B are

indexed-variables and denote attribute A of relation R and

attribute B of relation S respectively3 . We assume that

qualifications are pure conjunctions; disjunction is

handled by placing the qualification in disjunctive normal

form and treating each conjunction separately. A target

list is a set of indexed-variables.

The result of applying Eq,t to database D is defined by

the following procedure:

3. Note that we avoid tuple variables. Tuple variables
can be accommodated by (conceptually) duplicating a
relation and thereby having two relation-names range over
it. We also avoid more general clauses, e.g., R.A<S.B,
for pedagogic simplicity. They can added without altering
the technical claims that follow.
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_ 1. Solve Eq,t(D) as a query, using QUEL semantics;

i.e.

a. construct the cartesian product of the

relations in D;

b. eliminate tuples from the cartesian product

that fail to satisfy qualification q; and

c. project the remaining cartesian product onto

the target-list t.

2. For each relation, R, project the result of (1)

onto the attributes of R referenced in t, thereby

producing a sub-state of D.

E is an envelope for T if for all database states D,

T(E(D))=T(D), i.e. E(D) is a reduction of D relative to T.

Intuitively, an envelope for I "envelopes" or delimits the

portions of the database needed to process T. In general

there are many envelopes for a given transaction; a good 4

envelope is one that tightly delimits the data needed by

T. Finding good envelopes is an optimization problem that

depends on the language for expressing transactions. The

solution used by SDD-1 appears in Section 5, but a general

solution is not attempted. Figures 2.1-2.3 illustrate a

database, a Datalanguage transaction, and an envelope for

it.
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Example Database Figure 2.1

Location of

Relation Schema t- elation

SUPPLIER(S#, NAME, STREET, CITY, STATE) site 1
SUPPLY(S#, P#, QTY, PRICE) site 2
PART(P#, FUNCTION, SPEED, PACKAGE) site 3

Example Transaction T1  Figure 2.2

Note: Datalanguage constructs used in this example are
explained in Section 5.

Description of transaction:
For each 7401-equivalent part supplied by a
Massachusetts supplier, print the supplier number,

* name, address, price, and part number. In addition,
print how many of these parts have switching speeds of
2 nano-seconds.iA

* Transaction TI:
Begin

Count:=O;
For SUPPLIER

If SUPPLIER.STATE="MA"
Then For SUPPLY

If SUPPLIER.S#=SUPPLY.S#
Then For PART

If SUPPLY.P#=PART.P# and PART.FUNCTION:7401
Then Begin

Print SUPPLIER.S#, SUPPLIER.NAME,
SUPPLIER.STREET, SUPPLIER.CITY,
SUPPLIER.STATE, SUPPLY.PRICE,
PART.P#;

If PART.SPEED=2
Then COUNT::COUNT+1;
End

Print "Number of 2-nanosecond versions is", COUNT;
End
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Example Envelope El, for T Figure 2.3

Envelope E :

target-list:{SuPPLIER.S#, SUPPLIER.NAME, SUPPLIER.STREET,
SUPPLIER.CITY, SUPPLIER.STATE, SUPPLY.S#,
SUPPLY.P#, SUPPLY.PRICE, PART.P#,
PART.FUNCTION, PART.SPEED}

qualification: SUPPLIER.STATE="MA"
and SUPPLIER.S#=SUPPLY.S#

* and SUPPLY.P#=PART.P#
and PART.FUNCTION=7401

graph representation of the envelope:

STATE="MA" SUPPLIER S# SUPPLY Pb PART FUNGTION=74Q1

Site 1 Site 2 Site 3 .

Importantly, if E is an envelope for T, then every

reduction of a state D relative to E is also a reduction

relative to T (i.e., E(D')=E(D) implies T(D'):T(D)). By

way of proof, let D' be a reduction of D relative to E; so

E(D'):E(D) by definition of reduction, and

* T(E(D'))=T(E(D)). Since T( E( D) ):T( D) by definition of

envelope, we have T(E(D'))=T(D) as desired. Consequently,

every reducer for E is also a reducer for T.

Update transactions are also handled by this paradigm.

Suppose U is an update transaction and E is an envelope

for U (i.e. U(E(D))=U(D)). E is processed exactly as in

the retrieval case: a reduction relative to E is assembled
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at one site, and U is executed on that reduction at that

site. The result is a temporary file that lists all data

items modified by U and their new values. These

K modifications are propagated to sites holding copies of

those data items, and are installed using techniques

described in [BSR].

Thus we have mapped the problem of finding efficient

reducers for Datalanguage transactions into the problem of

finding efficient reducers for envelopes. The next two

sections address this latter problem. This paradigm is

outlined in Figure 2.4.

U

Ur

".1
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Query Processing Paradigm Figure 2.4

* Datalanguage transaction - T D ~ Distributed Database

a F Pre-processor
QUEL-like envelope E

for T

* f Distributed Query
Optimizer

Efficient reducer RHO
for E

Distributed Query

Execution

Centralized
reduction of D relative to E, Query
assembled at one site Execution

result

--

pq

wi
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3. Reduction Operations

We model a reducer RHO as a sequential program 4 containing

M reducing statements and assembly statements. Reducing

statements apply relational operations to the database to

compute the desired reduction; assembly statements move

the resulting reduction to an assembly site where the

original transaction is subsequently executed. This

section describes the operations used by reducing

statements.

