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ON CUMULATIVE SUM PROCEDURES AND A STOPPED WIENER
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Abstract J

Let X \.X »osevs XK 1’ Xﬁ xk+l’ ... be independent random variables such

2 . 2
that X‘, XZ’\"" Xk 1 @are iid N(0,0") and Xk, Xi4yr ¢ are iid N(p,77),

c >0, where.o is known and k 1is an unknown time index of a2 pessible change
mn

in distribution:éiFor detecting changes in f three types of cumulative sum (cusum)

NP RN

\ :n"" mw

such tha%i:E T = +-p and E T|< % for ‘p > 0 . The second i1s a modification of the ;
conventional cusum procedune of Page (1954) which is more efficient. The third is i

procedures are considered. The first one is a class of cusum-type procedures -+— Fre *
”

a continuous version T of the modified cusum procedure in terms of Wiener process

and its Laplace transform is found which leads to the kr.um results of Taylor (1975)
/ and Nadler and Robbins (1971). g:————.

’
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Key Words and Phrases: Detection, cumulative sum {cusum), average run {ength (ARL),
Wiener process, Laplace transgonm.
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1. Introduction

Random samples of sizc m are taken at regular intervals from a production ;
process and sample means Xl, XZ’ ..o are computed. It is assumed that Xl, Xz, cee [
are independent random variables having normal distribution with mean u and known
variance 02 . The mean u 1is said to be in control if u = uo(usuo) and out of
control if up > My - There is no loss of generality in assuming that ¥ = 0.
Thus Xl, 2% ees Xk-l’ Xk+1, «es are assumed to be independent random variables |
such that Xl, cees Xk 1 are iid N(O0,c ) and Xk xk+l’ ... are iid N(u,o ),

n >0, where 0o 1is known and k is an unknown time index of a possible change in
distribution. The oldest method for detecting changes in u 1is the Shewart (1931)

control chart. Motivated by Wald's sequential probability ratio test and a desire |
1
for quick detection Page (1954) defined the following cumulative sum procedure. X
, . n
Let Yi = Xi -r, r20, and set S0 =0, Sn = i§1 {0 Wb =0,

Wn = max(0, wn—l + Yn) s, N 21, For h>0 Page's (1954) one-sided cusum procedure

is defined by the stopping variable

B WK

(1.1) t = inf{n21: anh} =‘inf{n: Sn - ogign Sizh}

and a corrective action 1is taken at wtzh .

-

The average run length (ARL) is defined to be Eut before the corrective action
is taken while the mean has remained at a constant level u . The rationale for this R
definition is as follows. Let P (k) denote the probability under which Xl, ceey xk-l

are iid N(O,0 ) and Xk Xk+1’ .os are iid N(u,o ) s W >0, where ¢ 1is known.

Thus P0 = Pé ) entails the model of no change and Pu = P(l) means a change right
’

from the start. Let E( ) denote the expectation under P¥k) . One would like to

define a detection stopping variable T such that sup E: ((1-k+1) |t>k-1) is minimum
k21
(= )T = EOTZA » where A is a preassigned positive constant. It turns out

that ¢ defined by (1.1) has the property

sibject to E

(1.2) sup E(k)((t—k+1)lt>k 1) = E(l)t =Et .
k21 H

To see this we observe that

(1.3) sup E) ((t=kt1) [t>k-1) 2 E(l)t -Et
k21 ¥ K
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Next, note that t can be written as
n
t = {inf{n21: max T Yizh} s
0<j<n i=j+1

and define the cusum procedure tk in terms of Yk’ Yk+1’ .. as

t, = inf{n2k: S_ - min S,2h} ,

k n k-1sj<n 3

n

where Sn = iik Yi = Sn(k) , n2k .

Then t = inf (tk+k-1) s tk + k - 1, and hence

k21
sup E(k) ((t-k+1) | t>k-1) < sup E(k) t = E(l) t,=Et ,
k21 ¥ k2l ¥ kB W 1w

which combined with (1.3) jusitifes (1.2) and the definition of ARL.

