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Abstract

Two new finite-difference methods are developed for the
calculation of parabolic partial differential equations. The
leading truncation error terms are derived and detailed com-
parisons are made with the errors associated with existing
methods, namely the Crank-Nicolson method and Keller Box scheme.
A number of examples for both linear and non-linear parabolic
problems are computed with both the new and also the existing
methods. The accuracy of all four methods are compared; based
on the computational experiments and a comparison of the mag-
nitudes of the leading truncation errors, it is concluded that
the improved methods are to be preferred over the existing

methods.

af{-

PP O S Sl S Y WA W W S Y ¥ PRI e

ittt

| WS S SN DU IR




|

WAV NT T TV IS W W
-

B g o a4

L R R M- -

o Jaarh et e J B R i M4

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES

1.
2.

6.

INTRODUCTION
EXISTING METHODS

2.1 The Crank-Nicolson Method
2.2 The Keller Box Scheme

TWO IMPROVED METHODS FOR PARABOLIC EQUATIONS

3.1 Method I
3.2 Method II

LINEAR EXAMPLE PROBLEMS

4.1 Linear Examples
4.2 Calculated Results

NON-LINEAR PROBLEMS

5.1 Introduction

5.2 The Howarth Boundary Layer Problem

5.3 Calculated Results for the Howarth Flow
5.4 An MHD Problem

5.5 Calculated Results for the MHD Problem

SUMMARY AND CONCLUSIONS

REFERENCES

-i{i-

Page

ii
it

vi

1
20

20
26

36

36
36

43
43

59
65
75

78
79




(Table of Contents - cont.)

APPENDIX I Solution of the Difference Equations

APPENDIX II  Simpsons Rule for Integration of
Indefinite Integrals

APPENDIX III The Ackerberg and Philips Elimination
Method

APPENDIX IV  Newton Iteration

wfy=

....................

81

84

85
87

.4 1

s

L]




Table 2.1

Table 2.2

Table 3.1

Table 3.2

Table 4.1

Table 5.1
Table 5.2

Table 5.3

Table 5.4

LIST OF TABLES

Comparison of the leading error terms
arising from the approximations in the
marching direction for the classical
method and Keller Box method

Comparison of the leading error terms
arising from the approximations in the
spatial direction for the classical
method and Keller Box method

Comparison of the leading error terms
arising from the approximations in the
marching direction for Method I

and Method II

Comparison of the leading error terms
arising from the approximations in the
spatial direction for the Method I and
Method II

Differential equations, exact solutions
and mesh sizes for the 1inear example
problems

Mesh sizes and related number of grid points

Velocity gradient at wall and number of
iterations at selected £ locations
(grid sizes are h=.2, ko=.1)

Velocity gradient at wall and number
of iterations at selected ¢ locations
(grid sizes are h=.1, kq=.05)

Velocity gradient at wall and number

of iterations at selected £ location
(grid sizes are h=0.5, kqy=.025)

V-

Page
16

16

32

32

n

A'LA‘_“‘_“"' Y

'sl_‘.




......
-----

Figure 2.1

Figure 2.2

Figure 3.1

Figure 4.1

Figure 4.2

Figure 4.3

Figure 5.1a

Figure 5.1b

Figure 5.1¢c

Figure 5.2

Figure 5.3a

Figure 5.3b

Figure 5.4

LIST OF FIGURES

Grid configuration for the Crank-
Nicolson method

Grid configuration for the Keller
Box method

Grid configuration for the Slant
scheme (Method II)

Camparison of RMS error for linear
test problem 1

Comparison of RMS error for linear
test problem 2

Comparison of RMS error for linear
test problem 3

Comparison of RMS error for the Howarth
flow problem for mesh sizes listed in
Table 5.1

Comparison of RMS error for the Howarth
flow problem for mesh sizes listed in
Table 5.1

Comparison of RMS error for the Howarth
flow problem for mesh sizes listed in
Table 5.1

Comparison of the RMS error for the

Howarth flow problem starting with an
‘exact’ initial profile at £=0; mesh
sizes are the same as for Figure 5.la

Magnitude of the error for Howarth
flow problem at £=.3

Magnitude of the error for Howarth
flow problem at £=.6

Comparison of the root-mean-square
error

-yvi=

PR . = L - L. S
F IR S LIPS N IO YO DAL Gl W S

Page

28

41

42

61

62

63

66

67

77

-y PN UGS T

11




I. INTRODUCTION

Parabolic partial differential equations arise frequently in
engineering applications particularly in problems invelving
boundary-layer flows, heat conduction and mass diffusion. Finite-
difference methods are frequently used to solve such equations
numerically, especially in situations where an analytical solu-
tion is not readily available. Finite-difference techniques for
parabolic equations may be divided into two categories, namely
explicit and implicit methods. Both types of techniques are
discussed by Smith (1978) in the context of the unsteady one-
dimensional heat conduction equation and in this case the follow-
ing results apply:

(1) Explicit methods lead to relatively simple computational

algorithms but in order to obtain an accurate and
stable numerical scheme, severe restrictions on the
mesh sizes are usually necessary.

(2) These restrictions can often require very small mesh
sizes and this can lead to excessively long computation
times.

(3) Implicit methods normally do not suffer from stability -1
problems and mesh size restrictions are not necessary

to achieve numerical stability.
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(4) Of the implicit schemes considered by Smith (1978),
the Crank-Nicolson method, which is based upon approx-
imating the heat conduction equation at the midpoint
of two successive time planes, is preferred since it

is second order accurate in both time and space.

Although these results apply strictly only to the one-dimensional
unsteady heat conduction equation, experience suggests that they
are representative of parabolic problems in general and in par-
ticular carry over to the non-linear case. For example, Raetz
(1953), and Wu (1962) have considered the application of explicit
methods for the laminar boundary layer equations and find that
mesh size restrictions are necessary for the numerical scheme
to be stable. Implicit methods have performed very well in the
non-linear case and many modern laminar boundary-layer prediction
methods, for example, use difference equations based on the Crank-
Nicolson approach.

Another finite-difference technique has recently been sug-
gested by Keller (1970) for parabolic differential equations.
In general, for parabolic equations, there is a spatial direction
in which the boundary conditions are assigned and a marching
direction in which the solution is constructed in a step-by-step

manner. In the so-called 'Keller Box' method, the governing

%




equations are written as a system of first order eccations and

central difference approximations are made at points midway
between the spatial mesh points. One major advantage of this
technique is that unlike the Crank-Nicolson method non-uniform
mesh sizes in the spatial direction may be used. This method
and the Crank-Nicolson method will be described in detail in
Chapter 2.

The Crank-Nicolson scheme and Keller Box scheme may easily
be used with non-linear parabolic partial differential equations.
The main difference in the non-linear case is that once the dif-
ference approximations are made,the difference equations are non-
linear and cannot, in general, be solved immediately by direct
elimination methods. In order to overcome this difficulty the
difference equations must be linearized in some manner at each
stage in a general iterative procedure and at each station in the march-
ing direction; there are at least two ways in which this can be
carried out. In Picard iteration, the non-linear terms are
Tinearized by guessing selected terms from either the solution
at the previous station or from the solution at the last itera-
tion. This method is relatively easy to implement and if the
terms being linearized are chosen carefully, then convergence
will normally result. However, the rate of convergence may be

slow and can often be accelerated by an alternative linearization




technique known as Newton linearization; in this procedure, the

L

solution at any step is rewritten as a combination of the unknown

4

exact solution plus a perturbation quantity. Upon substitution
. into the non-linear difference equations and neglect of the terms
i! which are quadratic in the perturbation, a set of linear differ-

. ence equations is obtained; these equations may then be solved

X atn 4

by a direct method such as Thomas Algorithm. In practice, an
estimate of the exact solution is obtained by using the solution

-y

K ',7I Al _.'r “"‘,'

at the previous step or from last iteration. This method is
more difficult to implement than Picard iteration but has the

ultimate advantage that the convergence rate at each station

is quadratic.
The principle difference between the Crank-Nicolson method,
the Keller Box method and the two other approaches developed i
Eg here is associated with the method of spatial differencing. In W

the Crank-Nicolson method, the spatial difference approximations

are based on the classical central difference approximations

for ordinary differential equations of boundary value type (see
for example Fox, 1957); on the other hand, the Keller Box
method is based on an alternative differencing scheme given by

Keller (1969) for ordinary differential equations of the boundary -
value type. In a recent paper Walker and Weigand (1979) have l
described a simple finite-difference technique for ordinary

B L AP DR R - a. s DRSS PRI PR .




differential equations which is shown to produce more accurate

results than either the classical method or the Keller (1969)
method. ihe objective of the present investigation is to adapt
the spatial differencing scheme of Walker and Weigand (1979) to
solve parabolic partial difference equations. The plan of this
report is as follows. In Chapter 2, the Crank-Nicolson method
and Keller Box method are discussed in connection with linear
parabolic partial differential equations; modifications of these
schemes for the non-linear case are also discussed in Chapter 5.
Two new methods are developed in Chapter 3 for linear'problems
and the modifications for non-linear equations are discussed

in Chapter 5. In Chapters4 and 5 the various methods forthe linear
and non-linear cases respectively, are compared by using various
mesh lengths for a number of example problems. Based on the
truncation error terms given in Chapter 2, 3 and the computational
experiments of Chapters 4 and 5,it is concluded that the present ;5

methods are to be preferred over the existing methods. -

.
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2. EXISTING METHODS

2.1 The Crank-Nicolson Method
Parabolic second order partial differential equations

are usually of the form,

2

where x and y are two independent variables. The equation is
linear when the coefficients Q,P,R, and F are constant or

functions of x and y only. If the coefficients are functions
u, %%-. %%3 the equation is non-linear but is usually

described as being quasi-linear since the non-linearity is not

of X,Y»s

associated with the most highly differentiated terms.

