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1. INMODUC"ION

Whe elementary statistics texts write about contigency table analysis they usually discuss

only two-wy tables, and the Pearson chi-square test for Independence. Yet. almost 50 years

ago. artet (1935) begn statisticians on a path of research on the analysis of three-way and

higher-way contingency tables that has branched into many different directions. This paper

attempts to present a concise summary of one of these branches, that dealing with the use of

loglinear models and their analysis using the method of maximum likelihood. Some basic

references for this literature include Andersen (1980), Bishop, Flenber& and Holland (1975),

Birch (1963). Bock (1975. Chapter 8). Pienberg (1980). Goodman (1978). and Haberman (1974.

1978. 1979). Chapter 1 of Pienberg (1980) provides further details on the historical

development of this literature.

In Section 2, we summarize the basic theory associated with the loglinear model and its

constrained counterpart, the lopit model. We- consider various sampling structures for

contingency tables, and make use of more general results on maximum likelihood estimation for

exponential family distributions. This material on loglinear models is linked to the recent

econometric literature on retrospective choice-based samplin& and simultaneous logit and

loglinear models,

In Section 3. we illustrate the use'of the general loglinear model results for two statistical

problems, whom literatures have evolved separately. More specifically, we show how them

non-cmtingecy-table problems can be given continsgency-table-like rpresentations. Then in

Section 4 we briefly summarize the recent literature on correspondence analysis, and its links

to the lolinear model literature.

Finally. in Section 5 we focus on computational aspects of maximum likelihood estimation

for loslinear model, and we outline some current research efforts on computation for very

lr contingency tables.

,...
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3

I LOGINEAR MODELS AND METODS

For many emples of dicIre N-1 data it is natural to assume a Pojun or multinomial

distribution for the observed counts. When such an assumption seems reasonable the methods

amosiated with loglinear models may be appropriate for the data. Subject to the distributional

requirment the full power of the methodology is available for any problem where the

resptis variables are discrete and the explanatory. variables are either discrete, continuous, or

some combination thereof. Loglinea models are most commonly applied to contingency tables.

These arise when all of the explanatory variables are discrete, and the data can be represented

as a p-way cross-clasification, where p is the total number of response and explanatory

variables, When some of the explanatory variables are continuous it is not possible to display

the complete data as a cross-classification but loglinear model methods are still appropriate.

The loglinear model is a categorical data tool which closely resembles the regression and

analysis of variance (ANOVA) models for continuous data. Regression models define a

decomposition of the expected values of the data (actually conditional expectations for responses

given the values of certain explanatory variables). Most applications take a linear

decomposition of the space of all possible expected values. Just. as linear regression is the

natural and -most easily manipule model (contrasted with, say; nonlinear regression) for

continuous data, the natural model-for categorical data is linear in the loarithms of the

expested values. " This formulation is mathematically simple, and inore significantly, the

important concepts of independence and conditional independence can be easily expressed in the

loslinear formulation (for details, see Bishop, Fienberg. and Holland. 1975).

In order to describe the loglinear model and its justification we need to develop some

notation. Let I be a finite index set and considera vector of observed counts,

x (x1 ;i' lx1 CZ (2.1)

which are considered to be realizations of a set of random variables,

X a (Xi:1 7 C , (2.2)

The st . indsxs do possbi outomes. The random variable X has expectation
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p=in~m . 0.4)
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tde o l vasesasper int we ume ', > to ds@M the mal inner Produt ontis Spacs.

Thus a 2 X 3 continpacy table

could be desribed in tem of the index set

- ( {(iJ6(J{M2)1, JcI2.3) )

orby

1" t142,3,4,SA)

If se orderi conventio is adosm& Suppos that the cel of the 2X3 table contained

continous or amesmoint dai. Tihmat sandm d ANOVA model for the (L) cl entry

won b.

. EO Is U + UI( + U 12(.0I 0 (2U4)

I.e. a ,ow-& d. ,A. immloa effets modeL When the entries (X are coun, the
correspondig model fo the a s o pas n d thm e ount is

ph a +(1 VIuM. u * j +,010 (2.7).

with the am constraints u before, I.e. tO in eprm (2.6). Setting uX, a 0 for an i

mid J i .7) mu t i varla ls ors to rows end columns ar Indpedent.

In p md m ramu mime" is hallr dilmemslom. conditional Independem models have a

mumd famulmadm u ktm Modol Jut ma nolmmr models In ANOVA and rMeso
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itMsM are a paibility. aos4oglar model for counts are posible but the madeat of

mlmados is, mot difficult than for te bom model desuibed in his pal r.

