TECHNICAL REPORT ARLCB-TR-82032

CONSTRAINED AND UNCONSTRAINED VARIATIONAL FINITE ELEMENT FORMULATION OF SOLUTIONS TO A STRESS WAVE PROBLEM - A NUMERICAL COMPARISON

Julian J. Wu
C. N. Shen

October 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER WEAPON SYSTEMS LABORATORY
BENÉT WEAPONS LABORATORY
WATERVLIET, N. Y. 12189

AMCMS No. 611102H600011
DA Project No. 1L161102AH60
PRON No. 1A2250041A1A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacture(s) does not constitute an official endorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.
Unconstrained variational formulation has been applied to initial, boundary value problems previously with some numerical success. More recently, an adjoint bilinear variational principle has also been developed for initial and initial-boundary value problems which requires that the initial conditions be satisfied exactly and hence is a constrained variational formulation. This present report compares the numerical results of these two variational formulations for the case of a stress wave problem in a uniform bar.
TABLE OF CONTENTS

1. INTRODUCTION 1
2. STATEMENT OF THE PROBLEM 2
3. TWO VARIATIONAL FORMULATIONS OF SOLUTIONS 4
4. FINITE ELEMENT DISCRETIZATION AND SHAPE FUNCTIONS 7
5. NUMERICAL RESULTS AND COMPARISONS 12
REFERENCES 25

TABLES

I. CORRESPONDENCE BETWEEN k AND (i,j) IN EQ. (20). 9
II. SOLUTIONS TO THE STRESS WAVE PROBLEM USING UNCONSTRAINED VARIATIONAL FORMULATION. 15
III. SOLUTIONS TO THE STRESS WAVE PROBLEM USING UNCONSTRAINED VARIATIONAL FORMULATION. 16
IV. SOLUTIONS TO THE STRESS WAVE PROBLEM USING CONSTRAINED VARIATIONAL FORMULATION. 21
V. SOLUTIONS TO THE STRESS WAVE PROBLEM USING CONSTRAINED VARIATIONAL FORMULATION. 22

LIST OF ILLUSTRATIONS

1. Problem Configuration and Applied Load at Zero Time. 3
2. A Typical Finite Element Grid Scheme Showing the $(i,j)^{th}$ Element and the Global, Local Coordinates. 8
3. Exact Solution to the Problem: Longitudinal Displacement at $t = 0$, $0.2T$, and $0.4T$. 13
4. Exact Solution to the Problem: Axial Stress at $t = 0$, $0.2T$, and $0.4T$. 14
5. Displacement Solutions by the Unconstrained Variational Formulation ($t = 0$, $0.2T$, and $0.4T$), and Comparison with Exact Solutions. 17
6. Stress Solutions by the Unconstrained Variational Formulation
 \((t = 0, 0.2T, \text{ and } 0.4T)\) and Comparison with Exact Solution.

7. Displacement Solutions by the Unconstrained Variational
 Formulations \((t = 0.1T)\) and Comparison with Exact Solutions.

8. Stress Solution by the Unconstrained Variational Formulations
 \((t = 0.1T)\) and Comparison with Exact Solutions.

9. Displacement Solutions by the Constrained Variational
 Formulations \((t = 0.2T)\) and Comparison with Exact Solutions.

10. Stress Solution by the Constrained Variational Formulations
 \((t = 0.2T)\) and Comparison with Exact Solutions.
1. INTRODUCTION

This note presents the solution formulation and finite element discretization of a stress wave problem with discontinuous data in two variational schemes. The first is in a sense a generalized Galerkin's approach in that it works for non-self adjoint problem and that all the end conditions are made to be natural ones and hence none of them are required to be satisfied by the trial functions. This unconstrained variational finite element formulation has been applied to initial/boundary value problems other than wave equations previously.1,2 More recently, an adjoint bilinear variational principle has been developed for initial and initial/boundary value problems which requires that the initial conditions be satisfied exactly and the variations of the adjoint variable be set to vanish.3 It is consequently a constrained variational formulation. This note compares one formulation and numerical results with those of the other.