There are two popular methods currently available to solve
equation (2.1). The first of these is the Crank-Nicolson
method and the application of this technique for linear equations
will be discussed here; note that this method may only be used
with a uniform mesh in the y-direction. The conditions usually
associated with equation (2.1) are: (1) an initial condition
specified at same initial station, say x = 0, according to
u(0,y) = f(y) and (2) boundary conditions at two y locations,
say y = aand b. Here a and b may be finite or infinite and

normally either u, %%-or a linear combination of both are given

e
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as specified functions of x. Here the simplest case where
u(x,a) = g,(x) » u(x,b) = g,(x) (2.2)

is assumed. Derivative boundary conditions may be treated through
obvious modifications of the present development (see Appendix
I).

The interval (a,b) in the y direction is split into N equal
parts of mesh length h as indicated as in figure (2.1); the |
subscript j denotes a typical point in the mesh. Assuming that
fhe solution is known at x = X519 the object is to construct
the solution at x = X; = X1t k; here k is the step length
in the x-direction which may be varied as the integration pro-
ceeds. For simplicity and to avoid double scripting, define
x* = x;_y and X - X§-1 +-§1 the convention is then adopted
that all quantities evaluated at x*, x** and x are denoted by
a single asterick, a double asterisk and no asterisk, respectively.
Quantities at the station x* are known and the object is
to evaluate the unknown quantities at x.

In the Crank-Nicolson method, the partial differential
equation (2.1) is approximated at the point labelled C in
figure (2.1) which is located mid-way between the (i) and (i-1)
mesh Tines and on the jth mesh 1ine. Simple averages in the x
direction and central difference approximations for the deriva-

tives are used; both approximations are second order accurate

fetfmte 2 m m.aalieTa T b A oad . A At oana A mlac. FULIT S Ly S Sy Sy
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and the following difference equations result at the typical

E! jth mesh line: -
- 2u; +u u* 2u* ‘U -
U - u
P** " * * . u
u - u _
J+1 3-1 . Yia1 T jl -1
e )+ R )+ Fy
+ 0(h2) + 0(k2) . (2.3)
Here j = 1,2,3...N-1 where N is the total number of mesh points i
in the y direction. Equation (2.3) may be rewritten in the tri-
diagonal form ;i‘;:
) 2
where,
ok 2 ek )
Aj = -2 + h2R] - & Q (2.5a)
h ik
Bj =1+ ij ’ (2.5b) 5
=1.hp*™ -
o * h ** * h **
2h2 ** ""

* L
- U (-2 + hZR‘j + qu ). (2.5d)

It is possible to write the leading order terms in the trunca-
tion error EJ in two different but equivalent ways. In the -

-9-
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first method, the error is expressed in terms of the partial
derivatives of the dependent variable u; here and in the subse-
quent methods discussed in this study, the point at which these
derivatives are evaluated will be standardized at the point on
the jth mesh 1ine (y = yj), midway between the current and
previous solution plane. It may be shown through the use of

Taylor series expansions at the point (x**, yj) that

*k *% *k
E’k_219§_33u +k2( 2&3“)
3 3?3'j 3X 9xZ
% *k
h2 3%u h2 _* 33y

+T2'Ty-¢j TPJW"*’... R (2.6)

A second form of the truncation error is in terms of central

difference operators according to,

ok
q |
Ej = T uydly + gk ((620] ) ugs,ul") + 20u,6,05") (6207))

1 »
+W6;uj +EFPJ uyGyuj + L. o (2.7)

Here & and u are the usual central difference operators and the
subscript indicates that the differences are to be taken in
that particular direction. Upon neglecting the leading trunca-
tion term, the matrix associated with the system of equations

(2.4) is tridiagonal and a number of direct methods of solution

-10-
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are available; a particularly efficient method is often referred

to as the Thomas Algorithm (Appendix I).

equations(2.4) can then be solved directly to give the solution

........

For linear problems,

at x = x43 the algorithm may then be applied again to obtain

the solution at Xi41 and the camputation proceeds in the x-

direction in a step-by-step manner.

2.2 The Keller Box Scheme

The basis of this method is to introduce an auxiliary

variable v and to rewrite equation (2.1) as the following

set of first order equations:

u

v.—

Ay

u, av
Q= HePvrRusF.

(2.8)

(2.9)

Equations (2.8) and (2.9) are then approximated at point A of

Figure (2.2), which is the center of the box formed by points

(3-1,1), (3,1), (3,i-1) and (j-1,i-1); simple central differences

are used for the derivatives and simple averages for v and u.

Using the notation of the previous section, quantities evaluated

at x:, x:* and X; are denoted by a single asterisk, a double

asterisk and no asterisk, respectively.

equations (2.8) and (2.9) are

=-11-

The results for
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y o *
[}

\ (2.10)

o -
ﬁ E%E'(" tugq - u;—u;_]) "'E"E(Vj*";"’j-'l -v;_])
' e (2.11)

R
* "'r (regigangan) + S g peug )+ A7,

- A similar procedure is used to approximate (2.8) and (2.9) at
the center of the upper box labelled B in Figure (2.2) and the
. results are,
3 * *
= -'LTJ—U 1 S =%(v;+] *Vin +v;+vj)+l"1—2—”1.
. (2.12)
Q**
FE Cugar + 0y = G - ) = g gy # Vg - vy - )
' § (2.13)
o R

* * *
" W) ¢ B W) +

It is worthwhile to note that this approach may be readily
adopted for equations for which the use of a non-uniform mesh
in the y direction is desirable; however, fn what follows, only
the uniform mesh case will be considered since this is the case

of interest in this investigation. Keller (1970) prefers to

«12-
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solve the linear set of difference equations in the form of equa-
tions (2.10) and (2.11). However, following a procedure simi-
lar to the technique suggested by the work of Ackerberg and
Phillips (1972), the set of difference equations may be written

as a single tridiagonal matrix problem which may then be solved
by a direct method. This procedure is more efficient than the
procedure used by Keller (1970) and moreover for comparative
purposes its convenient to perform the reduction to the tridiag-
onal formhere. This reduction is carried out as follows.
Equation (2.10) is used to eliminate the auxiliary variable

Vi1 in equation (2.11); the resulting equation contains Vie Uy
and Uy and will be denoted as equation (A). A similar pro-
cedure is used to eliminate V341 in equation (2.13) using equa-
tion (2.12); the resulting equation is termed equation (B)

and contains Vie Uy and Uj4y- Equations (A) and (B) are then
combined to completely eliminate the auxiliary variable v,

J
from the system; the result is:

Bj"j+1 + Aj"J + cjuj-] = Dj + thjs (2.14)

where EJ is the truncation error. The coefficients in equation
(2.14) are

e adod h2, . %*

* h2, %
47 Paea) TR Ry) - Q)
(2.15a)

h
Aj = -2 - Z(P

I




h2 %** hZ %%

By = 143 Py + - Ry - quﬂ (2.15b)

u h %* L'.z_ Lt h2 ek
2P T R T Y (2.15¢)

Jode * h b Jei
e ¥ Fog) - U302 - 3 (P - P
h2 , ** sk W, "
F T Risg * Riey) 2k Qg + Q)]

020 %
g OB TR R Gy s

**  h2 L h2
'“31“‘2“ TR * 7k Q-4

It may be shown that the leading term in the truncation error
in equation (2.14), related to the partial derivatives of u
evaluated at the point x .yj),'is

..................

.......

..........

h2 % *k L,
- Qj %u_| . h? ( + 20 3%u . 3Q 32u)
ayzax 3y ax 3y 3x2 ' 3y 3ysx

sz** 3 2 h2
) 52u by
it J* & a-g“w) 2y
23u 32y
(u Pj ") Eal P ) (uRy ) 557 5 (2.16)

An alternative form for EJ in term of finite-difference opera-

tors is,to leading order,
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—Jk—u ) (szu

+ gz (uy8,u7 (6207 + g (8,05 )y 8, (85 )

] ek *k
+ g (8205 ) (8,03 ")

sk

Q
+ T%K'uxéiu;*+ {(GZQ Y x5 x; )+ 2("x6xQ;*)(6§";*)}

1
- 28p2 ¢ y j + ilﬁ'(“y 5 )u 83 UJ g-(uyR )52Uj

(2.17)

Here § and u are the usual central difference operators and
the subscript indicates that the differences are to be taken
in that particular direction. Upon neglecting the leading
truncation terms, the tridiagonal problem in (2.14) may be
readily solved directly using, for example, the Thamas Algorithm.
The truncation errors associated with the classical Crank-
Nicolson scheme and the Keller (1970) box scheme are compared
in table (2.1) and (2.2). Referring to the x and y directions
as the marching and spatial directions respectively, it is
convenient to isolate the errors associated with the approxi-
mations in each direction. In table (2.1) the truncation
errors which originate from the approximations in the marching

direction are compared; such errors are defined to be those

-15-
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- containing partial derivatives with respect to x. It may be
] observed that the first group of error terms are identical to — ’
leading order but that the Keller (1970) method contains an

additional group of error terms 0(h2). For this reason, the ;- 1
Crank-Nicholson method apparently has an advantage over the f
Keller scheme in regard to the accuracy of the approximation in

the marching direction; this point will be re.onsidered subse- 1

quently.