Th WIb " limane c0. frep y dat has fo id an two b sic smpling schmes and

aoclad probability distributions for the random variabls X. The Sampling models, the

Poieo and product-muldnoial pradigM are intimtely related (as product multinomial

amplin can be obtained a a conditional verion of Poimon sampling), and both result Ml

heories where liw nstritions on p produce natural models of interest. Extensive accounts

of te "thmoy of logHnear models are available in Bishop, Fienber and Holland (1975). Plackett

(1961). and especially Haberman (1974). Extensions to more complex sampling strucmres can be

found in Brier (1980), Fellegi (1"0), and Rao and Scott (1981).

2.1. THE POISON MODEL

Under the Poiso model the elements of X ar thought of as independent Poison random

variables X with expectation m - EW(). The probability density for this situation is

mia e'% (2.8)

which results in the following lg-hkelho function for p = In(m) given x

L~pz) at <xp~> - a1>. (2.9)

The most naturl realization of this'model is when" the couats represent the results of

simultaneous independent pmon procees, with means m, observed over a fixed period of
tim

2.Z MRODUCT-MULTINOMIAL MODEL

Let a ption the iex set into r disjoint pr such tha

U , (2.M10)

ot eachb It. (z, ; 1 10 has a muldnomial distribution with mean (MI ; i € k In mom

slandard parlance, If nk is the sample size then x, ; i C I k has a multinomial distribution

with paromem nk and probability vector
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pk- (m, ;tc . (2.11)

The important distinction is that here the ample size is known a-rlPorL The full product-

multinomial model assumes that the r multinamial distributions so determined are indepemdent

with posibly some relationship between the means of the different distributions. Let us

denote by 1 k the indicator vector of It .e.

t otherwise. 2.12)

With this notation nk = <hk' X>. The probability density under product multinomial sampling

is

n. ( 1k) , 1( 2 (.113)

where (k) is the usual multinomial coefficient. The log-likelihood for this model is

t,"(.;xfInk}) = - {ln(nk!) + Z gk (xP, - x, ln(nk) - bn(x.!)))

c <Pax), (2.14)

subject to the constraints that <Mvk> = <X.k> for k = 1.... When r - I we have

observations from a single multinomlal; otherwise we have a set of r independent multinomials.

The crucial point to note is that the kernel of both the Poisson and product-multinomial

likelihoods are equivalent.

Before proceeding with the theory cousider two examples of frequency date. on which can

be represented asa claoical contingency table and one which cannot.

2.34 TWO WUMMZ

We are interested in M edtanding the factors which affect academic performance of a

group of school stndents. The performance will be asgned to one of three positions; above

aer, average, and below avergse.

(I) We select 40 students from each of 4 schools and ascertain the performance level of each

student The resulting data can be presented as a 4 X 3 cro. classification with rows

representing schools and columns representing perfomance. The row margins are fixed by the

.4I
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product multinomial sampling design to be 40. If we had chosen students at random until we

ran out of money and cros-classfied them then, the TOW margins would be random. In this

circumstance the row margins would give some information about the relative sizes of the

schools but would not otherwise give any information about the dependence of performance on

school Either way a tabular presentation of the data is pdmble

(ii) Consider a similar experiment except that now we take 160 students and record their

performance and family income. As income is an essentially continuous variable we cannot

pieet these data as a crous-classification without discarding some information, but we might

produce a table listing each person, their performance (the response) and the family income

(the explanatory variable).

Of course for this type of study there are many potentially useful explanatory variables and

any well-designed survey would record some combination of discrete and continuous predictors.

The study could also be extended by recording an extra response variable, e.g. whether the

students! performance had improved, remained constant, or declined over the past year. One

might then be additionally be interested in the relationship between the two response variables

after the effects of the explanatory variables have been taken into account Many of the

questions on relationships among variables can be explored in the context of loglinear models

of the sort described here.

Lest we be led to believe that standard loglinear model theory is all powerful, let us

suppose that we still regard performance as the response variable bat that we had first selected

50 people from each performance category, i.e. we stratified on the value of the response

variable. A lolinear model may still be appropriate for the resulting probabilities, but, as the

sampling scheme fixes the totals for the cateories of the response variable, it is neither

Poisson nor product-multinomial. Thus the standard methods of frequency data analysis are

not necessarily appropriate. For a discussion of this choice-based paradigm we the articles by

Manski and McFadden and by Coslett in Manski and McFadden (1981), and further references

therin, We will restrict ourselves here to the two sampling schemes we have outlined above.

. .. .,..'. ". -. ., .. - ..-. . .. .. . . ....... ,. ............... , .. ... . .. ,.,-'
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and hence that PMx is a sufficient statistic. In Act the exponential family theory assures us

that Pmx is in fact a complete minimal sufficient statistic. In the coatingency table context, M

is often the spce spanned by the row or column indices of a table, in which cae PMx can be

obtained from the row or column margins of the table.

Even more can be pined from viewing the loglinear model in the exponential family

framework. A standard result states that if the maximum likelihood estimate (MLE)'exists it is

unique and satisfies (i) the model. p M, and (ii) the likelihood equations

Pjn.C PMX . 2.0

i.e. the MLE is obtained by equating the minimal sufficient statistics with their expected

values. When N K, expression (2.17) forces expression (2.15) to be satisfied.

