AD-A121 969 LOGLINEAR MODELS AND CATEGORICAL DATA nnnLvsxs NITH 1/1
PSYCHOMETRIC AND ECON. . (U) CARNEGIE-MELLON UNIV
PITTSBURGH FR DEPT OF smns Ies S E FIENBERG ELAL

UNCLASSIFIED NUV 82 TR-259 No@o14-88-C-0

NL




et Ve el L, e K oni, kg B o g T ot i

R W

R ]

2333
ddaa

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAY OF STARDARDS -~ 1983 ~A

ey




T T T N T e o N Nias N A ORI i A Wtn Wit B 8

* B v e B AL

o
)
) puf LOGLINEAR MODELS AND
< | CATEGORICAL DATA ANALYSIS
P WITH PSYCHOMETRIC AND '
5 | ‘ ECONOMETRIC APPLICATIONS

-,

Carnegie-Mellon University -

PITTSBURGH, PENNSYLVANIA 15213

S e i oule b 82 11 29 074

B FILE COPY

En
.,

. ] o v«ﬂ\l' B\ e 3 "x_‘:;’ﬂ



B

EPPOANL A

PRI

ARPPRE TR

e AN ERAL L i

-

e+ Lviag

R ML e W O el s sy

o 5 37

N

Ly A e e s e Bt AN BT W B o Sl AR ekl PR A B P Wi . g A g Nl o B NG FON SN & RN AN T N ﬁ

LOGLINEAR MODELS AND
CATEGORICAL DATA ANALYSIS
WITH PSYCHOMETRIC AND
ECONOMETRIC APPLICATIONS

by
Stephen E. Flenberg
and
Michael M. Meyer*
" Tochuical Report No. 259
Department of Statistics
_ Pusbursh, PA 15213

.

Avgunt, 1982
Revissd November, 1962

. ,-,\.»,
:,,»

The m of MMNMM by the Office
Coantract NU0014-80-C-0637 at Carnegie-Meflon University. Reproduction
permitied for any purpose of the United States Covernment. To appear
thoModApplthmrlaummm

*Department of Susiotte, University of Wissonsin, Madiosa, W1 33706

This aoctune v o ¢ e cpproved
for putille e e i acle U
distribution s tud.nied Rites




7t TR S bt S S MU Mt STV S T BSOS AT S i S
)

ABSTRACT

| ——>The past decade has seen the publication of & large mumber of books and papers on the

snalysis of multi-way contingency tables using loglinear and logit models. Theﬁuentmicle

. presents & summary of the statistical theory that underlies much of this work, and provides

. some linkage to models and methods of special interest to psychometricians and

econometricians. The discussion includes a review of recent and current research on the

computation of maximum likelihood estimates for loglinear and logit models, especially for
mpmmﬁ-mymdnmcyubué"

Key Words: Bradley-Terry paired comparisons model Contingency tables; Logit models;
Loglinear models; Rasch model
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1. INTRODUCTION

When elementary _smi:tia texts write about contingency table analysis they usually discuss
only two-way tables, and the Pearson chi-square test for independence. Yet, almost 50 years
ago, Bartlett (1935) began statisticians on a path of research on the analysis of three~way and
higher-way contingency tables that has branched into many different directions. This paper
attempts to present & concise summary of one of these branches, that dealing with the use of
loglineirmodelsandtheirmalyskminlthemethodofmuimumlikelihood. Some basic
references for this liﬁe;'lture include Andemn (1980), Bishop, Pieﬁbérg. and Holland (1975),
Birch (1963), Bock (1975, Chapter 8), Fienberg (1980), Goodman (1978), and Haberman (1974,
1978, 1979). Chapter 1 of Fienberg (1980) provides further details on the historical
development of this literature. |

In Section 2, we summarize the basic theory associated with the loglinear model and its
constrained counterpart, the logit model.  We- consider various sampling structures for
contingency tables, and make use of more general results on maximum likelihood estimation for
exponential family distributions. This material on loglinear models is linked to the recent
econometric literature on retrospective choice-based sampling, and simultaneous logit and

In Section 3, we illustrate the use of the general loglinear model results for two swtistical
problems, whose literatures have evolved separately. More specifically, we show how these
non-contingency-table problems can be given ‘contingency-table-like representations. Then in
Section 4 we briefly summarize the recent literature on correspondence analysis, and its links
to the loglinear model literature.

Finally, in Section 5§ we focus on computational aspects of maximum likelihood estimation
for loglinear models, and we outline some current research efforts on computation for very
large contingency tables.
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2. LOGLINEAR MODELS AND METHODS

For many examples of discrete-response data it is natural to assume a Poisson or multinomial
distribution for the observed counts. When such an assumption seems reasonable the methods
amosiated with loglinear models may be appropriate for the data. Subject to the distributional
requirements, the full power of the methodology is available for any problem where the
response variables are discrete and the explanatory. variables are either discrete, continuous, or
some combination thereof. Loglinear models are most commonly apphed to contingency tables.
These arise when all of the explanatory variables are discrete, and the data can be represented
as a p-way cross-classification, where p is the total number of response and explanatory
variables. When some of the explanatory variables are continuous it is not possible to display
the complete data as a cross-clmificatidn but loglinear model methods are still appropriate.

