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PREFACE

The report summarizes research conducted by Integrated
Systems, Incorporated, under the Army Research Office Contract
No. DAAG29-81-C-0039. The contract was directed by Dr. W. Kelly
and Mr. J. McLean at Army Missile Command and by Dr. J. Chandra
at the Army Research Office.

At Integrated Systems, Inc., the technical contributions
were made by Dr. N. K. Gupta, Dr. H. Lev-Ari, and Dr. R. H.
Travassos.
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SECTION 1

INTRODUCT ION

Surface-to-surface, surface-to-air and air-to-surface tacti-
cal missiles of interest to the U. S. Army are being required
to engage in increasingly demanding scenarios. The engagement
requirements are expected to get even more exacting during the
next decade [1]. These requirements can only be met with major
improvements in guidance laws. The most difficult part of tacti-
cal missile guidance is the terminal-homing phase. Terminal
homing generates missile commands to direct the warhead on a
desired target or a specific region of the target.

Proportional navigation (pronav) has been used extensively
for terminal guidance because of its success in conventional
ground-to-ground and ground-to-air engagements. In addition,
pronav is implemented by directly commanding missile acceleration
components proportional to outputs of a gimballed seeker.

Several studies have shown that pronav is incapable of
meeting the guidance requirements in the late 1980's and beyond.
The three main reasons why pronav will not be acceptable for
future missiles are: (1) improved accuracy requirement in
conventional scenarios, (2) more demanding future engagements
(e.g., guidance of anti-tactical ballistic missiles) and (3)
increased stress on inexpensive seekers, gyros and accelerometers
(e.g., strapdown seekers). Therefore, there is a need to develop
advanced estimation, control and signal-processing techniques
for Army tactical missiles.
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1.1 SUMMARY OF APPROACH

The missile guidance problem is solved by decomposing it
into three separate and simpler problems (Figure 1-1):

1. Missile guidance with known missile and target
dynamics,

2. Estimation of target dynamics, and
3. Adaptive autopilot design.

The missile guidance solution is obtained using the singular
perturbation extension to the optimal control solution. Target
trajéctory and dynamics are estimated by fitting an Autoregressive
Moving Average (ARMA) model to the available measurement and
updating the model parameters recursively in time. Stabilization
of the missile with respect to random disturbances and tracking

of the nominal trajectory provided by the optimal control soluticen
are achieved by an autopilot based on an adaptive lattice algorithm.

TARGET

ACTUATORS ovnamics =]  seexer
SENSORS
' GUIDANCE STATE

AUTOPILOT LAW ESTIMATION
|
| GUIDANCE AND
l CONTROL LAW
. 4
H

® SEEKER/SENSOR ACCURACY
MODELS

o TARGET CAPABILITY
@ MISSILE CONSTRAINTS

Figure 1-1 A Modern Control-Based Missile Guidance Law
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1.2 RESULTS

1.2.1 Advanced Guidance Laws for Surface-to-Air Missiles

A singular perturbation guidance law has been developed
for medium-range surface-to-air missiles [2]. This guidance
law is a significant extension of a previously developed guidance
law for short-range missiles [3]; in medium-range intercepts,
the problem of energy management should be addressed in addition
to homing guidance.

The mathematical formulation has been simplified by intro-
ducing separation of time scales. While time constants for
medium-range intercepts are significantly different from those
of short-range intercepts, the principle of time-scale separation
is still applicable. The resulting simplified optimal control
formulation requires solution to a set of nonlinear algebraic
equations and to an initial value problem, all well-suited for |
on-board real-time implementation.

1.2.2 Target Trajectory Estimation

A recursive algorithm for estimation of ARMA model parameters
from noisy samples has been developed. Application of this
algorithm to parameter estimation problems has exhibited its
fast convergence and unbiasedness in the presence of noise [4],
even with short data records. The algorithm has two versions,

a Recursive Maximum Likelihood (RML) form and a Recursive
Prediction Error (RPE) form, both of which posses a parallel
structure that makes them highly suitable for parallel-processing
implementation.

1.2.3 Adaptive Autopilots

L

Lattice-form algorithms have been developed for fast, recur-
sive identification and control of time-varying systems [5-7].
These algorithms have excellent numerical properties and a modular
structure that makes them suitable for on-board real-time
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implementation. Since the model parameters and the control

input are updated at each measurement point, recursive lattice
algorithms respond to changes in system dynamics faster than
conventional, nonrecursive algorithms. This advantage makes
recursive lattice algorithms a natural choice for incorporation
in adaptive autopilots. They enable stabilization of the missile
with respect to random disturbances with short time constants

and tracking the nominal trajectory indicated by the optimal
control solution.

1.3 REPORT ORGANIZATION

This report is organized as follows: Section 2 summarizes
the missile guidance problem, Section 3 develops advanced guidance
laws, and Section 4 describes the algorithms for target dynamics
estimation and adaptive autopilot. Conclusions are given in
Section 5.
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I SECTION 2
MISSILE GUIDANCE PROBLEM DISCUSSION

The missile-target dynamics are highly nonlinear partly
because the equations of motion are best described in an incotial
. system, while aerodynamic/control forces and moments are repre-
T‘ sented in missile and target body axis systems. The linearization
of the nonlinear equations of motion is complicated by fast
L changes in relative target and missile velocity vectors. There-
- fore, simplified estimation and control procedures for linear
systems cannot be applied.

Proportional navigation (pronav) and other conventional

‘; guidance laws have been developed using classical control methods,
based primarily on linear system formulations. It was alsc

necessary to divide the overall problem into guidance and ...u-

pilot design to reduce the order of the problem. Since the

missile guidance problem is highly nonlinear, time varying and

of high order, classical methods are difficult to extend for

improved guidance laws.

& The modern control theory formulation can treat nonlinear
systems with multiple inputs and multiple outputs. Modern control

<

%E can also handle trajectory constraints (e.g., stability and

) energy management) and terminal requirements of small miss
distance.

In general, tactical missile guidance has three phases,

? boost, midcourse and terminal. The boost and midcourse phase
’ involve energy management, threat avoidance and navigation.

- The terminal phase is described by the seeker locked onto the
rh target (or a region on the target). Guidance commands in the
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The ter-
minal phase is the most demanding part of missile guidance.

terminal phase are generated to intercept the target.

Our research is focused on improving missile performance during
this critical phase.

2.1 MISSILE SUBSYSTEMS

Figure 2-1 shows important missile subsystems which impact
guidance and control laws. Missile dynamics are driven by aero-
dynamic and propulsion system characteristics, control inputs
and the ambient conditions. Guidance commands must be derived
from sensor and seeker outputs. Sensors measure missile inertial
states, usually angular rates and translation accelerations. The
seeker measures components of target position and vélocity rela-

tive to missile fixed-axis system.

The seeker derives information about the target using infra-
red, laser, radar or other techniques and is often a major part
of the missile cost. The seeker is subject to jamming and decoys.
Good signal-processing techniques are often needed to minimize

the degradation of target information due to countermeasures.

STANGARD MODEL FOR o] TARGET SINUIFIED SMeeT
NO“ST;NF_‘:%S COAN?IIth:;‘S ———————————— DY ":MI (S TA" ;E T m:.e L
‘ ‘ o r—
I }
I !
MISSILE | . MEASURED OLTE.TS
CONTROL AERODYNAMICS MISSILE ¢ gl —r—
ACTUATORS | controL PROPULS [ON KINEMATICS | wiss1ie | — SEEKER
I INPUTS STATES :
| |
| I
I GUIDANCE/ !
e e e e = - — CONTROL fet— — = = == == = —— ~J
L AW

Figure 2-1 Major Missile Components
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From the guidance viewpoint, seekers are either passive or
active. Passive seekers measure the two components of line-of-
sight rates or angular locations of the target in the missile
axis system. Active seekers, in addition, provide measurements
of range or range rate. Passive seekers are highly desirable
because of lower cost and minimum vulnerability to jamming.

Each component in the overall model exhibits strong non-
linear behavior. Missile aerodynamics and propulsion models are
nonlinear, particularly because of fast changes in speed, angle-
of-attack and altitude. Sensors also have large nonlinear errors
like scale factors and bias. Seeker outputs follow various
trigonometric relationships causing additional nonlinear behavior.
Table 2-1 shows typical actuator errors. These errors produce
additional nonlinearities in missile dynamics.

2.2 PAST APPROACHES FOR MISSILE GUIDANCE

Many guidance laws have been used for the terminal phase
in the past. Pursuit and proportional navigation (pronav) are
the two most common techniques. More recently, pronav has been
used almost exclusively in advanced missiles. Table 2-2 compares
five classical approaches to missile guidance. Pronav will
be our baseline technique because it has been most successful
in previous work.