The likelihood equations for the two sampling schemes are identical but the interpretation of

the resulting parameter estimates differs. In product-muldnomial sampling some of the

parameter comparisons are meaningless for the very reason that the differences are induced by

the sampling deign.

In order to utilize the likelihood equations we need to be sure that the M exists. A

theorem of Haberman (1974) asserts that the MLE exists if and only if there is a d e MI. the

orthogonal complement of K such that x + d > O. Obviouly if x has no zero.om ponents

then d 0 will suffice. When there are observed zeros in the data then the potential for

non-existence of the MLE is there. Even when the MLE does not exist the log-likelihood

function is still convex. The only problem is that the maximumlies ouside the allowable

parameter space, i.e. some components of p are -co at the maximum. This corresponds to an

estimated mean value, nj of zero or equivaleatly to a zero estimated probability. If one is

willing to consider this extended interpretation of the MLF., then the MLE always exists and is

unique. Unfortunately, it is important to know about such singularities for computational

reasons. We return to this problem in Section 5 on computation.

In principle estimation for loglinear models is quite simple - see section 5 on computing for
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further details Without some indication of the varim s of the fitted values (or, equivalently.

the parameter estimates), however, estimation would be of little value. Again the general

theory of exponential families comes to our aid. MEI's in exponential families have an

asymptotic variance-covariance matrix equal to the inverse of the Fisher information matrix. It

is easy to show that for the Poisson likelihood the first and second derivatives of the

loglikelihood are x - m. and -diag(m, .... m) = - D, respectively. Using this notation,

Haberman (1974, pp.75-78) has shown that as the total sample size, N,.tends to infinity

L4 N(OPEl), (2.21)

where m is the true mean parameter and I is the orthogonal projection onto M with respect

to the inner product <.,D.> . From this it follows that

L[(N%( - m)] - N(0,D.P) (2.22)

By using these asymptotic normal distributions it is possible to directly show that the usual

goodness-of-fit measures,

X2 M=Z(X - ;a (223

and

G 2 : Ux ) (2.24)

both have asymptoic X2 distributions with degrees of freedom equal to the number of elements

in the index set I minus the dimension of K. These statistics are of course quite well known;

the first one, (2.23), is just Pearson's chi-square while the second, (2.24), is the log-likelihood-

ratio statistic. Thus we see that under Poisson or product-multinomial sampling the loglinear

model arises .naturally from consideration of the likelihood and the properties of exponential

families..

Once we have decided on a loglinear model there is nothing that dictates that we must use

maximum likelihood estimation. An alternative estimation strategy would be to set up the

problem in the Kullback-Leibler information theory framework. Using the result of Csis&

(1975) and Kullback (1959) it is possible to show that the natural Kullback-Leibler
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representation is in fact the convex dual of the maximum likelihood representation and that the

estimated means from either approach are equivalent. For further details and references see

Meyer (1982). Alternative estimation strategies which have appeared in the statistical literatire

include weighted least squares and minimum X2 methods (e.g. see Grizzle, Starmer. and Koch,

1%9).

2.5. LOGLINEAR VERSUS LOGIT MODELS

An important topic that we have overlooked thus far is the relationship of loglinear and

logit models to each other. Consider a vector of binomial responses x = {xi; i e 1) and

sample sizes n i {n.; i c I) with probability of success p. The logit model postulates the

relationship

logit(p) = ln(p/(1 p)) c P4", (2.25)

where M* is a linear space spanned by appropriate explanatory variables. It is possible to show

* that every logit model can be represented by an equivalent loglinear model for the I x 2

contingency table formed from the number of success and number of failures. Thus all of the

results for loglinear models carry over. directly to logit models. However it is often much

easier to interpret models when they are presented in terms of the log odds or logit scale.

Even more important, it is often quite inefficient to use numerical algorithms which are

suitable for the general loglinear model in place of the more specific methods appropriate for

logit models. The numerical efficiency of logit model methods is largely due to the presence

of sampling constraints which are implicit in the logit formulation but which must be

considered explicitly in the loglinear model.

Similar comments are in eneral true for the simultaneous or multinomial logit modeils which

are sometimes used when a multinomial rather than binomial response is observed. Consider a

trinomial response model. The data we observe consists of three vectors, x,, x2. and x3 which

represent say success, partial success, and failure with corresponding probabilities p,, P2. and

P3. and n the number of trials, together with whatever explanatory variables are necessary.