First, in Section 2, the physical problem of a longitudinal stress wave in an elastic rod is stated. The rod is fixed at one end and free at the other end. The discontinuity data arises from the initial linear displacement, corresponding to a constant stress, due to a force applied at the "free"

end. This force suddenly disappears at time zero causing a stress discontinuity at the free end. The two variational formulations for the stated problem are introduced in Section 3. Finite element discretization and shape functions are introduced in Section 4. Finally, numerical results and comparisons are made in Section 5.

2. STATEMENT OF THE PROBLEM

The problem considered here is that of a longitudinal stress in a rod. The differential equation can be written as

$$\frac{\partial^2 u}{\partial t^2} = \frac{1}{\rho} \frac{\partial^2 u}{\partial x^2} \quad \text{for} \quad 0 < x < l, \quad 0 < t < T$$

(1)

with

$$a^2 = \frac{E}{\rho}$$

(2)

where $u = u(x, t)$ is the axial displacement

x, t are the coordinates in axial direction and in time, respectively

ρ, E are density and Young's modulus, respectively, of the rod material

l = length of the rod

T = some finite time of interest

For the boundary conditions, we will consider a rod fixed at one end and not restrained at the other end. Hence

$$u(0, t) = 0$$

$$\frac{\partial u}{\partial x}(1, t) = 0$$

(3)

The dynamics of the problem is due to the initial conditions. It is assumed that the rod is stretched to a linear displacement by a force P which vanishes at time $t > 0$ (see Figure 1). The initial velocity of the rod is
assumed to be zero. Thus

\[u(x,0) = \frac{P}{AE} x \]

\[\frac{\partial u}{\partial t}(x,0) = 0 \]

(4)

Figure 1. Problem Configuration and Applied Load at Zero Time
(i.e., \(P = 0 \) for \(t > 0 \)).

It is convenient to use dimensionless parameters. Let

\[\bar{u} = u/\bar{k} , \quad \bar{x} = x/\bar{k} , \quad \bar{t} = t/T \]

(5)

Then, Eq. (1) in dimensionless form is

\[\frac{\partial^2 \bar{u}}{\partial \bar{x}^2} = \frac{b^2}{\bar{a}^2} \frac{\partial^2 \bar{u}}{\partial \bar{t}^2} , \quad 0 < \bar{x} < 1 \]

\[0 < \bar{t} < 1 \]

(6)

where

\[b^2 = \frac{1}{\bar{a}^2} \frac{\xi}{t} \]

(7)

The boundary conditions become

\[\bar{u}(0,\bar{t}) = 0 , \quad \frac{\partial \bar{u}}{\partial \bar{x}} (1,\bar{t}) = 0 \]

(8)
and

\[u(x,0) = P_x, \quad \frac{\partial u}{\partial t}(x,0) = 0 \] \quad (9)

where

\[P = \frac{p}{AE} \] \quad (10)

is the force in dimensionless form.

The stated problem in dimensionless form are Eqs. (6), (8), and (9) with the new dimensionless parameters related to physical counterparts by Eqs. (5), (6), and (10). To simplify writing, we shall drop the bars in Eqs. (6), (8), and (9), and rewrite them as

\[u'' - b^2 u = 0 ; \quad 0 < x < 1 \] \quad (6')

\[u(0,t) = 0 ; \quad u'(1,t) = 0 \] \quad (8')

\[u(x,t) = P_x ; \quad u(x,0) = 0 \] \quad (9')

where a prime ('') indicates differentiation with respect to \(x \) and a dot (\(\cdot \)), with respect to \(t \).

3. TWO VARIATIONAL FORMULATIONS OF SOLUTIONS

Consider a variational problem

\[\delta I_0 = 0 \] \quad (11a)

with

\[I_0 = I_0(u,v) = \int_0^1 \int_0^1 (-u'v' + b^2uv) dx dt \] \quad (11b)

where \(u(x,t) \) and \(v(x,t) \) are said to be adjoint to each other. It is a simple matter to see that this problem is an indeterminate one. However, the functional of Eq. (11b) can be modified to a variational problem which is equivalent to the boundary/initial problem of Eqs. (6'), (8'), and (9').
Thus, consider

$$\delta I = 0$$

(12a)

with

$$I = I(u,v) = \int_0^1 \int_0^1 \left(-u'v' + b^2uv \right) dx \, dt$$

$$+ k_1 \int_0^1 u(0,t)v(0,t) dt$$

$$+ k_2 b^2 \int_0^1 \left[u(x,0) - u_0(x) \right] v(x,1) dx + b^2 \int_0^1 u_1(x)v(x,0) dx$$