The loglinear model is° a categorical data tool which closely resembles the regression and
analysis of variance (ANOVA) models for continwous data.  Regréssion models define a
decomposition of the expected values of the data (actually conditional expectat.ions‘ for responses
given the values of certain explanatory varigbles)  Most applications take a //inear
decomposition of the space of all possible expected values. Just as linear regression is the
‘natural and ‘most easily manipulated model (contrasted with, say, nonlinear regression) for

continuous data, the natural model-for categorical data is linear in the logarithms of the
expested values. * This formulation is mathematically simple, and imore significantly, the
important concepts of independence and conditional independence can be easily expressed in the
loglinear formulation (for details, see Bishop, Fienberg, and Holland, 1975).

In order to describe the loglinear model and its justification we need to develop some
notation. Let I be a finite index set and consider a vector of observed counts,

x = {x:i¢l,x€Z}) 2.1)
which are considered to be realizations of a set of random variables,
X = (X:i¢l} Q.2
Tbutlmmpodbhoum The random variable X has expectation
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| m.=-EQK), Q3

p = lotm) , - Qe

whers the cxpectation and logarithe ‘operaters are applied element-wise to their arguments.

ARhough the obssrvations must be counts, the oaly constraint on the means, m, is that they be

positive and thus the jog-mesns, », can take on any real values. We view 4 a5 an element of
the real vector space Al and we wse <. 10 desote the usul inner product on this space.

m;zxsmmmum

& &

could be described in terms of the index set

I = {(GP:ic{n), je{123 )},
orby' )

I" = (123456

if some ordering couveation is adopted. Supposs that the cells of the 2x3 table contained
continuous or messurement data. Then the standard ANOVA model for the (ij) cell entry
would de: - . ' ' .

{74 -n+u,m+uw;um’ .. 2.5

with constraints
2 Fu” = Fum = F“mm =0, 2.6)
ie. 8 row-pius-cohitan-plu-interaction effects model. When the entries (X} are counts, the
corresponding model for the expectations of the counts is '

p“'ln(é(x'})'u*ll“”*ﬂ” * gy @n
with the same constraints as before, ie. thoss in expression (2.6). Sexting u, , = 0 for all i
and § fn (17) implies that the varisbies' corresponding to rows and columns are independent.
_In geoeral indepsodence and, in higher dimensions, conditional independence models have a

natuwral formulation o loglinesr models. Just ss nonlinear models in ANOVA and regression
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situstions are a possibility, non-loglinesr models for counts are possible but the mathematics of
H
| " estimation is mote difficult than for the loglinesr models described in this paper.
: The statistical literature on frequency data has focussed on two basic sampling schemes and
- asociated probebility distributions for the random variables X. The smpling models, the

. Poison and product-multinomial paradigms, are intimately related (as product multinomial
sampling can be obtained as a conditional version of Poisson sampling), and both result in
theories where linear restrictions on » produce natural models of interest. Extensive accounts
’ of the ‘theory of loglinear models are available in Bishop, Fienberg and Holland (1975), Plackett
;
8 (1981), and especially Haberman (1974). Extensions to more complex sampling structures can be
g found in Brier (1980), Fellegi (1980), and Rao and Scott (1981).
~ 21. THE POISSON MODEL ,
Under the Poisson model the elements of X are thought of as independent Poisson random
variables X with expectation m = £(x). The probability density for this situation is
3_ : m* e™
: nlq—‘T- R | 2.8

'whichreaﬂpinthefoll_owin;lorlikelihoodfuncﬁonforptln(m)ﬁveux:
C LX) @ x> - <md> . , 2.9
‘ : The most natural realization of this model is wher’ the counts represent the results of
; simultaneous independent?bbonproeuh.witb meass m, observed over a fixed period of
time. '
) 2.3. PRODUCT-MULTINOMIAL MODEL
. Let us partion the index set into - disjoint parts such that

1=U7 . 2.10)
Potuchk.(x‘:iﬁll}hu:multinomindimibuﬁonwithm{m';itlll.Inmore
mdudmlnu.ifnkisthenmplcdum{x‘;itli}haamulﬁmiddinﬂbnuon
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d The important distinction is that here the sample size is known a-priori The full product-
multinomial model assumes that the r multinomial distributions so determined are independent
;« with possibly some relationship between the means of the different distributions. Let us
‘. denote by v, the indicator vector of T, Le
{ v = { 1 i€l

. 0 otherwise. : (212)
3 With this notation n_ = <v,, x>. The probability density under product multinomial sampling
: .
g |
, (B, @)
where (:*) is the usual multinomial coefficient. The log-likelihood for this model is
Lx ) =X (n@h+ I qk(xi',.i - x infm) - W)
« {px0, (214)
) subject to the constraints that <m,v> = <x.vk> fork=1,.r. Whenr = 1' we have
observations from a single multinomial; otherwise we have a set of r independent multinomials.
; ~ The crucial point to note is that the kernel of both the Poisson and product-multinomial
' likelihoods are equivaleat. ‘ |
‘ B;lore proceeding with the theory consida' two mmples, of frequency date, one which un
3 " be represented as‘a classical contingency table and one which cannot. '

2.3. TWO EX2»MPLES
o We are interested in understanding the factors which affect academic performance of a
group of school students. The performance will be asmigned to one of three positions; above

3 average, average, and below average.

s (i) We select 40 students from each of 4 schools and ascertain the performance level of each

; student. The resulting data can be presented as a 4 X 3 cross classification with rows

e representing schools and columns representing perfomance. The row margins are fixed by the

b
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product multinomial sampling design to be 40. If we had chosen students at random until we
d ran out of money and cross—classified them then, the row margins would be random. In this
‘ - circumstance the row margins would give some information about the relative sizes of the

schools but would not otherwise give any information about the dependence of performance on
~ school. Bither way a tabular presentation of the data is possible.