In pronav, the commanded missile acceleration is:

_ ro

Qe = An T (2.1)

go

where r is the range, & is the line-of-sight rate, tgo is
the time to go and An is the navigation gain. In conventional
pronav applications, tgo is approximated by

tgo = -r/r , s (2.2)
such that
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l’ ; - May produce limit cycling

Table 2-1. Actuator Errors
ERROR MOCEL EFFECT
el uc(s) - Reducas controller bandwidth
clay uls) = pog or - May cause instability in high gain
-1s controllers
U=:ue
(¥
Bias usuo- b - Produces steady state errors in
commanded acceleration

Hys teresis - Reduces controller bandwidth
{Backlash)

Bending or
Flutter

ul///” - Reduces control effectiveness at

and
u = Y. + randon
deflection

large commanded acceleration

u = control deflection; u_. * commanded control Jeflection

Table 2-2,

[4

Comparison of Classical Guidance Laws

GUIDANCE LAW

ADVANTAGES

DISADVANTAGES

Command-to-Line-of-
Sight Guidance

No teminal seeker required

e Very inaccurate against movirg
targets and with winds
e Data link required

Pursuit o Noise insensitive ® Inaccurate against moving tar-
e fasy to use with strapdown seekers gets and with winds
Proportiona) Accurate against constant velocity e Inaccurate against accelerating

targets

targets
e Stability is sensitive t0 noise

Pursuit ¢ Pronav

Between 2 and 3 in terms of accuracy

® Between 2 and 3

Dynamic Lead

® Between 2 and 3 in terms of accuracy
o Easy to use with strapdown seekers

® Between 2 and 3

® Stability protlems if transiticn
to pronav ociurs when signifi-
cant noise is present

R
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Navigation gain of between 2 and 4 is considered desirable.
To achieve this navigation gain, both o and r should be
used. o is available from passive as well as active seekers.
f, however, is measured only by active seekers. Conventional
implementations of pronav with constant navigation ratio, there-
fore, require active seekers. The variation in navigation ratio
for stationary or constant speed targets is, nevertheless, small
even with passive seekers.

Characteristics of pronav guidance laws are discussed in
Apprendix A. Appendix A indicates that errors occur in pronav
guidance because of the following:

1. Instability of pronav guidance law prior to impact,
2. Target maneuvers and variations in target speed,
3. Variations in missile speed,

4. Missile dynamics and combined missile/autopilot
dynamics, and

5. Sensor errors and seeker saturation.

Modern control and estimation methods based on advanced guidance
algorithms can overcome the problems indicated above. The next
section discusses the general modern control theory formulation.

2.3 OPTIMAL CONTROL SOLUTION

Three cases for optimal control are considered: (1) known
target maneuvers and missile states, (2) known-target maneuvers
but estimated missile states and (3) evasive intelligent targets.
The resulting numerical problems are shown for each missile
guidance solution.

e e s e A L e L e ek e e el
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2.3.1 Dynamics

The dynamics of a missile-target engagement may b. described
by dynamic equations of the form:

X = f(x,u,aT) , x(0) = Xg

0=t =t;, (2.3)

where x is the state vector consisting of: (1) components

of relative position, (2) components of relative velocity, (3)
missile orientation angles, (4) missile angular rates, and (5)
actuator and sensor states. u 1is the vector of control surface
deflections and ap is the target acceleration vector.

2.3.2 Optimal Control Solution With Known Target Maneuvers and
Missile States

The optimal control solution to missile guidance is based
on minimizing the following function of states and inputs

t
J = S(x(tf)) + ]' f c(x,u,aT) dt . (2.4)
0

The first term in Eq. 2.4 defines terminal requirements for
target intercept. This term decreases as the relative terminal
distance between the missile and target decreases. Requirements
for relative terminal angular orientation for improved charge
detonation may also be included in S(x(tf)). The second term
specifies a preferred missile trajectory. This term may be
used to manage energy, to satisfy seeker constraints or simply
to minimiz> flight time. Minimization of flight time, for exam-
ple, is achieved by setting £ to unity and S(x(ff)) = 0.

The final time, tf, may be constrained but is usually free

in missile guidance problems.

10
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The optimization problem is solved by using a Lagrange
variable A and a Hamiltonian #. The equations leading to
the optimal solution are:

H o= £(X,u,8p) + AT £(x,u,a,) , (2.5)
T T T
- fau\T _ (af oL 38
e () -~ () - () aap =8, e
and .
T \T T
2K\ _ [af af\L,
(38) = (35) +(3)r=0. (2.7
H(tg) = 0 . (2.8)

Egqs. 2.3 and 2.6 are coupled. The control is obtained from Eq.
2.7 and the final time is obtained from Eq. 2.8. The initial
condition is defined for states x and the final condition for
variables A. Therefore, the computation of u requires solu-
tion to a two-point boundary value problem (TPBVP) represented
by Eqs. 2.3 - 2.8. The optimal control can be determined if

X5 and aT(t) are known and the cost functional is defined.

Therefore, with known initial conditions and target maneuvers,

modern control requires a TPBVP to be solved for missile guidance
commands. The missile guidance problem becomes more complex when
the initial condition must be estimated from seeker outputs and
the target may perform evasive maneuvers.

2.3.3 Optimal Control with Noisy Measurements and Estimated
Initial State

Table 2-3 shows outputs of passive and active seekers.
Clearly not all states are measured. The measurements are also
noisy.

A state estimator (e.g., Kalman filter) is required to
determine the current state vector needed for optimal missile
guidance. The extended Kalman filter formulation may be used.
For n states, n differential equations are required for the

11
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Table 2-3. Output of lMMissile Seekers

KIND ouTPUT RELATIONSHIP TO MISSILE STATES
PASSIVE Two Line-of-Sight Angles Ratio of Lateral Target Position Components
“n;r"ed‘ Optical, to Range (in Missile Axis Systems)

Passive Radar) Two Line-of-Sight Rates | Time Derivatives of Above

ACTIVE Range Sum of Square of Relative Position Components
(Active Radar)

Range Rate Time Derivative of Range

state estimate. In addition, n(n+l1)/2 equations must be propa-
gated for the covariance matrix and the Kalman gain. Since the
number of equations for the covariance matrix is much larger than
the number of equations for the state estimate, there is a
significant payoff in simplifying the covariance equations.

In linear systems, the error covariance matrix is indepen-
dent of the measurements. Therefore, the estimation error does
not depend upon the applied input. However, in nonlinear systems
the measurements affect estimation accuracy. The error in state
estimates may, therefore, be reduced by appropriate application
of inputs. This leads to a dual control formulation, where the
inputs provide guidance as well as improvement in estimation
accuracy. The exact solutions to these problems are quite
complex and simplifications are necessary for real-time
implementations.

2.3.4 Optimal Control With Target Evasive Maneuvers

In the previous two sections, we assumed that future target
acceleration time trace, By is known. If the target is
capable of performing evasive maneuvers, the future target
acceleration depends upon the missile flight path. At any time
point, the target will perform the most desirable maneuver to
void the missile.

The assumption of target evasive maneuvers leads to a
differential game formulation. The target will determine its

12

ot et et et e atallalatala’ala a oalacala o ket e A A & T S e i Sk = = = ——— -




“v.‘l

-

[h

Py

-

A
Ak b,

L

B

A A

8

e

commanded acceleration by maximizing the same or similar penalty
functional that the missile wants to minimize. The optimization
problem may be stated as

max min J . (2.9)
ap u

This optimization problem requires the solution to Eqs. 2.9 - 2.8
and the following equation:

M _o. (2.10)

Note that the resulting TPBVP is even more difficult to solve
than the one with known target maneuvers due to the additional
constraint given by Eq. 2.10.

2.3.5 Numerical Requirements for Optimal Guidance Laws

Figure 2-2 is a flowchart for a missile guidance law based
on modern control theory. Note that a state estimation step is
required. In addition, the guidance law needs more information
than with pronav.

Table 2-4 shows the various optimal control formulations
for missile guidance and the resulting numerical procedures
needed for their solution. The numerical algorithms are diffi-
cult to implement. Therefore, simplifications which do not
compromise accuracy are needed for effective missile guidance
laws.

Table 2-5 indicates possible approaches for simplifying
the numerical problems associated with the optimal control
solution. Because the basic missile-target dynamics are non-
linear, each of these simplifications must be developed specifi-
cally for the missile guidance law. A singular perturbation
simplification technique has already been developed. This

13
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Figure 2-2. A Modern Control-Based Missile Guidance Law

Table 2-4. Optimal Control Formulations for Missile Guidance

FORMULATION OPTIMAL CONTROL PROBLEM NMERICAL PROCEDURES
Krown Target Maneyvers and Optimal Control Law with Terminal Two-Point Bourdary Value Protlem
Missile States Constraints and Free Termiral Time | with Path Constraints
Kalman Filter Propagatisn of Differertial
Equations; Computation of Deriva-
- Noisy Seeker Measurenments tives
7';1 Dual Cortrol Stochastic Two-Point Boundary
-~ value Praotlem
;'..: Differential Game (Known State) Difficult Boundary Value Protlem
4 Torget Evasive Mareuvers Dusl Oifferential Game (Unknown Difficult Stochastic Boundary
- State) Value Protlen and Kalman Filter
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Simplification of Optimal Control

Numerical Procedures

NUMERICAL PROCEDURES

SIMPLIFICATION/AFPROXIMATION

RESULTING NUMERICAL PROBLEM

Twe-Foint Boundary Value
Protlem with Path Constraints
(Cptimal Control)

o Linearization
e Separation of time scales
{singular perturbation)

o Initial value pretlem
e Algebraic protiem
o Partially coupled solution

Propagation of Differential
Equations; Computation of
Derivatives

{Xalman Filter)

e Simplify Kalman gain or compute
it off-line
o Time scale separation

® Reduced number of differen-
tial eguations
e Partially coupled solution

Stochastic Two-Point Boundary
Value Problem
{Dual Control)

o Define a class of test inputs

o Convert to an optimal con-
trol problem

Difficult Boundary Value
Protlem
(Cifferential Game)

o Parameterize guidance law
® Reachatble sets
e Command constraint guidance

e Direct solution for missile
guidance and target evasion

® Simplified optimal control
solution

Uifficult Stocrastic Boundary
Value Protler 2nd Kalman
Filter

(Du3al [1fferential Game)

o Define a class of test inputs

o Corvert to an optimal con-
trol solution

technique is described in [3].