(12b)

We shall take the first variation of the function $I(u,v)$ of Eq. (12b) in such a manner that δv is completely arbitrary while δu is set to zero identically. Hence, by means of integrations-by-parts, one has

$$(\delta I)\delta u = 0 = \int_0^1 \int_0^1 (u'' - b^2u) \delta v dx \, dt$$

$$- \int_0^1 u'(1,t) \delta v(1,t) dt$$

$$+ \int_0^1 \left[u(0,t) + k_1 u(0,t) \right] \delta v(0,t) dt$$

$$+ b^2 \int_0^1 \left[u(x,1) + k_2 [u(x,0) - u_0(x)] \right] \delta v(x,1) dx$$

$$- b^2 \int_0^1 \left[u(x,0) - u_1(x) \right] \delta v(x,0) dx = 0$$

(13)

The fact that $\delta v(x,t)$ is completely arbitrary enables us to conclude from Eq. (13) that

$$u'' - b^2u = 0 ; \quad 0 < x < 1$$

$$u'(1,t) = 0$$

$$u'(0,t) + k_1 u(0,t) = 0$$

$$u(x,1) + k_2 [u(x,0) - u_0(x)] = 0$$

(14)
and

\[u(x,0) - u_1(x) = 0 \]

It is then observed that the initial/boundary value problem defined by Eq. (14) reduces to that of Eqs. (6'), (8'), and (9') if one lets \(k_1 \) and \(k_2 \) go to infinity (and with \(u_0(x) = P x \) and \(u_1(x) = 0 \)). This fact suggests that the variational problem of Eqs. (12) can be used as a basis of a finite element discretization for the approximate solutions to the original initial/boundary problem. It should be noted that all the auxiliary conditions in Eqs. (14) are the so-called natural boundary conditions. They are the consequence of the variational problem—just like the differential equation itself. For this reason, the above solution is referred to as an unconstrained variational formulation.

Another approach begins from Eq. (11b). With \(\delta u = 0 \) once again, one has

\[
\delta I_0 = \int_0^1 \int_0^1 (-u' \delta v' + b^2 u \delta v) \, dx \, dt
\]

\[+ \int_0^1 u'(1,t) \delta v(1,t) \, dt - \int_0^1 u'(0,t) \delta v(0,t) \, dt \]

\[- b^2 \int_0^1 u(x,1) \delta v(x,1) \, dx + b^2 \int_0^1 u(x,0) \delta v(x,0) \, dx = 0 \]

\[(15) \]

with the constrained conditions

\[u(0,t) = 0 \; ; \; u_1(1,t) = 0 \quad \text{for} \; 0 < t < 1 \]

\[u(x,0) = u_0(x) \; ; \; u(x,0) = 0 \quad \text{for} \; 0 < x < 1 \]

\[(16) \]

It was shown in another paper\(^4\) that the variations of the adjoint variable

must be constrained as follows
\[\delta v(1,t) = 0 \quad \delta v'(0,t) = 0 \quad \text{for} \quad 0 < t < 1 \\
\delta v(x,1) = 0 \quad \delta v(x,1) = 0 \quad \text{for} \quad 0 < x < 1 \quad (17) \]

4. FINITE ELEMENT DISCRETIZATION AND SHAPE FUNCTIONS

Through nondimensionalization, the region of interest always remains to be a unit square: \(0 < x < 1 \) and \(0 < t < 1 \). The finite element discretization is a subdivision of this unit square into smaller rectangles, the elements. A typical element scheme is shown in Figure 2 where a typical \((i,j)\)th element is also shown. In terms of the element variables Eq. (14) is now written as
\[51 = \sum_{i,j} U(i,j) = 0 \quad (18) \]

Variables \(u(x,t) \) and \(v(x,t) \) become \(u(i,j)(\xi,\eta) \) and \(v(i,j)(\xi,\eta) \) respectively where \(\xi,\eta \) are local independent variables in spatial and temporal axis also shown in Figure 2.

Relations between global and local coordinates are given as follows
\[\xi = \xi(i) = Kx - i + 1 \\
\eta = \eta(j) = Lt - j + 1 \quad (19) \]

where \(K \) and \(L \) are the number of segments in \(x \) and \(t \) directions, respectively (see Figure 2).

