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ON CUMULATIVE SUM PROCEDURES AND A STOPPED WIENER

PROCESS FORMULA

by

Rasul A. Khan

Abstract

Let Xl X2 , ... , Y-1 ' . , X+i' "'" be independent random variables such

that X,, Xr,\..., X-i are iid N(O,a ) and X ** are Lid N(ya2

r > 0 , where \ is known and k is an unknown time Index of a possible change

in distribution.For detecting changes in if three types of cumulative sum (cusum)

procedures are considered. The first one is a class of cusum-type procedures - -
suhthat E.t = + y. and (E 't,< for '

such ta T 0 . The second is a modification of the

conventlonal cusum procedure of Page (1954) which is more efficient. The third is

a continuous version T of the modified cusum procedure in terms of Wiener process

and its Laplace transform is found which leads to the kr. n results of Taylor (1975)

and Nadler and Robbins (1971).

AMS 1970 Subject Classifications: Primary 62LI0; Secondary 62L99

Key Words and Phrases: Vetec.tion, cmutatve 6um (cuwum), ave'age &w Cngth (ARL),

Wiene,% procezs, Lap&tce ttans 6orm.
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1. Introduction

Random samples of size m are taken at regular intervals from a production

process and sample means X1 , X2, ... are computed. It is assumed that XI, X2 , ...

are independent random variables having normal distribution with mean V and known
2

variance a . The mean U is said to be in control if V = p0 (ppo0 ) and out of

control if V > U0 " There is no loss of generality in assuming that p0 = 0

Thus X1 . X2  "" Xk-' Xk+l' "'" are assumed to be independent random variables
2 2such that X", . -i are iid N(O,a ) and Xk, Xk+i, ... are iid N(p,a 2,

P > 0 , where a is known and k is an unknown time index of a possible change in

distribution. The oldest method for detecting changes in u is the Shewart (1931)

control chart. Motivated by Wald's sequential probability ratio test and a desire

for quick detection Page (1954) defined the following cumulative sum procedure.
n

Let Y, = X r , r 2 0 , and set S 0 , S= E Y W=O,
i i0 n i '.l 0

W = max(O, Wn + Y n 2 1 . For h > 0 Page's (1954) one-sided cusum procedure

is defined by the stopping variable

(1.1) t - inffnkl: Wnh} = inf{n: Sn - 0-In Sikh}

and a corrective action is taken at Wt h

The average run length (ARL) is defined to be E t before the corrective action

is taken while the mean has remained at a constant level U . The rationale for this

definition is as follows. Let P (k) denote the probability under which XV,deoe h 2oabltyude hihXl '2 -

are iid N(O,a 2 ) and Xk Xk+l "'" are iid N(po 2) , 2 > 0 , where a is known.

Thus P0 " 
P ( IJ entails the model of no change and P P p(1) means a change right

(k) ,k)from the start. Let E denote the expectation under P . One would like to
U (kYdefine a detection stopping variable T such that sup E ((r-k+l)IT>k-l) is minimumk~tl

subject to E UT - E 02A , where A is a preassigned positive constant. It turns out
that t defined by (1.1) has the property

(1.2) sup E(k)((t-k+l)it>k-1) = E (1)t = E t

To see this we observe that

(1.3) sup E(k)((t-k+l)It>k-l) E(1 )t E t
kkl-
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Next, note that t can be written as

n
t inf{nkl: max Z Y kh}

O<5J<n i=J+l

and define the cusum procedure tk in terms of Y Y .. askl k' >hl

tk  inf{n2:k: S n  k-mi n S2

n

n
where S = Z Y = Sn(k) ,n2kn ink

Then t inf (+kl) tk + k I ,and hence
kel

sup E(  ((t-k+l)It>k-l) 5 sup E(k) t E t = E t
k21 kIl1A k1

which combined with (1.3) jusitifes (1.2) and the definition of ARL.

There is vast amount of lieterature on the cusum procedure (1.1). The constant

r is basically a design constant so as to minimize ARL(vI) at a fixed V 2 0

subject to E0 t k A . This problem has been treated by Ewan and Kemp (1960) in the

normal case and by Khan (1978) for the general family of exponential distributions.