-
!

Consider now the leading order error terms arising from the
approximations in the spatial direction which are compared in
¥ table (2.2); these same error terms arise in the approximation -

of the two-point boundary value problem,

%;g + P(y) %% +R(y)Ju+ F=0, u(a)=A, u(b)=B, (2.18)

by either the classical method or the Keller method. This prob-
lem has been considered by Walker and Weigand (1979) who also
derive an improved technique. Note that in table (2.2) the

first and second error terms are smaller by a factor of one-

half and one quarter, respectively, as compared to the corre-
sponding terms for the Crank-Nicolson method; however, the Keller
scheme contains an additional third error term 0(h2). A general
conclusion that may be inferred is that neither the Crank-Nicolson

or the Keller method may be considered superior to the other
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insofar as the approximations in the spatial direction arecon-
cerned; this conclusion has been extensively verified for two
point boundary value problems by Walker and Weigand (1979).

It is worthwhile to remark that the errors in table (2.1)
and (2.2) are not independent. For example, for the ordinary

diffusion equation,

2
§§.= %y% . (2.19)

the additional error term in the Keller (1970) method in table
(2.1) may be combined with the first term in table (2.2) and
the total truncation error is

k2 33u > h? 3%u

TZSF j—TWﬂ- j+ e, (2.20)

The corresponding error for the Crank-Nicolson method is

ek i
k2 3du h2 3%
12 5% j*‘vwflj ' (2.21)

and it may be observed that the spatial error is smaller than

for the Keller method but of opposite sign. The total error will

in general depend on the particular problem under consideration
and in particular on the sign of each of the error terms and

how they combine.

-18-
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At this stage, it appears that the total error term asso-
ciated with the Crank-Nicolson scheme can be expected to be
slightly smaller than for the Keller (1970) scheme because of
the additional error terms associated with the latter scheme.
However, a number of example problems will be considered in
Chapter 4 and 5 to investigate this point since it appears at
this stage that a general preference for the Crank-Nicolson

method would be marginal at best.
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3. TWO IMPROVED METHODS FOR PARABOLIC EQUATIONS

! 3.1 Method I

| ?z Consider the grid configuration of figure (2.2); at any

fixed valye of x (the marching direction) and at Yo = Y5 + gh,

the following expressions may be written for u, 3u/5y and
3%u/ay? (Walker & Weigand, 1979):
= 62 2 2-1 3

-' u(x:.VB) {1+ Buyﬁy + T 6y + uyﬁy + ---}u(xoyj)’

(3.1)

- 3u 1 3p2-1
- = = {8, +88 +-L%—)-u 63 + ...3u(x,y;)

; ¥y, By Yy A

, (3.2)

- ?2u 3 2 3 6 2'] )
— = {62 + gy 63 + &% + ... u(x,y.) . 0y
ay XYy hZ Y% 7 Piyly Y J "

(3.3) B

lj Here Gy and My are the usual central difference operators and ;fl
the subscript y denotes an operator in the y direction. ;Q

The general linear parabolic equation (2.1) may be rewritten fii

according to ‘.q

[ 4

P "

u _ o

3t L(u) » (3.4) i‘:

where the operator L(u). is defined by, -4
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< 2u pau
L(u) 2P tRu+F. (3.5)
Using the notation of the previous section, quantities evaluated
at x:, x:* and X; are denoted by a single asterisk, a double
asterisk and no asterisk, respectively; equation (3.h) is then

approximated at point B of figure (2.2) according to,

*

J+

Qv g—:|;'; -4 [L(u) + L(u)ljﬂ] . (3.8
Note that the error term has been omitted for the moment in
equation (3.6); however, this term is associated only with the
simple average on the right side and is 0(k2). The principle
difference between the two methods developed in this section
lies in the approximation to the marching derivative au/a3x.

In method I, a central difference approximation is used

along the line y = yj+* and this gives,

*

*% u -u
au = Jt -
au .di_i_E__i_i. . (3.7)

i+

Equation (3.1) may now be used to relate "j+i and u;+* to
values of u at points in the mesh. Using the first three

terms in equation (3.1) leads to, for example,

e A v A . e A o & a 2" a .

R

{




lagiannd 3
R |

3u + 6u;, - u
N b1 | 3 j-1

where the omitted error terms is O(uycs;). Combining thése

approximations results in,

* * *
Q** 3Uj+~| + GUj - Ui_-l . 3Ej+] + GUJ - Uj-]
J+

8k 8k

* * *
u - 2u; + us_ Us.q - 2us + us_
*[jﬂ e T ) B L2 M ;11]

L *k *

P

+_121t[2.wh_“1] v [EJ%_‘&]
L 2]
R
+ —'Ei (3uj+1 + 6uy - uj_])
+ —1—5— (uj4q + 6uy - ugq) + Fyy - (3.9)

A similar procedure is applied to equation (3.4) in the
lower box at point A of figure (2.2) to obtain

ok *

Q, & oy [L(u)

Using a procedure analogous to that leading to the approximation

+ L(u)lj *] . (3.10)

(3.9), it may be shown that,

=




e s B ‘e

ke J * *

et
= 4 Uiy - 2“;) +_J_ j+] j + “j-]]

+ f%[ui - ul_]] . 5*;‘_*[23__;3_1] (3.11)

L

. . .
(-ugyq#bugrdug ) + 2 (cuj, souvau)_FT

a%.f":

Equations (3.9) and (3.11) may be combined to form a set of
algebraic equations of the form,

N . = . 2 . .
Bjuj+1 + AjuJ + CjuJ_] DJ +h EJ ’ (3.12)
where,

= - h, ¥* - ke 3h2 P, i 3h2 -
A7 2 - 2Py Ping) + T (RugtRyey) - 0 Gy #

'-i)!
(3.13a)
= h p** h2 " .
By =1+3Piyt (3 Riss - H) - Be (aay, - 5r)s
(3.13b)
c h J** h2 , **

= - - sk hz Jede ) ok
3712 Per1s Ry - Ryp) g Qg - 3y),
(3.13c)

s * h - "
Dj = -h? ( j+i F&_*) - Uj(-z - 2.(Pj+§ - Pj-i)

* dode
i aIUHERARES (OSSN

=23-

I Rl T

1.1




* h ** h2 ek ke h2 ek dek
IS SRS ACUWEENITRS S IV )
** i h2 ok L2
ujy 1= P, - B (RS, - 3RYT) - B (- 3.,
(3.13d)
In equation (3.12).E‘.j is the total error term associated with
the difference approximations. After some algebra it may be
shown using Taylor series expansions that the leading truncation
error terms in equation (3.12),related to partial derivatives
of the dependent variable at the point (x**,yj), are

L d

2
k“Q a3u
X

+ h2 ( + 39 3%2u . 3Q 3%y )
j ay ax dy %2 T ay ayax

k2 (32 + 2 j 320)|

a3 33
(""J’wﬁ"j*ﬁ“n)w‘:’j

(3.14)
A second form of the truncation error is in terms of central

difference operators according to,
*k

Q ok 1
Ey = 1%1; “xsi“j + Bk (5§Qj ) (8, )+ _ET (uyGyUJ)(GZU )
+ g (8,05 ) (8, (8,05 )

+ 3 (8205 ) (8,07 ) + 208,057 ) (62077))

e

8 O VRSO,

AR [ ot
ool e

ST SN

-



Yk

] *R ] L 24 *k ] E 23
- A Syuy * 7w (uyPy Juy sy * 3z (8 Ry Jupsguy

(3.15)
Upon neglecting the leading truncation terms,the tridiagonal
problem in equation (3.12) may be readily solved directly.