3.1 Reduction Tactics

An operation is called legal for E if it maps any

reduction relative to E into another such reduction. The

purpose of this subsection is to characterize the set of

legal operations for E, denoted OMEGA(E).

4. RHO is, however, executed in a way that exploits
parallel processing. See Section 3.3, and [RBFG].
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3]

3.1.1 Projections and Selections

The set of legal projections for E is

{R[X] 1 R is a relation referenced by E, and X is the

set of all attributes of R referenced in El.

The set of legal selections for E includes

{R[A=k] R.A=k is a clause of El,

although additional legal selections may be implied by

transitivity (see Section 3.1.2). The legality of both

sets of operations is obvious.

For example, given envelope EI of Figure 2.3, the

following operations are legal, and can be used to reduce

Ithe database:

1. SUPPLIER[ STATE="MA"3,

2. SUPPLY[S#,P#,PRICE],

3. PART[ P#,FUNCTION,SPEED), and

4. PART[FUNCTION = 7401].

Projections and selections have zero cost under the

assumptions of Section 1, since they require no inter-site

data transfer. Consequently, every legal one should be

included in every reducer.
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I

3.1.2 Semi-Joins

Semi-join is a relational operation that exploits the join

clauses of E for reduction purposes.U

A semi-join is "half" of a join; the semi-join of

relation R by relation S on attribute A, denoted R<A=A]S,

is defined to be (R[A=A]S)[ATTR], where ATT R denotes the

attributes of R. Equivalently,

R<A:A]S = {rGRK(4sGS)(r.A:s.A)}.

Intuitively, R<A=A]S eliminates every tuple of R that

fails to join with any tuple of S.

Since R<A=A]S = R<A=A](S[A]) = R[A=A](S[A]), not all of S

is needed to compute R<A=A]S; only S[A] is required.

Thus if R and S are stored at different sites, R<A=A]S can

* be computed by transmitting SEA] to R's site; it is not

necessary to ship all of S.

* Semi-joins have several important properties that make

them valuable.

i. R<A:A]S c R

ii. R[A=A]S (R<A=A]S)[A=A]S

.. .. .. .
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iii. R[A:A]S = R[A:A]CS<A:A]R) 5

By (i), a semi-join can only decrease (never increase) the

size of its left operand. By (ii) and (iii), a

preliminary semi-join does not alter the result of a later

join on the same clause. It follows that the set of legal

semi-joins for E includes

{R<A=A]S, S<A=A]R 1 R.A=S.A is a clause of E}.

As with selections, additional legal semi-joins may be

implied by transitivity.

The set of operations implied by transitivity is obtained

by constructing a node- and edge-labelled undirected graph

GE whose nodes are the indexed-variables and constants of

E, and whose edges are

{{Ni,N1 I N.=N. is a clause of E}.

Then we construct the transitive closure of GE, denoted
+ +

GE; GE is a graph with the same nodes as GE, but whose

edges are

{{Ni,N j } i Ni and N. are connected by a path in GE}.

GE can be computed efficiently using [Algorithm 5.2, AHU].
+

Given GE, the set of legal selections for E is

{R[A=k] I {R.A,kl is an edge of GE},

5. Unlike join, semi-join is not symmetric, hence R<A=A]S
i S<A=A]R. The former reduces R, while the latter reduces
S.
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and the set of legal semi-joins for E is

{R<A=A]S, S<A=A]R [R.A,S.A} is an edge of G+}.

(Proofs appear in [BC,BG].)

Unlike selections, semi-joins generally have non-zero

cost, and not all legal semi-joins are necessarily

profitable. For example, the following semi-joins are

both legal for envelope E:

1. SUPPLIER<S#=S#ISUPPLY, and

2. SUPPLY<P#=P#IPART,

If the database state has the characteristics shown in

Figure 3.1, then the cost of the first semi-join equals

the "size-of" SUPPLY[S#], which equals its width (i.e.,

the size of each tuple) multiplied by its cardinality

(i.e., the number of tuples), which equals 1000. The

benefit of the semi-join equals the amount by which it

reduces SUPPLIER, which equals the size-of SUPPLIER minus

the size-of SUPPLIER<S#=S#]SUPPLY; this benefit is at

least 13*4000 = 52000, since at most 1000 SUPPLIER tuples

can survive the semi-join. Thus, this semi-join is

profitable. However, assuming SUPPLY[P#] c PART[P#], the

second semi-join is not profitable, since it does not

reduce SUPPLY at all. Techniques for estimating costs and

benefits of semi-joins are presented in Section 3.2.

U-
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* Profile of Database from Figure 2.1 Figure 3.1

SUPPLIER( S#, NAME, STREET, CITY,STATE)
cardinality 5000 5000 - - - 50Uwidth 13_

13 1 3 3 3 3

SUPPLY( S#, P#, QTY, PRICE)
cardinality 100000 1000 10000 - -

width

PART( P#, FUNCTION, SPEED, PACKAGE)
cardinality 10000 10000 200
width 1 1 1

cardinality(domain(S#)) = 5000
cardinality(domain(P#)) = 10000

Legend:

cardinality number of distinct values in a relation
column, or an underlying domain.

width number of bits, bytes, etc. per tuple, or column;
widths are given in arbitrary units, with numeric
fields having width 1 and string fields width 3.

