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S SECTION I
. INTRODUCTION

Many failures of fasteners used on aerospace structures have been
attributed to progreésive damage under cyclic operational loads. Study
of low-cycle fatigue and failure of the fastener metal as well as analysis
of the range of stress/strain the metal is subjected to during the oper-
ational life of the system have, therefore, been extensively studied.
To establish the spatial and temporal variation in the stresses and
strains in the fasteners, models of mechanical behavior of the metal as
well as methods of solution of the boundary value problem have been de-
veloped. The finite elemént method has been extensively used to obtain
approximate solutions and several mathematical modeis have been implemented
in finite element schemes.

Mathematical theory of plasticity has developed quite rapidly over
the last 30 years or so and a large volume of literature on the sub-
Ject has accumulated. Several surveys have been attempted covering various
topics. Some of these discuss phenomenological observations and mathemat-
ical modeling of behavior (Morrow,1965; Lin,1971; Sandor,1972; Knets,1972;
Mroz,1973; Jhansale,1973; Kremp1,1974), some address finite element solu-

¢ tion procedures for nonlinear problems (e.g. Stricklin,1972, 1973) and

still others cover the mathematical modeling as well as the solution pro-

cess (e.g. Armen,1972, 1979; Katona, 1978; Dafalias,1975; Jhansale,1977a).

1

.y e mc emrmes ey ey mmeee e o=
o B

D T P E S SR S e . . -
- ga Ny B A S e PG S LT S e .
¢ eV 0, . . DR B - P P - . A - PP . - - . .. PR L Lt

1’~ ,,'l, .'.‘ﬁ, 5 P T N R Y Ve T e e LT, L e R e T .

- .
L WA ST T I AL I S-S A o e a e . R T S S P RIS




The present investigation was motivated by the need to study cyclic
plasticity response of standard aerospace fasteners within the context

of finite element analysis. Accordingly, available literature on mathe-
matical models of plasticity along with their implementation in finite
element procedures was reviewed. To limit the scope of the investigation,
only models of rate-independent plasticity based on the existence of a

yield surface ind incremental (rate-type) theory of plasticity have been in-
cluded. Undoubtedly, a more comprehensive review would also cover cyclic creep,
plasticity theories without a yield surface, models of low-cycle fatigue
damage, response to a random cyclic loading, thermodynamic considerations

in plasticity theories, experimental investigations and other topics rele-
vant to the response of fasteners to cyclie loads.

Section 11 of the report introduces certain definitions and basic con-
cepts including a discussion of typical response of metals to cyclic loading.
In Section I, mathematical models of plastic behavior of metals are re-
viewed and Section IV covers the finite element implementation of certain

models.
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SECTION II
PRELIMINARIES

' In this section we introduce certain notations and definitions that
are repeatedly used in the remainder of the report. These include de-
? ' scription of deformation and stress‘as well as certain notions about stress

and strain potentials.

- 1. STRAIN AT A POINT
: Let the motion of a body be referred to a fixed system of rectangular

. Cartesian axes. Let the position of a typical material particle in a ref-

erence (undeformed) configuration be denoted by coordinates xi’ i=1,2,
3 and in the current configuration by Xge We assume that X; is a suffi-
ciently smooth function of Xi and the time variable t. We assume further,
in accordance with the principle of materiél jmpenetrability, that X; is
single-valued. Thus,

Xg < xi(xj, t) (2.1)

and the deformation gradient Fij exists such that

Fij

X

det(Fij) $0 (2.2)

Rk

axi
Here Xi’j - 'a_x?]:' .