The singular perturbation guid-

ance algorithm for anti-tactical ballistic missiles (ATBMs) is

shown in Section 3.

The next section (Section 2.4) contains a

comparison of optimal and pronav guidance in one particular

ATBM scenario.

2.4 COMPARISON OF OPTIMAL AND PRONAV GUIDANCE

We compare miss distances for an anti-tank missile and

for an ATBM due to fore-aft target acceleration.
The ATBM has higher
The pronav gain in each

scenarios are summarized in Table 2-6.
speed and faster dynamic response.

case is 3.

The two

Miss in pronav occurs because of the inability of the mis-
sile to track slowing ballistic missiles and in the latter part
of the flight due to missile instability.
the first scenario, increases miss distance by stepping on the

brakes.

The target tank, in

15
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Engagement Scenario
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SCENARIO I SCENARIO 11
ANT1-TANK MISSILE ANTI-TACTICAL BALLISTIC MISSILE
‘\“ <=‘\
A S
~ \')\
~
QS(\\\ ﬁ \\
e ~
750 30-(\\\
Missile Speed
(resh ... 500 4,000
Target Speed
T a0 10,000
O s 45° 20°
O 3° 305°¢
S 0.5 0.5
S oL I 3 20
Ay covennnnnn, 3 3
0.8
//
0.6
/
/
M1SS //
01?127CE 7 pRoNAY
0.4 P 7/
/7
/7
7
7
//
0.2 F 7
g
’ OPTIMAL
0 _ g [l iy N 2
0.2 0.4 0.6 0.8 1.0
TARGET ACCELERATION (g's)
Figure 2-3 Comparison of Pronav and Optimal Guidance

Laws for an Anti-Tank Missile
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Figure 2-3 shows miss distance as a function of tank decel-
eration (the maximum deceleration is expected to be 0.5 g). The
effect of instabilities is significantly amplified in the pre-
sence of noise. Therefore, the control input is often set to
zero in the unstable region. If the control input is set to
zero half-way through the instability, the miss distances of
Figure 2-3 will approximately double.

Similar plots for the ATBM engagement are shown in Figure
2-4. Most of this miss distance results because pronav does
not use the entire missile capabilities. An optimal contro’
law gives miss distance as shown by the solid line. The oy .
control law is able to achieve this improvement because it starts
applying acceleration early in the trajectory (Figure 2.5).

The results presented in this section show that in one
ATBM engagement scenario, the pronav guidance cannot meet
performance requirements, while singular perturbation does
adequately well.

2o}

|
f
!

|

!

L !

15 /

uss !

DISTANCE /
(ft) | PRONAV
10f II
/
/
,/
5 /
- /
7/
/
J/
e OPTIMAL
_— T B
0 10 20 30

BALLISTIC TARGET DECELERATION (g's)

Figure 2-4 Comparison of Pronav and Optimal Guidance
Laws for ATBM
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SECTION 3
ADVANCED GUIDANCE LAWS FOR_SURFACE-TO-AIR MISSILES

This section describes a model for an advanced aircraft
missile and develops an optimal control formulation for improved
guidance laws. A singular perturbation extension to the optimal
control solution is presented. The time constants selected in
the singular perturbation method are based on physical variables
as shown later. The resulting solution involves a set of non-
linear algebraic equations. Two formulations have been used --
one based on the kinematic state and the other using the energy
state.

3.1 MISSILE MODEL

With ;m’ $m and Zm, missile position, velocity and
aerodynamic acceleration vector, respectively, the missile

dynamic model in the Cartesian coordinate system is

3> +>
Xn = Vi 0 (3.1)
3> > 0
Vm = %p - O)g . (3.2)
1
> Y <>
Xn = (x,y,h)T, Vm = (u,v,w)T and a, = [ax,ay,az]T. The

acceleration component along the velocity vector is defined,
because missiles in Army inventory do not .have thrust control
(the formulation can be modified, if necessary).

> > - (T-D)
m'qn T Tm (3.3)

<

or

19
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3 (T-D)V

- ua, + v ay + w a, = m (3.4)
! m is a function of time and its time history is known. Thus,

we can consider a a and a as our control variables with

x? y z
the constraint of (3.4).

.,'(?'g ki

n To simplify the derivation of the guidance law, we convert
the velocity equations into a total speed and two flight angle
equations. Equations 3.1 and 3.2, thus, become

T

i x = V cos Y cos ¢ , (3.5)
3 .
% y = V cos vy sin ¢ , (3.6)
b>,
o h =V sin vy , (3.7)
p . .
L V=(T-D)/m - g sin v , (3.8)
. .
9 ¢ =L sin ¢/m V cos vy , (3.9)
where
Yy = (L cos o ~mg cos vy)/mV . (3.10)

¢ and vy are flight path angles in the horizontal and the
vertical planes (see Figure 3-1). L sin 0 and L cos g are
1ift components in the x-y and vertical planes, respectively.
Thus, the two control variables are given explicitly in this
formulation.

vy T

T Y
LA ce

The thrust time history is predefined. The drag is written
as follows

Tl

-i’t

o

g D=%om visc, , (3.11)
. o o Y

: qa =3 pn) v2 . (3.13)
t} oo 1s the total angle-of-attack and the density p is a function

20
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Figure 3-1 Axis System for Missile Dynamics

of altitude. The total angle-of-attack is related to total 1lift
as follows

_ 1 2
L = 5 p(h) Vs CN . (3.14)

The target position velocity and acceleration vectors are retatead
to each other

>
X

_-b
S
Vo = ag (3.16)
The final condition for missile intercept is
-+ >
xm(tf) = xT(tf) (3.17)

where ty is free. The optimal control solution will be based
on the minimization of

21
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J =/ £X 9,3 ) dt (3.18)
0

Typically £ is a function of drag, total speed, energy loss
rate and total flight time. If the optimization criterion were
minimum time, the performance index would be

=1 (3.19)

£=D.V (3.20)

In our discussion, it is assumed that §T(t) is known,
based on an estimate of the target motions.

3.2 OPTIMAL SOLUTION

The solution to the optimal control problem is obtained
by defining a Hamiltonian as follows. The Lagrange multiplier
method for the optimal solution sives the following Hamiltonian
for this problem

H = Ax V cos y cos ¢ + Ay V cos y sin ¢ + Ah V sin y
+ AV[(T-D)/m - g sin y] + A¢ L sin o/(mV cos v)
+ AY(L cos g - mg cos y)/(mV) + ¢ . (3.21)
Xx, Ay,

and £ 1is a general cost functional. Since the Hamiltonian
does not depend on x or y

Ah, AV’ X¢, AY are the various Lagrange parameters

Ay = Ay =0 . (3.22)

22
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The other four Lagrange variables are

Ah = -3H/3h , xh(tf) free , (3.23)
A¢ = -9H/3¢ , A¢(tf) =0, (3.25)
AY = -3H/3y , AY(tf) =0 . (3.26)
The optimality conditions give
>H A\v ap
3 C - = 3L + A¢ sin ¢/(mV cos ¥y)
oL _

+ AY cos o/(mV) + 3T = o, (3.27

%% = A, L cos o/(mV cos y) - A L sin o/(mV) = 0. (3.28)

Note that neither D nor ¢ should depend on o¢. Thus,

A

A cos
v Y

tan g = . (3.28)
Since the final time is free,

H(ty)

0. (3.30)

Note that H is an explicit function of time through T and
m. Thus, H 1is not zero throughout.

The unknowns are xx, xy, L and o and the time histories
of Ah, AV’ A¢, and AY. Thus, six forward and four backward
differential equations need to be solved in a two-point boundary

value problem (TPBVP).

23
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3.3 TIME-SCALE SEPARATION

3 The six missile dynamics equations are scaled as follows
& d(x/r)
L % ——%f—— = cos y cos ¢ , (3.31)
% d(dér) = cos y sin ¢ , (3.32)
h d(h/h )
Ve —qp e = sin vy . (3.33)

The time constant associated with the total speed equation is
determined by substituting for o in terms of 1lift in the drag
equations (Eqs. 3.11 - 3.14)

Cy c, 2L2
av _ T _ 1 o —ac wg
3 “m - o |esCy + =2 L+ =1 - - (3.34)
(o} N QsCN
o a

The total speed equation has two parts. The first term is known
and can be large when the thrust is on. The second term depends
on flight condition and control input and, thus, controls the
dynamics of the total speed equation. The drag term varies from
fractions of a g to a few g's in most medium-range missiles. The
gravity term is always less than one g (because w/V 1). Thus,
dividing by g the right-hand side becomes of unit order. The
time constant associated with this equation could change if the
missile drag was larger by a factor at high angle-of-attack.

3 (1 93) = {I-D) : (3.35)

E? g \V at, mg

Similarly, a time constant can be developed for the total

<€

energy equation

N

=
E = g + h ,

24
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dE _ (T-D)
dat =~ “mg V- (3.36)

Since D 1is of order of mg, the nondimensional equation for
E is

2 (T-D)
1 + 2gh mg
V2

&l

.‘gl %. . (3.37)

Thus, the total energy equation has essentially the same time
constant as the speed equation.