The simultaneous logit model (eg. see Fienberg, 1980) postulates that
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ln(p1/v2  e M (.6

and

ln(P2 /p) ' M2  (2.27)

are simultaneously true, and that

P P2 + PS = 1. M )

The multinomial losit model (es. see Nerlove and Prom, 1979, Chamberlain. 1980, or Manski,

1M1) is equivalent to the simultaneous logit model For these models there is always, spin, an

equivalent loglinear model As before, it is the ease of interpretation and computational

advantages which make the simultaneous logit model useful, but the theoretical results necemary

to manipulate these models are direct consequences of the more general loglinear model

properties. Knig. Nerlove, and Oudiz (1981) provide a detailed economic application of the

multinomial logit modeL

Overall the loglinear model is a very powerful and practical tool for discrete data analysis.

However it must be viewed in much the same light as the generallinear model It is a very

general tool and one must be careful only to use it when appropriate. Specialized tools and

models for certain discrete data problems are often more appropriate just as it is easier to

- consider the analysis of -designed experiments independently of the linear model interpretation.

*1
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3. USING LOGLINEAR MODELS FOR SOME "NON-CONTINGENCY" TABLE

PROBLEMS

The application of the loglinear model results from Section 2 to multidimensional contingency

tables focumes on models where each set of the parameters in the logarithmic scale is

associated with one or more dimensions of the table. For example, for a three-dimenional

table and the loglinear model representing no second-order interaction (me Fienbers, 1960).

los~mi) u + u 0 + u + 120+ Uum+ ,U O-i

the term u, is mociad with dimensions 2 and 3. and so on. Other applications of the

results will not necessarily have this feature, as will be apparent in the examples below.

One of the values of general theoretical results is that they are often applicable to specific

settings beyond those which led to the formulation of the general structure. This is certainly

true for results on the analysis of categorical data problems. Fortunately many of the -non-

contingency table" applications of the loglinear model results have contingency-table-like

represetation so that we can Interpret the results of our analyses using whatever intuition we

have gleaned from the analysis of contingency table dat using loglineer modes. This section

is based on a related discussion in Fienberg (1961), and contains two examples of the ie of

such contingency-table representations.

3.1. THE BRADLEY-TERRY PAIRED COMPARISONS MODEL

Early in the sychometi literlature, Thurstone (1927ab) proposed a model for binary paired

comParisons using linear model structure, and this model was amplified by Mosteller (1951) and

Bock and Jones (1969. Chapters 6 and 7). Bradley and Terry (1952) suggested a simple

variationt on the Thurstone approach which is, in effect, a loglinear or logit model. Extensions

of their approach have been developed over the intervening three decades (for an aecellent

review of this literature see Bradley. 1976).

Suppose t items (e.g., different types of chocolate pudding) or treatments. labeled Tie

T a,....T,. re compared in pairs by sets of judges, (Or suppose that t football teams compete

• 9 e 
e

4 . e ~ . o " • - • • • • • . . * * , , " . . " * e . " e . * ' v "v . e * .
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in pair in a u s of mwb ) The bad l-Terry model pmnahm pbalty of lj

Al gPreferred t Toii

Pr(T.4 T? - i_ 2,,I
3 j

i (3.2)
wbw eah i  0 and we add the consraim t that i' w "L The model smmm

independence of the sme pair by different Judes and different pairs by the same jde In

the eam of the football matchms we amum the indelpene of outcome of the match.

TABLX 3-1

Layout for Data in Palred-Comperliens Study with t a 4

T I ,T2  T3 T4

T 2 x I 14

T3 i 3 32 - X34

• T r xi,,, x -

T4 . 1 ' 742-6 143

In the typical pred cmparison experiamt T, is compae with T, nu 0 timb, gud we

let be the observed number of times T, is preferred to T in the. nu pTab

3-1 shows the typical layout for the observed data when t - 4, with preference (for, apiltn

% defining rows and columns. Clearly the binomial constraint,

is of the form of the multinomial constraints described in Section 2, and using t baic

loglinear result on the equivalence of MLE's for product-multinomial and onmpi

.schemss, we can convert expression (3.2) into a model for expected values for a Poioa

smpling setting L.

oi M (3.3)
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whm

y y - 7
J (3.4)

with sutable aide cosr~ ,h i Bthids, es was noted in Flsnberg and Lantz (1976). is simpl

the mel of qumd-synmetry is a square continspcy table (m Disop, Flenberg, and Holland,

1975, Chapter 5). The minimal sufin t stastcs are

IlO ). (xj) (zi +z) (3.5)
(wauly eathe the row or column totals are redundant), and we can m a rick, suussts in

Bihop, Flmnberg, and Hollnd to transform the problem to oae for a thre-way table of

expeted counts. We generate duplicat tables and, set

ix, k - 2. (3.6)

and, for the observed counts,

Then fth loglinear version of t Bral -Terry model given by (3.3) and (3.4) becomes t

model of noo-cond-order interaction is the new 3-dimumlonsi tale whose minimal sufficient

* ~Statistics are (fzij.). (I .). fx, )). Thus we can analyze the fit of the model and variations

en It in a familiar contingency table uettiag of the sort described is Septic 2. The Model Of'

expessons(3.3) and (3.4) datul be approeche directly, but the duplication involved is

expessons(3.6) and (3.7) turns what is otherwise a "new loglinea" structure into a

recogizable ON for multi-dimensdonal MUbMs and uimplifies the computations of MLE's no

* matter what iterative method is md for their calculation.