" blank entries are not relevant for the examples discussed
in this paper.

Profiles are explained further in Section 3.2.

---------------------------------------------------------------------
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3.1.3 Join

Join is another operation that can potentially be used to

reduce a database. We choose not to use join for this

purpose, however, because the "reductive effect" of any

single join can be obtained by using two semi-joins,

usually at lower cost.

Let RS:R[A=A]S be an arbitrary join. Since our goal is to

reduce the database, the relevant effect of this operation

is its reductive effect on R and S; this effect is

RS[ATTR] and RS[ATTs] , where ATT and ATT S denote the

attributes of R and S respectively. Notice that

RS[ATT S ] : Is 1<r,s> G RS}, by definition a projection

" {sGS!(4rGR)(r.A~s.A)},

by definition of R[A=A]S

" S<A=A]R, by definition of semi-join.

Thus the reductive effect of R[A=A]S on S can be attained

by the semi-join S<A=A]R; by a similar argument, the

effect on R can be attained by R<A=A]S.

Now let us compare the cost of the one join to that of the

two semi-joins. To compute R[A=A]S, one of the relations,

R say, must be shipped to the other's site.6 Under the

6. Techniques such as query feedback [Rothnie] may be
able to decrease the quantity of data shipped, but
intrcduce excessive inter-site interactions [RGM].
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assumptions of Section 1, the cost of this *operation

equals the size-of R. To compute the semi-join, we ship

R[A] to S and S[A] to R, for a cost of size-of R[A] +

size-of SEA]. But S[A] F R[A] after S<A:A]R is executed.

Thus if we execute the semi-joins in sequence, their cost

is at most 2 * size-of R[A], which is at most size-of R

under the (reasonable) assumption that the "width" of

A is less than or equal to the "width" of ATTR-{A}. Given

this assumption, the cost of the semi-joins is less than

or equal to the cost of the join as claimed.

If we consider sequences of joins, however, the preceding

U analysis is not always valid; there are cases in which

the composite execution of multiple joins is more cost

beneficial than the corresponding semi-joins [BC].

However, we believe these cases to be uncommon.

Furthermore, such cases are difficult to detect from

statistical catabase characteristics, such as those of

U Figure 3.1, because the difference in effect between joins

and semi-joins depends in a detailed way on the database

state [BC]. Therefore, we choose to ignore join as a

distributed query processing tactic.
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3.2 Performance Estimation

Hereafter we will be concerned with constructing a reducer

RHO for E whose reducing statements are drawn from

OMEGA(E). Since every omega G OMEGA(E) maps a reduction

relative to E into another such reduction, every sequence

of operations from OMEGA(E) also has this property; thus

the logical correctness of RHO is guaranteed.

However, optimization considerations require that we

construct a reducer that is efficient as well as correct.

To do so we must estimate the performance of reduction

operations. In particular, for each operation omega and

database D, we need to estimate the effect, cost, and

benefit of applying omega to D. Our techniques for this

purpose are similar to those in [HY].

3.2.1 Profiles

To support these requirements, SDD-1 maintains a

statistical description of the database, called a profile.

Profiles contain the following information: For each

relation R,
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1. the number of tuples in R, denoted card(R);

2. the "width" of R, e.g. the number of bytes per

tuple, denoted width(R) (we assume fixed-size

tuples); and

3. for each attribute AGATT the number of distinct

values in R(A], denoted card(R[A]).

For each attribute A,

1. width(A) (we assume that A has the same width in

each relation in which it appears); and

2. the number of distinct values in A's underlying

domain, denoted card(dom(A)).

In using profiles, we assume that data values in each

column of each relation are uniformly distributed over the

tuples of the relation. We also assume all columns to be

independent.

Profiles are updated off-line on a periodic basis to

reduce overhead. The inaccuracies introduced by this time

lag are acceptable because of the overall approximate

nature of the process.

II
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t4
3.2.2 Effect Estimation

Let omega be an operation and 5 be a profile. The

function effect(omega,5) estimates the effect of omega on

the database described by 5; its value is a profile D'

that describes the (estimated) new state of that database.

If omega is a projection, e.g. R[X], effect(omega,D)

transforms width(R) into width(X) SUMA xwidth(A). In

general, R[X] can also reduce the cardinality of R by

collapsing previously distinct tuples into a single tuple.

We do not attempt to estimate this effect except in two

cases:

1. if X:{A1, then card(R) is changed to card(R[A]);

2. if PRODUCTAGX(card(R[A])) < card(R), then card(R)

is changed to equal that product.

A selection, e.g. R[A=k], affects card(R), and card(R[A'])

for all A'-GATT Due to the uniformity assumption, the

fraction of R tuples that satisfy the selection is
p I / card(R[A]), if kGR[A]

0h, otherwise

i
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and the expected cardinality of the result is alphak *

card(R). In practice it is prudent to assume kGR[A]; if

k9R[A], the selection (and indeed the entire envelope) has

a null result.

With this assumption, effect(R[A=k],D) transforms card(R)

into card(R)/card(R[A]), and card(R[A]) into 1. The

effect on card(R[A']) for A' i A is more complex and will

be discussed momentarily.