In situations where P,R,F and Q are not analytic but
numerical functions, the required values at the midway points
must be obtained with interpolation formulae. For the present
method this situation may be treated by replacing values of P,
R, F and Q at Yiey and yj-i when they appear in the development
leading to equations (3.13), by the first three terms of equa-
tion (3.1); this procedure leads to an alternative form of

equations (3.13) which is »

h,** ok 3h2 , _** ek *k
Aj = -2 - I(Pj"'] - PJ_-I) + 37 (Rj"ﬂ + SRJ + Rj'])
= %%E (Q;:] + GQ;* + Q;tl) ’ (3']6&)
By =1+ & (3P;:1 + GP;*- P}’_}) + 2; (SR;’:1 + aa’j"* - 3R;f])
- % (5053, + 605" - 30)q) » (3-16b)
Cy = 1+ 5 (Plaq - 60y - 3P}0)) - B7 (3R3y; - Ry - 5Ry1))
+ B (305 - 60" - 5037, (3-16¢)
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ok * h ik Lo g
R YR AR “J[‘Z " 2Py - Pya)
(Rj+] = GRJ + Rj '|) + (Qj"‘] + GQj + Qj ])]

Jek

- u;+][1 + {%(3P;:] + spj - Pj. ]) + %;(SRJ+] 6R** ) 3R;t1)
2
* e 55+ - so;ta] o B - o
- 8 (] §0176R3 ~ER3 1)) 3 (3QJ+1 60;-50; -1)] (3.164)

Note that the functions in equations (3.16) evaluated at X
may be evaluated at the points in the current and previous

time plane through use of the simple average. For example,

& = 1 *

3.2 Method II (Slant Scheme)

An alternative approach to method I may be considered where

_the approximation of the derivative in marching direction is

modified. The basis of the method II is to approximate the
i

differential equation at the point x = x andy = yj which is

the same location as for the Crank-Nicolson method. A central

difference approximation along the line y = Y5 is used for the

-26-
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x derivative as in the Crank-Nicolson method; the new feature

is that the operator L{u) is averaged along a diagonal line -
intersecting the midpoints of the mesh at x* and x as illustrated

in figure (3.1). This procedure results in the two approxima-

tions, .

»f{ U u* r 1
q [-1,;1] 2w rww| ] o
j . u j+* ‘ j"*l )

s [U -uy o * 1
Qj [—1E—1] = 1/2 {L(u) + L(u) ’ (3.18b)
N j-i’ j+&¢

where the omitted error terms are 0(h2,k2). Equations (3.18a)

and

and (3.18b) are now combined into a single equation

*

zir[ﬁE5]=&wa

+ L(u)

*
-4 L(U)|j+i ! L(")Ij'*] '
(3.19)

Finite difference approximations in the spatial direction are

*
J+i

used which are identical to method I of the previous section.
The approximation in the marching direction is simpler and ;-
potentially more accurate since no errors ‘in the spatial direc-
tion are incurred.

Writing equation (3.19) in finite difference form, the
following tridiagonal problem is obtained,

Ajuj + Bj"j+] + Cjuj_] = Dj + thj , (3.20)
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where,
e o _ hy** ok 2h2 ek
Ap = -2 - B, - P+ 3 G 4 R - B S
(3.21a)
_ h o ke
By =1+ 5Py, T6' (3R - R (3.21b)
_ h &%  p2 , %% *
€= 1- 3P, - Tg (Ryey - 3Ryy) (3.21¢)
Dj = - h? (FJ"'*l Fi-3)
2 2
R A RS TR RRE Sy
* Iy Dptt L hE o gpth gk
'“jﬂ[ RS EE I [ A TP S
* h ek
-uj_-l[l - 3Py - (RM Rj_i)]. (3.21d)

It may be shown through the use of Taylor series expansions,
that the leading truncation error terms in equation (3.20)

related to derivatives of u at the point (x**,yJ) is,

By = Eiggt'3§;%§1a T (ax ax +2 s%_gxu l gi" ;
RGN PR3 :yaw;'* ﬁ—u—
*%zr(“ **)%;%J b (68 )%% (3.22)
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A second form of the truncation error is in terms of central

difference operators according to,

L
*k *

Q.

Ej = g uesy(6205) + g (6200 ) (w8, 5") + gy (uysyug"usgu;*)
1 Ve -

+ gE-(uyﬁij )(uyﬁy(uxﬁxuj ))

*%

Q _ *
+ vl udRuy + g 108205 D807 ) + 200,807 (62,00}

S B W . kel WPE Wl + Sl T T
V7173 syuj .t (uij )uysyuj + ... ﬁ(sij )“y‘sy“j .

(3.23)

Upon neglecting the leading truncation terms the tridiagonal

problem in equation (3.20) may be readily solved directly.

;‘
k

In situations where P,R,F and Q are not analytic but

numerical functions, the required values at the midway points

. e

must be obtained with interpolation formulae. For the present

method this situation may be treated by replacing values of

. .‘J -‘LM

P,R,F and Q at yj+& and yj_& when they appear in the develop-
ment leading to equations (3.21), by the first three terms of
equation (3.1); this procedure leads to an alternative form 'i

1

of equations (3.21) which is,

Sk

_ _hypre e 3h2 ok 2

h2 Sk
Q; ,

(3.24a) )
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-

- h o h2

By =1+ ]—6(3PJ+] 6P PJ *) +ﬁ(5rzJ+1 3R ]) (3.24b)
_ h *k _ **_ *k h2 ok * Jede

D. = h2 F** + F** + *%

37T Py + 6F5 + Fyy)

* h *k *k h2 *%
'%k*‘ﬂ%n*yﬂ+—rm 176%; R ﬂ*ﬂrq]

h2

* 0 h k¥ k%
- j+]t1 + 1g{3P;4 6P )+ 31-(5R +]-|r6R Rj_])]

) ok ek ok 2 ek

(3.24d)
Again equation (3.17) may be used to relate values of P, Q,
R, F at ;* to values at x and x".

The truncation errors associated with both improved methods
are compared in table (3.1) and (3.2). In table (3.1) the
truncation errors which originate from approximations in the
marching direction are compared; such errors are considered
to be those containing partial derivatives with respect to x.

It may be observed that for method I the first groupof error
terms is identical to the corresponding term of the method II.
The second group of error terms for method I appear to be smaller
than for method II because method II contains an additional term

of 0(h2).
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The leading order terms arising from the approximation in
the spatial direction are listed in table (3.2); these same -
error terms arise in the approximation of the two-point boundary

value problem

$E+PO) G+ RO+ F(y) =0,

u(a) = A, u(b)=8B . (3.25)

This problem has been considered by Walker and Weigand (1979).
Since both method I and method II use the same scheme in the
spatial direction approximations, the spatial error terms are
identical.

It is also of interest to compare the error of the present
methods to that associated with the Crank-Nicolson and Keller
methods. First consider the error associated with approxima-
tions in the marching direction. Referring to table (2.1) and
(3.1), the first group of error terms for all four methods may
be observed to be identical. The improved methods and the
Keller Box Scheme have an additional second group of error terms
not present in the Crank-Nicolson method. For this reason, the
Crank-Nicolson method appears to have some advantage over the
improved methods in regard to the accuracy of the approximation
in the marching direction. Note also for improved Method I

that if Q term is a constant the second group error terms
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associated with method I will vanish; however, method II and
the Keller's method will still contain a term 0(h2); note that
the sign of this remaining term is of opposite sign in method
IT and the Keller method.

In regard to the approximation in the spatial direction
Walker and Weigand (1979) have shown that the improved tech-
nique is more accurate than the existing methods. Note that
in table (2.2) and (3.2) the first and second terms of the
improved methods are one-half and a quarter, respectively, of
the corresponding terms for the classical method. In comparison
to the Keller Box method, the first two terms are identical;
however, the third term in Keller's method is an order of mag-
nitude larger than for the improved methods. For this reason,
it is expected that the improved methods will, in general,pro-
duce more accurate results than either the Keller or classical
method insofar as the approximation associated with spatial
direction is concerned.

On the basis of the error temms listed in tables (2.1),
(2.2), (3.1), and (3.2) as well as the results given by Walker
and Weigand (1979) for two point boundary value problems, the
improved methods appear to offer improved accuracy over the
Keller (1970) method and possibly over the Crank-Nicolson method.

However, the situation is complicated in the general case by
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the fact that, although a given method may have smaller indi-
vidual error terms, it may not produce more accurate results

on a specific problem. This is because in a particular problem,
the error terms may combine through differences in sign between
individual errors in each error term to produce a smaller over-
all error. For this reason it is important to consider a num-

ber of test cases and this is carried out in the next section.




4, LINEAR EXAMPLE PROBLEMS

4.1 Linear Examples

Three linear example problems are considered here to com-
pare the accuracy of the four methods discussed in the preyious
two chapters; the three example problems are listed in table
(4.1). For all four methods, the truncation terms were neglec-
ted and solutions were calculated with a uniform spatial mesh size,
h, and uniform marching mesh size, k (the particular mesh values
are listed in table 4,1). The exact solution for example 1 is

not known, and to produce an 'exact' solution as a basis of

camparison, example 1 was solved by the Crank-Nicolson method
with a set of extremely small mesh sizes. The accuracy com-
parison for both examples 2 and 3 are based on the quoted exact
solution in table (4.1).

M 1

OO A

4.2 Calculated Results

In figure (4.1), the root-mean square errors (defined as
the square root of the sum of the squares of the error at each
mesh point divided by the total number of mesh points at a
given time station) for example 1, are plotted; method I and
method II give better results than both existing methods as

time increases. However, method II (the Slant Scheme) performed

slightly better than method I. According to the error terms
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given in chapter 3, method II appears to have an extra leading
error term when compared to method I. In general, method II
might be expected to under-perform method I; however, the situ-
ation is somewhat more complicated than this. It appears that
the reason method II gave a more accurate solution in example 1
ijs that the error terms combine ;h;gugh difzsrences in sign with
the extra errpr term, namely, E—gi—-3§;%;1j » to produce a
smaller overall error.