The time constants associated with ¢ and <y are obtained
as follows '

mV dé L sin © -
—_ &y - _ - 312 - (3.38)
Lmax dt Lma’x cos vy °?
EE!_ %% = E_E_ cos o + ESEEQ§_I . (3.39)
max max max

Thus, the time constant associated with flight path angles is

V/amax . (3.40) -

The missile lateral acceleration commands are generated by the
autopilot. The particular separation of time scales for short-
range missiles was discussed previously. Table 3-1 shows that
the time scales for missiles with significant cruise phase
(medium-range intercepts) could be significantly different.

A clear separation of time scales associated with various states

is clear.
Slowest: position components, x and y, and total
speed equation,
Slow: altitude, h,
Fast: flight path angles, and

Very fast: autopilot states.
25




ﬁ Table 3-1 Time Constants Associated With Various States
During Midcourse
" COMPONENTS TIME CONSTANT  VALUE (s

Position x r/vV 40
- y r/v 40
' h hmax/v 6
v Velocity Total speed (or energy) Vig 50
e Flight path angles W"max 1.67
~}
; Accelera- L Autopilot 0.6 to
. tion Orientation time constants 0.05
E r =20,000m, h . =3,000m V=500mse ), a _ =30g's
L
h x, y AND TOTAL
2 SPEED DYNAMICS
‘ossmeo ALTITUDE
¢ DESIRED FLIGHT PATH

ANGLE IN THE ALTITUDE DY'.AMICS
- HORiZONTAL PLANE
DESIRED FLISHT PATH ANGLE

: j IN THE VERTICAL PLANE
;73‘: FLIGHT PATH DYNAMICS
3 !
-
Q
- AUTOPILOT
g
r CONTROL SJURFAZE DEFLECTIONS
Figure 3-2 Schematic of Singular Perturbation Guidance
4 | Logic for Midcourse Phase
: 26
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Note that the distribution of time scales is different from
that realized for the end-game problem.

The approach to obtain guidance commands using singular
perturbation methodology during midcourse phase is shown in
Figure 3-2.

3.4 SIMPLIFIED OPTIMAL CONTROL SOLUTION BASED ON SEPARATION
OF TIME SCALES

We will solve the guidance problem in four parts, each
part corresponding to one of the time scales.

3.4.1 Slowest Time Scale

X, y and V are the slowest variables. Since h, ¢
and y are faster, those equations may be considered to be in
equilibrium. Therefore (the variables in the slowest time scales
are denoted by superscript '1"),

y=¢l=0, (3.41)

L1

mg . (3.42)

Thus, the Hamiltonian simplifies to

B = A1 v! o cos o1 + A; v sin o1 + AL(r-Dyl/m + £.(3.43)

The adjoint equations for Ah and A¢ give

1
ﬁ=o=-l¥.anl+£
oh m Jh dh
+ (AL cos ¢! + A; sin ¢1)(-g/vh) (3.44)
OH _ o o a1 yl 1, 31 o1 1
% 0 -Xx V* sin ¢~ + ly Vv* cos ¢~ . (3.45)

27




because
vl = v2 - 2gn
EqQq. 3.45 gives
1_,1,1
tan ¢ Ay/Ax (3.46)
Since A; and A; are known to be constants, the flight path

in the horizontal plane for the slowest dynamics is a straight
line. The straight line must joint the horizontal projections
of the desired current and final conditions. In addition, since
Hl(tf) and A%(tf) are zero,

1

AL vlct) cos ¢t + 2

1,1 1

Eqs. 3.46 and 3.47 give

x = 1 , (3.48)
victy)

A

1

-£(t,) sin ¢
\1 = { i (3.49)
y Vi(ty)

The adjoint equation for Av is

1
: Ay apl
1_ .1 1, .1 1 _Mvoan?, ac
\y = Ax cOs ¢° + Ay sin ¢ - 4 5y 4 5y
1 1
L' (ty) Ay opl
3 ) _ M oap 1
=3 .1 _vaD o L1, .y_9, (3.50)
oV T Yl m oV M

Eqs. 3.44 and 3.50 give the optimal altitude in slowest time-scale
approximation. This still requires the solution to a first-order
TPBVP. This requirement could be removed if the Hamiltonian was
not an explicit function of time.

28
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3.4.2 Altitude Dynamics

To solve for the optimization problem in the altitude

dynamics time scale, A A and Av can be used from the

’
previous solution. Sin:e flzght path angle dynamics are still
faster than altitude dynamics, setting $ and ; to zero we
get (variables in sltitude dynamics time scales are written
with supercript "2")

g =0, L2 = mg cos Y2 . (3.51)

The Hamiltonian can thus be modified to

H2 = Ai V1 cos Yz cos ¢1 + x; V1 cos Y2 sin ¢1
+ A2 v! sin v2 + AY((r-D®)/m-g sin ¥2] + € . (3.52)
The adjoint equation AY gives
oH _ = 11 1 2 1 1.1 2 1
3y - 0= Ay V7 sin y© cos ¢ Ay V" sin y© sin ¢
+ 2 vl -gaycosy2=0. (3.53)
£ 1is not likely to be a function of y. Thus,
The adjoint equation for Aﬁ is
2 1
dx A 2
h "V 3D af 2

Aﬁ(tf) may be determined from the relationship that Hz(tf)
is zero. Thus, the 6ptima1 flight path angle may be determined
from (3.54) and (3.55).
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3.4.3 Flight Path Angle Dynamics

The approach to compute flight path angle dynamics has
already been solved. Reference [1] provides an approach to
direct the missile from an initial flight path to the desired
flight path angles (¢,Y). As has been shown previously, 1lift
is applied perpendicular to the plane containing the initial
and the desired velocity vector. The magnitude of the 1ift
is proportional to the square root of the angle through which
the flight path must be changed (see below).

3.5 ALTERNATE ENERGY STATE FORMULATION

The optimality equations and the corresponding simplifica-
tions have been obtained using the energy state to replace the
total speed state in the missile equations of motion. This
offers certain computational advantages as will be seen in the
optimality equations. With E replacing V, the state
equations are

x =V cos y cos ¢ (3.56)
vy =V cos y sin ¢ (3.57)
h =V sin y (3.58)
E = V(T-D)/mg (3.59)
& = (L sin ¢)/mV cos v) (3.60)
; = (L cos g - wg cos y)/mV (3.61)

The performance index will be written as a combination of the
flight time and the energy loss during flight.

ty E(t,)
J = (1-g) dt + £ — (3.62)
0 0

Eo is a normalizing factor and represents nominal energy loss
per unit time. General performance indices can also be studied.
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The Hamiltonian for this problem is

H = Ax V cos vy cos ¢ + Ay V cos vy sin ¢ + Ah V sin y
+ AE V(T-D)/mg + (x¢ L sin o)/(mV cos ¥v)
+ Ay(L cos ¢ - mg cos y)/mV + (1 - §) (3.63)

The optimality equations are

A = Ay = 0 (3.64)
A, = - 3H/3h Ap(te) = free (3.65)
Ag = - 3H/3E Ag(ts) = E/E, (3.66)
Ay = - 9H/2¢ Ap(tg) = free (3.67)
iY = - 3H/3y Ay (tg) = free (3.68)

The optimality equations are

3H _ ) AEV aD . 59 sin ¢ . AY cos o ~ o . (3.69)
oL mg 3L " mV cos vy mV )
3H _ 1¢ L cos o ) A14L sin ¢ -0 (3.70)
90 mV cos ¥y mV *
or
A

tan 0 = ¢ (3.71)

XY cos Y *

Since the final time is free
Again a four time scale solution is sought. The ordering of the

31
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time scales is as follows:

x, v, E - slowest
h - slow
o, Y - fast
. Autopilot
3 Dynamics - fastest
?Z 3.5.1 Slowest Time Scale
L
= Y1 =01 =0
% L1 = mg (3.73)
L."
» and
:Q H1 = Axlvlcos ¢1 + Aylvlsin ¢1 + AEIVI(T-D)/mg
j + (1 - &) (3.74)
53 Ax and Ay are constants. Optimal ¢ and h are obtained
b 1 1
: from
A
!! i _ Ay Vosin ¢, + A V.cos ¢4 = O => tan ¢, = —Zl (3.7%)
3 8H _ i}
4 ah [Axlcos $q + Aylsin $q + AEI(T-D)/mg][ g/Vv,]
=
- Ap, V
= E; 5D
0
- Note that since V, = V2g(E-h), 3V, /0h = -g/Vy (3.77)
H(tg) =0
e gives
-
" 32
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(Axlcos ¢, + Aylsin ¢1)V1(tf) + _EBEE_-[T(tf)'D(tf)]

+ (1-g) =0 (3.78)
or

(A_ cos 9, + A_ sin ¢4) = - -
X 1 y 1 Eomg vl(tf)

1 1

Eqs. (3.75) and (3.79) give the solutions for Ax and Ay .
1 1
Nominally, a differential equation must be solved to obtain

E° Because the Hamiltonian is explicitly time dependent through
T and m the Hamiltonian is not constant throughout. We will
use an approximation which will avoid the need to solve the
differential equation in the backward direction. The approxi-
mation consists of using average values of T and m in the
definition of the Hamiltonian. Thus,

‘g V1(Tyy-Dy)

_ 1
1 1 av
With this approximation
Hl(t) =0
Therefore,
(Tav'Dl) l_g E[T(tf)_Dl(tf)] 1_5
E, m A i m gk M ATHY) (3.81)
1 M8 1 avE®o 1 s
Using Eq. (3.80), Eq. (3.76) becomes
An V
E, 1
£ (1-gy - 1~ 3D _
Vz (1-&) m_ g oh 0 (3.82)
1 av
33
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E[T(tg)-D(ty)

£ (1-g)(T, -D;) = [ P S SR . ]v 3D
vf av 1 m,v8Eg Vite) ‘Vi 1 3h(3 g3)

This equation may be solved to obtain the optimal altitude. Note
that the three adjoint variables are

Xxl = ~ COS ¢1- Eomg + Vl(tf)J (3.84)
EITCtg)-Dy ()]
= — i -£)
Ayl sin ¢4 Eomg + Vl(tf)J (3.85)
Eq (Tav_Dl)_ Eomg Vl(tf) V1

The two special cases corresponding to minimum time (£ = 0) and
minimum energy loss (g = 1) are shown in Table 3-2. For the
minimum energy loss case, the drag is the lowest at the optimal
altitude.