- (i) Consider a similar experiment except that now we take 160 students and record their
performance and family income. As income is an essentially continuous variable we cannot
present these data as a cross—classification without discarding some information, but we might
produce a table listing each person, their performance (the response) and the family income
(the explanatory variable). '

Of course for this type of study there are many potentially useful explanatory variablé and
any well-designed survey would record some combination of discrete and continuous predictors.
The study could also be extended by recording an extra response variable, e.g. whether the
students’ performance had improved, remained constant, or declined over the past year. One
might then be additionally be interested in the relationship between the two response variables
after the effects of the explanatory variables have been taken into account. Many of the
questions on remionshipé among varizbles can be explored in the context of lo'glinur mode_ls
i . of the sort described here. . |

Lest we be led to believe that standard loglinear model theoi:y is all powerful, let m
suppose that we still regard performance as the response variable bat that we had first selected
50 people from each performance category, i.e.. we stratified on the value of the response
variable. A loglinear model may still be appropriate for the resulting problbilitia. but, as the
sampling scheme fixes the totals for the categories of the response variable, it is neither
Poisson nor pfoduct-multim;miil. Thus the standard methods of frequency data analysis are
ndt necessarily appropriate. For a discussion of this choice-based paradigm see the articles by
Manski and McFadden and by Coslett in Manski and McFadden (1981), and further references

therein. We will mtriqt ourselves here to the two sampling schemes we have outlined above.
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f mmmmw is.

Tavia ﬁ R A &’:ﬂ!’ & &’) B s LT s : (2.16)
mwvummm:m

L T g o

o ,u'-mmmﬂw&vl.x < Q.18
Puistb_,_.‘, ~prajection . onto. N. mmmmmmm
. _\mammm.,m““mmm Under product-
_.multinomian). sampling,  the. ssmpling constraints. dictate that we consider only those models for

mm;mmmmummﬁmumwkeum
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and hence that Pyx is a sufficient statistic. In .act the exponential family theory assures us
that Pyx is in fact a complete minimal sufficient statistic. In the contingency table context, M 1
is oftan the space spanned by the row or column indices of a table, in which case P“x can be

obtained from the row or column margins of the table

Even more can be gained from viewing the loglinear model in the exponential family
framework. A standard result states that if the maximum likelihood estimate (MLE) exists it is
unique and satisfies (i) the model, # €M and (ii) the likelihood equations

Pym = Pyx , (2.20)
i.e. the MLE is obtained by equating the minimal sufficient statistics with their expected
values. When N M, expression (2.17) forces expression (2.15) to be satisfied.

| The likelihood equations for the two sampling schemes are identical but the interpretation of
the resulting perameter estimates differs. In product-multinomial sampling some of the
parameter comparisons are meaningless for the very reason that the differences are induced by
the sampling design.

In order to utilize the likelihood equstions we need to be sure that the MLE exists. A
theorem of Haberman (1974) asserts that the MLE exists if and only if there is a d GM"the
orthogonal complement of M, such that x + d > 0. Obv:omly if x has no zero componeats
then d = 0 will suffice. Whent.here ueoburvedzerosmthedau then the potential for
non-existence of the MLE is there. Even wh,en the MLE does not exist the log-likelihood
function is still convex. The only problem is that the maximum 'lies ouside the allowable
parameter space, i.e. some components of x are -oo at the maximum. This corresponds to an
estimated inem value, ﬁ}. of zero or equivue.;_ﬂy to a zero estimated probability. If one is
willing to consider this extended interpretation of the MLE, then the MLE always exists and is

unique.  Unfortunately, it is important to know about such singularities for computational

reasons. We return to this problem in Section § on computation.

In principle estimation for loglinear models is quite simple ~ see section 5 on computing for

..........
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further details. Without some indication of the variances of the fitted values (or, equivalently,

the parameter estimates), however, estimation would be of little value. Again the general
theory of exponential families comes to our aid. MLE's in exponential families have an
asymptotic variance-covariance matrix equal to the inverse of the Fisher information matrix. It
is ecasy to show that for the Poisson likelihood the first and set;ond derivatives of the
loglikelihood are x - m, and -ding(ml....,m,) = - D..' respectively. Using this notation,
Haberman (1974, pp.75-78) has shown that as the total sample size, N, tends to infinity

-~ -1
LIIN%(p)] > N(O,Pf‘.Dm) . 2.21)
where m is the true mean parameter and Ph is the orthogonal projection onto M with respect
to the inner product <.,D_.> . From this it follows that

LIN*(m - m)] > NOD_PY ) . @.22)

By using these asymptotic normal distributions it is possible to directly show that the usual

goodness—of -fit measures,

X* =Zx -mP/m (2.23)
and

G* =2 X ix/dp (2.24)
both have asymptoic X? distributions with degres of freedom equal to the number of elements -
in the mdex set 1 minus the dimension of M. These statistics are of course quite well known;
the first one, (2.23), is just Pearson’s chi-square while the second, (2.24), is the log-likelihood-
_ ratio statistic. Thus we see that under Poisson or product-multinom.ial sampling the loglinear
model arises naturally from consideration of the likelihood and the properties of exponential
" families..