There is vast amount of lieterature on the cusum procedure (1.1). The constant
r 1s basically a design constant so as to minimize ARL(ul) at a fixed Hy 20
subject to Eot 2 A . This problem has been treated by Ewan and Kemp (1960) in the
normal case and by Khan (1978) for the general family of exponential distributions.
Unfortunately Page's cusum procedure and the Shewhart control chart as well as the
moving average procedure of Lai (1974) have finite ARL when u = 0 . However, in
some problems a more desirable property would be EOT =+ «» while Eur < » for
u>0 , which should be as small as possible or at least fares well when compared with

the conventional procedures. A trivial Sn procedure with infinite ARL when u =0
is given by

. L, - inf{n21: SnZh} .

where Sn = iil Yi s Yi = Xi -r,r>0 .

However, Eutl = +o for 0 < pu <r so that small changes cannot be detected by
tl . thus it is desireable to develop a cusum~type detection procedure with the
above mentioned properties.

A summary of this paper is in order. In Section 2 we develop a class of cusum-
type detection procedures 1t such that EOT = 4o and Eur <o for p>0. A
modification of the cusum procedure is given in Section 3 and there is numerical

evidence that the modified procedure is more efficient that the conventional cusum

L . U SHUNN UL SO A S JUNT W SN U S S o
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. procedure. Finally, in Section 4 we discuss a continuous version of the modified
cusum procedure in terms of Wiener process and obtain its Laplace transform which
leads to simple alternative derivations of some of the results of Taylor (1975)
and Nadler and Robbins (1971).
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2. A Cusum-Type Procedure Tt with EOT = 4o

We will use the likelihood ratio and the mixing techniques of Robbins (1970)
to define and study a class of cusum-type procedures Tt with the property Eor = 4o
and Eur <o for p>0 . Let Xl, X2, .+« be independent normal random variables
with the mean 1 and known variance o° . The mean u is in control if u < 0 and
p > 0 indicates lack of control. Clearly, it is enough to consider u = 0 versus
u >0 and assume that o =1 . Let Psk) denote the probability under which
Xl, cees xk—l are iid N(0,1) and xk,xk+1, ... are i1id N(u,1) (u>0) random
variables where k is an unknown time index for a possible change in distribution.
Obviously, p:“) (4) = By(a) 1f A€ B(X,...,X, ;) and pék) A) =P (&)
if A e B(xk’xk+l"") » where Pu denotes N(u,l) probability measure. If the(k)
sequence Xl,...,Xn is observed, its joint probability density function under Pu

is given by

n
fk,n = fO,n = I ¢(Xi) , 1f n<k
i=1
k-1 n
= I ¢(X) 1 ¢(X;-w) , 1f n2k
i=1 i=k

-1/2 exp (_lez) .

Any sensible procedure for detecting changes in p would compare the likelihood

where ¢(x) = (27)

that a possible change has occurred at some k(l<ksn) within the observed segment
(xl""xn) versus the possibility that it will occur in the future (k>n) . But
this means that such a procedure must be based on the ratio

-1 k-1

n n
Z . (w) =f f = [0 ¢(X) T ¢EX, -]/ T ¢(X,)
n,k k,n "0O,n =1 1 {=k i =1 i

= exp(u Sk~ (1/2)u2 (n-k+1)) ,

where sn,k = I X .

It is easy to define a cusum procedure based on zn,k(“) if y 4is known (c.f. Khan
(1979b)). However, since yu 1is unknown, a possible approach is to use a suitable

mixing of Zn’k(u) , with respect to a distribution function (df) F(p) (cf. Robbins
(1970)). This is exactly what leads to a class of cusum-type procedures given below.
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Clearly, Zn’k(u) is a Po-martingale relative to Fn,k = B(xk,...,xn) , n2k ,
with Eozn,k(u) = 1 . Now define

cn’k - {, Zn,k(“)dF(“) R

where F(yu) 1is a df on (-»,=) .,

Then ;n,k is also a P.-martingale relative to Fn,k , n2k . Let bk be an

0
increasing sequence of positive constants and define

(2.1) T = inf{n21: ;n,k 2 by for some 1<ks<n} .