The Cauchy-Green measure of deformation cij is defined by

Cij = %k, i%,j (2.3)
We define a symmetric strain tensor Eij by
E, =5 lc: - 6:5) (2.4)
id 2y A

where Gij is Kronecker's delta. Intrdducing a displacement vector Uy

through the definition
ui = Xi - xi (2.5)

the components of the Green strain tensor are

m
1

1
i3 %7 Wi *ug b i,y
(2.6)

1
Ui,3) T Z Y%,i%,j

Here parentheses around a pair of subscripts denote symmetry with respect

to these subscripts. In cases where the gradients uy j << 1, the strain

components may be approximated sufficiently closely by

&3 " U(1.4) (2.7)

Equation (2.7) applies for the linear theory or infinitesimal strain

...........
...........
b P .




theory and Equation (2.6) for finite strains. Because of symmetry, both

. :" ""'?‘«.-:-m“') h] -

E,. and eij are completely defined by six components. The three invari-

1J
ants of strain are

I = B

R 2
I, = 7 (Ei5E5 - By
: (2.8)

- 3E, .t

=1
I3 = & (26458 5Ehq = 3Eq5E 4Bk
)
+ EHEijkk’

In terms of eigenvalues E; of the strain tensor (principal strains)

I]=E]+E2+E3

. v v

I2 = Elsz + £2£3 + Esgl A (2.9)

I3 = &k,

The straindeviation tensor eij defined by

eqs = Eqg - ¥ B (2.10)

is a symmetric strain tensor with invariants

.............................
..............
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*
I] =0

*

1
12 = -i-eijeij (2.11)

*
3 ° 3 %5%5k8i

I
The invariant l] is a measure of volumetric deformation. Thus, Equation
(2.11) will apply to the case of materials with no volumetric deformation.
The strain deviation tensor is defined by five independent quantities.
Often, the complete strain tensor is represented by I] and the strain
deviation. Other measures of strain have been used. These include the
use of convected coordinates and updated Lagrangian strain. Yoshimura
(1962) used a generalization of the logarithmic strain as a measure of

the strain history.

2. STRESS AT A POINT
The symmetric Cauchy stress tensor Tij is defined by

t1 = Tij"j (2.12)
where ti’ nj are components, respectively, of the traction vector per
unit area and the unit normal to surfaces in the current configuration.

The Cauchy stress tensor is related to the symmetric Piola-Kirchhoff

stress tensor, or the material stress tensor °1j as

Ty " [det(an)]']FikFJ]ok] (2.13)

............................




Under orthogonal transformation of the reference frame, the Cauchy stress

tensor transforms as
. T
Ti5 * QGTa% (2.14)
where Q1 j is a proper orthogonal transformation, i.e.
Q‘“ij i Q"JQKJ = Gik (2.]5)

Under the same transformation, the symmetric Piola-Kirchhoff Qtreés tensor

is invariant, i.e.
*
O3 foij | | (2.16)

In the case of small deformations, i.e., U 4 << 1, the distinction be-
tween Tij and oi.i may be negligible.
As in the case of the strain tensor, the symmetric stress tensor is

uniquely defined by six components. The three invariants of stress are
9 = Ok

3, = L (0,00 - o2) | (2.17)

2 2 M54 kk '

)
I3 = § (204105x%¢ = 3%41%5i%«

+ o“ouokk)
7
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In terms of principal stresses % (eigenvalues of °ij) the invariants are

Jy =0y + 0, +o4

J, = 0,0, + 0,0, + 939 (2.18)

2

J3 = 010,93
The stress deviation tensor sij is defined by

_ 1
Si5 = % - F %k (2.19)

The invariants of the stress deviation tensor are

* - 0
J] -
* 1

J =l
3 " 3 543%5k5ki

i.e., the stress-deviation tensor is uniquely defined by five quantities.
Often the complete stress tensor is defined by J] along with the stress

deviation tensor sij'

3. STRESS AND STRAIN POTENTIALS

The discussion in this section summarizes some of the concepts pre-
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sented by Mroz (1973). We start by assuming the existence of potentials

Us U(Ek]) and W = H(ok]) such that

o . = 1)
k1l aEkl
and
oW
E ——
k1 °°k1

It is easy to show that

Us=0Ey - ¥

(2.21)

(2.22)

(2.23)