The flight path direction in the horizontal plane is deter-
mined by the horizontal projection of the line which joins the
current missile position to the intended final missile position.

3.5.2 Altitude Dynamics

To solve for the altitude dynamics ) and A

A

’

SR LN Ey
are used from the previous time frame. Since flight path angle
dynamics are still faster than altitude dynamics, setting

and y to zero, we get the following equilibrium conditions

]
o

o9 (3.87)

c
]

2 mg COS Y, (3.88)
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where the subscript '2' denotes variables in the altitude
dynamics. The corresponding Hamiltonian can be written as

H, = Axlvzcos (9COS ¢9 + Aylvzcos yosSin ¢4 + Anzvzsin Yo

+ AEIVZ(T-DZ)/mg + (1-£) (3.89)

The optimal flight path angle in the vertical pilane is

3H
2 _ _ . .

57; =0 = —(Axlcos ¢1 + ky1s1n ¢1)V251n Yo + Ahzvzcos Y2

(3.90)
Using Equation (3.26), we get
xho
tan Y, = = - (3.91)
2 (Axlcos $q + Ay181n ¢4)

Normally we would have to solve a differential equation to obtain
Ah because T and m are explicit time functions. However, we
would again set T and m to their average values which gives
an additional equation:

Hz(t) =0

(Axlcos ¢, + Aylsin ¢1)V200s Yo *+ lhzvzsin Yq

(T. -D.)
+Ag V, —2¥ 2 4 (3-£) =0 (3.92)
1 avg

Using Eq. (3.91) to eliminate Ahz, we get

AE (Tav'Dz)
sin ¢1)sec Yo + 1mavg + 1;2 = 0 (3.93)

(A, cos ¢, + A
Xy 1 2
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Eq. (3.80) is rewritten as
xEl(Tav_Dl) 1
(A, cos ¢, + A_ sin ¢,) + + 1-¢ =0 (3.94)
X 1 Y1 1 Mave Vi

Subtracting Eq. (3.94) from Eq. (3.93)

XEI(DI-DZ)
(Xx cos ¢, + A

L sin ¢1)(sec Y2-1) +

yl mavg
(1-E)(V,=V.)
+ 7 vl 2. -9 (3.95)
1V2

From Eq. (3.76) and Eq. (3.80) we can find one solution to AE

1
lE1 (1-£)g/v2
= (3.96)
m, 8 V1 3D1/8h
Therefore Eq. (3.95) is simplified to
(kxlcos ¢4 + kylsin ¢1)(sec Yo - 1) =
V,-V (D,-D,)g
- a-p|FFE + 2 (3.97)
1'2 V1 8D1/3h

This equation gives a value of sec Yz. Yz is positive if

h2 < h1 and is negative if h1 < h2' Note that if this equation
solves out to a negative value of (sec Y2—1), the desired
flight path angle is +90° (this happens because Eq. (3.90) must
be modified when optimal Yz is 90°). Note that

(xx cos ¢4 + A, sin ¢,) 1is obtained from Eq. (3.84) and (3.85)

1 ¥q
Axlcos 04 + A, sin &, = - Em + SL1=E) (3.98)

Y1 o™e Vi(te)
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3.5.3 Attitude Dynamics

Given desired values of the flight path angles and the
current values of flight path angles, the 1lift vector and its
orientation can be computed using techniques developed previously
[8]. We shall summarize them here since they form an important
part of the overall guidance law. The orientations of the
current velocity vector and the desired velocity vector are

v
c

[cos Y cos ¢, cos Y sin ¢, sin v] (3.99)

-
v

d [cos Yo cos ¢1, cos Y, sin ¢1, sin Y,] (3.100)

The total angle through which the flight path must be changed is
given by

>
Ay = arcos (vc~vd) (3.101)

The 1lift vector net of gravity must be perpendicular to $c’
c and ;d' The value of the 1lift
depends on AY and the variation of drag with 1ift. It was
shown previously that the 1ift is of the form

in the plane containing 3

LXK/ (3.102)

K may depend on dynamic pressure and time-to-go. The value
of K may be derived from the results of [8].

3.6 ALGORITHM
The algorithm involves the following steps:

1. Based on current missile state, compute vy, ¢,
density, drag and total energy.

2. Computer desired ¢, based on the line joining
the current missile location in the horizontal and
the desired missile location at the end of the
midcourse phase.
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Based on the drag, compute an approximate value of
Vl(tf), D(tf) and time-to-go. Time-to-go is

used to determine Tav and mav'
Solve Eq. (3.83) for the optimal altitude. Egs.

(3.84), (3.85) and (3.86) give A_ , A and A
X1 Y1

Solve Eq. (3.97) for Yé. Note that for computa-
tional advantages (sec Y2-1) should be approxi-
mated as

Ey

2 sin®(y,/2)
cos Y2

particularly when Yo is small.

> ->
Compute Ver V4 and AV using Eqs. (3.99) to

(3.101). A numerically desirable way to compute
Ay uses the formula

Ay = 2 arcsin I%(;c-;d)l

The vertical bars represent the 2-norm of a matrix.
Compute the desired lift using Eq. (3.102).

The orientation of the lift vector is given by
Ve and Vd.

Add the component of gravity perpendicular to the

velocity vector to the 1lift computed in steps
(3.59) and (3.60).
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SECTION 4
TARGET DYNAMICS ESTIMATION AND ADAPTIVE TRAJECTORY TRACKING

4.1 EQUATIONS OF MCTION

For state estimation, we will describe the relative dynamics
of the target with respect to the missile in the inertial axis

system. If X is the vector of relative position, $t and Vm

are vectors of target and missile velocity, respectively, and
>

ay and Km are the corresponding acceleration vectors, we have
3
X =V, -V (4.1)
V=3, (4.2)
3 -
V - Em . (4-3)

Em may be measured by on-board missile sensors. For state
estimation to be used in the missile guidance law development,
the target acceleration must be modeled. Behavior of target
acceleration components is usually different along target longi-
tudinal and lateral directions. To model these components
separately, the targets's orientation angle in the inertial axi..
system must be estimated. Since it is difficult to estimate
target orientation angles, it is desirable to model the target
acceleration components in the same manner in all directions.
One often-used formulation is a random walk model:

2

1 =N (4.4)

where n 1is a vector of white Gaussian noise sources. Note
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that the missile target dynamic model in the inertial axis system
is linear.

Nonlinearities in the state estimator arise from the measure-

ments. Passive seekers measure pitch and yaw gimbal angles Bp

and ey with respect to the missile body frame (m refers to

quantities in the missile frame)

ep = arctan (zm/xm) ’ (4.5)
6, = arctan (ym//x:l + 22 ) . (4.6)

The inertial line-of-sight may also be considered as potential
measurements. The range measurement is

= 2 2 2.%
R (xm + Yo + zm) . (4.7)

Since the measurement model is nonlinear, an extended Kalman
filter could be used to estimate states. The covariance equa-
tions need to be propagated in parallel with the estimated state
equations. Assuming that the missile velocity components may be
determined by open-loop integration of missile acceleration
components, a nine-state Kalman filter will be required to esti-
mate relative position, target velocity and target acceleration.
The covariance equations will place significant computation
requirements on the on-line processor. The time-scale separation
approach will attempt to simplify this problem.

4.2 TIME-SCALE SEPARATION FOR STATE ESTIMATION

In the state estimator, the time-scale separation methods
will consider the position as the slowest states, followed by
target velocity and target acceleration.

Since the measurements are all in the slowest time frame,
we will attempt estimation in that time frame first. The esti-
mator equations should be of the form (the superscript '"!'
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denotes estimate of a quantity):

A
->
-V

¢ =~ Vg * K (7 - h(x)) , (4.8)

where the measurements are represented by
>
y = h(x) . (4.9)

The gain Kx is computed assuming ;t and ;m doe not change

significantly during this time period.