If bk = b>0 , then T reduces to

v, = inf{n21: max ¢_,2b} ,
1 lkn n,k

a procedure studied by Pollak and Siegmund (1975). However, our interest is in T
which attains E = + by a proper choice of b

k
Since {Cn,k . Fn,k , n2k} 1s a positive martingale with Eocn,k =1, it
follows from martingale inequality that
(2.2) Pmaxc . 2b ) sbl .
axk 2
Define
T ™ inf{n>k: Cn,k 2 bk} .
Thus, one obtains from (2.2) that
[} o
P (1<w) s £ P (1, <) = I P, (max ¢ 2b,)
0 k=1 0 k- k=1 0 >k n,k k
< I bil sn<l |,
k=1
b k DS | -1
y a proper choice of bk » €.8., with bk =q ,a>1, bk = (a-1) <1.
k=1

Since P0(1<~) sSn<l1l, Ejt = +» . Moreover, using an argument in Pollak and
Siegmund (1975) it can easily be seen that Eut <o for w0 .
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We choose bk =- bk(a) +® as o + o such as above and all the asymptotics

are as o + = , To obtain an asymptotic upper bound for EuT define

L inf{nk: cn,k 2 bk(a)} s

and note that t = inf(t, +k - 1) < t, , so that Et S E 7
k2l X 1 LA

existence of F'(u) it follows from a result of Pollak and Siegmund (1975) that

1 Assuming the

210gb, (@)

2
U

2.3) Eutl = [2 log bl(a) + log ( ) - log(2w(F'(u))2) -1]/u2 s

which is really an asymptotic upper bound for Eur .

Example 1. Let F'(y) = ¢(p) = (21r);1/2 exp(-u2/2) . Then

n
exp(sh L /2@-it2)) , s | = AR
i=

o (mpany—1/2
cn k (n-k+2)

’

and taking b = exp(a§/2) where a, Y2k loga , «>1 , we have

PO(Sn kZan Kk for some n2k) < PO(ISn klzan K for some n2k)

exp(-a’/2) =" *

A

where an,k = Jfﬁ-k+2)(ak+1og(n-k+2)) .
In fact the first probability is bounded by(1/2)exp(-a§/2) . Moreoever, the one-

sided cusum-type procedure 1 reduces to

T = inf{n21l: Sn k23 for some 1<ks<n} .

* s

A two-sided cusum-type procedure can be defined by

o™ inf{n21: lsn,kl 2 8.k for some 1lsksn} .
It follows from (2.3) that an asymptotic upper bound for EuT is

(2.4) Eu15[2 log a + 103(—21%82-9 + u2-1]/u2 as g+ .,
u
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Let v, inf{n2k: 0,k 2 an,k} , and since T i:i(vk+k 1) vy
Eut < Euvl . Also, since a 3 is an increasing concave boundary, it follows
b
from a result of Robbins (1970) that an upper bound for Euvl is obtained by
solving the inequality
, .
G0
(2.5) uEuvl < /(2 log o + 1og(Euv1)) EV, + o) +u

where ®¢(u) 1s the standard normal distribution function. The upper bouad for

Eh“l is in turn an upper bound for Eur .

Example 2. Let F'(u) = 2¢(p) , u>0
=0 . uSO .