As an exmple, we reconsider a t a 4 illustration given by Dykstra (1960), in whic nM 0

(the does not affect the identification and estimability of the Bradley-Terry parameters. The

observd data are give in Part (0) of the table and the estimated expected frequencies are

given in part 00I to one decimal place. The goodness-of-fit of the model is summarized by

theSds"iti
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TAKZ 3-2

Aabyelu of Dykstra (1960) Example

a)Obumved frequencies

TI T2  TS T4

T, - 2 15 23

T2  112 - 46 47

Ts  39 17 -

•T, 34 11

(b) htpsond fnqumwow Wmder DmdlsY-Tary MOMe

T, T2 - TS T4

T, - 24.1 17.3 24.1

T 115.7 - 43.7 4M

T 36.7 19.3 - -

T4 32.5 12.5 . .
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X2 2.0 and (P 2.4

ad there are 2 depees of freedom. The actual maximumo likelihood estimates of the Bradley-

Terry parmeters are

I - -I r2 XJ93, or -' M.2 and r4 a.1431

SgIM by- DYkW&r

Thes results on the loglinear representation for the Bradley-Terry model are by now

reasonably well-known. and they can be extended to morm complex settng involving ties,

multiple comparisons, order effects, and ranking (e.g. see Fienberg and LArntz M97. Fienberg

1979, and Duncan and Brody. 1982). Recent results by Meyer (1981) are of special use in

giving continc table representations to some of thesenerlzto

3.2. THE RASCH MODEL

We now turn to a 'problem which begins with a r epresentation as a two-way table of 0's and

ii,. and ends up a a relatively standard multi-dimensional contingency table problem The

results of ability towts are often structured in the form of sequences of I's for correct

answers and 0's for incorrect answers. For a test with k problem or items administered to n

individuals. 'we let

1U nivda i answers item Jcorrectly

altesfnative representation of the data is in the form of a nxr table ) where the

subscript I still indexes individuals and now j1 2.~refer to t correctness of the responses

on items 12.....k. respectively. ie. )1 if irsod
0 otherwise. (3.9)

The simple Rauch model (see Rach. 1960 a reprinted in 1960-, and Andersn, 1960 1963) for

the (Y1J) is
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Differences of- the: form w1 -pae typically described eanin the reladlve abiites o

inddas I and r, while those of the form w *ae described as nesug tho relative

dIffIue Of itms j and L. ExpMeliN (3.1) is a f0ult maid in Uths usual aadting m*l

som for a 3-immia ara whon firs layer is (yo end whose maginal totals aiding

asre layers is an nXk table of I's. Because the Ruck mad, when viewed as a maid for

PlY -1). depends on the item permeturs In a nn-linear way. It is not at al dlewr whethe we

can collawu the amra (w I by adding oae mabject for estmaton purposes. We rr

to this matter below.

Maximum likelihood estimation for the perameurs of the Ruch model of expression (3.10)

has been the focus of several =auts iding Rinsch ad Anderse. Unconditional maximm

likelhod (UM) edstmes ma be derived but they have, uather probleatic symibtf

Poperties eag the gtime. awe inomietet a a -P a* end It remuan moderase, althog

they are cooslstent when both n and k 4 o (Habermus. 1977.

Before wtug to an sarnative a the UMIL ap pro we point out a reitydrved

result for UML adtmae for the Rach model which Mnos up in yet another way with.

lXOglne sWructure for contingency abWl In order to derive fecemary Ade suffiuient

conditdons for the aenca of UIAL qtimae (a problem not redly dkm..ed for any of the

damn structure; i this paper) Fischer (196W embeds the mat y -(y~ into a MWge (*+k)x

(n~k) matrix of the form:

where e isan ak matrix of 1's, so that. for all (Ui.

AU+M; 
M13)
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TheO h e notes that the Rach esdel of expression (.10) is transformed into an incomplete

wd.of the Dradisy-Terry Model of expresson (3.2) discussud at the beginning of this

seclem. Le.

POa -1) i - ka -,kn

j - 1.2...k. (3.14)

and simiarly for the othe non-zero block* of entries in A, where

l0g i -plj .2..n
r

ad

logILv is U -12,.k.
S

j 0 a. (3.16)

Thu&. inin a three-dimensional repeetto for A alluded to at the beginning of tis

section, we can show that estimaton results for the LIM approach to' the Rbac model

correspond to those for the no-second-order interaction model (see expression (3.1)) applied to

an incomplete th ree-dimenional contingmncy consisting of two zero blocks of dimension k)CkX2

.and nXnXZ *and a duplicated version of the nXkX2 table with layers y, and a - y.