Once we have decided on a loglinear model there is nothing that dictates that we must use
maximum likelihood estimation. An alternative estimation strategy would be to set up the
problem in the Kullback;Leibler information theory framework. Using the result of auz(r
(1975) | and Kullback (1959) it is possible to show that the natural Kullback-Leibler

.................
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representation is in fact the convex dual of the maximum likelihood representation and that the
estimated means from either approach are equivaleﬂt. For further details and references see
Meyer (1982). Alternative estimation strategies which have appeared in the statistical literature

include weighted least squares and minimum X? methods (e.g. see Grizzle, Starmer, and Koch,

- 1969).

5. LOGLINEAR VERSUS LOGIT MODELS
An important topic that we have overlooked thus far is the relationship 6f loglinear and
logit models to each other. Consider a vector of binomial responses x = {x; i €1} and
sample sizes n = {ni; i €I} with probability of success p. The logit model postulates the
relationship .
logit(p) = In(p/(1 '~ p) € M, @2
where M* is a linear space spanned by appropriate explanatory variables. It is possible to show
that every logit model can be represented by an equivalent loglinear model for the I x 2
contingency table formsd from the number of success and number of failures. Thus all of the
results for loglinear models carry over directly to logit models. However it is often much
easier to interpret models when they are presented in terms of the log odds or logit scale.
Even more important, it is often quite inefficient to use numerical algorithms which. are
.smtable for the general loglinear model in place of the more specific methods appropmte for
logit models. The numenul efficiency of logit model methods is largely due to the presence
of sampling constraints which are implicit in the logit formulation but which must be

considered explicitly in the loglinear model.

Similar comments are in general true for the simultaneous or multinomial logit models which
are sometimes used when a.multinomial rather than binomial response is observed. Consider a
trinomial response model. The data we observe consists of three vectors, X, X, and X, which
represent say success, partial success, and failure with corresponding probabilities p ¢ Py and
Py and n the number of trials, together with whatever explanatory variables are necessary.
The simultaneous logit model (e.g. see Fienberg, 1980) postulates that

MRS P T R AP Y
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ki In(p,/p,) €M, 2.26)
o3 and :
: inte,/p) € M, am
; are simultaneously true, and that

P, *P,* P, = 1 (2.28)
E The multinomial logit model (e.g. see Nerlove and Press, 1979, Chamberiain, 1980, or Mansi,
h‘ 1981) is equivalent to the simultaneous logit model. For these models there is always, again, an
: equivalent loglinear model. As before, it is the ease of interpretation and computational
: advantages which make the simultaneous logit model useful, but the theoretical results necessary
to manipulate thug models are difect consequences of the more general logiinear model
properties. Kdnig, Nerlove, and Oudiz (1981) provide a detailed economic application of the
multinomial logit mode.. |
¥ Overall the loglinear model is a very powerful and practical tool for discrete data analysis.
However it must be viewed in much the same light as the general linear model. It is a very
‘ general tool and one must be careful only to use it when appropriate. Specialized tools and
i . ‘models for certain discrete data problems are often more appropriate just as it is easier o

consider the analysis of .designed experiments independéntly of the linear model interpretation.
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3. USING LOGLINEAR MODELS FOR SOME "NON-CONTINGENCY" TABLE
PROBLEMS
The application of the loglinear model results from Section 2 to multidimensional contingency
tables focusses on models where each set of the parameters in the logarithmic scale is
associated with one or more dimensions of the table. For example, for a three-dimensional
table and the loglinear model representing no second-order interaction (see Fienberg, 1980),

log(mm)zu-rum)+uw+uw* um’+ulm‘)¢uw. @3.1)
themmuwisuociaudwithdimenﬁonsZmd&mdaoon. Other applications of the

results will not necessarily have this feature, as will be apparent in the examples below.

One of the values of general theoretical results is that they are often applicable to specific i
settings beyond those which led w0 the formulation of the general structure. This is certainly
true for results on the analysis of categorical data problems. Fortunately many of the "non-
contingency table” applications of the loglinear model results have contingency-table-like
representations so that we can /nterpret the results of our analyses using whatever intuition we
have gleaned from the analysis of contingency table data using loglinear models. This section
is based on a related discussion in Fienberg (1981), mdeonnmstwoeumplaofthe ase of

- such contingency-table repmenunons.

3.1. THE BRADLEY-TERRY PAIRED COMPARISONS MODEL

Early in the p.ychomeu'ic literature, Thurstone (1927a,b) proposed a model for binary paired
compariscns using linear model structure, and this model was amplified by Mosteller (1951) and
Bock and Jones (196;. Chapters 6 and 7). Bradley and Terry (195,2)' suggested a simple
vnriitiom on the Thurstone approach which is, in effect, a loglinear or logit model. Extensions
of their. approach have been developed -over the intervening three decades (for an excelleat
review of this literature see Bradley, 1976). ‘

Suppose t items (e.g., different types of chocolate pudding) or treatments, labeled T,.
T,eT,, are compared in pairs by sets of judges. (Or suppose that t football teams compete

...........
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in pairs in a series of matches) mmﬂhy-Tmmowm,mmwﬁtyofT‘
\ ding preferred 1o T is ‘

4
PT 5> T) = —i—, ij = L2....t,
'l*'
i 3.2
.Where esch » 2 0 and we add the constraint that 2 » = 1 The model assumes

independence of the same pair by differeat judges and differeat pairs by the same judge. In
the example of the football maiches we assume the independence of outcomes of the matches.
TABLE 3-1