In this case k= 2(n-k+2)" 1/2 (:7—4————0 exp(s k/2(n—k+2)) ,
’ n-k+2

and with bk - ak(a>1) (2.1) reduces to

S
2 + 2(n-k+2) log(¢6—JE££0) 2 a

n~-k+2

T = inf{n21: |S for some l<k<n}

n,kl n,k
kT (n-k+2) log(n-k+2) + 2(n-k+2) (k log a - log 2) .
’

Moreover, it follows from (2.3) that

(2.6) Eut < [2 log a + 1036—21%59—) + u2 -1-2 log 2]/u2 as a@ + @ .
u
The following Tables 1 and 2 are based on (2.4) and (2.6) respectively while

Table 3 is based on (2.5).

Table 1
ARL(u) (Ex.l) 1
a V2 V2 EZZ 1
% 3 2 ; 2/2 i
50 | 88.69  20.15 5.09 2.64 1.85 :
3
) :
F :
E 3
l" RN et e e e
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Table 2
ARL (u) (Ex.2)
p
72 2 /z. 32 2/2
a 4 2 2
20 60.80 13.18 3.35 1.87 1.42
: 50 | 77.59  17.38 4.40 2.33 1.68
3
? Table 3
N Upper Bound for Eu‘r (Ex.1)
4 u
:
a 274 V272 Z 3Y2]2 2/2
20 86 21 5 3 2
' |
50 105 25 6 3 2
Comparing these tables with Table 2 of Lai (1974, p. 138) it is clear that
cusum-type procedure obtained by mixture of the likelihood ratio has substantially
3 reduced ARL(u) in addition to the desirable property of having infinite ARL
under no change in distribution.
.
-
-
b.‘
1
"
4
: |
T
:
.
.
g |

b, -
I
.
*l
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3. A Modified Cusum Procedure

-

The cusum-type procedure T of the last section has the property EOT = +o
and fairly reduced ARL(u) for u>0 . However, Eur = 0(21%520 which means
n
that it may take a while to detect small positive changes in u - perhaps the

price for achieving EOT = 4+ , In contrast, Page's (1954) cusum procedure ¢t ,
defined by (1.1) with r = 0, has the property that Eut = 0(h/p) and

Eot ~ h2 as h > o (ef. Khan (1979a)). But the comparison favors t in that
Eot < © , Thus it is desirable to somehow improve the cusum procedure (1.1) to
b .
d increase Eot so that the modified version becomes more efficient. Later in
:‘ Section 4 we will see that this modified version manifests itself into simpler
- proofs of continuous cusum theory in terms of a Wiener process.
;; Let Yl,Yz,... be independent N(u,cz) random variables with known variance
8 ' 02 . As before the target mean is u =0 and yu > 0 indicates that the process
"4 is out of control. Let X, =Y,-k, k20 , 1 =1,2,... . Set W, =0 and for b>0
define
Wl =0 if Xls-b . W2=0 if W1+x25-b
'r‘ = X, if X >-b = WX, 1f W HK,>-b
- W =0 if W_.+X _<-b
3 n n-1 "n
= _ =W .+ if W 4X >-b .
F n-1 "n n-1 "n
3 For any .. > 0 define the cusum procedure
=
2 N = N(b,h) = inf{n21: anh} s
L‘ with a corrective action at Wﬁzh . With b=0 N becomes the regular cusum
-
- procedure. Let S = I X, and define
.~ n i
_’ i=]
;,. M = inf{n>1: S_s-b or S_2h}
n n
<
f A simple renewal argument gives
;.
EN= >
[: uN (EuM)/Pu(qﬂ h)
1
;ljf
.-
>
9
.
=
iA'._ IR o
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From Wald's approximations (cf. Khan (1978)) or Wiemer process approximation

(Section 4) we have

a1 o (1 - exp(-2hy))
(3.1) EuN (u=k) [h -b (exp(2by) - 1) 1 0
and
(3.2) EN 2 + nb)/o? , y=0 ,

where y = (u-k)/o2 .

a Letting b > 0 these approximations reduce to the standard approximations to
Fi ARL(y) for cusum procedure (1.1). Choose k = 0 (the purpose of the design
i constant k has been discussed earlier in Section 1), o =1 and b ="h.
Then (3.1) and (3.2) reduce to

h _ _h_ (1 - exp(-2hy))