In example 2 (refering tofigure (4.2)) method II produces a
better solution than the other methods; method I and Crank-
Nicolson method are about even but both under-perform method
II; again,; the Keller Box scheme produces the least accurate
results. Example 3 is a simple unsteady heat conduction equa-
tion; for this equation method II reduces to the Crank-Nicolson
method. The root-mean-square error is computed and plotted on
figure (4.3); the results for this problem shows that Crank-
Nfcalson method performs slightly better than both method I
andIKeIIer Box scheme.

For the three linear examples considered, both improved
methods are always clearly superior to the Keller Box scheme.
These results are generally representative of a number of other
linear problems with various values of the mesh lengths which

were considered but not reported here. Method II appears to
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give superior results but it appears that a general prefer-
ence for Method II over either Method I or the Crank-Nicolson
method is sti1l not conclusively clear.In the next section, the

various methods will be compared for some nonlinear problems.
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5. NON-LINEAR PROBLEMS

5.1 Introduction

In this chapter the most common type of non-linear para-
bolic problem will be considered; this is the quasi-linear para-
bolic equation which is of the form of equation (2.1) but for
which the coefficients Q,P,R and F also depend on u and 3u/3y.
For all of the four methods considered thus far, the method of
approximating the non-linear differential equation is similar
to the linear problem; the distinguishing feature from the linear
case is that the finite difference equations are now non-linear.
For this reason,the solution must be obtained iteratively at
any x station; this is carried out by first estimating values
of u at the current station to linearize the finite difference
equations and thereby produce new estimates for u; these values
are used to re-estimate the non-linear terms in the finite
difference equations. This iterative process continues until
convergence is obtained. Another common procedure for handling
the non-linear difference equations is to use Newton lineariza-

tion; this approach generally accelerates convergence of the

iterative scheme at any x-station at the expense of increased _,:
algebraic complexity in deriving the difference equations. f
The application of the new methods developed in this study b
to the non-linear type of problem is best illustrated by
-43-
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example. In the next two sections two non-linear example
problems are considered and the performance of the methods com-

pared.

5.2 The Hewarth Boundary Layer Problem
The steady incompressible boundary layer equations for
two-dimensional steady flow are (see for example, Schlichting,

1968, p. 121),

au u_ _dp 32u
UV y T T ey (8.1)
ou . 9V _
—x'+*7-0 . (5.2)

It is convenient to introduce the Levy-lLees variables £,n (see

for example, Blottner, 1975) given by

deg
dn

upldx , (5.3)
oU(2g) 2 ay , (5.4)

and a stream function

v = Y2Z€ f(g,n) (5.5) -

Here U is the mainstream velocity outside the boundary layer
and p,u are the fluid density and absolute viscosity. Upon

substitution of these transformations equations (5.1) become,

33f 32f of 21 _ of 92f  32f of
EERMA T B[‘ " ) ] zg[ﬁ—aaan“’f’_&]:
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where the function g(¢) = 28 dU joscribes the pressure variation
T de

in the mainstream flow outside the boundary layer. The boun-

dary conditions are,

£(z,0) = % =0, -g% = 1, (5.7)
E’c £y

which express the impermeable wall and no s1ip condition at the
wall, in addition to the condition that the velocity approach
the free stream velocity at the edge of the boundary layer.

In this section,the two irproved methods are applied to the
Howarth (1938) boundary-layer problem and the performance of
the improved methods are compared with existing methods. This
problem describes the development of a boundary layer in the
presence of an adverse pressure gradient and is selected here
as a particularly challenging test case. Historically this
example flow also has been used previously by Keller and Cebeci
(1971) and Blottner (1975) as a test case.

For the Howarth (1338) linearly retarded flow, the main-

stream velocity distribution is,
=1.-X
U = ] 8 9 (5.8)

and in this case ,

B = E%; . (5.9)
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;' It is convenient to rewrite equation (5.6) as a second order

system of equations according to ,

b

. du _ 3%u afy au _ . o
of _
3n b

with the boundary conditions,
f(£,0) = u(g,0) =0 , wu(g,=) +1 ., (5.11)

In equation (5.10), ¢ is the marching direction and n is the
spatial direction. At £ - 0 equations (5.10) reduce to the

ordinary differential equations,

2
et P-0, 4oy, (5.12)

which is the Blasius equation describing the boundary layer
flow on a semi-infinite flat plate; the numerical solution of
this equation provides the initial condition for the equations
(5.10).

For all four methods to be described here, a uniform mesh
in the n direction was used with h being the mesh size. Let
N-1 be the total number of internal mesh points in the boundary
layer; the value of n, where the mainstream boundary conditions
in equation (5.7) were applied as an approximation is denoted

by £ = Nh. In practice a value of £ = 8 was found to be large

-46-
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enough to ensure no change in the solution. The systems of
equations (5.10) and (5.12) are non-linear; at any stage in an
iterative procedure at each £ station, once an estimate of u
is available, the second of equations (5.10) or (5.12) was

integrated using a trapezoidal calculation according to.

_ h
for j = 1,2,3,...,N. The differences in the four methods
described here are associated with the approximations to the

first of equations (5.10) and (5.12) and these will now be

described.

Crank-Nicolson Method

In this method, to calculate the initial profile, central
difference approximations at each internal mesh point nj = jh

are made; this classical technique (Walker and Weigand, 1979)

leads to the tridiagonal matrix problem,

=D, , (5.14)

N . + A. .+ 0. N
Bj Ujay * Ay uy + C5uyq =Dy

where

2 - = h = -h =
Aj=-2,B;=T+3f,Ci=1-5f,0,=0_, (515

In equations (5.15), the fj are evaluated either from an initial

-

a *J.‘— iadad

A e

—d
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v,

- AU o so st
PN ; .. i

guess or from a previous iterate. At any stage the tridiagonal

problem for u in equation (5.14) is solved by the Thomas algor- -

i

ithm and the fj are then obtained from equation (5.13). The
iteration was continued until two successive iterates agreed
to within five significant figures at each internal mesh point. o
After a converged solution is obtained at £ = 0, the marching '
procedure may be initiated to advance the solution to £ = k
and thence to ¢ = ik, i = 2,3,4...; here k denotes the march-
ing step.

The first of equations (5.10) is approximated at g=£**=gi_]
+ k/2 and at n = nj; using the approximations described in
section (2.1), the first of equations (5.10) may be written in

finite difference form as a tridiagonal problem of the form

(5.14) where now,

By =1+ % (fj+f;) + ]’% e (fj-f;) , (5.16a)
¢ =1- n (fj+f;) -pe” (fj-f;) , (5.16b) B
Aj z -2 - %;-e** (uj+u;) - gEi-a**uj . (5.16¢)

* h * h _%** %
Dj = Ui [1 + I(fj"fj) + LB (fj-fj)]

ok

* th *k *

h S * ke
(5.16d)
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Here the Uy and f (on the right sides of equations (5.16)) are

evaluated initially from the solution at the previous step or
from the last iterate, as the iteration procedes at each ¢
station.

The iteration method just described is relatively slow
and the rate of convergence can be enhanced by using a standard
procedure of Newton linearization which is described in Appen-
dix IV. This is merely an alternate form of the difference equa-
tions associated with the Crank-Nicolson method which may be

written (after some algebra) in the form,

(5.17)
where,

_1.h h o*, h *. _ h % '

A = -1 h2 % h2 %% * 2h2 4k (5.18b)
3 78 YoTh Yoty ' l
-l-h -ﬂ*-l.** h %k * ,“1
GGz 8fy-gfj-w® fy*txwe (5.18c) ]
] 4

=h h _h _h e .
h * h ** * h * h %% * "1
YEYM YRS Ut B Y1 TS Yy, i
|
Hy=0 (5.18e) 4
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M, =0, (5.18f)

_ h h h n o k%
O vty Graxe ) -yaflbgrxe)

2 he % h2 dek * h2 %*x * h2 ok *
uj(TB +T5 )"uj("]'TB uJ'"’TE uj)

X 1  hx h ek * 1 ho*  h wk %
Tzt Ty e T jua-z-gfi ke )
-8 h (5.189)

Again Ug_qs Ugs Ugeq and f3_1, fj, fj_] are evaluated from the
previous iterate at any £ station. Equation (5.17) then can

be solved by an elimination method described by Ackerberg and
Phillips (1972) which is given in Appendix III, Iteration at
each ¢ station procedes as previously described and convergence
is decided by the same criterion; typically the number of
iterations was reduced from 8-9 at each £ station to 3-4 with

the Newton linearization.