Unfortunately Page's cusum procedure and the Shewhart control chart as well as the

moving average procedure of Lai (1974) have finite ARL when V - 0 . However, in

some problems a more desirable property would be E0t = + - while E T < - for

U>0 , which should be as small as possible or at least fares well when compared with

the conventional procedures. A trivial S procedure with infinite ARL when v 0
n

is given by

*t 1  inf{n2:l: S 2h)
n

where Sn - Z Yi Yi =X - r r > 0

However, E tI - + C for 0 < U < r so that small changes cannot be detected by

t thus it is desireable to develop a cusum-type detection procedure with the

above mentioned properties.

A summary of this paper is in order. In Section 2 we develop a class of cusum-

* type detection procedures T such that EOT- 0 and E T < for P > 0 . A

modification of the cusum procedure is given in Section 3 and there is numerical

evidence that the modified procedure is more efficient that the conventional cusum
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procedure. Finally, in Section 4 we discuss a continuous version of the modified

cusum procedure in terms of Wiener process and obtain its Laplace transform which

leads to simple alternative derivations of some of the results of Taylor (1975)

and Nadler and Robbins (1971).

F
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2. A Cusum-Type Procedure T with E -

We will use the likelihood ratio and the mixing techniques of Robbins (1970)

to define and study a class of cusum-type procedures T with the property EOT = 4

and E T < - for u>0 . Let XI, X2 , ... be independent normal random variables
2

with the mean U and known variance a . The mean P is in control if V 5 0 and

V > 0 indicates lack of control. Clearly, it is enough to consider P - 0 versus

P > 0 and assume that a - 1 . Let P(k) denote the probability under which

X1, ..., Xk_1 are iid N(0,1) and Xk,Xk+l, ... are iid N(ul) (P>0) random

. variables where k is an unknown time index for a possible change in distribution.

Obviously, P(k)(A) - P0 (A) if A e B(XI,.. .,Xkl) and P(k)(A) = P (A)
if A E (XX+,...) , where P denotes N(p) probability measure. If the

sequence Xl....Xn is observed, its joint probability density function under P(k)

nn
is given by

n
f k f = 0 *(Xi) if n<kkn 0n ~il

k-1 n
= I *(Xi) H *(Xi-v) , if n k
i-l i-k

where O(x) - (2w)-1/2 exp (-x2/2) .

Any sensible procedure for detecting changes in v would compare the likelihood

that a possible change has occurred at some k(lkgn) within the observed segment

"- (Xl,...X ) versus the possibility that it will occur in the future (k>n) . But
n

*. this means that such a procedure must be based on the ratio

Z j fk-l n n

n,k k,n O,n H(ii *(Xi) n 0(Xi-P)]/ i ,(Xi )
i-1 i=k i-i

exp(p Snk - (1/2)u2 (n-k+l))

n
where Sn,k  E k

nk i-k

- It is easy to define a cusum procedure based on Zn( ) if P is known (c.f. Khan

(1979b)). However, since V is unknown, a possible approach is to use a suitable

mixing of Zn0k() , with respect to a distribution function (df) F(p) (cf. Robbins

(1970)). This is exactly what leads to a class of cusum-type procedures given below.
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Clearly, Z () is a Po-martingale relative to Fnk - B(X,...,Xn) , n2k
nk 0Sale (X

with EoZk(p) - 1 . Now define

0

:n,k f L Zn k(1)dF( )

where F(U) is a df on (-oo)
The n,k is also a P-martingale relative to F nak Let b be an

Then 0 isnoP n,k k
increasing sequence of positive constants and define

(2.1) T - inf{nal: n bk for some lkn} .

If b - b>O , then T reduces to

T- inf{nal: max Cn2! b}
lkn

a procedure studied by Pollak and Siegmund (1975). However, our interest is in T

which attains E = +0 by a proper choice of bk

Since {Ink , Fn,k ' n2k} is a positive martingale with EO nk = it

follows from martingale inequality that

-1 -1(2.2) P (max k > bk b
nak

Define

T inf{nk: n bk}

Tk n,k k

Thus, one obtains from (2.2) that

PO ( T< - )  Z P0(T k<' ) E P0 (max bn,k Z bk)
kl k-1 nzk

E bkl 1
k-l

k b-l -al-
by a proper choice of b e.g., with b = a d > 1 b - (-1) < 1.