Shape functions are introduced as follows. Let
\[u(i,j)(\xi,\eta) = a^T(\xi,\eta)U(i,j) \quad (20) \]

where \(a(\xi,\eta) \) is the shape function vector and \(U(i,j) \) is the discretized unknown vector. In this paper, \(a(\xi,\eta) \) is selected as the following.
<table>
<thead>
<tr>
<th>\textbf{t}</th>
<th>\textbf{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 (\uparrow)</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2 (\uparrow)</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4 (\uparrow)</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6 (\uparrow)</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8 (\uparrow)</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Figure 2. A typical finite element grid scheme showing the (\(i,j\)) element and the global, local coordinates.
Let $a_k(\xi, n)$ be a component of vector $a(i, r)$, $k = 1, 2, \ldots, 16$, and

$$a_k(\xi, n) = b_i(\xi)b_j(n) \quad ; \quad i, j = 1, 2, 3, 4$$

(21)

with

$$b_1(\xi) = 1 - 3\xi^2 + 2\xi^4$$
$$b_2(\xi) = \xi - 2\xi^2 + \xi^4$$
$$b_3(\xi) = 3\xi^2 - 2\xi^4$$
$$b_4(\xi) = -\xi^2 + \xi^4$$

(22)

The correspondence between the index k and the pair (i, j) in Eq. (20) is given in Table I.

TABLE I. CORRESPONDENCE BETWEEN k AND (i, j) IN EQ. (20)

<table>
<thead>
<tr>
<th>k</th>
<th>(i, j)</th>
<th>k</th>
<th>(i, j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,1)</td>
<td>9</td>
<td>(1,3)</td>
</tr>
<tr>
<td>2</td>
<td>(2,1)</td>
<td>10</td>
<td>(2,3)</td>
</tr>
<tr>
<td>3</td>
<td>(1,2)</td>
<td>11</td>
<td>(1,4)</td>
</tr>
<tr>
<td>4</td>
<td>(2,2)</td>
<td>12</td>
<td>(2,4)</td>
</tr>
<tr>
<td>5</td>
<td>(3,1)</td>
<td>13</td>
<td>(3,3)</td>
</tr>
<tr>
<td>6</td>
<td>(4,1)</td>
<td>14</td>
<td>(4,3)</td>
</tr>
<tr>
<td>7</td>
<td>(3,2)</td>
<td>15</td>
<td>(3,4)</td>
</tr>
<tr>
<td>8</td>
<td>(4,2)</td>
<td>16</td>
<td>(4,4)</td>
</tr>
</tbody>
</table>
With the conventions as stated above, the meaning of the unknowns $U_k(i,j)$ in
the vector $U(i,j)$ is as follows

$$
U_1 = u(0,0) \; ; \; U_2 = \frac{\partial u}{\partial \xi}(0,0) \; ; \; U_3 = \frac{\partial u}{\partial \eta}(0,0) \; ; \; U_4 = \frac{\partial^2 u}{\partial \xi \partial \eta}(0,0)
$$

$$
U_5 = u(1,0) \; ; \; U_6 = \frac{\partial u}{\partial \xi}(1,0) \; ; \; U_7 = \frac{\partial u}{\partial \eta}(1,0) \; ; \; U_8 = \frac{\partial^2 u}{\partial \xi \partial \eta}(1,0)
$$

$$
U_9 = u(0,1) \; ; \; U_{10} = \frac{\partial u}{\partial \xi}(0,1) \; ; \; U_{11} = \frac{\partial u}{\partial \eta}(0,1) \; ; \; U_{12} = \frac{\partial^2 u}{\partial \xi \partial \eta}(0,1)
$$

$$
U_{13} = u(1,1) \; ; \; U_{14} = \frac{\partial u}{\partial \xi}(1,1) \; ; \; U_{15} = \frac{\partial u}{\partial \eta}(1,1) \; ; \; U_{16} = \frac{\partial^2 u}{\partial \xi \partial \eta}(1,1)
$$

for each element (i,j).