The effect of a semi-join can be modelled as a sequence of

selections. The fraction of R tuples expected to satisfy

R<A=A]S is given by

s kGS[A] alphak

SUM kGS[A] (1/card(R[A])) * (the probability of kGR[A]).

Since we assume that columns are independent, the above

probability is simply the probability that an arbitrary

kGdom(A) is also in R[A], which equals

6 card(R[A])/card(dom(A)). Substituting into the above

formulas yields

SUMkGs[A] (1/card(dom(A)))

card(S[A]) / card(dom(A)).

Thus the estimated cardinality of the result is

card(R) * card(S[A]) / card(dom(A)).
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The effect of R<A=A]S on card(R[A]) is estimated similarly

to be card(R[A])*card(S[A])/card(dom(A)).

The effect of R<A=A]S, or equivalently R[A=k], on R[A']

for A'A is more complex. Given the independence

assumption, we can analyze the effect as a hit ratio

problem: we are given n=card(R) "objects", distributed
_

uniformly over m=card(R[A']) "colors"; the question is,

"How many colors are we expected to hit if we randomly

select r of the objects?" where r is the expected

cardinality of the resulting relation. The answer is

given by [Yao]:

Y(m,n,r) = m * (1 - PRODUCT r 1(nd-i+l) / (n-i+1)],

where d = 1 - 1/m.

In practice, it is reasonable to approximate Y by

r ,for r<m/2
Y(m,n,r) r+m)/3 for m/2 < r < 2m

, for 2m < r

Y and Y are graphed in Figure 3.2.



SDD-1 Query Processing Page -27-
Reduction Operations Section 3
------------------------------------------------------------
The Yao Function, Y, and Approximation, 7. Figure 3.2

Hit ratio problem: given n objects distributed over m colors;
question: how many colors Y will we hit if we select

r objects?

Fix n=lOOK

Y (solid) M

Y (dashed)
10K 

10K

* 1K IK

100. 100

10 10

1 10 100 IK 10K lOOK r

----------------------------------------------------------
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3.2.3 Cost Estimation

cost(omega,D) is defined to be 0 for all local operations,

i.e. projections, selections, and semi-joins whose

operands are stored at a single site. If omega is a

non-local semi-join R<A:A]S, then

cost(omega, )=card(SA] )*width(A).

3.2.4 Benefit Estimation
U

Suppose omega reduces relation R; its benefit is defined

to be the amount by which it reduces R, which equals the

size of R minus the size of omega(R). Substituting

results from 3.2.2, we get

benefit(R[X],')=width(R)-width(X), assuming card(R) is

not also changed;

benefit(R[A=k],D)=width(R)*(card(R)-card(R)/card(R[A]))

=width(R)*card(R)*(1-1/card(R[A]));

benefit(R<A=A]S,D)=

width(R)*card(R)*(1-card(S[A])/card(dom(A))).

V
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3.3 An Example Reducer

To illustrate the preceding material we now present an

example reducer for envelope E1  of Figure 2.3. The

initial database profile is given in Figure 3.1. The

reducer proceeds as follows.

1. SUPPLIER[STATE="MA"]

effect: card(SUPPLIER) reduced to 5000/50=100

card(SUPPLIER[STATE]) reduced to 1
U

card(SUPPLIER[S#]) reduced to

Y(5000,5000,100)=100

cost: 0

benefit: 65000-1300=63700

2. SUPPLY[S#,P#,PRICE]

* effect: width(SUPPLY) reduced to 3

cost: 0

benefit: 100000

3. PART[P#,FUNCTION,SPEED]

effect: width(PART) reduced to 3

cost: 0

benefit: 30000
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S4. PART[FUNCTION="7401"]

effect: card(PART) reduced to 10000/200:50

card(PART[FUNCTION) reduced to 1

ID card(PART[P#]) reduced to Y(10000,10000,50)=50

cost: 0

benefit: 30000-150=29850.

5. SUPPLY<P#=P#]PART

effect: card(SUPPLY) reduced to 100000*50/10000=500

card(SUPPLY[P#]) reduced to 5000*50/10000=25

card(SUPPLY[S#]) reduced to

Y(1000,100000,500)=500

cost: card(PART[P#I)*width(P#)=50

benefit: 300000-1500=298500

6. SUPPLY<S#=S#ISUPPLIER

effect: card(SUPPLY) reduced to 500*100/5000=10

card(SUPPLY[S#]) reduced to 500*100/5000=10

card(SUPPLY[P#]) reduced to Y(25,500,10)=10

cost: card(SUPPLIER[S#])*width(S#)=100

benefit: 1500-30=1470

7. Assemble the reduction at site 1

cost: card(SUPPLY)*width(SUPPLY)

+ card(PART)*width(PART)=30+150=180.

U
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[-C

The total cost of this reducer is 330. By comparison, if

no reducing operations were performed at all, it would

cost 125000 to assemble the database at one site (site 2

in this case). And if only local operations were

performed -- i.e. steps 1-4 -- the cost would be 1450.

The flow-graph of this reducer is shown in Figure 3.3;

nodes in this graph correspond to operations, and arcs

indicate data-flow between operations. Each operation can

be executed as soon as all of its predecessors in the

flow-graph have been executed, and thus substantial

parallellism is possible. This parallellism is exploited

by SDD-I when it executes the reducer [RBFG].