k-l

Since P0 (T
<-) <5 n < 1 , E - + Moreover, using an argument in Pollak and

Siegmund (1975) it can easily be seen that E T < 0 for u>O
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We choose b b (a) * - as a such as above and all the asymptotics

are as a - . To obtain an asymptotic upper bound for E T define

T- inf{nk: n,k - bk(a)}

and note that T - inf(rk + k - 1) < T , so that E T 5 E T Assuming thek_>

existence of F'(0) it follows from a result of Pollak and Siegmund (1975) that

21ogb I (a)
(2.3) E - [2 log bl(a) + log ( 2 - log(2r(F'(2)) 2

which is really an asymptotic upper bound for E T

!1/2 2Example 1. Let F'(U) = *(j) - (27r) exp(-u /2) . Then

-12 2 n
(n-k+2) exp(S k/ 2 (n-k+2 )) s E Xinknk 'nk i=k

2and taking bk - exp(ak/2) where ak =2k loga , a>l ,we have

Po(Sn,k2an,k for some nkk) < P0 (Isn,k12an,k for some nwk)

where an,k - /(n-k+2)(aj+log(n-k+2))

In fact the first probability is bounded by(1/2)exp(-ak/2) . Moreoever, the one-

sided cusum-type procedure T reduces to

T - inf{nzl: Sn,k 2 an,k for some I:k~n}

A two-sided cusum-type procedure can be defined by

T- inf{n2l: ISn,k 1 a n,k for some lk~n} .

It follows from (2.3) that an asymptotic upper bound for E T is

(2.4) E T<[2 log a + log, 21oza 22 ) U-1/ as a-+=

P.

4. • .+
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Let vk - inf{n2k: S an} , and since T = inf(vk+k-1) < Vl.,n,k n,k kkzl

E T < E v Also, since an, is an increasing concave boundary, it follows

from a result of Robbins (1970) that an upper bound for E v1  is obtained by

solving the inequality

(2.5) pEv I < /(2 log a + log(E V1 )) E1v 1  + D()

where 0(0) is the standard normal distribution function. The upper bound for

Ev1 is in turn an upper bound for E T

Example 2. Let F'(p) - 20(p) , >0

-0 ,

In this case n,k = 2(n-k+2)-/2 (  exp(S n,k/2(n-k+2))

4k+

and with bk -a k(a>l) (2.1) reduces to

kn

T - inffn-l: Snk1 2 + 2(n-k+2) log(O( )) 2 a for some lk_<n}
/n-k+ n,k

where an,k (n-k+2) log(n-k+2) + 2(n-k+2) (k log a - log 2)

Moreover, it follows from (2.3) that

(2.6) E T < [2 log a + log( 21o +P 2 og2]/ a aV 2

The following Tables 1 and 2 are based on (2.4) and (2.6) respectively while

Table 3 is based on (2.5).

Table 1

ARL(p) (Ex.1)

V

a F2 r2 423/ 2 r2
4 2 2

20 71.89 15.95 3.54 2.17 1.59

50 88.69 20.15 5.09 2.64 1.85

• ' '" ' " " " " " " " -"' '" " "" '" "' '" ' " " ' ' '" " " ' '" " ,- ' " ." " " ; "
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Table 2

ARL(i) (Ex.2)

Ii

4 2 2

20 60.80 13.18 3.35 1.87 1.42

50 77.59 17.38 4.40 2.33 1.68

Table 3

Upper Bound for E T (Ex.1)

F2 F ,3/2F/2 2

20 86 21 5 3 2

50 105 25 6 3 2

Comparing these tables with Table 2 of Lai (1974, p. 138) it is clear that

cusum-type procedure obtained by mixture of the likelihood ratio has substantially

reduced ARL(p) in addition to the desirable property of having infinite ARL

under no change in distribution.

....... . -.........................-."-.i.-.... ". -"i'"i."": . "
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3. A Modified Cusum Procedure

The cusum-type procedure T of the last section has the property E0 r =T

and fairly reduced ARL(V) for V>O . However, E T= 0( 2) which means

that it may take a while to detect small positive changes in V - perhaps the

price for achieving E0T = +c . In contrast, Page's (1954) cusum procedure t

defined by (1.1) with r = 0, has the property that E t = 0(h/p) and

Et Zh as h -> - (ef. Khan (1979a)). But the comparison favors T in that

E0t < . Thus it is desirable to somehow improve the cusum procedure (1.1) to

increase Eot so that the modified version becomes more efficient. Later in

Section 4 we will see that this modified version manifests itself into simpler

proofs of continuous cusum theory in terms of a Wiener process.