Layout for Data in Paired-Comperisons Study with t = 4

Against
T : '!'z 'r, ‘l"
Tl - X" xll tl‘
T 4 -— X
FOI’ 2 aa 3 4
T X, ., - 9
T4 x‘l xﬂ. ‘43 -

Inthetypicalpliredeomplmonupeﬁment.T‘iseompltedwith‘r,luloma.ndn'
letxubetheohurvednumberoftiu;s‘riisprderndm'r‘inth.enumm Table
~3-1showsthetypialhyoutfortheoharveddanwhcnt=4.withprdﬂgme(fm.lam)
defining rows and columns. Clearly the binomial mﬂnu '

z TR T T

is of the form of the multinomial constraints described in Section 2, and using the basic .
loglinear result on the equivalence of MLE's for product-multinomiai and Poisson sampling
schemes, we can convert expression (3.2) into a model for expected values for a Poisson

sampling setting, ie.
]o'muna'-b,#yu (3.3

-----
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where

X . P (3.9
with suitable side constraints. But this, as was noted in Filenberg and Larntz (1976), is simply
the model of quasi-symmetry in a square contingsncy table (see Bishop, Fienberg, and Holland,
1975, Chapter 8). The minimal sufficient statistics are

R x) ) ix +x) @a.5)
(actually either the row or column totals are redundant), and we can use a trick, suggested in
mp.pﬁmmuommmmmmbmwmmam-mma
expected counts. We generate duplicate tables and set

m k=1,

i

» P m k=2, .6)
i and, for the observed counts, _
3 X k=1,
T " x: k=2, )
’ Then the loglinesr version of the Bradley-Terry model given by (3.3) and (3.4) becomes the
model of no-second-order interaction in the new 3-dimensional table, whose minimal sufficient
mti.stium({xu.}. b & D ‘l'hmweunamlyutheritoft.hemodelandmuom
on it in a familiar contingency table setting of the sort described in Section 2. The model of
expressions (3;3) and (3.4) could be approached directly, but the dupliation' involved in
_expresiom(lﬁmd.ﬂ.?)unmwhatkomerwiaea"mlo;linm”mnminba
recognizable one for multi-dimensional tables, and simplifies the computations of MLE's no

) matter what iterative method is used for their calculation.

! Asanmmplc.wcneonsidetat-4ﬂlmmﬁondvenbynyhm(l960).inwhichn,"-o

'  (this does not affect the identification and estimability of the Bradiey-Terry parameters). The
omdlnmdminpm(i)ofthetableandtheatimwdexpectedfreqmciu.m
given in part (i) to one decimal place. Thcpodneu-of—ﬂtoftﬁemodelismmuiudby
the statistics,
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X*=20 and G =24 ,
and there are 2 degrees of freedom. The actual maximum likelihood estimates of the Bradley-
TmyAplrmmm

v =082 % =793, ¥ =204 and 7 =431
8 given by Dykstra.

These ruults: on the loglinear representation for the Bradley-Terry model are by now
Teasonably well-known, and they can be extended to more complex seitings involving ties,
multiple comparisons, order effects, and rankings (e.g. see Fienberg and Larntz, 1976, Fienberg,
1979, and Duncan and Brody, 1982). Recent results by Meyer (1981) are of special use in
;iﬁns connnuncy table representations to some of these generalizations.

3.2. THE RASCH MODEL

We now turn to a problem which begins with a representation as a two~wiy table of 0's and
1's, and ends up as a relatively standard multi-dimensional contingency table problem. The
results of abi/ity tests are often structured in the form of sequences of 1's for correct
mwmandO’st‘orineorrectgnswm For a test with k problems or items administered to n
individuals, we let _
1 if individual i answers jtem j correctly

K ;o otherwise. | (.8

Thus we have a two-way table of random variables {Yu} with realizations {yu). An
altetnative representation of the data is in the form of a nx2* table {Wu‘ dy J.} where the
subscript i still indexes individuals and now jn'jz""‘jx refer to the correctness of the responses
on im 1.2...k, rspectively; ie
1 if i responds (j‘.j’....jk)

bk . g 0  otherwise. 69

The simple Rasch model (see Rasch, 1960 as reprinted in 1980; and Andersen, 1980, 1983) for
the {Y,} is .

............
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5 | m-o) YRty

: s &IH\; s s et

' Ip,=Xv =0. (.11)
Differences of the form s - s tre typically described s measuring the relative abilities of
i individuals i and 1, while thoss of the form v - v, are described as messuring the relative
3 difticulﬁsofimjandsw(&m)kaloahmddintlnnnnlmwm
N mfmaHMmmmuhmh{y)mmmmm
3

Bk m_hmnisunxknbhofl‘s. mmmmmm-asumm
14 P(Y“-l).m«mimmbam-ﬁmxm.ithmtummmn

mwmﬁsmm'{wwﬁ.&}wm“mbmformmm We return
i : -
' o this matter below.

Mazimum likelihood estimation for the psrameters of the Rasch model of expression (3.10)

MWL 5 ¥ ¢ s

bas been the focus of several authors, including Rasch and Andersen. Unconditional maximum
‘ lkelibood (UML) estimates can be derived but they have rather problematic asympuotic
: propertics, e.g. the estimates are incomsistent as » - 0o sad k remains moderate, although
g " they are consistent when both n and k - oo (Haberman, 1977).
4 ’ . ’ . )
| v Before trning ® s altersative 1o the UML spproach, we point out a recently-derived
' ruultforUMLoﬁmmforﬂanﬂthbuphmmMmm
‘ hﬂmmtﬂmﬁw’m In order t0 derive necessary ahd sufficient

conditions for the existence of UML estimates (a problem not really discussed for amy of the
: dmmminthkm).?ﬁch«(ml)mb&mmwuy-{y)hloahnu(mk)x
(:+1) matrix of the form: . f
:s .