Flow-Graph of Example Reducer Figure 3.3

SUPPLIER SUPPLY PART

Time 1 231 14

7

numbers relate nodes in the graph to operations in the
text.

----



Page -32- SDD-1 Query Processings
Section 4 Access Planning

C

4. Access Planning

The development of Sections 2 and 3 have mapped the

original query optimization problem into the following

more structured problem: we are given an envelope E; our

goal is to construct a reducer RHO for E whose reducing

statements are drawn from OMEGA(E), and whose cost is

minimum over all such reducers. We call this problem

access planning. This section presents our access

planning algorithm. We emphasize that our solution is

approximate, seeking to find low-cost, though not

necessarily optimal, reducers. An algorithm that produces

optimal reducers for a limited class of envelopes is

presented in [HY]; no efficient algorithm for producing

optimal reducers for general envelopes is known.

4.1 Algorithm AP

Our access planning algorithm is Algorithm AP, listed in

Figure 4.1. Algorithm AP in an iterative optimization

procedure whose main function is to construct a profitable

sequence of reducing statements. In general terms AP
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operates as follows. It initializes RHO to the null

program and iteratively appends profitable, legal

operations to RHO until all such operations have been

used. Then the algorithm determines the cheapest site at

which to assemble the reduction, and appends commands to

move the reduction to that site. At this point RHO is the

desired reducer, and the algorithm terminates.

We now examine AP in more detail.

Input/Output

The input to the algorithm is an envelope E and a database

profile 5; its output is a reducer RHO for E whose

reducing statements are estimated to be profitable when

applied to the database described by .

State Space

The state of the algorithm at each iteration is determined

by four variables.

1. RHO is the sequence of reducing statements

constructed so far.

2. RHO(D) is the database profile that represents the

estimated effect of applying RHO to the database

described by 5; at each stage,

RHO(')=effect(omegak,(effect(omegak_1'

(effect(omega,1, )) ... )))),

where <omega ,...,omegak>=RHO.

... .... .



Page -34- SDD-1 Query Processings
Section 4 Access Planning

The Access Planner Figure 4.1

Algorithm AP

Input: envelope E and database profile 5.
Output: RHO, a reducer for E.

State Space

RHO: a reducer for E.
RHO(D): database profile that results from executing RHO.

*OMEGA: OMEGA(E)-{omegalomega is used in RHO).
OMEGA .t : {omegaGOMEGAlbenefit(omega,RHO())

profitable >coeaRoD)>-co'st(omega,RHO(U))

Step 1 - Initialization

a. RHO:=null program.
b. RHO(D):=3.
c. OMEGA:=OMEGA(E).
d. OMEGAprofitable :=omegaGOMEGA(E):benefit(omega,D)

> costComega,D)}

Step 2 - Main Loop

a. Do while OMEGArfitbl

b. omegab :=omegaOMEGAp such that

cost(omega,(D)) is minimum over all such omega;

append omegabest to RHO and remove from OMEGA and

OMEGAprofitable*

c. RHO(5):=effect(omegabestRHO(N));

modify OMEGAprofitable to reflect costs and

benefits in new state (see text).
end

Step 3 - Termination

a. select assembly site:
- for each site s,

cost a (s)=SUM, over all relations R stored at s,
of width(R)*card(R);

- the assembly site sa is the site s

such that cost (s) is maximum over all sites.a
b. append to RHO commands to move all relations to site sa.

END

-- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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3. OMEGA contains the legal operations not yet in RHO;

these are the operations that can be added to RHO

in future iterations. And

4. OMEGAprofitable contains the operations that are

estimated to be profitable in the state described

* by RHO(5).

Step 1 - Initialization

The four state variables are initialized to the

appropriate values before the database has been reduced at

all.
!

Step 2 - Main Loop

a. This step constructs a profitable sequence of

reducing statements by repeating steps b & c until

OMEGA fitabl is exhausted.

b. On each iteration, the cheapest profitable

operation, denoted omegabest, is appended to OMEGA.

An alternate approach would be to select the most

profitable operation at each stage. However, suppose

omega' has both high profit and high cost. Once we place

omega' into RHO we have committed ourselves to paying its

U,
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high cost. But if we delay omega' and execute other less

costly operations first, these operations may reduce the

cost of omega' as a fringe benefit.

Notice that all local operations have zero cost and

non-negative benefit, hence are always profitable and

always have lower cost than any non-local operation.

Consequently all legal local operations are placed into

RHO before any non-local operations are. In practice the

order of these local operations is important; but since

this order is a matter of local query optimization it does

not concern us here.

This step also removes omegabest from OMEGAprofitable*

There are, however, cases in which it is beneficial to

re-use the same operation, possibly many times [BC]. We

choose to ignore this possibility because such cases

apparently arise infrequently, and it is difficult to

bound the size of RHO otherwise.

c. RHO(D) is updated to reflect the estimated effect

of omegabest, and OMEGAprofitable is re-computed.

To re-compute OMEGAprofitable , we need only check

operations whose benefit or cost was changed by

omegabest. In particular, suppose omegabest is of

the form R[X], R[A=k], or R<A=A]S. Then omegabest

reduces the size of R, and there are two further

consequences:
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1 1. the benefit of all other operations that

reduce R is decreased; and

2. the cost of all semi-joins that use R to

reduce another relation is also decreased.