For the unconstrained formulation, Eq. (20) is used in Eq. (12). The
result is

$$
\sum_{i=1}^{K} \sum_{j=1}^{L} \delta Y(i,j)^T \left(\frac{A}{L} + b^2 \frac{L}{K} B \right) U(i,j) + \sum_{j=1}^{L} \delta Y(i,j)^T \frac{k_1}{L} C \ U(i,j) \nonumber
$$

$$
+ \sum_{i=1}^{K} \delta Y(i,1)^T \frac{k_2 b^2}{K} D \ U(i,1) + \sum_{i=1}^{K} \delta Y(1,L)^T \frac{k_2 b^2}{K} E(i) \nonumber
$$

$$
\sum_{i=1}^{K} \delta Y(i,1)^T \frac{b^2}{K} \zeta(i)
$$

(24)

where

$$
A = \int_{0}^{1} \int_{0}^{1} \sigma T \xi d\xi d\tau ; \; B = \int_{0}^{1} \int_{0}^{1} \sigma \eta \xi d\xi d\tau
$$

$$
C = \int_{0}^{1} \sigma^{(0,1)} \xi d\tau ; \; D = \int_{0}^{1} \sigma^{(1,0)} \xi d\tau \nonumber
$$

$$
E(i) = \int_{0}^{1} \sigma^{(0,1)}(\xi,0) d\xi ; \; G(i) = \int_{0}^{1} \sigma^{(1,0)}(\xi,0) d\xi \nonumber
$$

(25)
The expression of $F(i)$ and $G(i)$ can be further reduced into a form more readily computed. Write

$$u_0(1)(xi) = a^T(xi,0)u_0(1) = \sum_{k=1}^{16} a_k(xi,0)u_{ok}(1)$$

$$u_1(1)(xi) = a^T,n(xi,0)u_0(1) = \sum_{k=1}^{16} a_k,n(xi,0)u_{ok}(1)$$

(26)

Since

$$a_k(xi,0) = b_1(xi)b_j(0)$$

and

$$a_k,n(xi,0) = b_1(xi)b_j(0)$$

and

$$b_1(0) = 1, b_j(0) = 0 \text{ for } j = 2,3,4$$

$$b_1(0) = 1, b_j(0) = 0 \text{ for } j = 1,3,4$$

From Table I, one then observes that

$$a_k(xi,0) = 0 \text{ for all } k \text{ except } k = 1,2,5,6$$

$$a_k,n(xi,0) = 0 \text{ for all } k \text{ except } k = 3,4,7,8$$

Hence, in Eq. (26), only $U_{01}(1)$, $U_{02}(1)$, $U_{05}(1)$, and $U_{06}(1)$ are used in expressing $u_0(1)$ and only $U_{03}(1)$, $U_{04}(1)$, $U_{07}(1)$, and $U_{08}(1)$ are used in expressing $u_1(1)(xi)$. Thus we shall write

$$F(1) = \int_0^1 a(xi,1)a^T(xi,0)dxi \ u_0(1) = F \ u_0(1)$$

(27)

$$G(1) = \int_0^1 a(xi,0)a^T,n(xi,0)dxi \ u_0(1) = G \ u_0(1)$$

with

$$F = \int_0^1 a(xi,0)a^T(xi,0)dxi$$

(28)

$$G = \int_0^1 a(xi,0)a^T,n(xi,0)dxi$$
The way to set up $U_0(1)$ is that first set all $U_{0k}(1)$ to zero for all $k = 1,2,...,16$. That set $U_{0k}(1)$ for $k = 1,2,3,4,5,6,7$ and 8 as follows.

\[
U_{01}(1) = u_0(1)(0) ; \quad U_{02}(1) = u_0,\xi(1)(0) ; \quad U_{03}(1) = u_1(1)(0) ; \\
U_{04}(1) = u_1,\xi(0) ; \quad U_{05} = u_0(1)(1) ; \quad U_{06}(1) = u_0,\xi(1)(1) ; \\
U_{07}(1) = u_1(1)(1) ; \quad U_{08}(1) = u_1,\xi(1)(1)
\]

(29)

With vectors $U_0(1)$, F, and G completely defined above, Eq. (24) can be rewritten as

\[
\sum_{i=1}^{K} \sum_{j=1}^{L} \delta V(i,j)^T \left(-\frac{K}{L} A + b^2 \frac{L}{K} B \right) U(i,j) + \sum_{j=1}^{L} \delta V(i,j)^T \left(-\frac{K}{L} C \right) U(i,j)
\]