-0 ™=y

r A = {au} =
! y (3.12)
K,
. where ¢ is an nxk matrix of 1's, so that, for all (i),
g U 1. . (3.13)
A
g
b
4
X _
R R R R TN R R R A




Then  he notes that the Rasch mndol‘of expression (3.10) is transformed into an incomplete
"version of the Bradley-Terry model of expression (3.2) discussed at the beginning of this
section, ie

P(gu-]_) = _'L.- i= k"'l.....kﬂl.

.l*.’

j=12..k (3.14)
and similarly for the other non-zero block of entries in A, where

. _
log ~L- = 4, - p, ir = 12...a,
iv g, 3.1%9)
and
wiense e
j*s. (3.16)

Thus, uling a three-dimensional representation for A alluded to at the beginning of this
section, we can show that estimation results for the UML spproach to the Rasch model
correspond .to those for the no-second-order interaction model (see expression (3.1)) applied to
an incomplete three-dimensionsl contingency coasisting of two zero blocks of dimension kxkx2
and 0XnX2, and & duplicated version of the nXkx2 table with layers y, and ¢ - y. |

Now, we turn to a conditional approach to likelihood estimation (CML) advocated initial'y by |

Rasch, who noted that the conditional distribution of Y given the individual marginal totals
(Y, = y,} depends only on the item parameters, {» ). Then each of the row sums {y,} can
~ take only k+1 distinct values corresponds to the number of correct responses. Next, we recall
the alternate representation of the data in the form of an aX2* array, (W }, as given by

bbby
expression (3.9). Adding across individuals we create a 2* contingency table, X, with entries

X =W . 317
Wbk ik
Earlier, we asked the question of whether we could work with this collapsed array. The
answer is yes, sincs all of the information we need to preserve is the response pattern, i.e.
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(j,,j’.....j‘}. and the number of "correct” responses that correspond to that pattern. Such
information allows us to completely reconstruct the original matrix of responses, Y, except for
the labelling of individuals, and thus we can use the 2* array x to represent ﬁe conditional
distribution of X given {Y =y _}. |

Duncan (1982) and Tjur (1982) independently noted that we can estimate the item parameters
for the Rasch model of expression (3.10) using the 2* array x, and the loglinear model .
log m’l%"* =g+ 2:_, 8’:’ + T, (3.18)

whﬂ'ethemhcriptj.Sz:‘j..& = 1if j, =1 and is 0 otherwise, and

2
!:_o v, = 0. 3.19)
More specifically Tjur (1982) shows that maximum likelihood estimation of the 2* contingency
table of expected values, m = {m%___&l.usiual'oisonamplin;schememdtheloﬂinw
model of expression (3.18) produces the conditional maximum xlikelihood estimates of {v } for
the original Rasch model. Tjur proves this equivalence by (1) assuming that the individual
parameters are independent identically distributed random variables from some completely
unknown distribution, #; (2) integrating the conditional distribution of Y given {Y =y} over
the mixing distribution, #; (3) embedding this “random effects” model in an "extended random
model”; and ‘(4) noting that the likelihood for the extended model is equivaleat to that for
expression (3.18) applied 10 x. - - ' . '
' TABLE 3-3
Multiplicative Representation of Expected Values of Model (3.18) for the Case k = 3

Itam C
Yes " No
Item A - Item A
Yes No Yes No
Yes M’ bc:.'o3 al:sz tasl
Item B
No u:s’ cSi l."al so
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represented in a multi-dimensional table format such as that of Table 3-3.

2

For k=3, the loglinear version of the Rasch model for the 2° table, ie. (3.18), can be
represented in multipticative form for the expected values m as in Table 3-3. The
multiplicative parameters &, b, and ¢ in Table 3-3 correspond to the {v } in (3.18), and the
multiplicative parameters lsl) correspond to {y }. The minimal sufficient statistics are

o ) &) ), (3.20)

(a4 +je
and

um' xuo * X

+X
101 on’ X

» 00 ¥ Toro * Foorr Xooo! (.21
But these are the minimal sufficient statistics of the model of quasi-symmetry preserving one-
dimensional marginal totals which was first proposed by Bishop, Fienbers. and Holland (1975,
Chapter 8). Indeed, theqmﬁ-symme&ymodeliseqnﬁvalenttothatofexpmﬁon(3.l§). Thus
following the prescription of Bishop, Fienberg. and Holland (1975, p.305), we can re-represent
the dats in a 4-dimensional redundant form (as a 2X2X2XG table) and estimate the Rasch
model item. parameters using a standard loglinear model fitted to a 4-way table (although not

the 4-way table w of expression’ (3.9)). Additional simplifications easue here because

i]" = xm *

Ty = Ty - 6.2)

Duncan (1982) gives several ecxamples of the application of the Rach model 0 survey
M'MMMMBMMMMMWMMMmM