3.3 EN®) = w @) - D PO
. and
(3.4) EgN(h) 2 m?

Letting Nl denote Page's (1954) cusum procedure with k = 0 and boundary h'
it follows that

"y 2 1 v___l - - '
EuNI(h ) ” [h g (1 - exp(-2ph'))1] R u>0
and E.N.(h') = h'2
01 )

Setting h' = hy/2 it follows that

. 1 1

(3.5) EuNl(h/Z) & [hv/2 - e (1 - exp(=2/2hp))] , u>0
* 2

and EoNl(h/_Z) 2 EN(h) = 2h .

Thus NCh) and Nl(hfi) have about (as h+®) the same ARL when u=0 while their
respective ARL(u) are given by (3.3) and (3.5). The following tables compare
the ARL(u) for N and N1 . These tables show that at least for large h the

modified procedure N 1is more efficient that N1 .
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g
-
f Table 4
. .
$
{ y
: h ARL (u)
- 0 .01 .02 .1
: Eunl(hvi) 2 1.97 1.96 1.82
p .
§ E N(h) 2 1.93 1.94 1.80
- E N, 18 17.46  17.02  13.83
5 3
: E N 18 17.28 16.86 13.54
E N, 50 47.71 45.59 32.87
5
3 EN 50 47.24 45.31 31.60
Table 5
H
h ARL (u)
0 .5 1 2
. p E N, (hv2) 100 18.0 2.5 5.0
{ 2h“=100 H
5 E N(h) 100 14.13 7.07 3.54
- ) E N, 590 46.58 23.79  12.02
2h“=590 M
E N 590 34.35 17.18 8.59
: 2 E N 940 60.32 30.16  15.21
- 2h“=940 H
g E N 940 43.36 21.68  10.84
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4. A Stopped Wiener Process Formula

A continuous version of the modified cusum procedure is now consiered and in
addition to the approximation formulas used in Section 3 we obtain simple alternative
derivations of some of the results of continuous cusum theory of Taylor (1975) and
Nadler and Robbins (1971).

Let {wW(t) , W(0)=0 , t20} be a Wiener process with a drift parameter u and

scale parameter o . Let mnm(t) = W(t) - min W(s) and M(t) = max W(s) - W(t) .
O<s<t O<s<t

For h>0 define

(4.1) T, = inf{t>0: W(t) - min W(s) = h} = inf{t20: m(t) = h} .
O<s<t
(4.2) T, = inf{t20: max W(s) - W(t) 2 h} = inf{t=20: M(t) = h} ,
O<s<t
;’_: (4.3) and t = min(r;,7,) = inf{t20: m(t) 2 h or M(t) 2 h} .
[

' Here I and T, are the continuous versions of Page's (1954) one-sided cusum
procedures while 1t 1is a continuous version of a symmetric version of two-sided

: cusum procedure. Taylor (1975) obtained the Laplace transform of T, (hence

! that of T also) while Nadler and Robbins (1971) obtained the Laplace transform

of t . Their methods are quite involved due to obvious intrinisc difficulties.

However, we consider a continuous version T of the modified cusum procedure and

: obtain its Laplace transform which lead to simple derivations of the Laplace trans-

F! forms of T 12 and t1.. In view of the intrinsic difficulties the methods used

1 here show the power of renewal argument and the strmegth of Wald's identity.

E: The continuous version of the modified cusum procedure is as follows.

a4 For b>0 and h>0 define

b

57‘ (4.4) T, = inf{t20: W(t) s - b or W(t) 2 h} .

1f T1 terminates at the lower boundary =-b , the Wiener process starts from zero
]

all over again and T1 is repeated. The cycle continues until the upper boundary

h 1s attained. Thus

T
o~ LRI A

'r2 = inf{t20: W(t+‘1‘1) +b < -b or W(t-l-'rl) +b2h} ,

+es o etc., Clearly, Tl ’ T2 s oo are iid random variables, and the cycles of

RIS

yp——T
-l .