Keller Box Scheme

This method was originally described by Keller (1970) and
later applied by Keller and Cebeci (1971) to the solution of
boundary-layer flow problems. To implement the method, equa-
tions (5.12) and (5.10) are rewritten as asystem of first order

differential equations according to,




of | du_ . df_ E
E- u ’ n - V 9 dn fV 9 (5.19) j
of . au _ ;
H u 9 n v 9 (5-20) 1
b
v of. o2 ]
- (F + 2¢ ag) v + 28U 3¢ - BU +8 . ]
To compute the initial profile, equations (5.19) are approxi- ii
- . . . . S
- mated at points N4y and nj-3 on either side of the typical _;
mesh point ny as described by Walker and Weigand (1979); the ff
- two sets of approximations are then combined to form algebraic ;;
1
equations of the form of equation (5.14), where now, ]
Ay =2 =D (Fiy - i) (5.21a) ]
. J LR 2 R L K . .
K B
= h
C.=1-2(f. +¢ ;) (5.21c)
4 J B IR R :
Dj =0 (5.21d)

In equations (5.21), the f3 are evaluated either from an initial

guess or from a previous iterate. At any stage the tridiagonal

problem for u in equation (5.14) is solved by Thomas algorithm
and the fJ are then obtained from equation (5.13). The iteration D
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was continued until twosuccessive iterates agreed to within five
significant figures at each internal mesh point. After a con-
verged solution is obtained at £ = 0, the marching procedure
may be initiated to advance the solution to £ = k and fram
there to £ = ik, i = 1,2,3,4,...; here k denotes the marching
step.

For equation (5.20), the approximations are made at
both n = Nj43 and n = Nj-3 using the technique described in
section (2.2). Using Newton linearization, it may be shown
(after a'considerab]e amount of algebra) that the last two of
equations (5.20) may be written in the form of equation

(5.17), where now,

2 *k *

h2 wke *
T8 Mujq +2uy +uy ) 7['8 (ujyq + 2u;

.
A= e

. u;_1) . (%_+ E_E**)(fj+]_f3_]) + (%._ %_g**)(f;+1-f;_])+4,

(5.22a)

h2 ** +h

- (B & B e uptugg) ¢ I 8T )

h

S R e - G- BT )2, (5.220)

(hz %k h2

*k h2 ek, * *
"k_ g )(uj+uj-]) + & B (uj-1 + uj)
s R ETIEe ) ¢ (- R, (5220
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Hy = <Gp e RE Mgy =y * ugyy - u) (5.22d)

h,h w W
Gj = -(I + F £ )(Uj+] - uj_] + Uj+~| - uj_'l) ’ (s-zze)
- h h dde - * - *
Mj -(I + 'E g )(uj uj_.l + uj J-_-I) s (5.22f)
D. =

j 2(uj+] 2u + u ]) + 4h2g™*

N )[(f+ I ])+<J+,+fj)(ujﬂ-uj)]
G- fem [l + ()

k%  h2

6™ B [tugrug )2+ Gy + 0y

h2 h2 * * *
-(1;-8** - ?F'E**) [(u; +-"j-])2 + ("j + uj+1)2] .(5.229)

Equation (5.17) is readily solved by the Ackerberg and Phillips

given by equation (5.13). At each time step iteration is required
and the calculation proceeds in the £ direction in a manner

sifmilar to the Crank-Nicolson method.

Improved Method I

To compute the initial profile, equation (5.12) is approx-
imated at points LETeY and n§-4 on either side of the typical
mesh point ny as described by Walker and Weigand (1979); the

(1972) technique coupled with trapezoidal rule of integration 1
-53- 7
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two sets of approximation are then combined to form algebraic

equations in the form of equation (5.14), where now,

A= 2 - g (fi - f5) , (5.23a)
h

By=1+13 (3fj+] + 6fj - fj-l) , (5.23b)
h

JRARE JUNEL/EE N (5.23c)

0y =0 (5.23d)

In equations (5.23), the f‘j are evaluated either from an initial
guess or froma previous iterate. At any stage, the tridiagonal
problem for u in equation (5.14) is solved by the Thamas Algorithm
and the fj are then obtained from equation (5.13). The itera-
tion continued until two successive iterates agreed to within
five significant figures at each internal mesh point. The
calculation may then be advanced in the +£ direction as pre-
viously indicated for the other methods.

For equation (5.10), the approximationsare made at both
n= Nj44 and n = nj-4 using the technique described in section
(3.1). Using Newton linearization, it may be shown (after a
considerable amount of algebra) that the approximations to

equation (5.10) can be written in the form of (5.17), where

now,




TREUCE RS RS I EE s NP

3h2 *%

*
“T5 B (4

9h2 **

- (55~

+

= 2+(% -

+ By 6™

*%

s

5h2 **

-l

G Re

ghz %k

TE )uj’

3h2 **
ey

3 *
)ﬁJn 7% -7 1;-
41 6u 5u ]) + (1' -h

he 3h2
'B_kg )uj‘” - 3‘3

h2 ok
tEk e Mg

)(uj+] gy -
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(5.24d)
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Lagh s ame b0 4 v—ﬂ-'.v-.n

e

_ b- h Jok 3 * _ * " * -
Hj= G+rge ) [T(“jn*“jﬂ’ (ughug) + gluyphugq )],
(5.24e)
_ h,h w1 * * 3 * ]
M= -7+ g¢ )[Z'(uj+]+uj+'l)-(uj+uj) MR AR
(5.24f)
* * * ** . h h **
= - - = 2 -
Dy = Auy - 2ujy - 2u; g - 4028 H(yp + qrE ) [ 45 (Fm

11 g (3P 467 5-F5 1) + ug g (F,1-685-3¢ _1)]

+

(%'IEE )[4 (fJ+1 i- 1) uJ+](3f 1ef -f4 ")

+*

*

3 *
uj("j+1+"j-1)) * 7 Wyqtger - Ugaer)

_5_ * %* * * _ 2 - 2 * *- 2
t g (gl + U U 0 - Ujy - UG) * 9(ugus-u )]

hZ**
Tek & [(uj+]+6u +uJ ]) + (uJ+]+6u +uJ ]) ] (5.24qg)

Equation (5.17) is readily solved by the Ackerberg and Phillips
(1972) technique coupled with the trapezoidal rule of integration
given by equation (5.13). At each time step, iteration is
required and the calculation proceeds in the £ direction in

a manner similar to the Crank-Nicolson method.
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Improved Method II (Slant Scheme)

This -is a similar but alternative apqroach to method I, -
with the basic difference being in the approximation made in the
marching direction (as discussed in Chapter 3). For this a
method, the initial profile is computed with the identical
finite difference approximation and computational procedure :

as method I. For equation (5.10), the approximations are made

. : . -4
at both n = M543 and n = nj-3 using the technique described
in section (3.2). Using Newton linearization, it may be
shown that approximations to equation (5.10) are of the form ‘

of equation (5.17), where now,

I O8RS [C T BCUPS Coa T
-3 8 (ujyy *+ ujg + 6u3) - I (uquy.y)
E P L B2 oy, , (5.25a)
B = 2+(1’ E-g )(1' j+1 %—f; - %-f;_1)- %;-B**(Su;+1
+ 6u 3u RO (4 vy E**)(%'fj * %'fj+1 - %'fj-l)
- sshzz2 B**UJH - ‘31%2' EH“j ¥ %h;' B**“J‘-1 (5.25)

‘a
ik MM e T A4 s & ah




- 3 £
C, = 2"'(4 k e )(4 J+1 f'f 4 J 1)

J
4 h2 e 3 £
B (Gl - 6] - B+ R E G Ty 2
3 hz *k 3h2 ** Eh2 **
4f])+ B Ui ~ g 8 Yy T3z B Ujy s
(5.25¢)
_ (3h éﬂ *k _ * ] *
65 = (g o & Mugyy = Uy * U5y - Y50) (5.25d)

_(h, h ** 13 * o * *
H‘j =(z*+1¢ )[E(ujﬂwj_ﬂ) (uj+“j)+1'(“j-1+"j-1)] (5.25e)

b

My = '(% * % e) [I(UJ+'I+UJ+1) - (u*us 3+ I(UJ 1 0 §-1 )]
(5 25f)

* * * Fok h h _**
= - - - 2
fj_.l)+uj+-|(3fj+.|+6fj-fj_-‘ )+Uj_-|(fj+'|'6fj'3fj_])]
h h e * k * * * x *
+ (13 "7k )[4“j(fj+rfj-1"“j+1(3fj+1*5fj'fj-1)

* h2

* *

3 * o 5
- (ugptugg)) + 7(”3-1“j+1°“j+1“j-1) * glugarUyan
* *-2_2 + **_2_4h2 L2 ] 2+**
* U5 U 1=Uje uj_]) 9(ujuj uj 3 ¢ (uj ujuJ.)-
(5.25q)

The computational and marching procedure is carried out in the

same manner as method I.
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5.3 Calculated Results for the Howarth Flow