The variables in the next faster time scale will be esti-
mated by considering a measurement of Ve based on the position
equation. One possible model for pseudo-velocity measurement is

¥ e
d4>

Vg = X+ Vp

”~ ~

K (y - h(X)) + $t . (4.10)

The estimator for target velocity components then becomes

2 A
-> >
v ¢ ¥ Ky(yy - v

t

P>

i

¢+t K, K (v - h(x)) . (4.11)

In the missile guidance problem, noisy measurements of the
target position components are available to the missile in the
form of look angles and posibly range. From these measurements
the trajectory of the target is to be estimated. Further, this
trajectory must be updated with each new measurement. It appears
feasible to represent the target acceleration as an auto-regres-~
sive (AR) model. Under the assumption that the measurement noise
has a rational spectrum, it can be shown that the corresponding
model to be fitted to the noisy acceleration samples, derived
from the position measurements, is an auto-regressive moving-
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average (ARMA) model whose denominator coefficients are the
desired parameters. These parameters can be estimated using
recursive maximum likelihood (RML) or recursive prediction error
(RPE) algorithms, which are described in Section 4.3. Once the
model parameters have been estimated, the target position can be
predicted in one of two ways: 1) Estimate the acceleration from
the derived model and determine the position estimate by inte-
grating twice, and 2) The target position satisfies an AR model
whose AR coefficients can be computed from the above estimated
coefficients. The target position can then be predicted using
these AR coefficients.

] The estimated target state variables serve as input to the
3 algorithm of Section 3, which computes the optimal missile state
Li variables. These nominal values are used by an adaptive auto-
*; pilot as a reference; the autopilot provides actual control

S signals to the missile control surfaces, in order to track the

: reference missile trajectory obtained from the optimal control
!l solution. A recursive lattice algorithm for implementing the

i? adaptive autopilot is described in Section 4.4.

4.3 RECURSIVE MAXIMUM LIKELIHOOD (RML) ARMA IDENTIFICATION

l! Let the observed time series be modeled as
ﬁ"; A(q'l) Vi = C(q'l) e - (4.12)
- k k ’
;i where
-1 -1 -L
- A(q ") =1 + 2,4 + ...+ a5q
5 (4.13)
x -1, _ -1 ~N
> C(qg"7) =1+ cja ™ + ... +cpq
£ 1

with q~~ as the delay operator

-1
T ¥g = Yg-1 -




The recufsive maximum likelihood (RML) algorithm
an estimate © of the model parameter vector 6
T=
e (al s 00 a.L cl L ) cL)

by the following set of recursions:

Ok = Ok-1 + Py Yy &
P, Ly, yIp
b = p k-1 Yk Yk Pk-1
k = Pk-1 - T
L+ ¥ Y1 x
where
€, i=y, - oF
k T Yk k-1 Yk

T = - -—
yk . [ yk_l LI ] yk-‘L ek-l s e 0 €k_N]

Wk o= Yk/C(q-l)

computes

(4.14)

(4.15)

(4.16)

The Recursive Prediction Error (RPE) algorithm uses modi-

fied €, y, V¥ variables. The prediction error €1
replaced by the a posteriori residual

= ._ _AT—
®x = Vi - O vy

where

Vi 3= [-Vgoq oov =Ypp Fgop eoe Eppld

The variable ¢k is also modified to

W = [‘-y s e e -y %l ¢ e 'él ]
k k-1 k-L’* k-1 k-L
where

v -1

ek = ek/c(q )

is

(4.17)

(4.18)

(4.19)

(4.20)

A detailed discussion of both algorithms is provided in Appendix

B.
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4.4 ADAPTIVE LATTICE ALGORITHM FOR TRAJECTORY TRACKING

The missile trajectory has to be adaptively controlled by
the autopilot to track the nominal trajectory, which is itself
adaptively updated (at a lower rate) according to the changes
in target trajectory estimates. An algorithm to compute the
control inputs that achieve this objective is described in
Appendix D. The main part of the algorithm (everything except
step V in the Appendix) is devoted to establish the exact input-
output relationship of the missile and to update this relation-
ship as the missile parameters change. The lattice algorithm
described in Appendix D consists of a cascade connection of
identical lattice modules (Figure 4-1). The matrix computations
performed by each section can be transformed into a set of inter-
related scalar recursions, so that each multichannel module of
Figure 4-1 is replaced by a square array of single-channel lattice
cells (Figure 4-2). Each of these cells performs a set of scalar
computations summarized in Table 4-1. The modular architecture
of the algorithm not only makes it perfectly suitable for VLSI
implementation but also provides it with a better numerical
behavior and higher throughput rate than any direct implementation
0of the recursions of Appendix D on a general purpose computer.
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Figure 4-2 Modular Architecture of a Multichannel Lattice Section
i e - forward residuals

r - backward residuals

¢,v - auxilliary signal
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Table 4-1

Recursions for a Single-Channel Lattice Cell

r*
e.r,
K =K+ =22
s ¢5
*x
e e eiei
R = 3R> +
21
r.r.
R = >Rf + i
s "N

o) i s i
-1 * -7
: = + . r
Mo} ¢71 i Rs i
-1 -e
v = +
o vi ¥ A Tey Ry oey
*x
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SECTION 5
SUMMARY

This sectior. summarizes the work performed under this
research effort. Plans for future work are also presented.

5.1 ADVANCED GUIDANCE LAWS

Proportional navigation (pronav) guidance, which has been
highly successful in the past, is not likely to meet future
missile guidance requirements; for example, in an anti-tactical
ballistic missile (ATBM) scenario. A singular perturbation
approximation to modern control theory provides much high
accuracy than pronav. The mathematical formulation of the
solution is significantly simplified by introducing separation
of time scales. The resulting algorithm is well suited for
on-board real-time implementation.

5.2 ADAPTIVE TARGET STATE ESTIMATION AND TRACKING

Efficient and fast algorithms for adaptive target state
estimation and tracking have been developed. The recursive
maximum likelihood (RML) algorithm for fitting an auto-regressive
moving-average (ARMA) model to noisy target position measurements
exhibits fast convergence and is unbiased in the presence of
measurement noise. The adaptive multichannel lattice algorithm
for trajectory tracking has excellent numerical behavior, fast
convergence and a modular structure that makes it perfectly
suitable for parallel processing implementation.
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5.3 FUTURE RESEARCH

The following areas need further study:

1.

T
»
'r
f
|
|
f'
|

Real-time implementation of the advanced guidance
law algorithm and evaluation on complete ATBM
simulation,

Application of the recursive maximum likelihood
(RML) algorithm to target trajectory estimation,

Application of the recursive adaptive lattice-form
controller to design a robust adaptive autopilot
for medium-range surface-to-air missiles, and

Architectures for an integrated, parallel, multi-
microprocessor implementation of the missile
guidance and control system.
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APPENDIX A
PROPORTIONAL NAVIGATION GUIDANCE

1. EQUATIONS

With reference to Figure 1, the engagement dynamics in two
dimensions are [2]

ro = v, sin ‘t -V sin ‘m , o(to) = g (1)

o ]

r = v, cos ¢t - VY, cos °m , r(to) =T, . (2)

By differentiating the first equation, adding o times the second
equation to it, we get

ré + 2r¢ + cos ¢m a, = -w'rmsin ¢m+vt cos °tét +vt sin ¢t .
O(to) = Uo . (3)

Note that am==vmém. In this section, we consider missiles with
constant speed, and targets with no lateral acceleration capabili-
ties (significant further deterioration occurs if these assumptions

do not hold). The change in target speed is included as follows:

v 4

ine*liSly LY 1]
¢ cection

—lp» X

Figure 1. Definitions of the Kinematic Variables
for the Relative Motion Between the Missile M
and the Target T 58




ré + 2rc + cos ¢mam = Gt sin ¢t . (4)

The commanded acceleration for pronav guidance law is of the
form

| N -
! ‘mc An coSs °m ’ (5)

An is the navigation gain. If the missile dynamics is negligible,

i.e., a, =a.. the closed-loop dynamics is

r§ + (2-A)Fc = v, sin ¢, ,

which is stable as long as A, > 2 (note that r is negative).

:f Missile dynamics, approxirated by a second-order system, can
- cause instabilities
3 ﬁ+2£mi+w2a-wza (6)
:! m m m m m ' 'm m "mc °
'
A pronav guidance schematic flowchart is shown in Figure 2. The
characteristic polynomial of the closed-loop system is

3, [2r 2, (4r 2 2.,
2+ (E e 26,0, )57 + (r Emwm+wm)s +L22-0) . (D
;' sin Y
cos %’llﬁz ‘0 COS% T * - \ °.
sZOZ;mwmswm! - rs e 2r
AUTOPILOT AND KINEMATICS
MISSILE DYNAMICS
.A"i
o5 &,
— PRONAY
SUIDANCE LAW

5€ Figure 2. Pronav Guidance Loop
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2. ANALYSIS OF STABILITY

The guidance law is stable, i.e., the polynomial of Eq. 7
has roots with negative real parts, if

! An>2,
r 1
. - ,
{* o co“m
-
F. r “m

and using the Routh Hurwitz criteria

> 2(a+ v/a?_-—l)/w

'
Heln

where

a 5m+§’é—m. (8)

- Note that r is nominally negative and -r/§ is the time-to-go if

P there are no maneuvers. If An exceeds two, the second and the
third condition are always less restrictive than the last condition.
Therefore, conditions for stability are

(9)

t > 2(a4-/£2171)/w

go m

Note that the pronav drives the missile unstable prior to impact

= for all values of damping ratio. A root locus plot with An is
shown in Figure 3 to illustrate the stability problem. Note that
An>»2 to stabilize the kinematic pole. The point where the complex
pole pair crosses the imaginary axis depends on time-to-go. As

the time-to-go decreases, this crossing occurs at smaller and

smaller An.
57
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Figure 3. Root Locus with An

Figure 4 shows stability regions for various pronav gains
and two values of missile damping. The higher the pronav gain,
the earlier the missile goes unstable.