Now, we turn to a conditional'approach to likelihood estimtion (CML) advocaWe inldtla by

Rnh. who noted that the conditional distribution of Y given the individual marginal tota"

(YE y1 *) depends only on the item parmeters, {).Then each of the row sms. Iy* can

take only k+1 distinct values corresponds to the number of correct reponses Net, we recall

the alternatersepreentation ofthe data in the form ofan nxkramy, (W as $van by

expression (3.9). Adding across individuals we create a 2k contingency table. X with entries

h .. Jh..J (3.17)

Earlier we asked the question of whethe we could work with this collapsed arry. The

answer is Yes, since all of the information we need to preseve is the respons pattern Le.
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V2, ... Jk, and the number of "correct" responses that correspond to that pattern. Such

information allows us to completely reconstruct the original matrix of responses, Y, except for

the labelling of individuals, and thus we can use the 2k array x to represent the conditional

distribution of X given (Y.=y 1 ).

Duncan (1982) and Tjur (1982) independently noted that we can estimate the item parameters

for the Rawh model of exprenion (3.10) using the 2k array x, and the loglinear model
lo,, *v, y (3.18)

log mh . Ik. j ,Y4 ,IS

where the submsript J , j . - 1f i -l and is 0 otherw and

.5 1. y - 0. (3.19)

More specifically Tjur (1982) shows that maximum likelihood estimation of the 2k contingenc

table of expected valus, m a Im ... )) using a Poisson sampling scheme and the loglinear

model of expression (3.18) produces the conditional maximum xlikelihood estimates of { vi for

the original Ruch model. Tjur proves this equivalence by (1) assuming that the individual

parameters ae independent identically distributed random variables from some completely

unknown distributiom, w; (2) integrating the conditional distribution of Y given (YOw.y,,) over

the mixing distribution, w; (3) embedding this "random effects" model in an "extended random

model"; and (4) noting that the likelihood for the extended model is equivalent to that for

: expresIo~n (3.18) applied tox.

TABLE 3-3

Multiplicative Reprusentation of Epcted Values of Model (3.18) for the Cds k * 3

Item C

Yes No
item A" Item A

Yes No Yes No

Yes abdj lS3 abS bS,Item B

! .-- '?..-.-.'-':-':.... " .. .:...?..........5 ...*:.. *S* ,.*-.**. ** . -. . c.-'..'. .... . . ..-... :.-k. . .:i: ;-
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Por k3. the loghiear verion of the Ruch model for the 23 tabk ILe. (3.18), can be

represented in multiplicative form for the expected values ma as in Table 3-3. The

mutplicative parameterab. and cin Table 3-3 correspond tothe(Y.) in3.18). andtdo

multiplicative parameters (5,) correspond to (y, ). The minimal sufficient statistics are

(xl) Ik)* (.k

and

But thes ae the minimal sufficient statistics of the model of quul-syzanetry preserving one-

dimensional marginal Soab which was first ptooe by Bhop. Fienberg ad Holland (1975.

Chapter 8). Indeed the qnsymtymodel is equivalent to that of expression (3.18). Thus

following the prescription of Bishop. Fienber& and Holland (197. p.30, we can re-represent

the data in a 4-iesoa redundant form (as a 2x2x~x6 table) and estimate the Rash

model item, parameters wing a standard loglinear model fitted to a 4-way table (although not

the 4-way table w of expression (3.9)). Additional simplification ensue here because

- x*..(3.22)

Dacn (162 Shve sevra eamples of the application of the Ruuch model to survey

resercb problems and he presents ssvrAl extensions of the model, indicating how they can be

represented in a ml-dinonltable format such as, that of Table 3-1.

?ladet (191) in a very brief section of the 2nd edition of his monograph on categorical

daft aslysis nowe that the Q-ulatiast of Cochran (1M5) can be viewed a a means of test

dotthe itemparasers in the Rasch model are all equal and thuszro Le. 0~ m for all

J. This obswervation is intimtely related to the results Just decribed and our- original data

repeetation in the form of an nxk (individual by item) array y is ectly the sme

rPresentio used by Cochran. By carrying out a conditional test for the equality of

margna Proportions given model (3.18) ILe. qus-ymmetr preserving oneo-dimensional
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MU2Inalm8 we gt a t tha is .mntfy equvalent to Cohrans gist. But this is also the lest

for 1' 0) wit model (3.18).
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4. CORRESPONDENCE ANALYSIS FOR CONTINGENCY TABLE DATA

At the same time as the methods for loglinear and logit models were being developed in the

United States and the United Kingdom. an alternative method known as correspond&en"e

asnlysls was being developed and practiced by a group of French statisticians (e.g. see

Benzefl. 1973). Correspondence analysis c€ be thought of as a special case of canonical

correlation analysis, which is used in general to study linear relationships between two sets of

variables Keller and Wansbeek (1983) set correspondence analysis in the context of an errors-

in-variables model In this section. we briefly outline two different ways that correspondence

analysis can be used to analyze contingency table data, and we contrast these approaches with

the loglinear model approach which is the main focus of this paper.