The results of the calculations of the incompressible boun-
dary layer equation for the Howarth flow are described in this
section for all four schemes. There is no known analytical solu-
tion to the problem and in order to produce an ‘exact' solution,
as a basis of camparison, equations (5.12) and (5.10) were
solved by using very fine mesh sizes in the n direction and a
decreasing non-uniform mesh in £ direction until five significant
figures of accuracy were obtained. The mesh size, h,in the ndirec-
tion is uniform throughout; however, a non-uniform mesh size, k,

is used in £ direction; in particular, k is uniform and equal to

kg» saysfrom g = 0 to g = .8; fromg = .8 to £ = .85, k is reduced

by a quarter; between £ = .85 and £ = .9, k is reduced by half.
The root mean square error (defined as the square root of
the sum of the squares of the error at each mesh point divided
by total number of mesh points for a given £ station) for the
four methods were computed for various mesh sizes, this RMS
error is summarized in table (5.1), and the results are plotted
on figures (5.1). According to the results for this test prob-
lem, the improved schemes produced more accurate results than
either the Keller Box Scheme or the Crank-Nicolson method; note

that the Keller Box Scheme performs better than the Crank-

Nicolson method for this problem. Referring to figures (5.1),

-59-

hl )

ettt el el




*(s|LLe39p 40} IXDF 33S ¢6°0 « 3 S SISLIUIIP YOLYM UOLIIBJLP 3 3Y3 ul
azys ysaw |eijtul ay3z st 9y) sjuiod piub jo uaqunu pajeiad pue SazZys YssW ‘|G alqel

-60-

d-§ 4\ R}/ L e’
qL-§ € 18 S0° L’ “
el-§ S 191 620° S0° |
J4N91I4 NOILI3YIQ 2 NI NOILIIYIQ U NI 0y Yy
ONIGNOdS3IUH0I SINIOd GIY9 40 YIMNN SINIOd GIY¥9 4O YIGWNN 3ZIS HS3KW

A AR e SIS -/ DTS < P




w g T p——r .\'“:.- T T v
) ' L I i

*1°G 3Lqe3 ui paisi|
S9ZLS YSaW 404 wo|qoad MOLJ YIABMOH 3Y3 404 JOUUD SWY 40 uospdaeduo) ‘el°G °*6i4
»-0IN000°05 00008 00COL  000°0B  000°(3 3 000 0008 00003 0000l 000°0
| v v v L4 - 14 v v m
[ é
‘ rfo
‘. "
)
oo [
B ]
4 M ! %
v v ¢ 4 R
v v F'y [ =]
2 &
v ¢
S ¢«
v’ o * se®8®gl,2
«v " ot e esusenoes® ¥
% v? gaoee?® s et e [
v o b s+ 4+t Lo
v v’ v* ¢++¢¢¢¢¢ o
of!aﬁﬁ.nnn ¢¢+¢+¢ W..
nﬂu «* R ! .-0;
F .
ﬁ ot? [
o _+
. 11 pousan - ¢ or
L -
g I POYIBW - o
+ poyzan xog 43l 13y - [ g
. . ™
POY3aW UOS[0ILN-NURLY - + !
+




T

»- 01X000° 0B 000" 08
| A
—

000" 0L

000"

"L°G 31993 ul pajsil
S9Z|S Yysaul 404 WI|qoud MOlJ YIIBMOH 3yl JO04 JOUUD SWY JO uosidedwo) °qL°G “Biy4

3

000res = e 000t 00003
v v v

woa 0000
v

a
v

A

&

I1 PoyIan

I poyray -7

poy3ay xog 43 (ay -(J
POY3IaW UOS|OILN-YURA) - 4

*q

.




"L°G 3lqey uL pajsi|

S9ZIS YS3w 404 wa|qoud MOLJ YIABMOH 3Y] 404 JOJUD SWY 4O uosideduwo) °91°G 614

Poyjaw xog 433y - {J

,ODIOCOS  GOUOM  GOCOL 0G5 00O GOy 0'OR 00003 0000l 000°Q
4 v v v v 2 4 v ” *M
v
¢ 4
v Lre
v ¢
el
v ¢ -
v . . . . dr.
. I
v
. . + ' 8
. L 2 P
ve Y + o
: . ) '
¥ "
v L | + =l
* dn
-on
+ @
%
e -
o
+ &
¢ -0
11 pouIan - =
-
I poyiayW -/ ..."
3
=
o
p §

POY3ISW UOS|OJLN-)URL) -

SWY

-63-




-

Cary -ﬂr. WPy L4

the root mean square plots indicate Method I has the lowest
overall error of all, while the level accuracy of Method II
lies between the Keller Box Scheme and Method I. Note that the
root mean square error increases substantially for all methods
as & + .9; this is because a point of zero skin friction occurs
at g, = .9008694 which suggests a flow separation occurs there.
In fact, with the mainstream velocity constrained to be of the
form equation (5.8), equation (5.6) contains an irregular
behavior of the form (g-ao)* which is usually referred to as
the Goldsten singularity (1948). For this reason the trunca-
tion error will become large as ¢ + £, for all methods.

It is known that the improved method of Walker and Weigand
(1979) produces more accurate results than either of the exist-
ing methods for solution of the initial equation (5.12) and the
question naturally arises as to whether the apparent better
performance of the two improved parabolic methods is simply a
result of the more accurate initial condition. To investigate
this point, all four methods were re-run but this time using
‘exact' solution at the initial station (based on the solution
of equation (5.10) with a very small n mesh size); in this way
the error associated with the initial condition is eliminated,
and the accuracy of each parabolic scheme can be isolated.

The root mean square errors (RMS) for one set of computations
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are plotted in figure (5.2); note that the mesh sizes are the
same as was used to figure 5.1a (see table 5.1). It may be
observed that similar conclusions as discussed in connection
with figures (5.1) can be drawn from these computations.

The velocity gradient at wall (u') and number of iterations

for selected £ stations for all four methods and for the three
sets of mesh sizes considered are presented in tables (5.2) ]
through (5.4) respectively; in addition, a comparison is made f’
with the 'exact' result. The absolute magnitude of the error

for the test problem at two different £ stations for grid sizes
h=.1and k = .05 are plotted on figures (5.3). It may be ,
observed that the improved methods have smaller errors than !

either the Crank-Nicolson or the Keller Boi method; further-

more, method I gives slightly better results than method II. B
For this example, both improved methods give an accurate
solution for the boundary-layer equations. In the next sec- ;;
tion, another non-linear problem will be examined. ;%
5.4 An MHD Problem
The second non-linear example considered here is associated .%

with the problem of boundary layer for flow past a cylinder with
an applied radial magnetic field (see, for example, Crisalli

and Walker, 1976). The equations governing the flow in the -
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vicinity of the rear stagnation point of the cylinder are

(Leibovich, 1967; Buckmaster, 1969, 1971; Walker and Stewartson,

1972)

with

Here m is a parameter which is proportional to the magnetic field

32u u au
—-F=+ (u-m)u+ml=2—F,
3y2 3y 9
. (5.26)
ar _
A
boundary conditions
W=F=0 = 1
i at y=0,u-+1 as y» o, (5.27)

strength. In addition, y measures distance normal to the wall,

u is

F is

the velocity tangential to the wall in the boundary layer,
a stream function and t is the time.

The time dependent problem considered here corresponds to

that for which the cylinder is impulsively started from rest and

from this initial condition, the solution of equations (5.26)

describes the time-dependent development of the boundary layer

near the rear stagnation point of the cylinder. For small times

it is convenient to introduce Rayleigh variables f, n given by,

n=y/l2/t , f=F2F. (5.28)

Upon substitution of these transformations,equations (5.26)
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become,

2
;f;% + (2n-4tf) g—‘; + 4t(u-m)u + 4t(m-1) = 4t g—“ ,

(5.29)

of _

Y
The initial condition for equation (5.29) is obtained by taking
the 1imit as t + 0 and the solution satisfying the boundary con-

ditions in equation (5.27) is

u = erfn (5.30)

In this section, the improved methods are applied to equa-
tions (5.29) and (5.26) and the performance of the improved
methods are compared with the Crank-Nicolson method. A value
of m = 3 is selected for this test case, As time increases and
tne toundary layer develops, vh= variables given in equation
(5.28), which were introduced in connection with the impulsive
start, are no longer apprenriate and it is convenient to switch
back to the original (y,t) variables; this was carried out at

t = .5 in all cases. A brief description of each method follows.

Method I
According to the new method described in section (3.1),
the first of equations (5.29) is reduced to a set of non-linear

algebraic equations of the form of equation (3.12) with
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associated equations (3.13); for this test example,

0 = 4t;* , (5.31a)
*% Jedke Jed *
Pyt = 2ny - 2ty (Fy 4 F5) (5.31b)
** *% * %
Rj = th (uj + uj) - 4tj m, (5.31¢)
F;* = 4t;*(m-1) ) (5.31d)

Equation (3.12) may then be solved by the Thomas Algorithm in a
general iterative procedure at each time step; in this procedure,
values of uj in equations (5.31) are replaced by the values at
previous iteration and values fj may be determined by the Simpson
rule of integration (see Appendix II). Iteration continues until
a converged solution is obtained to five significant figures;
the solution is then advanced to the next time step.

For larger values of time (t > 0.5) a switch back to prin-
ciple plane (y,t) is made and in this case the first of equations

(5.26) must be solved; it is reduced to the same form as equa-

tions (3.12) and (3.13), where now,

Qj =1, (5.323)
% *

AENGER SV (5.32b)
R;* = (uy + u;)/z -m, (5.32¢)
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Fj =m-1 . (5.32d)

Following the same type of procedure as described for the small
time solution, the integration may be advanced to successively

larger times.