3. SUMMARY

When the target has high acceleration components the terminal
instability of pronav causes large miss distances. The pronav is
also too slow to respond to large errors when the range is large,
causing missile saturation prior to impact.

/
=1.0
¢F ‘m ,/
/
§,0.5
Fy s UNSTABLE
PRONRY
GAIN STABLE
2k
0 ' — 4 2
2 4 6 8
TIME-T0-80 (UNITS OF 1/w,)
5t Figure 4. Regions of Nissile Stability
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.3: APPENDIX B
' A QUASI-NEWTON ALGORITHM FOR ML ESTIMATION
! OF ARMA MODEL PARAMETERS
Let the observed time series {y(t), t =0, 1, ...} be
.- modelled as
-1 -1
A(q 7)) y(t) = C(q ") e(t) (1)
. where
. -1, _ -1 -L
- A(q ) 1+ a,q + ... 4+ a;q
(2)
-1, _ -1 -N
a
with q_1 as the delay operator
] - Y(t) = Y(t-l) ’
' and e(t) is a sequence of zero mean white noise samples.
Rewriting (1) as
- y(t) = —‘—‘1——’ y(t) + e(t) (3)
o C(q )
the one-step ahead predictor §(tle) is given by
y(t]e) = [1 - ——L] v(t) (4)
.., where = is the parameter vector as defined in (6).
59
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From (3) and (4), the prediction error ¢(t,5) is

e(t,5) = y(t) - y(t]8) = g(t)slz(t,6) (5)
where
eT = (a a, C " Cyy) (6)
1 ® e o L 1 L I ) N
£T(t,8) = (=y(t-1) ... -y(t-L) e(t-1,8) ... e(t-N,¢))

The off-line maximum likelihood (ML) method of estimating
the parameter vector 6 corresponds to minimizing the function

J =% Y e2(s,0) (7
s=

The above minimization problem is non-linear in 6 and hence
an explicit solution is not possible. Therefore, a numerical

search procedure based on a Quasi-Newton method will be used to
find e. '

Differentiating J with respect to 8 gives

t

vJ = E e(s,08) Ve(s,®) (8)
s=

where VJ and Ve(s,?) denote the gradient vector of J and

¢e(s,0), respectively, with respect to 6. Differentiating once
again gives

t
2 = 2 [Ve(s,8)Vle(s,0) + Voe(s,8)e(s,0)] (9)
s-

From the expression (5),
Ve(s,2) = - Uy(s]d) = - y(s,8) (10)
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where ;(s,?) denotes the gradient vector of the prediction
vole).

The Hessian, VZJ, will now be approximated. At the true
minimum of (8), the second term of (9) can be shown to be zero.
Since the true Hessian is more important close to the true mini-

mum than elsewhere, we approximate the Hessian by the first term
of (9) which, in view of (10), becomes ’

sy 0(5,8) V1 (s,8) (11)
sS=

Further approximations are needed in order to obtain a recursive
Quasi-Newton algorithm from (8) and (11). Computation of ¢€(t,9)
requires all the data up to t. This computation is approximated
by using the latest values of the data and the parameter estimates,
and denote the correponding z(t,8), ¢(t,8) and e(t,0) by

g(t), wy(t) and e(t), respectively. The Quasi-Newton update

of the parameter vector is then given by:

-1
8(t) = 8(t-1) + [ v(s) wT(s)] P(t) e(t) (12)

sS=

where we approximated VJ by vp(t)e(t). Note that the effect
of the above approximations on the asymptotic values of the
parameter estimates is negligible if the roots of C(z) lie
inside the unit circle.

Now consider the computation of the gradient vector of the
prediction. From (4),

R -1
y(t) = [1 - Aiﬂzil] y(t)
Clq ™)
which gives

E%I y(t) = - 3135%% = - Y(t-1) (13)
Clq
61
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and

Bﬂ(t) = e(t‘i) = %(t-i)

= (14)
dc; cq™ 1)
Combining (3) and (14), we obtain
Vy(t) = y(t) = —=) . (15)

ca™hH

?(t) and g(t) are the filtered variables. The vector y(t)
can be defined in terms of these variables as

WTt) = [-¥-1) ... Fee-L) Ft-1) ... Ft-N)] (16)

In computing ¥(t), the estimated value of 6 at t-1, 6(t-1),
is used. It is then easy to see that

V() = (1) = S0F(E-1) .. = () F(t-N) (17)

g(t)

e(t) - él(t)2<t-1> v = Sy(t) T(t-N) (18)

Using the matrix-inversion lemma, a recursive version for
(2) can be obtained. The resulting algorithm follows:

8(t) = B8(t-1) + P(t) u(t) e(t)
T
_ P(t-1) y(t) ¥T(t) P(t-1)
P(t) = P(t-1) - ——ﬁf& (19)
1+ ¢T(t) P(t-1) w(t)
E(t) = y(t) - eT(t-1) (1)
8T() = (8y(1) ..v Bp(E) &1(8) vuv Ep(t)

z(t) and y(t) are as defined in (6) and (16), respectively. This
algorithm is called the recursive maximum likelihood (RML) method.
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Note here that the latest error term contained in 7(t) is
z(t-1), and the latest filtered error in .(t) is %(t—l).
Since the estimate g(t-l), available at the beginning of the
t-th sampling interval, facilitates the computation of the a
posteriori residual €(t-1), defined as

T(t-1) = y(t-1) - aT(t-1) z(t-1) , ° (20)

the residuals can be used in place of the prediction errors in
z(t) and Y(t). Thus, the modified forms of ¢g(t) and y(t)
are given by

tT(t) = (=y(t-1) ... -y(t-L) £(t-1) ... S(t-N))
T N N (21)
v o(t) = (~-y(t-1) ... =-y(t-L) e(t-1) ... €(t-N))

where E(t) = £(t)/C(q~1). The algorithm (19) with ¢(t) and
,(t) as defined in (21) is called the recursive prediction error
method (RPEM). The difference between (6), (16), and (21) re-
flects in the transient behavior of the RML method and the RPEM;
horwever, their asymptotic behavior is identical.
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APPENDIX C

THE ADAPTIVE LEAST-SQUARES PROBLEM

Exact-least-squares lattice algorithms provide recursive
solutions to the following adaptive least squares problem:

Given two sequences of multichannel measurements

y(0), y(1),...
and

x(0), x(1),...

find a linear estimate of x(k) based on m previous
measurements of y , namely

m
x(k) := 2, b, y(k-i)
i=1
such that the exponentially weighted cost function

t
™2 o= kgo)\t-k | 1x(k)-k(k) | |2

is minimized.

The optimal solution to this problem, is a function of m,x, t
and also of the data y(k), x(k). Since it is customary in
adaptive applications to solve the problem for several values of
m and t , the dependence of the solution upon these parameters
will be indicated explicitly by introducing the notation

m
hy ¢
for the solution that minimizes cm': . The exponential weight

is usually chosen in the range 0.9 < A < 1.0.
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Adaptive lattice algorithms provide solutions which are
recursive both in the parameter t ('"time") and in the parameter
m ('order"). These algorithms are based, consequently on two
update formulas: an order-update, which relates the solution

m m

m-1 ; h i

hi,t to hi,t , and a time-update, which relates hi,t-l to

h? t These update formulas can be expressed either in terms of
the residuals

m
ep(t) = x(t) - iz':lh’;"t y(t-i) (1)

or in terms of the prediction-errors

p °
em(1) 1= %(8) = 3 by g y(e-i) (2)

The derivation of the time- and order-update formulas is based

upon a geometric approach which is described in the sequel.

Define the rectangular matrices

[y(t); Y(t"l):"'; Y(l), Y(o)s o"'OJ
[x(t), x(t-1),..., x(1), x(0), 0...0]

7t (3)

Xt

The number of rows in each matrix is determined by the number of
channels of the corresponding signal. The length of each row
(say N ) is chosen large enough to guarantee the appearance of

zero columns of the end of Xy Vo for every t in consideration.

The rows of X,,y, are therefore elements (vectors) in the linear
space of row vectors of length N . Defining an inner product for
every two row vectors of length N,

<a,b> := apb*
(4)

A diag {xi; 0 <i < N-1}

where the asterisk * denotes the Hermitian transpose, we obtain
a (weighted) Euclidean space. A collection of several vectors in
this space, say XysXgyeoor Xy, written formally as a column
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X :=\ . (5)

will be called a vector array (VA). The (inner) product of two

VAs X,Y is defined as the matrix

<X,Y> := [<xi,yi>] (6)
whose (i,j) element is <X:,¥5% the inner product of the
i-th vector in X with the j-th vector in Y .