Let Y1 ,Y2,... be independent N(p,a 2 ) random variables with known variance
2
a . As before the target mean is U = 0 and U > 0 indicates that the process

is out of control. Let Xi = Yi-k, k0,i= 1,2,..... Set W0 = 0 and for b>0

define

W1 = 0 if X1S-b , W2=0 if W1+X25-b

= X1  if XI>-b IW+X2 if WI+X2 -b

W U 0 if Wn +Xn 5-b

Wn1 +Xn if Wn-l +Xn>-b

For any > 0 define the cusum procedure

N - N(b,h) = inf{nal: W nh}

with a corrective action at WN h . With b-0 N becomes the regular cusum

n
procedure. Let S - E X and define

i-li

M - inf{nl: S --b or S hl
*nn

A simple renewal argument gives

E N (E M)/P ( jh)

iI
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From Wald's approximations (cf. Khan (1978)) or Wiener process approximation

(Section 4) we have

(3.1) E N -" 1 [h - b (1 - exp(-2hy)) ] 0

(i-k) (exp(2by) - 1)

and

(3.2) E0 N (h2 + hb)/a , y=O

2
where y =(-k)/a

Letting b + 0 these approximations reduce to the standard approximations to

ARL(p) for cusum procedure (1.1). Choose k = 0 (the purpose of the design

constant k has been discussed earlier in Section 1), a = 1 and b = h

Then (3.1) and (3.2) reduce to

(3.3) E N(h) -" h -h (I - exp(-2h)) U>0

U p (exp(2hp) - 1)

and

2
(3.4) E0N(h) & 2h

Letting N1  denote Page's (1954) cusum procedure with k = 0 and boundary h'

it follows that

E-N(h' [h' 2 ( - exp(-2ph'))] , >0

and E0N 1 (h') h'

Setting h' - h/2 it follows that

(3.5) E Nl(hV2) 2- -h 1 (1 - exp(-2r hu))] , v>O

and E0N1 (hr2) E0N(h) = 2h 2

Thus N(h) and Nl(h2) have about (as h-o) the same ARL when v=0 while their

respective ARL(p) are given by (3.3) and (3.5). The following tables compare

the ARL(M) for N and N1 . These tables show that at least for large h the

modified procedure N is more efficient that N1 .
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Table 4

h ARL(z)

0 .01 .02 .1

E N1 (h(2) 2 1.97 1.96 1.82
1

E N(h) 2 1.93 1.94 1.80

E N1  18 17.46 17.02 13.83

3
E N 18 17.28 16.86 13.54

E N1  50 47.71 45.59 32.87

5
E N 50 47.24 45.31 31.60

Table 5

h ARL(p)

0 .5 1 2

2h2 100 EN l (hr2) 100 18.0 9.5 5.0

E N(h) 100 14.13 7.07 3.54

2. E N1  590 46.58 23.79 12.02
E N 590 34.35 17.18 8.59

2h2940 E N1  940 60.32 30.16 15.21

E N 940 43.36 21.68 10.84

pi

A

........
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4. A Stopped Wiener Process Formula

A continuous version of the modified cusum procedure is now consiered and in

addition to the approximation formulas used in Section 3 we obtain simple alternative

derivations of some of the results of continuous cusum theory of Taylor (1975) and

.- Nadler and Robbins (1971).

Let {W(t) , W(O)-O , ta0} be a Wiener process with a drift parameter U and

scale parameter a Let m(t) = W(t)- m n W(s) and M(t) max W(s)- W(t)
O5s5t O5s5t

For h>O define

(4.1) T inf{t2O: W(t) - mn W(s) 2 hi = inf{taO: m(t) a h}
0 s~t

(4.2) T inf{t0: max W(s) - W(t) hl - inf{t O: M(t) hi
O s~t

(4.3) and T = min(Tr 2) inf{t 0: m(t) 2 h or M(t) h)

Here T1 and T2 are the continuous versions of Page's (1954) one-sided cusum

procedures while T is a continuous version of a symmetric version of two-sided

cusum procedure. Taylor (1975) obtained the Laplace transform of T (hence

that of TI also) while Nadler and Robbins (1971) obtained the Laplace transform

of T . Their methods are quite involved due to obvious intrinisc difficulties.