Thus the operations that must be checked are:

1 1. {omegaGOMEGAprofitable!omega reduces R), and

2. {omegaGOMEGA - OMEGAprofitable

omega : S'<A'=A']R, for any S',A'I.

Step 3 - Termination

ii
a. Upon termination of Step (2), RHO is a program that

computes a reduction for E. To complete its task,

RHO must also assemble the reduction at a single

site.

Let s1,...,sn be the sites housing data referenced

by E, and let cost (si) be the sum, over all R ata

.6 site si referenced by E, of width (R)*card(R). For

any site sj, the cost of assembling the reduction

at sj is

COT(i)SMn cost (si).
COSTa (sJ)=SUM i a

COST a is minimized by selecting the site with

maximum cost a to be the assembly site.
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b. Having selected the assembly site, the algorithm

appends commands to RHO to move all relations to

that site. At this point, RHO is a reducer for E,

and Algorithm AP terminates.

4.2 Enhancements

Algorithm AP is an example of a greedy optimization

algorithm; it always makes decisions on the basis of

immediate gain, it never looks ahead, and it never backs

up. As a result, the reducers generated by AP are in

general sub-optimal. In this section we present two

techniques for improving these reducers. Both techniques

take a reducer RHO produced by the basic algorithm and

transform it into a lower cost reducer RHO'.

The first enhancement operates by permuting the order of

RHO to reduce the cost of some semi-joins without

increasing the cost of any other operations. This

technique is best understood in terms of flow graphs.

Consider Figure 4.2a. Since the semi-join represented by

arc (2) reduces S, the cost of semi-join (1) can be

decreased by delaying it until after (2). The resulting

reducer RHO' is shown in Figure 4.2b. Notice that the

4
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reductive effect of semi-join (1) in RHO' is greater than

its effect in RHO, because S[B] will be smaller in RHO',

hence T<B=BIS will also be smaller. Consequently the cost

of all semi-joins that follow (1) in the flow-graph are

also reduced. Since no other semi-joins are affected by

the transformation, RHO' is guaranteed to have lower cost

U than RHO.

More generally, let (NR,NS) be any arc in RHO's flow graph

going from the "R column" to the "S column" and let Nh be

any node in the R column after N The replacement of

(NR,NS) by (Nh,N s ) is guaranteed to monotonically decrease

the cost of RHO, provided the resulting flow graph is

acyclic. (If the resulting flow-graph contains a cycle,

it no longer represents a physically executable program.)

To perform this transformation, we retain the values of

RHO(D) computed at each step of the basic algorithm. When

that algorithm terminates, we construct the flow graph of

RHO and associate the retained values of RHO(D) with the

corresponding nodes of the graph. Then we successively

transform RHO by selecting the most expensive semi-join

*; RHO and delaying it if possible: i.e. suppose (NR,NS)

represents the most expensive semi-join in RHO, and let Nj

be the immediate successor of NR in the R column, assuming

N R is not the last node in that column; we transform RHO
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K Improving RHO by Permuting Its Order Figure 4.2

qualification: R.A=S.A and S.B=T.B

(a) orginal reducer RHO R S T

a1

(b) better reducer RHO' R S T

2

1

---------------------------------------------------------------

by replacing (NR,Ns) by (N ,N,) provided the resulting

graph is acyclic. Values of RHO(D) associated with NS and

its successors in the graph are updated to reflect the

transformation and the process repeats until no more

transformations are possible.

S

Our second enhancement seeks to prune operations from RHO

that are rendered unprofitable by the choice of assembly

site. Consider the reducer illustrated in Figure 4.3a,

and suppose site 2 is che assembly site. Since relation S

is stored at the assembly site, the semi-join S<A=A]R

represented by arc (3) is superfluous and should be

removed. The decision to incorporate this semi-join into

0
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Improving by Pruning Semi-Joins Figure 4.3 -J

qualification: R.A=S.A and S.B=T.B

(a) original reducer RHO R S T

2

3 }I'J'

site 1 site 2 site 3
(assembly

site)

(b) transformed reducer RHO' R S T

21

site 1 site 2 site 3

RHO was based on the belief that S would eventually be

shipped to the assembly site; since S is already there,

the benefit of the semi-join is zero. With respect to arc

(1), i.e. S<A:A]T, the situation is less clear-cut:

although there is no direct benefit in reducing S, this
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semi-join is indirectly beneficial via arc (2); in fact,

arc (1) both decreases the cost of arc (2), and increases

its benefit!

In general, let (NR,NS) be any arc in the flow graph for

RHO where S is a relation stored at the assembly site.

The removal of (NR,NS) is beneficial if the cost of RHO

minus (NR,NS) is less than the cost of RHO (including all

assembly operations); the former cost is computed by

removing (NR,NS) from the strategy graph and updating

values of RHO(5) associated with NS and its successors.

We perform this test on all arcs of the form (NNs),

considered in cost order.

The enhancements described in this section help compensate

for the short-sightedness of Algorithm AP, by considering

the indirect benefits of semi-joins. While these

enhancements still fall short of optimality, they move in

that direction.

*6

I
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5. Mapping Transactions Into Envelopes

Sections 3 and 4 have described a technique for efficient

processing of envelopes. In this section we explain the

transformation from Datalanguage transactions to

envelopes. This transformation is described in two steps.