Plackett (1981), in a very brief section of the 2nd edition of his monograph on categorical
data snalysis, notes that the Q-statistic of Cochran (1950) can be viewed as a means of testing
(hat the item parsmetsrs in the Rasch model are all equal e0d thus zero, Le. v = 0 for all
J This observation is intimately related to the results just described, and our original data
representation in the form of an nxk (individual by item) array y is exactly the same
representation used by Cochran. Byurryin;outaeondit;onnmfottheeqmlmof
marginal proportions given model (3.18) ie quasi~symmetry preserving one-dimensional
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marginals, we get a test that is essentially equivalent to Cochran’s test. But this is also the test
for {v‘-m within model (3.18).
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4. CORRESPONDENCE ANALYSIS FOR CONTINGENCY TABLE DATA

At the same time as the methods for loglinear and logit models were being developed in the
United States and the United Kingdom. an alternative method known as correspondence
anslysis was being developed and practiced by a group of French statisticians (e.g. see
Benzetri, 1973). Correspondence analysis can be thought of as a special case of canonical

. correlation analysis, which is used in general to study linear relationships between two sets of

variables. Keller and Wansbeek (1983) set correspondence analysis in the context of an errors—
in-variables model. In this section, we briefly outline two different ways that correspondence
analysis can be used to analyze contingency table data, and we contrast these approaches with
the loglinear model approach which is the main focus of this paper.

The first approach to the use of correspondence analysis is as a technique for displaying the
rows and columns of a two-way contingency table as points in corresponding low-dimensional
vector spaces (e.g. see Greenacre, 1981, or Heiser and Meulman, 1983). When the
dimensionality is one or two, these spaces are often superimposed mq used for a pictorial joint
display. Let x be an rXc matrix of counts, and A and B corresponding matrices of row and
column proportions, respectively. Then correspondence analysis finds a linear mapping between
the co-ordinates f of the rows and g of the columns, with respect to the principal axes

defined by the following eigen—equations:

ATBT = \f
BTATg = \f. (4.1)
The cigenvalues here are usually arranged in descending order '
'x,zxzz...zxnzo. (4.2)
and the choice of m = 2 allows for a two-diraensional graphical display. The method as
outlined here is limited to two-way tables, and as such has little 1o offer for the analysis of

multi-way tables unless several variables are merged.

O'Neill (1978) has developed a formal test for independence in a two-way table using a
canonical correlation approach and Haberman (1981) has demonstrated its relationship to a
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simple extension of the loglinear model suggested in Fienberg (1968) and developed by
Andersen (1980) and Goodman (1979). The canonical correlation test extracts the largest

g .7 e Al

PUSLAS MK,

eigenvalue, Rl. of the rXr matrix B with elements

: b=, d 4 “3)
! where
X -xX/n
= i Cir e 4.9)
N i [x x 1%

Then NRl2 is then referred to as the distribution of the maximum eigenvalue of an (r-1) X
2 (r-1) central Wishart matrix with c-1 degrees of freedom. Thus when r > 2 and ¢ > 2, the
asymptotic distribution of NRIz is not the chi-squared distribution. Haberman (1981) has

shown that this test is equivalent under the null hypothesis to the test for A = 0 in the n;odel

/ I}
log mu = u * um) * uzu) + A “m) uzm @5

where

l(l) {4

Zu = }Iu =Xy = Zu;w =0. (4.6)
De Leeuw (1983) describes the interaction structure in expression (4.5) as bilinear. For a
discussion of extensions of the model of exprmons (4.5) and (4.6) to multi-way tables and the

use of such models for ordered categoncal data, see Fienberg (1982).

*

A s.cond approach to the yse of correspondence analysis (under its psychometric name, duva/

scaling) for multi-way tables is presented by Nishisato (1980) who describes the loglinear

bt e i b R ]

model approach to multi-way tablo_s as a form of analysis of variance on the log—expected
values. (Wg note parenthetically that such an ANOVA description ignores the interpreu.tion of
- many loglinear models in terms of eont’.itional independence of variables and related ideas, as
well as the interpretation of individual parameters in terms of odds ratios.) He then proposes
b a pair of dual scaling or reciprocal approaches in which the unit of analys:s is not a cell
frequency but a single response from a single subject, and the data are arrayed in a two-
dimensional response pattern matrix. Method ] first derives an optimal response-score vector
and then subjects it to a standard ANOVA. Method II essentially attempts to carry oui

"&-‘ L.l .
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the two parts of Method 1 simultaneously (see the related discussion in de Leeuw et al., 1976,
and Young et al, 1976. Deville and Saporta (1983) present an alternative approach to
Nishisato’s which they label as .mu/tiple correspondence analysis.

Most of the examples of these optimal scaling or correspondence analysis methods applied to
multiway contingency table data that appear in the literature are not especially revealing. For
example, Nishisato presents an example with four binary explanatory variables and 3
observations for each of the 2* = 16 experimental conditions, and where there are 8 response
variables each with 5 categories. Thus, the 3 obseﬁrations are spread over a $* response
structure and make the estimation of a standard loélinear model virtually impossible. The
heroic and untestable assumptions implicit in Nishisato’s dual scaling analysis need to be made
explicit before a direct comparison with loglinear models is possible. On the other hand,
Kester and Schriever (1982) analyze a standard 2X3X3X4 contingency table example given in
Fienberg (1980, p.91). A reasonable loglinear model for the data in that table has as its
minimal sufficient statistics only two-way marginal mﬁl& Kester and Schrieww: analyss 3¢
this example relies only on these bivariate two-way totals, and introduces scaliugs for the three
non-binary dimensions. In a sense their analysis can be thought of as supplementing the
standard loglinear analysis.