(30)

\[
+ \sum_{i=1}^{K} \delta V(i,1)^T \left(-\frac{b^2 k_2}{K} D \right) U(1,1) = \sum_{i=1}^{K} \delta V(i,1,1)^T \left(-\frac{b^2 k_2}{K} F \right) - \sum_{i=1}^{K} \delta V(i,1,1)^T \left(-\frac{b^2 k_2}{K} C \right) U_0(1)
\]

Now Eq. (30) is readily assembled into a global matrix equation in a standard manner.

\[
\delta V^T K U = \delta V^T P
\]

(31)

or

\[
K U = P
\]

(31)

due to the fact δV is completely arbitrary. Thus Eq. (31) is solved for U.

5. NUMERICAL RESULTS AND COMPARISONS

Some preliminary results of computation are presented here. We shall set $b = 1$ in the differential equation (6') for simplicity. Thus,

\[
b^2 = \frac{\rho \xi^2}{E T} = \frac{\xi^2}{a^2 T^2} = 1
\]

(32)

or,

\[
T = \frac{\xi}{a}
\]

(33)

The exact solution for $t = 0, 0.2T$, and $0.4T$ are given in Figures 3 and 4.
Figure 3. Exact Solution to the Problem: Longitudinal Displacement at $t = 0$, $0.2T$, and $0.4T$.
Figure 4. Exact Solution to the Problem: Axial Stress at $t = 0$, 0.2T, and 0.4T.
First, the results from the unconstrained variational formulation. Using a grid scheme of 5x1, the numerical results for displacements and axial stresses are tabulated in Tables II and III where the exact solutions are also given for comparison. The graphic comparisons are shown in Figures 5 and 6 where the calculated solutions are indicated by crosses (x) and the exact solution is plotted in solid lines. It is clear in these figures that the computed results generally agree with the exact analytical solution. As a further evidence of convergence, a finer grid scheme of 10x1 is taken and the improved solution is shown in Figures 7 and 8.

TABLE II. SOLUTIONS TO THE STRESS WAVE PROBLEM USING UNCONSTRAINED VARIATIONAL FORMULATION

\[t = 0.2T = 0.2(-), b = 1.0; \text{ Grid: 5x1} \]

<table>
<thead>
<tr>
<th>x</th>
<th>u</th>
<th>(\partial u / \partial x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Computed</td>
<td>Exact</td>
</tr>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.199</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.399</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.598</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.789</td>
<td>0.8*</td>
</tr>
<tr>
<td>1.0</td>
<td>0.806</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Point of discontinuity.
Table III. Solutions to the Stress Wave Problem Using Unconstrained Variational Formulation

\[t = 0.4T = 0.4(-), \, n = 1. \; G\text{r} = 5 \times 1 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(u)</th>
<th>(\frac{\partial u}{\partial x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed</td>
<td>Exact</td>
<td>Computed</td>
</tr>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.200</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.399</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.594</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.698</td>
<td>0.6</td>
</tr>
<tr>
<td>1.0</td>
<td>0.791</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Point of discontinuity.
Figure 5. Displacement Solutions by the Unconstrained Variational Formulation \((t = 0, 0.2T, \text{ and } 0.4T)\), and Comparison with Exact Solutions. Grid: 5x1.
Figure 6. Stress Solutions by the Unconstrained Variational Formulation ($t = 0, 0.2T, \text{and} 0.4T$) and Comparison with Exact Solutions. Grid: 5x1.
Figure 7. Displacement Solutions by the Unconstrained Variational Formulations ($t = 0.1T$) and Comparison with Exact Solutions. Grid: 10x1.
Figure 8. Stress Solution by the Unconstrained Variational Formulations \(t = 0.1T \) and Comparison with Exact Solutions. Grid: 10x1.
Numerical results from the constrained formulation follow the general trend as the unconstrained one as indicated in Figures 9 and 10, as well as the tabulated comparison with the exact solution in Tables IV and V.