Tl’ T2 sy o++ are repeated until the boundary h 1s hit. By abuse of notation
the cycle is terminated by the auxiliary geometric stopping rule

(4.5) N = inf{n21: W(Tn) 2 h} .

Ot (P TP AR |
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and a corrective action is taken at TN . Clearly, the run length is

T = T1 + TZ + ... + TN .

Since Tl, T2, ... are iid and N has geometrie distribution, it follows from
Wald's lemma that

(4.6) EHT = EUT EHN = (EuTl)/Pu(w(Tl) 2 h) .

1

First we compute EuT by Wald's identity for Wiener process and then obtain

the Laplace transformof T . Let a(6) = uo + %6202 . Then

{exp(oW(t) - t a(8)) , Ft = B(W(s) , sst)} is a martingale with the property that
Eu exp(6W(t) - t a(8)) = 1 . It is well known that Wald's identity holds for T
defined by (4.4). Thus

1

4.7) Euexp(GW(Tl) - Tl a(e)) =1 .
Set a(6) = 0 giving 6 = -2y , where y = u/o2 , and (4.7) gives
Euexp(-Zy W(Tl)) =1
This identity and the definition of T1 glve
(4.8) Pu(W(Tl) 2 h) = p = (exp(2by) - 1)/(exp(2by) - exp(-2hy)) ,
and Pu(W(Tl) < -b) = q=1-p = (1 - exp(-2hy))/(exp(2by) - exp(-2hy)) .
When v = 0 it is easy to see that
4.9) PO(W(Tl) 2 h) = Pp = b/ (b+h) ,
and Po(w(Tl) <$b) = qQ = “Pp = h/(+h) .

2 2
Since Euw(Tl) p E W(Tl) and EOW (Tl) =0 EO T1 , (4.6) , (4.8) and (4.9) give

._h b _(1-exp(-2hy))
BT = p (exp(dy) - 1) ° M0
= (h24bh)/? , =0 .
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Letting b > 0 one finds the formula for Eurl (hence Eut also) which are

2
given by
-1 [ _ _(-exp(=2hy)) -1 (. . _(l-exp(2hy))
E).lrl " [h 2y 1, E]JTZ = u [-h + 2y ], uz0 ,
2,2
and Eotl EOTZ = h“/o .

We will now find the Laplace transform of T . To this end, we determine

the conditional and unconditional Laplace transforms of T Set a(8) = s(sz20)

1"
and find the two roots as
6+ = -y+8 and O_ = -(y+5) ,

where § = ¢72+(28/02) .
Hence it follows from (4.7) that
(4.10) Euexp(6+W(Tl) -s Tl) = Euexp(e_ W(Tl) - s Tl) =1 .
Let g, =g,(s) = Eu[exp(—s Tl)IW(Tl) = -blq ,
and g, = g,(s) = Eu[exp(-s T) IW(T;) = hlp ,
where p(q = 1-p) 1is defined by (4.8).
Using the definition of T, we find from (4.10) that

bat + —ha=- he-

e bé g, + ehe 8y = e bo &, + e o g = 1 .

and after some algebra the solutions are

g, = ¢ 7 sinh(h8)/sinh((b+h)8)
(4.11)
and g, = ™  sinh(bs)/sinh((b+h)s)
Hence

-b'Y

(4.12) ¢o(s) -’Eue-STl -8 + g, = (e sinh(hé) + ehY sinh(bs))/sinh((b+h)$)

.
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Now recall that T = Tl
geometric distribution given by

+ ... + TN » Where Tl, TZ’ es. are iid and N has a

1

P(N=n) = Pqn_ > n=1,2,... , q=l-p ’

where p 1is given by (4.8) if u#0 and by (4.9) if u=0 .
From (4.11) we have

e-bY sinh(hé)

-sT1 - - - =
(4.13) E (e "2 W(Ty) = -b) = g,/a = — o (6m) 6)
and
(4.14 E (e TLN(T,) = ) = g /p = —Sr-SIN(S)
.14) ule 1 82/P = 5 sinh ((b+h) 6) )

Now it follows from the definition of T that

—ST -8 (T1+o . -Tn

= T E (e )IN-n) P (N=n) .