Section 5.1 describes the mapping from transactions to

logical envelopes, i.e. envelopes that reference logical

relations; Section 5.2 then describes the mapping to

W envelopes that reference physical relations.

5.1 The Logical Transformation

The purpose of the logical transformation is to eliminate

* procedural aspects of Datalanguage transactions.

Datalanguage is a rich language and a full treatment of

this mapping is beyond the scope of this paper. Instead,

we will describe the mapping for a representative subset

of the language.

Ud
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*

5.1.1 A Subset of Datalanguage

A Datalanguage transaction is either a statement or a

sequence of statements bracketed by Begin ... End. We

will consider four types of statements:

iteration-statements, conditional-statements,

assignment-statements, and print-statements; Datalanguage

does not include goto.

Two types of variables exist in Datalanguage:

indexed-variables which represent database values (see

below), and program-variables which are global variables

in the style, say, of FORTRAN. Referring to transaction

T2  of Figure 5.1, PART.P# and PART.SPEED are

indexed-variables, while COUNT is a program-variable.

Assignment and print-statements are self-explanatory and

will not be described in detail. Conditiona)-statements

have the form

If boolean then body! [else body2];

where bodyl and body2 are either statements or sequences

of statements bracketed by Begin ... End.

Conditional-statements are interpreted with the usual

semantics.

I 4
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Transaction T2  Figure 5.1

Begin
COUNT:=O;
For PART

If PART.SPEED=2
Then Begin

If COUNT < 50
Then Begin

Print PART.P#;
COUNT:=COUNT+I;

n End End;;;

Iteration-statements have the form

For relation bodyl;

where bodyl is defined above. This statement is

* interpreted as follows. bodyl is executed once per tuple

of relation with each indexed-variable of the form

relation.attribute instantiated by the value of attribute

in that tuple. For example, the statement

For PARTS

If PARTS.FUNCTION=7401

* Then Print "Part Number ,-" PARTS.P#;;

prints the P# of every tuple in PARTS with FUNCTON=7401.

We assume that each iteration-statement in a transaction

references a different relation; if two

iteration-statements reference the same relation a

construct similar to "tuple variables" is employed.

- -
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5.1.2 Transformation to Logical Envelope

Given a transaction T, we obtain the target-list of its

envelope by listing all indexed-variables that appear in

T.

To obtain the qualification for T's envelope, the

following recursive definition is applied. Let

body=<statementl,...,statementn>. We define

Qual(body) = OR n  Qual(statementi), wherei=1

(a) True, for assignment and

print statements;

Qual (statement.) : (b) (boolean AND Qual(bodyl))

[OR (NOT boolean AND Qual(body2))],

for conditional statements;

(c) Qual(bodyl),

for iteration statements.

The qualification for T's envelope is obtained by (1)
removing all non-iteration-statements from T, yielding T',

4- *

(2) constructing Qual(T'), and (3) replacing every clause

that contains a program-variable by True. This procedure

is illustrated in Figure 5.2.
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5.1.2 Transformation to Logical Envelope

Given a transaction T, we obtain the target-list of its

envelope by listing all indexed-variables that appear in

T.

To obtain the qualification for T's envelope, the

following recursive definition is applied. Let
body=<statement,...,statementn>. We define-

Qual(body) ORn Qual(statementi), where

(a) True, for assignment and

print statements;

Qual (statement.) : (b) (boolean AND Qual(bodyl))

(OR (NOT boolean AND Qual(body2))],

for conditional statements;

(c) Qual(bodyl),

for iteration statements."7

The qualification for T's envelope is obtained by (1)

removing all non-iteration-statements from T, yielding T',

(2) constructing Qual(T'), and (3) replacing every clause

that contains a program-variable by True. This procedure

is illustrated in Figure 5.2.

-
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It is easily proved that this transformation is correct,

i.e. for all T it yields an envelope E such that

T(E(D))=T(D) for all states of D. Moreover, if T contains

no program-variables the transformation is exact, i.e. for

all states of D, E(D) is the minimum state such that

T(E(D))=T(D). Various code optimization techniques could

U be employed to improve the logical transformation when

program-variables are present. However, this issue is not

addressed here.

5.2 The Physical Transformation

a

At the physical level, SDD-1 permits each logical relation

to be partitioned into sub-relations called fragments,

which are the units of data distribution. Each fragment

may be stored at one or more sites; each stored instance

of a fragment is called a stored fragment. The

U , relationship between relations, fragments, and stored

fragments is illustrated in Figure 5.3. The purpose of

the physical transformation is to map an envelope E that
I

references logical relations into an envelope ESF that

references stored fragements.

The fragments of a relation are defined in two steps.

First, the relation is partitioned "horizontally" into
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Logical Transformation Figure 5.2

(1) Remove non-iteration-statements

T : < For PART
If PART.SPEED = 2
Then If COUNT < 50
Then Begin

Print PART.P#
COUNT::COUNT+I;
END;;;>

(2) Construct Qual(Tp)

= Qual(For PART ..

= Qual(If PART.SPEED 2 Then ...

= PART.SPEED = 2 AND Qual(If COUNT < 50 Then ...

= PART.SPEED = 2 AND COUNT < 50 AND Qual(Print PART.P#;

COUNT := COUNT + 1;)

= PART.SPEED = 2 AND COUNT < 50 AND (True OR True)

(3) Replace clauses that contain program-variables by True.