However, we consider a continuous version T of the modified cusum procedure and

obtain its Laplace transform which lead to simple derivations of the Laplace trans-

forms of T1 , T2 and T.. In view of the intrinsic difficulties the methods used

here show the power of renewal argument and the strnegth of Wald's identity.

The continuous version of the modified cusum procedure is as follows.

For b>O and h>O define

(4.4) T1 - inf{taO: W(t) 5 - b or W(t) ! h}

If T terminates at the lower boundary -b , the Wiener process starts from zero
1

all over again and T1  is repeated. The cycle continues until the upper boundary

h is attained. Thus

T2 - inf{t 0: W(t+T1) + b 5 -b or W(t+T1) + b k h}

, etc. Clearly, T1 , T , ... are iid random variables, and the cycles of

TI , T2 , ... are repeated until the boundary h is hit. By abuse of notation

the cycle is terminated by the auxiliary geometric stopping rule

(4.5) N - inf{nkl: W(T) k hi



- 14 -

and a corrective action is taken at TN . Clearly, the run length is

T - T1 + T2 + ... + TN

Since T, T2, ... are iid and N has geometric distribution, it follows from

Wald's lemma that

(4.6) E T = E T1E N - (E TI)/P (W(TI 1 h)

First we compute E T by Wald's identity for Wiener process and then obtain

the Laplace transform of T . Let a(8) - ue + 19 a . Then
2

lexp(eW(t) - t a(e)) , Ft - B(W(s) , s5t)} is a martingale with the property that

E exp(eW(t) - t a(6)) - 1 . It is well known that Wald's identity holds for T

defined by (4.4). Thus

(4.7) E exp(eW(TI) - T1 a(O)) - 1

2
Set a(8) - 0 giving e - -2y , where y p/a , and (4.7) gives

E exp(-2y W(TI)) - 1

This identity and the definition of T1 give

(4.8) P (W(T1 ) > h) - p = (exp(2by) - 1)/(exp(2by) - exp(-2hy))

and P (W(TI) < -b) - q - 1-p - (1 - exp(-2hy))/(exp(2by) - exp(-2hy))

When Y - 0 it is easy to see that

(4.9) P0 (W(T1 ) 2 h) - pO - b/(b+h)

and P0(1W(T 1 ) < b) - q0 - -p0 - h/(b+h)

Since E W(T1) E i K W(T1) and E0W 2(T1) C a E0 T1 , (4.6) , (4.8) and (4.9) give

E T =h b (l-exp (-2h7')) *
p p p (exp(2by)-1) 1)0

. (h2 +bh)/2 U-0

* .-.
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Letting b + 0 one finds the formula for E 1  (hence E T2  also) which are

given by

E r 1 [h (1-exp(-2hy)) ET 1 [h+ (l-exp(2hy)) 41"1 -- [h - 2 ] , E 2 =- [-h +y

2 2and EO0T - EOT2 = h2/a

We will now find the Laplace transform of T . To this end, we determine

the conditional and unconditional Laplace transforms of T . Set a(8) - s(s>0)

and find the two roots as

+- -y+ 6 and e - -(y+6)

where (2s

Hence it follows from (4.7) that

(4.10) E exp(O+W(T ) s T) E exp( W(T1 ) - s T1) 1

Let gl g1 (s) E (exp(-s TI)IW(TI) -b]q

and g2 -g 2 (s) E [exp(-s T1)IW(TI) 1 hip

where p(q - 1-p) is defined by (4.8).

Using the definition of T we find from (4.10) that

"" be+ hO+  -be- hO-
e g 1 

+ e g2 " e - 1 + e g2he 9

and after some algebra the solutions are

-by e sinh(hS)/sinh((b+h)6)

(4.11)

and g2 - ehy sinh(b6)/sinh((b+h)6)

Hence

(4.12) *0 (s) -'E e-sTl - + g2  (ebY sinh(h6) + e h  sinh(b))/sinh((b+h))
0+g

."I - . ., . - _ .' . i _ -. i -" ., , . . ._ . o -. . . .. " " _
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i.