(4.15) Ee
u n=1

Using conditional independence we have

(4.16)

E (e-s (T1+- . -Tn)
1]

|N=n) = Eu(e-STllN-n)Eu(e-STzlN=n)...Eu(e-STnIN=n) .
Moreover, it f« ‘ows from (4.13) and (4.14) and the strong Markov property that

&P ginh(hé)

(4.17) Eu(e’STllN=n) - Eu(e-STI'W(Tl) = D) = TR (e
and

hy
(4.18) E,(e™*n|Nen) = E (™*TRIW(T) = b) = p°sin;t?:£§§§) :

It follows from (4.15), (4.16), (4.17) and (4.18) that

I B Sl S LY (1) M TE YY) B
W nel (sinh((b+h)6)""} P sinh((b+h)¢)
eMeinh(bs) . 1 .
sinh( (b+h)é) e'bysinh hé)

1- sinh ((b+h)é)

..........

.........
.........

..........

......
....................




Hence the Laplace transform of T 1is given by

Lb(s) -E e-sT - ehYsinh(bG)
M sinh((b+h)8) - e °Ysinh(hs)

"',':qd ) . . ees

GehY

and ;ﬁg Ly(8) = 4,(8) = 5 oeh(nd) + v stmn@e)~ = M*0

= 1/cosh(h¢£s/02 s Uu=0 ,

which is the Laplace transform of %1 defined by (4.1). Since T, in (4.2) is
representable as T if WwW(t) is replaced by -W(t) , replacing u by -u in

¢1(s) we obtain the Laplace transform of T, as

:
E’:g

Ge-hY
$2(8) = S oosh(Rd) — v simhaS) * "0
= 1/cosh(h/23/o2 s, u=0 R

a result due to Taylor (1975).

We now turn to the problem of finding the Laplace transform of
T = min(tl,tz) = inf{t20: m(t)2h or M(t)2h} defined by (4.3). If m(1)2h or
M(t)2h , then it is easy to verify that M(1)=0 or m(t)=0 respectively. Thus
M(tl)-o if 1 is the first to stop, and m(12)=0 if 1 is the first to stop.

1 2

Using this "starting from scratch" property and using the argument of Khan (1981)

we have
3 Lemma 1. P(Tl>12) - Erl/(Erl+Erz) . P(rl<t2) - ETZ/(E11+E12) .
1 =
! and Et (ErlErz)/(E11+E12) .
il Substituting the expressions for Etl and ETZ (given earlier) in Lemma 1 one
; obtains the formula for Et found by Nadler and Robbins (1971).
1 Let ¢(s) = Ee-51,¢(0)-1, be the Laplace transform of T . Using the "starting

from scratch' property and repeating the discrete argument of Khan (1981) in the

continuous case we have the identity

- o=

T

P A
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$,(8) + ¢,(s) - 24, (s)4,(s)

(4‘9) ¢(s) = 1 - ¢1(s)¢2(s) 9 -] > 0 o .

A substitution of the expressions for ¢1(s) and ¢2(s) in (4.19) and some
calculations give

5
(62-y2) sinh?(hs)

L, 2
= sech?(h/2s/0 y =0

a result due to Nadler and Robbins (1971).

Thus the continuous version of the modified cusum procedure gives the
approximations to ARL(u) used in Section 3 and provides simple derivations
of the Laplace transforms of 11, T, and t which were obtained by Taylor (1975)
and Nadler and Robbins (1971) by difficult methods.

¢(s) = [(6-y)cosh(h(8+y)) + (S+y)cosh(h(6-Y))-28] , u = 0
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