MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A
Title: Elastic Stability

Author(s): Jerrold E. Marsden

Performing Organization Name and Address:
University of California
Berkeley, CA 94720

Controlling Office Name and Address:
U. S. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 27709

Report Date: Nov 82

Number of Pages: 4

Distribution Statement: Approved for public release; distribution unlimited.

Supplementary Notes:
The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

Key Words:
- plasmas (physics)
- magnetohydrodynamics
- stability
- thin shells
- elasticity
- buckling
- traction

Abstract: A bibliography of recent publications is given.
FINAL REPORT

PERIOD COVERED BY REPORT: May 1, 1979 - August 31, 1982

TITLE OF PROPOSAL: Elastic Stability

CONTRACT OR GRANT NUMBER: DAAG - 29 - 79 - C - 0086

NAME OF INSTITUTION: University of California, Berkeley

AUTHOR(S) OF REPORT: Jerrold E. Marsden, P.I.

SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES AWARDED DURING THIS REPORTING PERIOD:

2. P. Holmes (Theoretical and Applied Mechanics, Cornell) January - June, 1981

Dr. Jerrold E. Marsden 16567-M
University of California at Berkeley
Center for Pure and Applied Mathematics
Berkeley, CA 94720
The following projects were completed.

1) Work on the number and stability of solutions of the traction and related problems in elasticity with D. Chillingworth and Y.H. Wan in a series of four papers was continued. One paper is about to appear, two are in refereeing and the last is in preparation.

2) Work is underway concerning the Hamiltonian structure of the plasma, MHD and related equations with applications to stability, jointly with A. Weinstein. Several outstanding problems were solved by combining geometric and analytic techniques (see the references attached).

3) During Golubitsky's visit on the contract, papers on the Morse lemma and the buckling of shells were completed. This visit inspired an extension of the work of Holmes and Marsden from the previous year. Using singularity theory they now believe they can extend their results on chaos to weakly coupled oscillators. This would answer very important questions about KAM theory and interacting wave models.

Recent Publications

Papers in Production

(Journal to appear, where known)

1. The initial value problem and the dynamics of gravitational fields, Proc. GR9 (Accepted: Springer Lecture Notes).

2. Symmetry and bifurcations in three dimensional elasticity, I (with D. Chillingworth and Y.H. Wan) (Accepted: Arch. for Rat. Mech.).

3. Horseshoes and Arnold diffusion for Hamiltonian systems on Lie Groups (with P.J. Holmes) (Accepted: Indiana University Math. J.).

4. Applications of the blowing up construction and algebraic geometry to bifurcation problems (with M. Buchner and S. Schecter). (Accepted: J. Diff. Equations).

5. A slice theorem for the space of solutions of Einstein's equations (with J. Isenberg) (Accepted: Physics Reports).

7. The Morse lemma in infinite dimensions via singularity (with M. Golubitsky) (Accepted: SIAM J. Math. An.).

8. Examples for the Morse lemma in infinite dimensions (with M. Buchner and S. Schecter) (Accepted: SIAM J. Math. An.).
9. The structure of the space of solutions of Einstein's equations, II (with J. Arms and V. Moncreif) (Accepted: Ann. of Phys.).

10. Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids (with A. Weinstein) (Accepted: Physica D).

12. Bifurcation problems with hidden symmetries and applications to shell buckling (with M. Golubitsky and D. Schaeffer) (Preprint).