V Now recall that T - 1 + ... + TN , where TI, T2  ... are iid and N has a

geometric distribution given by

P(N-n) - pq -l , nml, 2 ,  qinl-p

where p is given by (4.8) if v*O and by (4.9) if p-0.

From (4.11) we have
T -by

• p( - s Tl  e -ysinh (h6)
(4.13) E (e JW(T1 ) I -b) - gl/q -q snh((b+h)6)

and

(4.14) E (e-sT1IW(T h) /P e sinh(b6)
441 g 2 /p P sinh((b+h)6)

Now it follows from the definition of T that
Go

(4.15) E •-sT- E E (e-S(Tl'INNn) P(N-n)
n-i

Using conditional independence we have

(4.16) (e - s (TI+"" Tn) IN-n) - E (e - sTlIN=n) E (e - s T2INin)... E (e-sTnINn)

V 11 U p

Moreover, it f,&+.7ows from (4.13) and (4.14) and the strong Markov property that

Ej ( -sTl  e-b  sinh(h6)(4.17) E (e-STl N-n) E (T - -b) - e

U q sinh((b+h)6)

and

EsT ees n JW(n h  sinh b 6)
(4.18) E (esTn INn) - -(esTnIW(T h) h

p p sinh((b+h)6)

It follows from (4.15), (4.16), (4.17) and (4.18) that

-(n-i) -(n-l)by )n- sinh(b) n-i
-sT - £(slfh(h6)) e Y

e 1n-i p sinh((b+h)6)
n-i (sinh((b+h)6)'

eh y sinh(b6) . 1
sinhh((b+h)6) -bYsinh (h8)

1 sinh((b+h)6)

1q
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Hence the Laplace transform of T is given by

-sT e hsinh(b6)L l -sinh((b+h)S) - e-sinh(hS)

hyand lim 6e )19
and li .(s) 0s )l( - 6 cosh(h6) + y sinh(hS) ,

- l/cosh(hA-WO , p-O

which is the Laplace transform of "T defined by (4.1). Since T in (4.2) is
12

representable as T1  if W(t) is replaced by -W(t) , replacing U by -p in

o1(s) we obtain the Laplace transform of T2 as

6 -hy

2 - 6 cosh(h6) - y sinh(h6) 0

= 1/cosh(h 2s/o 2  
P-O

a result due to Taylor (1975).

We now turn to the problem of finding the Laplace transform of

T - min(Tl,T2) - inf{t>O: m(t)>h or M(t)>h} defined by (4.3). If M(T)>h or

M(T)>h , then it is easy to verify that M(T)-O or m(T)=O respectively. Thus

M(T1)-0 if r1  is the first to stop, and m(T2 )-O if r2  is the first to stop.

Using this "starting from scratch" property and using the argument of Khan (1981)

we have

Lemma 1. P(TI>T2) - ET1 /(ETI+ET 2) , P(TI<T2 ) ET 2/(ET 1+Er 2 )

and ET - (ETIET2 )/(ETI+ET2)

Substituting the expressions for ET and ET2  (given earlier) in Lemma 1 one
12

obtains the formula for ET found by Nadler and Robbins (1971).

Let O(s) - EeST ,(O)-l, be the Laplace transform of T . Using the "starting

from scratch" property and repeating the discrete argument of Khan (1981) in the

continuous case we have the identity

K ... .. ..• -. ., '
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01(s) + 02(s) - (S)02(s)
(4.9) O(s) - s - 0(s)$,ss)

A substitution of the expressions for (s) and 2(s) in (4.19) and some

calculations give

2(s) 2 2[(6-y)cosh(h(6+y)) + (6+y)cosh(h(6-y))-26] ji 0
(6 2_y 2 ih2(W6

- sech2(h 2s 2  , A-0

a result due to Nadler and Robbins (1971).

Thus the continuous version of the modified cusum procedure gives the

approximations to ARL(u) used in Section 3 and provides simple derivations

of the Laplace transforms of , T2 and T which were obtained by Taylor (1975)

and Nadler and Robbins (1971) by difficult methods.
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20. Abstract (cont'd)

The second is a modification of the conventional cusum procedure of Page (1954)
which is more efficient. The third is a continuous version T of the modified
cusum procedure in terms of Wiener process and its Laplace transform is found
which leads to the known results of Taylor (1975) and Nadler and Robbins (1971).
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