The first approach to the use of correspondence analysis is as a technique for displaying the

rows and colmnns of a two-way contingency table as points in corresponding low-dimensional

vector spaces (e.g. see Greenacre, 1981, or Heiser and Meulman. 1983). When the

dimensionality is one or two, these spaces are often superimposed and used for a pictorial joint

display. Let x be an rc matrix of count and A and B corresponding matrices of row and

column proportions, respectively. Then correspondence analysis finds a linear mapping between

the co-ordinates f of the rows and g of the columns, with respect to the prieipal axes

defined by the following eigen-equations:

ATBTf Z f

BTATg = Xf. (4.1)

The eipnvalues here are usually ar'ranged in descending order

X X 2 ... X 00 (4.2)

and the choice of m = 2 allows for a two-dimensional graphical display. The method as

outlined here is limited to two-way tables, and as such has little to offer for the analysis of

multi-way tables unless several variables are merged.

O'Neill (1978) has developed a formal test for independence in a two-way table using a

canonial correlation approach and Haberman (1981) has demonstrated its relationship to a

ERE., 41
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simple extension of the loglinear model suggested in Fienberg (1968) and developed by

Andersen (1980) and Goodman (1979). The canonical correlation test extracts the largest

elgemvalue, R i. of the rxr matrix B with elements

b,=V. d d (4.3)

where

d = [ i . (4.4)

Then NR 2 is then referred to as the distribution of the maximum eigenvalue of an (r-1) X

(r-1) central Wishart matrix with c-1 degrees of freedom. Thus when r > 2 and c > 2. the

asymptotic distribution of NR 2 is not the chi-squared distribution. Haberman (1981) has

shown that this test is equivalent under the null hypothesis to the test for X = 0 in the model

l. og mij U + U + U'() XU 1 (4.5)
I 1 1) u2

where

z, zu zu, =zu =0 . (4.6)
IW 2W If) 2(P)

De Leeuw (1983) describes the interaction structure in expression (4.5) as bilinear. For a

discussion of extensions of the model of expressions (4.5) and (4.6) to multi-way tables and the

use oi suck models for ordered categorical data. see Fienberg (1982).

A s'.ond approach to the W of correspondence analysis (under its psychometric name, dual

scaling) for multi-way tables is presented by Nishisato (1980) who describes the loglinear

model approach to multi-way tables as a form of analysis of variance on the log-expected

values. (We note parenthetically that such an ANOVA description ignores the interpretation of

many loglinear models in terms of conditional independence of variables and related ideas, as

well as the interpretation of individual parameters in terms of odds ratios.) He then proposes

a pair of dual scaling or reciprocal approaches in which the unit of analysis is not a cell

frequency but a single response from a single subject, and the data are arrayed in a two-

dimensional response pattern matril. Method I first derives an optimal vector

y., and then subjects it to a standard ANOVA. Method 1 essentially attempts to carry out



25

the two parts of Method I simultaneously (see the related discussion in de Leeuw et aL, 1976,

and Young et ., 1976. Deville and Saporta (1983) present an alternative approach to

Nishisato's which they label as multiple correspondence analysis.

Most of the examples of these optimal scaling or correspondence analysis methods applied to

multiway contingency table data that appear in the literature are not especially revealing. For

example, Nishisato presents an example with four binary explanatory variables and 3

observationsfor each of the 2' = 16 experimental conditions, and where there are 8 response

variables each with 5 categories. Thus, the 3 observations are spread over a S1 response

structure and make the estimation of a standard loglinear model virtually impossible. The

heroic and untestable assumptions implicit in Nishisato's dual scaling analysis need to be made

explicit before a direct compa-ison with loglinear models is possible. On the other hand,

Kester and Schriever (1982) analyze a standard 2x3x3x4 contingency table example given in

Fienberg (1980, p.91). A reasonable loglinear model for the data in that table has as its

minimal sufficient statistics only two-way marginal totals. Kester and Schrieupwf analy ,:

this example relies only on these bivariate two-way totals, and introduces scahuzp for the three

non-binary dimensions. In a sense their analysis can be thought of as supplementing the

standard loglinear analysiL
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5. COMPUTATIONAL METHODS FOR LOGLINEAR MODELS

There are numerous compuational methods which can be used to fit general loglinear models.

For any particular application the investigator must be careful to select a method which is not

only feasible but efficient. The loglikelihood function for the loglinear Poisson model is a

convex function and when the MLE exist (i.e. there are no fitted zeros) it is a strictly convex

function. As the first and second derivatives of the loglikelihood are analytically available, a

natural contender for the maximization procedure is Newton's method.