5. COMPUTATIONAL METHODS FOR LOGLINEAR MODELS

There are numerous compuational methods which can be used to fit general loglinear models.
For any particular application the investigator must be careful to select a method which ‘is not
only feasible but efficient. The loglikelihood function for the loglinear Poisson model is a
convex function and when the MLE exist (i.e. there are no fitted zeros) it is a strictly convex
function. As the first and second derivatives of the loglikelihood are analytically available, a

natural contender for the maximization procedure is Newton’s method.

Newton's method is indeed useful for loglinear models where the dimension of the parameter
space is small. Using Newton's method has the advantage that the calculations necessary to
obtain asymptotic covariances for the fitted values or parameter estimates (i.e. the Fisher
information matrix or some decomposition of it) are a by produ_ct of the algorithm. A further
advantage is that in general Newton’s method can be expected to have a quadratic rate of
convergence. A widely available implementation of Newton’s method for discrete data is in

the statistical package GLIM (Baker and Nelder, 1978), while a version that is useful only for

logit models can be found in the BMDP statistical system. There are however several
disadvantages to using this algorithm.  First, fitted zeros can cause Newton's method to
converge much more slowly than one would otherwise expect. Thus it is imperative that

potential singularities in the data be detected before formal fitting is attempted. .Fienberg.'

Meyer and’ Stewart (1982) Use a result of Stewart (1980) to first screen the data for singularity

ity tiets

S
ity
- .

problems before fitting loglinear or logit models using a version of Newton's algorithm which

is efficient in terms of both time and storage. Second, a more limiting problem with
Newton's method is that for large models (greater than about 200 panmeters.) the amount of
computer memory reguired to store the second derivative matrix exceeds the capacity of most
computers. Under these circumstances a possible alternative is the family of conjugate gradient
algorithms. Mclntosh (1982) has investigated the possibility of using conjugate-gradient methods
for many statistical applications. Conjugate gradient algorithms have the property that they do

s 8 AR
R A T

not use any second derivative information for the function being maximized. This means that

asymptotic covariances are not available (other than in some special closed-form situations), but
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the method can consider very large problems. Whereas Newton's method spends a lot of
effort finding a good search direction, conjugate—gradient methods merely find a reasonable
direction. Thus esch iteration of the algorithm requires relatively little computation but the
algorithm is likely to require more iterations than Newton’s method.

Both Newton's methgd and the conjugate-gradient methods are important general optimization
tools applicable to a wide variety of problems. A thirdnoptimization method is the cyclic-
coordinate ascent algorithm. This algorithm is not widely used for general problems but is of
special importance in loglinear model applications. In this context it is known as the /terat/ve
Pramhioml Fitting Procedure (IPFP). The distinguishing feature of IPFP is that it attempts
to maximize the likelihood by searching along a series of fixed directions, and thus no
computational effort is expended in se.trching for good directions. What makes IPFP attractive
for loglinear model applications is that for many models there is a closed-form answer for
maximization along the fixed directions. Specifically, let m be the current vector of firted
values, If we are attempting to maximize the likelihood along a vector, A, which consists of

only zeros and ones, then

m_ = m<xp/<mp, 6D
. i.e. the new vector of fitted va_lug is just a simple f’roportional adjustmc.mt of the old vector.
i‘hué we can use this method for any model M, which can be spanned by a set of vectors 8;
k=1,....s} where each ﬂt is a vector of only zeros and ones. For each direction, ﬁk. there is a
step in the iteration of the form (5.1), and thus a complete cycle of the.itera;ion consists of a
set of s steps along the s fixedv directions {ﬂt} corresponding to the model M. The class of
models which satisfy these requirements is surprisingly large and includes all the ANOVA-like
loglinear mbdels for contingency tables. This class itself includes all the independence and

conditional independence models.

The IPFP generally takes many iterations to converge, but as each iteration is so simple that
this is of little concern. A special feature of the IPFP is that when a closed-form MLE exists

the algorithm will converge in at most two iterations and one can assure convergence in one
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iteration by choosing an appropriate order for selection of the spanning vectors (e.g., see
Haberman, 1974). The main advantage of the IPFP is that it needs to store only the table of
fitted values and the sufficient statistics in computer memory and thus can be used on very
large problems. The BMDP package uses this method in its contingency table program,
BMDP3F.

When one has s large contingency table problem which is not amenable to the IPFP, there
are several alternatives. An algorithm which is based on the IPFP but which is useful for any
.model is the generalized iterative scaling method of Darroch and Ratwcliff (1972).

,j: Unfortunately this algorithm has the slow convergence disadvantage of the IPFP, without the
important advantage .of simple computations at each iteration. For special applications there
5 are several alternatives. Under some circumstances it is possible to transform a contingency

table and associated models intc a form where the simple IPFP can be used. An example of

this is given in Meyer (1982). For the simultaneous logit problem it is possible to combine the
IPFP with some other algorithm, e.g. Newton's method to gain a useful hybrid. Rather than
consider the problem as a large contingency table one can fit each of the individual logit
models which comprise the system and combine the estimate using ideas based on the IPFP. It
is then necessary- to repeat this process until the estimates converge. Some details on this
approach are available in Meyer (1981). ' |

For general applications of the loglinear model to small problems, Newton's method is
prodably the most efficient and useful algorithm. As the size of the problem increases the
IPFP, when it can be applied, is the most useful algorithm.
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