The cost function c™ 2 can be expressed in terms of the

t
VAs X¢ ¥y as
m m
m, A _ _
Crg = tr <x¢ - Zl hiVei » *¢ 121 BiVe-i”
1"—‘ =

The solution h? t that minimizes the cost function is obtained,
by projecting the VA X (i.e., projecting every vector in Xy )
on the subspace spanned by all the vectors contained in the VAs
Ve-t? ***0 Yeom Since projections play a central role in
solving the least squares problem, it will be convenient to in-
troduce a shorthand notation. Let X, denote the residual ob-
tained by subtracting from every vector Xy in the VA X , the
projection of x; on the subspace spanned by the vectors con-

tained in U . Then the minimal cost can therefore be expressed

bas
. m, \ _
min C ;= tr <Fm,t’ EM,ﬂ>
moo (7)
= = (x,) = X, - h Voo
m,t t (yt__1 yt-m) t Z i,t “7t-i
’ ’ i=1
where €m. t is the residual of X, after removing its projec-
tion on span {y, , = Vi n} .

The order- and time-update formulas of exact-least-squares
lattice algorithms involve only the first column of the matrix
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Em,t ; hamely,
;- em(t) = <€m,t’ > (8)
5 where
. m := [1,0,...,0] (9)

v Notice that em(t) is precisely the multichannel residual defined
g by (1). The prediction-éerror e;(t) , defined by (2), is,
similarly, the first column of the matrix

m :

p o= - m

em,t ‘= %t 2, By t-1 Yi-1 (10)
i=1

which seems to have no geometric interpretation in terms of

projections. If the columns of this matrix are shifted one step

to the left, and a column of zeros is introduced at the extreme
right, the resulting matrix is

AN

m
m
X1 = 2 By -1 Yee1-i
i=1

®m,t-1

which is, of course, the residual of projecting X, on span

¥4 o Yt-m-1} - Denoting the left-shift on row vectors by
- D we have
Dy = ¥iq
;‘ Dxt = xt—l (11)
2 and as a consequence of our last argument
2
(] P P
& em(t) = <em,t , TS
2 o (12)
- Dept ™ €m,t-1
;‘ This identity can be used to derive order- and time-update for-
E7 mulas in terms of prediction-errors rather than residuals.
£
M
¥
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APPENDIX D
ADAPTIVﬁ CONTROL AND PREDICTION USING LATTICE STRUCTURES

\

A large number of adaptive control and prediction algorithms
can be described exactly as a lattice form implementation that
requires only 0O(M) computations per time update for an Mth
model. The well-known advantages of lattice form implementation
in terms of numerical stability and simultaneous availability of
lower order models become available for algorithms with known,
desirable asymptotic convergence properties.

order

For the ARMAX (Autoregressive Moving Average with Exogenous
Inputs) models, current state-of-the-art adaptive prediction
either risks convergence to a local maxima of the likelihood
function, or requires a Strict Positive Real condition for con-
vergence. Over-parameterization of the predictor can be used
to ensure that neither of these two problems would arise nor
would the convergénce rate reduce substantially. This is attrac-
tive only because of the 0(M) computational complexity of the
algorithm.

INTRODUCTION

Consider a linear system with p inputs, p outputs described

A(q_l)yt = q'lB(q-l)ut + C(q-l)vt (1)

q'1 = delay operator in discrete-time. {yt}, {u,}, and {vt}

denote, respectively, the output, the input and the noise process,
each of dimension pxl.

-1, _ -1 -n
Alq ™) =1+ Ajq ™ + ...+ AQq

-1, _ -1 -n
C(q )—I+Clq +...+qu
B(q'l) = By + qu'l + ... 0+ qu"m

det (BO) +#0 .
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Objective of the adaptive controller is to make the output follow
a reference signal Yreft in the minimum-variance sense. Viz.

. 2
Min E{ly,,, - yreft+1| yt’“t'Yreft+1'3t-1'“t-1'3reft""}

Equation (I) can be rewritten in its prediction error form as

) - Vt+1} = {B(q-l)u +

. -1
5 Cla 1y -y
5 t+1 reft+1 t
. -1 -1 -1
i + (C(q 7) - A(q 7)) (yt - yreft) - A(q )yreft+1}
= @ ¢ -y
o't reft+1
o where
‘ T T T T
1 ¢t - [ut ,ut-l’ e ey (yt-tref ) 1 (yt_l-yref ) 9 e« o 0y
1 t t-1
s T T T
E y y oo-]
; ref,’ ref, ;’
. Let r = max((n-1),m), dim ¢, = 3:(r+1)'px1 and €, is a matrix
) of coefficients with dimension = p x dim ¢t. 60 may have zero

elements. Model order M =1 + 1.

T ey

eo = [Bo,Bl,Bz’ooo,Br, (Cl"Al),(cz-Az),ooo,(Cr+1"A
- Al, - Az, se ey = Ar+1]

r+1) ’

T TR

Recursive least squares algorithm for parameter update in the
i regression form

(y -y ) +y = 00, . (ID)
t+1 reft+1 reft+1 t

RONLA Lt el s
,

[ is used to give parameter estimate §t+1'

The parameter estimate is used in turn to compute the control
u, in the following manner:

L Choose u, such that Qt¢t - yreft+1 = 0 (CONTROL)
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Such a choice of u gives reference following in the minimum-

t
ﬁt variance sense.

ID equations are usually implemented as:

A A T -1 .
By = Opo1 * PeoaCeoaO* ¢ 9Pe 9% 1) vy - 8 1%:.9)

~ T
Peo1®t-1%-1Pt-1] 1

- T )

t t-1 T
A+ be aPe1%ea

T? Control u, is computed by solving the linear set of equations

a¢-y =0 .

t't reft+1

Note that this involves inversion of a pxp matrix consisting of

the first pxp matrix of ét'
This algorithm of (1) finding a linear least squares esti-

mate in a linear regression model and (2) then computing the

control to make the prediction based on the current parameter

estimates equal to some known value, lies at the heart of a large

number of "successful" adaptive control algorithms. The same

basic algorithm is also used for recursive prediction algorithms.

Lattice Form Algorithm

Exact implementation of a recursive least-squares algorithm
' can be done using the joint-process ladder form with pre-window
ing. The parameter estimate is in terms of the reflection co-
efficients and not in terms of 8. The reflection coefficients
are used to compute the prediction and efficiently obtain the
control uy to make the predicted value equal to the desired
value.

The proposed procedure involves p+l1 iterations of computing

+
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denotes the ith Euclidean basis vector [0 0 . . 1 . . 0]'r in EP,
Each such prediction involves O(M) operations. The set of
linear affine equations in u, is then solved in 0(p3) operations
to obtain u, . The total operation count thus remains O(M), i.e.,
linear in the model order. Note that since we are using the

ladder form merely to implement the exact equivalent of the algo-
rithm using explicit estimation of 5, the convergence properties
and stability property of the‘original algorithm continues to

hold for the ladder case. Let us describe the algorithm in detail

below:
(I) Initialize at time t =0; n=0, ..., M-1
—e -
Rn (0) = ¢1

-r
R T(-1) = 61

Fn(O) =0
r (0) =0

(I1) At time t we have in memory [(R-®(t-1)], F (t-1),
- A -7 7
Fp(t-1), §,(t), [RF(t-2)], r (t-1), KY(t-1)
Compute: n =0, ..., M-1
*(Remark on notation: The subscript n denotes the lattice

stage. To avoid confusion, the time parameter t is now
appearing in ( ).)

T -r
Kn(t-l) = Fn(t-l)[Rn (t-2)]
* -e
Kn(t-l) = Fn(t-—l)[Rn (t-1)]

- T \p=T
R-T(t-2)r_(t-1)r, (t-1)R.T(t-2)

>

A(1-8 (£))+rt (t-1R-T(t-2)r (t-1)
Breg(t) = 8.(t) + (1-3 (+)2r] (t-DR-T(2-1dr  (t-1)
Bo(t) = 0
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(ITI) Measurement y(t) is used

en(t) = y(t) - Yu(t) n=0, ..., M-1

FY(t) = AFY(£-1) + (1-8,(t))r (t-1)el(t)

Veey = gV -r

KY(t) = FY()[R;T(t-1)]
0

(1V) Let iu(t) =e = i « i i=1, ..., p
0
Let Ou(t) =0

Let Ixct) = tue)T, yT(ty, vl e (t+1)]T
Compute for i =1, ..., p; n=1, ..., M

te (t) =te () +k _t-1ir _(t-1)
i _ i « i

ro(t) = tr _(t-1) + K. (t-Dle (1)
i§'n(t+1) = i§n_1(t+1) - Kﬁ_l(t)irn_l(t)
i

| = 1
giving p predictions yM(t+1)
(v) Solve the set of linear equations defined by

Au(t) = Db
where .
b= yLop(t+l) - oyM(t+1)

and
column 1 of A = (1§ (t+1) - b)
This choice of wu(t) will give

§M(t+1) = Yref(t+1) as desired.

(VI) Apply control wu(t).
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Use

for

.......................

x(t) formed by Au(t). y(t), yref(t) and compute
n. 1’ .I.’u
eq(t) = ro(t) = x(t)
e, (t) = e,-1(t) + Kn_l(t-l)rn_l(t-l)
*
ra(t) =r _(t-1) + Kp_1(t=De,_,(t)

Tat+1) = 9 o> < kY (tyr,_ (1)

-e T -e
Rn (t-l)en(t)en(t)Rn (t-1)

-e -e
R7(t) = R "(t-1) -

>4 bt

X(1-8,(t))+e, (1IR-S(t-Dle_(t)
T
Fp(t) = AF,(£-1) + (1-8,(t))r_(t-1)el(t)

Go to step 11