TABLE IV. SOLUTIONS TO THE STRESS WAVE PROBLEM USING CONstrained VARIATIONAL FORMULATION

t = 0.1T, b = 1; Grid: 5x1

<table>
<thead>
<tr>
<th>x</th>
<th>Computed</th>
<th>Exact</th>
<th>Computed</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.986</td>
<td>1.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.200</td>
<td>0.2</td>
<td>0.984</td>
<td>1.0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.399</td>
<td>0.4</td>
<td>0.944</td>
<td>1.0</td>
</tr>
<tr>
<td>0.6</td>
<td>0.596</td>
<td>0.6</td>
<td>0.784</td>
<td>1.0</td>
</tr>
<tr>
<td>0.8</td>
<td>0.797</td>
<td>0.8*</td>
<td>-0.049</td>
<td>0.0*</td>
</tr>
<tr>
<td>1.0</td>
<td>0.874</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*Point of discontinuity.
Table V. Solutions to the Stress Wave Problem Using Constrained Variational Formulation

\(t = 0.1T, b = 1.0; \) Grid: 5x1

<table>
<thead>
<tr>
<th>x</th>
<th>Computed</th>
<th>Exact</th>
<th>(\partial u / \partial x)</th>
<th>Computed</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.000</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.100</td>
<td>0.1</td>
<td>1.000</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.200</td>
<td>0.2</td>
<td>1.000</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.200</td>
<td>0.3</td>
<td>1.000</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.400</td>
<td>0.4</td>
<td>0.999</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.500</td>
<td>0.5</td>
<td>0.997</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>0.6</td>
<td>0.600</td>
<td>0.6</td>
<td>0.986</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>0.7</td>
<td>0.700</td>
<td>0.7</td>
<td>0.945</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>0.8</td>
<td>0.798</td>
<td>0.8</td>
<td>0.787</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>0.9</td>
<td>0.898</td>
<td>0.9</td>
<td>-0.038</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.936</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Point of discontinuity.
Figure 9. Displacement Solutions by the Constrained Variational Formulations \((t = 0.2T)\) and Comparison with Exact Solutions. Grid: 5x1.
Figure 10. Stress Solution by the Constrained Variational Formulations ($t = 0.2T$) and Comparison with Exact Solutions. Grid: 5x1.
REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Distribution List</th>
</tr>
</thead>
</table>
| 1 | CHIEF, DEVELOPMENT ENGINEERING BRANCH
 | ATTN: DRDAR-LCB-DP
 | -DR
 | -DS (SYSTEMS)
 | -DS (ICAS GROUP)
 | -DC |
| 1 | CHIEF, ENGINEERING SUPPORT BRANCH
 | ATTN: DRDAR-LCB-SE |
| 1 | CHIEF, RESEARCH BRANCH
 | ATTN: DRDAR-LCB-R (ELLEN FOGARTY)
 | -RA
 | -RM
 | -RP
 | -RT |
| 5 | TECHNICAL LIBRARY
 | ATTN: DRDAR-LCB-TL |
| 2 | TECHNICAL PUBLICATIONS & EDITING UNIT
 | ATTN: DRDAR-LCB-TL |
| 1 | DIRECTOR, OPERATIONS DIRECTORATE |
| 1 | DIRECTOR, PROCUREMENT DIRECTORATE |
| 1 | DIRECTOR, PRODUCT ASSURANCE DIRECTORATE |