Newton's method is indeed useful for loglinear models where the dimension of the parameter

space is small. Using Newton's method has the advantage that the calculations necessary to

obtain asymptotic covariances for the fitted values or parameter estimates (i.e. the Fisher

information matrix or some decomposition of it) are a by product of the algorithm. A further

advantage is that in general Newton's method can be expected to have a quadratic rate of

convergence. A widely available implementation of Newton's method for discrete data is in

the statistical package GLIM (Baker and Nelder, 1978), while a version that is useful only for

logit models can be found in the BMDP statistical system There are however several

disadvantages to using this algorithm. First, fitted zeros can cause Newton's knethod to

converge much more slowly than one would otherwise expect. Thus it is imperative that

potential singularities in the data be detected before formal fitting is attempted. Fienberg,"

Meyer and' Stewart (1982) dse a result of Stewart (1980) to first screen the 'data for singularity

problems before fitting loglinear or logit models using a version of Newton's algorithm which

is efficient in terms of both time and storage. Second, a more limiting problem with

Newton's method is that for large, models (greater than about 200 parameters) the amount of

computer memory required to store the second derivative matrix exceeds the capacity of most

computers. Under these circumstances a possible alternative is the family of conjugate gradient

algorithms. McIntosh (1982) has investigated the possibility of using conjugate-gradient methods

for many statistical applications. Conjugate gradient algorithms have the property that they do

not use any second derivative information for the function being maximized. This means that

asymptotic covariances are not available (other than in some special closed-form situations), but

......
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the method can consider very large problems. Whereas Newton's method spends a lot of

effort finding a good search direction, conjugate-gradient methods merely find a reasonable

direction. Thus each iteration of the algorithm requires relatively little computation but the

algorithm is likely to require more iterations than Newton's method.

Both Newton's method and the conjugate-gradient methods are important general optimization

tools applicable to a wide variety of problemL A third optimization method is the cyclic-

coordinate ascent algorithm. This algorithm is not widely used for general problems but is of

special importanc. in loglinear model applications. In this context it is known as the Iterative

Proportional Fitting Procedure (IPFP). The distinguishing feature of IPFP is that it attempts

to maximize the likelihood by searching along a series of fixed directions, and thus no

computational effort is expended in searching for good directions. What makes IPFP attractive

for loglinear model applications is that for many models there is a closed-form answer for

maximization along the fixed directions. Specifically, let i be the current vector of fitted

values. If we are attempting to maximize the likelihood along a vector, 8, which consists of

only zeros and ones, then

I = <xA>i/(.1)

Le. the new vector of fitted values is just a simple proportional adjustment of the old vector.

Thus we can use this method for any model K which can be spanne, by a set of vectors 4,6;

k=1,...,s) where each 8k is a vector of only zeros and ones. For each direction, Ak. there is a

step in the iteration of the form (5.1), and thus a complete cycle of the iteration consists of a

set of s steps along the s fixed directions {.k8 corresponding to the model K The class of

models which satisfy these requirements is surprisingly large and includes all the ANOVA-like

loglinear mbdels for contingency tables. This class itself includes all the independence and

conditional independence models.

The IPPP generally takes many iterations to converge, but as each iteration is so simple that

this is of little concern. A special feature of the IPFP is that when a closed-form MLE exists

the algorithm will converge in at most two iterations and one can assure converpnce in one
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iteration by choosing an appropriate order for selection of the spanning vectors (elg, 

Habernin 1974). The main advantage of the 1F? is that it needs to store only the table of

fitted values and the sufficient statistics in computer memory and thus can be used on very

large problems. The BMDP package uses this method in its contingency table program

* BMDP3F.

When one* has a large contingency table problem which is not amenable to the IPP, there

are several alternatives. An algorithm which is based on the TPFF but which is useful for any

model is the gnerlized iterative scaling method of Darroch and Ratcliff (1972).

Unfortunately this algorithm has the slow convergence disadvantage of the IPFP. without the

important advantage of simple computations at each iteration. For special applications there

are several alternatives. Under some circumstances it is possible to transform a contingency

table and associated models into a form where the simple IPFP can be used. An example of

this is given in Meyer (1982). For the simultaneous logit problem it is possible to combine the

FIPP with some other algorithm, e.g. Newton's method to gain a useful hybrid. Rather than

consider the problem as a large contingency table one can fit each of the individual logit

models which comprise the system and combine the estimate using ideas based on the IPFP. It

is then necessary- to repeat this process until the estimates convergL Some details on this

approach are available in Meyer (1981).

For general applications of the loglinear model to small problems, Newton's method is

probably the most efficient and useful algorithm. As the size of the problem increases the

* PFOP, when it can be applied, is the most useful algorithm.

.......................................
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