Method II (slant scheme)

Referring to the method described in section (3.2), the
first equation of both (5.29) and (5.26) may be reduced to the
form of equation (3.20) with associated equations (3.21); here
the coefficients Q,P,R and F are identical to equations (5.31)
and (5.32) for the small time and large time solutions, respec-
tively. The computational procedure is analogous to that pre-

viously described for Method I.

Crank-Nicolson Method

According to the method described in section (2.1), the
first equations of both (5.29) and (5.26) may be reduced to the
form of equation (2.4) with associated equations (2.5). Again
the coefficients Q,P,R, and F are identical to the two previous

cases and the computational procedure is similar.

5.5 Calculated Results for the MHD Problem
There is no known analytical solution to the example prob-

lem and in order to produce an 'exact' solution, as a basis of
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comparison, equations (5.29) and (5.26) were solved by using a
very fine mesh sizes in the £ and n directions until five sig-
nificant figures of accuracy were obtained. The root mean
square error (RMS) for the three methods were computed for a
mesh size of h = 0.05 and a time step of k = 0.1; the results
are plotted in figures (5.4). According to the results from
this test problem, the improved methods performed better than
the Crank-Nicolson method; however, Method I solution is some-
what more accurate than Method II. This conclusion is similar

to that reached for the Howarth flow problem.

-76-




T o dh Maded A Asan e e ng ~<_1< -y  AFRAFELnua e by A
* WR1qoud QHW 3Y3 404 40JUd duenbs-ueaw-3004 3yl Jo uosiaedwo) ‘p°G ‘64
..—' L
¢- 01000° 0 ., Oore . 000°9 . 000°% . 0003 . 000°0 1
L a v v v v L v v v L u 4
} 3
. 1
ﬁﬁ 1
N v 4 4
v v v v « ¢ « o~ .
. . ¢ ¢ v -on ]
L 4 -0 :
r's Py '
* ' 4 N
+ P = [}
+ . - =
+ b
—_—
¥
-~
IT poyisy - ¢ ron
e
I POYIay - v ﬁflu
POYI3Y UOS[ODLN-Jued) -+ .N
(=]
)




6. SUMMARY AND CONCLUSIONS

In this study, second order finite difference methods
for parabolic partial differential equation have bean studied.
Two improved methods have been introduced. The leading trun-
cation error terms are discussed and the new methods have been
campared to two existing methods, namely, the Crank-Nicolson
method and Keller Box scheme. Examples of both linear and
non-linear problems for all four methods have been considered.
In general, the new methods give more accurate solutions than
the existing methods. However, in some special cases, Crank-
Nicolson may perform somewhat better than the improved methods.
This is due to the fact that for some problems the error terms

may happen to combine through differences in sign between

individual errors in each error term to produce a small overall
error. In addition, computational results consistantly showed
that improved methods were superior to the Keller Box scheme

and often by a substantial margin. Based on the leading order A
truncation term comparisons in chapter 2 and 3, and the com-

putational results, it is concluded that the improved methods

and particularly method I are preferred for the calculation

of parabolic equations.
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APPENDIX I
SOLUTION OF THE DIFFERENCE EQUATIONS

1. The Thamas Algorithm
In chapters 2 and 3, the finite difference approximations
for the existing methods and the new methods, lead to a tri-

diagonal matrix problem of the form,

U, A, + C.lUsqg =D, 1.
BJuJ+1 + AJuJ CJuJ+] DJ (A.1.1)

Here j = 1,2,3,...,n-1 and equation (A.1.1) holds at each inter-
nal mesh point. In the simplest case where the boundary con-

ditions are given by equation (2.2), the values of u are given

at the boundary according to
Uy = g1(x) , u, = gz(x) . (A.1.2)

For all methods Aj, Bj, Cj and Dj are known.

The solution of equations (A.1.2) may be obtained directly
through u: : of a solver generally referred to as the Thomas
algorithm. The procedure is as follows. Define two arrays,s

and F according to

-8
ntl , (A.1.3)

F =0, F. =o—M
1 At
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D ,,-C_,.6
- _ n+l “n+1°n
S0 Y * S+ TR

. (A.1.8)
n+1+cn+1 Fn

The solution to equation (A.1.1) is then obtained by back sub-

stitution in

u. = F.u (A.1.5)

j = Fjujar T %5

with j = n-1, n-2, ..., 1 since Un is known.
2. Derivative Boundary Conditions

When one of the boundary conditions involves a derivative
condition, the above procedure must be modified. Suppose that

g—; =gy(x) at y=b, (A.1.6)

instead of the second of equation (A.1.2). There are a number
of methods available for the approximation of equation (A.1.6);
the method which is believed to be the most satisfactory and
which preserves the overall second order accuracy in h, is to
approximate the derivative in equation (A.1.6) with a sloping

difference according to,

U _ n-1 3
ou . a: + 0(h°) . (A.1.7)

<
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Substitution in (A.1.6) leads to,

'I'Iun-'|8un_.|+9un_2-2un_3 = 6hg3(x) . (A.1.8)

This relation my be combined with equations (A.1.3) to (A.1.5)

to compute the value of u at y=b according to,

u =

(A.1.9)

This value may then be used to initiate the back substitution in

equation (A.1.5).

-83- J

T\




APPENDIX II
SIMPSONS RULE FOR INTEGRATION OF INDEFINITE INTEGRALS

In the solution of the boundary-layer problems considered
in chapter 5, it is necessary to evaluate an indefinite integral
of the form,

Yi
fly;) = I u(y)dy (A.2.1)

Yo )

This can be accomplished with good accuracy O(hs) through the
use of Simpson's rule. To calcula*e an integral over the first

step, the starting formula is,

g

-
! Yy

o

udy = EhI (9ug + 19u; = 5up * Uy}, (A.2.2)

and successive values of f are calculated according to

- h-
fimp = Ficr v 3 Wi 4u; + uy 41, (A.2.3)

for i = 1,2,3,...

-84-

Fw v




[ ]

APPENDIX III

THE ACKERBERG AND PHILLIPS (1972) ELIMINATION METHOU

Consider a system equations of the form,

U. + U. + U + .T. + f. + .T. = .
Ajujer ¥ Byuy * Cyuy g * GFyuq + HyFy + M85, = Dy
(A.3.1)
with the additional relation,
f = f +h(u+u ) (A.3.2)
i 7 fy 7 gty 3.

where j = 1,2,3,...,n-1. This system may be saolved directly
by the following algorithm described by Ackerberg and Phillips
(1972). Assume the following relation,

and substitute equations (A.3.3) and (A.3.2) into (A.3.1); this

procedure results in an equation of the form,

U. = a; + B.U. .l+ (A.3.4)

I LR IR SR

where the following recurrence relations are obtained:

i h h h
a5 = OAgeze1m 7 Gjajan)/ (AyB54p#85+ NGy* 25+ 25750

A PSP ar SV (A.3.5)
285550 T Grgm) 3.
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h2 h
=-(cy* 263 j+ 2 2P5Y541% T85V 47)/ (A5, *By+hG + 7 Hy

h h h2
* vt 2857501 T8v541) (A.3.6)

+ 2Gj8j+] h G YJ"']) . (A.3.7)

The values of AJ., BJ., CJ., and Dj are known. In addition, the
values of u at the boundaries are known, and the boundary condi-

tions given by equation (2.1) may be expressed as,

o 91(x) and u, = Qz(x) . (A.3.8)

At y = Yo @ comparison of equation (A.3.3) and the last of
equations (A.3.8) gives,

ay = gz(x) s By = 0 and Ty = o . (A.3.9)

These relations may be used to initiate the calculation of A
B, and v, through the use of the recurrence relations (A.3.5)
to (A.3.7). The solution of equations (A.3.1) and (A.3.2)

is then obtained by substitution in equation (A.3.4) with
§=1,2,3,... .
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APPENDIX IV
NEWTON ITERATION

When the difference equations are non-linear, they cannot
be solved directly at each time step and iteration is required.
Convergence may be accelerated through use of Newton iteration
which is implemented as follows. Suppose the unknown variables

are f and u which can be expressed as,

fm = fh + sfh ’ (A.4.1)
um = ﬁm + 6“[" . (A.4.2)

The superbars denote the results of a previous iteration or the
solution of the previous marching step in the case of the first

iteration. Suppose that a non-linear term of the form,

foln = (fm + Gfﬁ)(“m + sum) ’ (A.4.3)
arises in the difference equations. Carrying out the multi-

plication gives

fu =T+ f, (su,) + i (sf,) + 0(s2) . (A.4.4)

The terms 0(52) are neglected and substitution for 6"m and
sf,, from equations (A.4.1) and (A.4.2) yields,

v .

’a-"—"f:'v_——v—_q
e,

A

P

o L .
Y x'_l 'l-'q.‘l Se tante

e
=
R

PURIT SN W/ R Y




This is the basis of Newton process for linearization of the

difference equations.
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