In this case, replace COUNT < 50 by True

The resulting qualification is

PART.SPEED = 2

---------------------------------------------------------------

subsets defined by selection formulas (see Figure 5.4),

and then each horizontal subset is partitioned vertically

into sub-relations defined by projections (see Figure

5.5). In addition, - unique tuple identifier (abbr. TID)

is appended to each tuple and included in every fragment
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-4-----
Relationship Between Relations Figure 5.3 -

and Stored Fragments

Relation Fragments

R RI,2 RI,31,1 1, 1 3
R R2  R2

R2 ,1 2,2 -

S t o r e 
d F r a 

g m e n t 
s. 

.

12,1

1111 Sie3

* to guarantee lossless reconstruction of the original

relation [DB]. We use RI,...,Rn to denote the horizontal

subsets of relation R, and Ri, 1 '...,R to denote the

vertical subrelations of Ri; notice that for all states of

the database

R i  R Ri  [TID:TID]R i 2[TID TID] . . [TID:TID]R1, m
a R R 1 2 1 2m

and R = R1  U R2  U . .. U Rn . *

U
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Horizontal Fragmentation Figure 5.4

Relation
PA1RTCP1U FUNCTION, SPEED, PACKAGE)

Horizontal Fragments
PARTf: PARTSPE ED:II
PART 2 =PART[SPEED=2 and PACKAGE="16 pin DIP"]
PART 2PART[SPEED=2 and PACKAGE "16 pin DIP"]
PART 3 :PART[SPEED>2]i4-

Vertical Fragmentation Figure 5.5

1. Horizontal Fragment
PAR-T-(F --FfNCTI-, SPEED, PACKAGE)

Vertical Fragments

P -PART1 [P#,FUNCT ION]
* PARTi'1:PART SPEED]

PART1,3: PARTI[PACKAGE]

2. Horizontal Fragment
FART2P1#1-FUNCTION, SPEED, PACKAGE)

Vertical Fragments
PART 2 1 PA Rf2 [P#, SPEED]
PART PA FUNCTION, PACKAGE]

2,2 T2[NTI,

3. etc.

Given an envelope E (referencing logical relations) we

obtain an envelope EF that references fragments by

applying a query modification procedure described in

LDayal,DB]. This procedure maps each clause of the form

nr nR.A:S.A into a formula OR. (OR (Ri.A:Sj.A)), where

R ,... ,Rnr and S1,...'Sns are the horizontal fragments of
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[7
R and S respectively7 . Theneac

l Then each indexed-variable R.A is

replaced by Rik.A, where R is the vertical fragment of

Ri  that includes attribute A. (Since the vertical

i:fragments partition Riph hieo r is unique.)

Finally, the vertical fragments of each horizontal

fragment are "joined" on TID, by appending the formula
AND .mr-1 (

kAN=: 1 (Rik.TID:Ri k+l.TID) to the qualification, where

Ri,, ... ,Ri are the vertical fragments of Ri referenced

by the envelope. The result is the qualification of EF;

the target-list is obtained similarly.

EF is then "improved" by detecting and discarding

horizontal fragments whose definitions contradict the

qualification. To do so, EF is placed into disjunctive

normal form and for each conjunct C the following test is

performed. We append to C the selection formulas that

define each horizontal fragment referenced in C. Then we

test the satisfiability of the resulting formula using
p

mechanical theorem-proving techniques. If the formula is

unsatisfiable, C is removed from the qualification.

Given EF, the remaining task is to obtain an envelope ESF

that references stored fragments. In principle, this

--------------------------------------------------------------

7. Selection clauses of the form R.A=k are mapped into

OR n r  Ri A=k.

• "i:
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transformation entails an optimization problem. It is,

however, an optimization problem we choose not to address

in SDD-1. Instead the mapping is accomplished via table

look-up: for each site there is a pre-defined table,

called a materialization, which specifies the stored

instance of each fragment to use in processing

transactions submitted at that site.

At this point, ESF is an envelope in the form assumed by

sections 2-4, and query processing proceeds as described

there.

U"

a

U
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6. Conclusion

We have described query processing in SDD-1 as a three

step procedure in which (1) a transaction is transformed

into an envelope, (2) the envelope is compiled into a

program called a reducer that assembles a reduction of the

database at a single site, and (3) the transaction is

executed against the reduction at that site. This

approach separates issues that are transaction-language

- specific (steps (1) and 3)) from those of distributed

query optimization (step (2)). This paper has

concentrated on the latter issue; the optimization

techniques presented in this paper are usable in other

distributed relational DBMSs, as long as the translation

from transactions to envelopes is feasible.

Our treatment has left many problems open. Among the most

pressing are

1. finding ways of helping the optimization algorithm

avoid entrapment by high-cost local optima;

2. use of feedback to compensate for inaccuracies in

performance estimation; and
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3. dynamic selection of stored fragments, e.g. to

maximize the clustering of accessed fragments at

individual sites.

We also believe that our methods can be extended to

non-relational systems. Recent work by [Dayal, Zaniolo]
U

on building relational interfaces to CODASYL databases

suggest that our optimization techniques can be adapted to

this setting. However, this too remains a matter for

future research.

41- 4
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