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: DRDAR-LCB-TL, OF ANY REQUIRED CHANGES.
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASST SEC OF THE ARMY</td>
<td>COMMANDER</td>
</tr>
<tr>
<td>RESEARCH & DEVELOPMENT</td>
<td>ROCK ISLAND ARSENAL</td>
</tr>
<tr>
<td>ATTN: DEP FOR SCI & TECH</td>
<td>ATTN: SARRI-ENM (MAT SCI DIV)</td>
</tr>
<tr>
<td>THE PENTAGON</td>
<td>ROCK ISLAND, IL 61299</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20315</td>
<td></td>
</tr>
<tr>
<td>COMMANDER</td>
<td>DIRECTOR</td>
</tr>
<tr>
<td>DEFENSE TECHNICAL INFO CENTER</td>
<td>US ARMY INDUSTRIAL BASE ENG ACT</td>
</tr>
<tr>
<td>ATTN: DTIC-DDA</td>
<td>ATTN: DRXIB-M</td>
</tr>
<tr>
<td>CAMERON STATION</td>
<td>ROCK ISLAND, IL 61299</td>
</tr>
<tr>
<td>ALEXANDRIA, VA 22314</td>
<td></td>
</tr>
<tr>
<td>COMMANDER</td>
<td>COMMANDER</td>
</tr>
<tr>
<td>US ARMY MAT DEV & READ COMD</td>
<td>US ARMY TANK-AUTMV R&D COMD</td>
</tr>
<tr>
<td>ATTN: DRDCE-SC</td>
<td>ATTN: TECH LIB - DRSTA-TSL</td>
</tr>
<tr>
<td>5001 EISENHOWER AVE</td>
<td>WARREN, MI 48090</td>
</tr>
<tr>
<td>ALEXANDRIA, VA 22333</td>
<td></td>
</tr>
<tr>
<td>COMMANDER</td>
<td>COMMANDER</td>
</tr>
<tr>
<td>US ARMY ARRADCOM</td>
<td>US ARMY MISSILE COMD</td>
</tr>
<tr>
<td>ATTN: DRDAR-LC</td>
<td>ATTN: DRSTA-RC</td>
</tr>
<tr>
<td>DRDAR-LCA (PLASTICS TECH</td>
<td>WARREN, MI 48090</td>
</tr>
<tr>
<td>EVAL CEN)</td>
<td></td>
</tr>
<tr>
<td>DRDAR-LCE</td>
<td></td>
</tr>
<tr>
<td>DRDAR-LCM (BLDG 321)</td>
<td></td>
</tr>
<tr>
<td>DRDAR-LCS</td>
<td></td>
</tr>
<tr>
<td>DRDAR-LCU</td>
<td></td>
</tr>
<tr>
<td>DRDAR-LCW</td>
<td></td>
</tr>
<tr>
<td>DRDAR-TSS (STINFO)</td>
<td></td>
</tr>
<tr>
<td>DOVER, NJ 07801</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR</td>
<td>COMMANDER</td>
</tr>
<tr>
<td>US ARMY BALLISTIC RESEARCH LABORATORY</td>
<td>US MILITARY ACADEMY</td>
</tr>
<tr>
<td>ATTN: DRDAR-TSB-S (STINFO)</td>
<td>ATTN: CHM, MECH ENGR DEPT</td>
</tr>
<tr>
<td>ABERDEEN PROVING GROUND, MD 21005</td>
<td>WEST POINT, NY 10996</td>
</tr>
<tr>
<td>COMMANDER</td>
<td></td>
</tr>
<tr>
<td>US ARMY ARRCOM</td>
<td></td>
</tr>
<tr>
<td>ATTN: DRSAR-LEP-L</td>
<td></td>
</tr>
<tr>
<td>ROCK ISLAND ARSENAL</td>
<td></td>
</tr>
<tr>
<td>ROCK ISLAND, IL 61299</td>
<td></td>
</tr>
<tr>
<td>NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVERLIFT ARSENAL, WATERVERLIFT, NY 12189, OF ANY REQUIRED CHANGES.</td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

<table>
<thead>
<tr>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ARMY RESEARCH OFFICE</td>
<td></td>
</tr>
<tr>
<td>ATTN: CHIEF, IPO</td>
<td></td>
</tr>
<tr>
<td>P.O. BOX 12211</td>
<td>1</td>
</tr>
<tr>
<td>RESEARCH TRIANGLE PARK, NC 27709</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ARMY HARRY DIAMOND LAB</td>
<td></td>
</tr>
<tr>
<td>ATTN: TECH LIB</td>
<td></td>
</tr>
<tr>
<td>2800 POWDER MILL ROAD</td>
<td>1</td>
</tr>
<tr>
<td>ADELPHIA, MD 20783</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ARMY HARRY DIAMOND LAB</td>
<td></td>
</tr>
<tr>
<td>ATTN: TECH LIB</td>
<td></td>
</tr>
<tr>
<td>2800 POWDER MILL ROAD</td>
<td>1</td>
</tr>
<tr>
<td>ADELPHIA, MD 20783</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVAL SURFACE WEAPONS CEN</td>
<td></td>
</tr>
<tr>
<td>ATTN: TECHNICAL LIBRARY</td>
<td></td>
</tr>
<tr>
<td>2800 POWDER MILL ROAD</td>
<td>1</td>
</tr>
<tr>
<td>ADELPHIA, MD 20783</td>
<td></td>
</tr>
</tbody>
</table>

| NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVLIET ARSENAL, WATERVLIET, NY 12189, OF ANY REQUIRED CHANGES. |