We assume further that U, W are convex, i.e., for states (1) and (2)

u(xsf‘}) + (1 - A)E(z)) s xu(s{})) + (1

and

N(Ao'(‘}) + (1 - A)a(z)) < AH(oS )) + (1

A consequence of convexity is

n(s,gp) +w(ef2) - ofBel)

Also, convexity implies for states (1) and (2)

2

w

x)u( (2)) (2.24)

x)u(o'(‘f)) (2.25)

0 (2.26)

(2.27)
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2
]] (Ek] - El((}))dck] >0 (2.28)

For state (2) approaching arbitrarily close to state (1), the foregoing
inequalities, along with the definition of U, W imply

= 2

o —ETS U Ve, .6E >0 (2.29)
{Ei (; k] Inr;) k] “"I =

‘ (———a?!—;)&: 6. 20 (2.30)
aak] aom k1 'mn

e o

e lwl e

e rL1et
;

.'.'-‘F’{ d'. LS
I e
LA PLIN R R P

Considering the surface U(Ek]) = ¢ (¢ a constant) in the strain space, for

states ES), Eg‘) lying in this space, convexity implies

D - ) 2o ean

Similarly for states o'((}), ol(dz) on the sui'face H(on) = constant in the

stress space,

DD - o) 3o (2

The assumption (2.21) implies 08) is directed along the normal to U(Ek])
constant. Hence, Equation (2.31) implies convexity of the interior of U =
constant., Similarly, the interior of N(ok]) = constant is convex. The
set of surfaces U = Cy» i=1, 2, ..., n represents non-intersecting
similar surfaces each having its center at the origin. The set is ordered

by ci.

10

..................................................................
--------------------- - . I . . s . . - . o RIS,
o0 e o s Sanatelinandiosn LR VI WO W PV S 3 e i M FYRR URJEE N Sl - U . S § S PREEY W A DY S S VY LA G Wl e




|

:
i
F
,E
9
|
Ez

..........................
.......
e ta LN

If U is homogeneous of order m, i.e., fqr any scalar A
U(OE,) = NU(E,) | (2.33)
we have
E, 10, = E,, xoo— = mI(E, ) (2.34)
k17kl k1 a!kl k1 y

For U homogeneous of order m, its conjugate W is homogeneous of order

k = T (2.35)

The foregoing discussion applies if instead of strain measure Ekl
and stress O “e choose any kinematic variables Qy and corresponding

force variables Q; such that U = U(qi) and W = H(Qi) exist with

oM

9 . be (2.36)
and
o - é%%- (2.37)

This is the basis for representation of the mechanical state of a body in
the traction space or displacement space. For elastic bodies undergoing
small deformation and with homogeneous strain energy, it can be shown
(Mroz, 1973) that proportional loading on the boundaries of the body in-
duces proportionally varying stresses at each point in the body. Another
case of generalized forces and displacements is the use of mean stress and
mean strain (Mroz, 1973) over representative volumes. For non-uniform

stress states, the representative volume should be sufficiently large to

n

.............

-------------
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represent macroscopic properties and small enough so that variation in
stress can be neglected. Thus, this concept may not be applicable in
regions of large stress and displacement gradients relative to grain size

of the material.
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SECTION III

MATHEMATICAL MODELS OF MECHANICAL BEHAVIOR
OF ELASTIC-PLASTIC SOLIDS

Mathematical theories are simple models to represent experimental
data so as to be readily applicable to design and analysis. Simplicity
often implies inadequacy and care must be exercised in selecting a model

appropriate to a problem. The actual model must reflect the actual ex-

perimentally observed material behavior to an acceptable extent and still

be easy to implement. In this report we are concerned with elastic-
plastic rate-independent materials. We assume that a yield surface
exists. In this section we define rate-independence of materials and
present alternative decompositions of the strain components. In later
discussion the additive decomposition is, in general, assumed. The
notions of initial and subsequent yield surfaces are reviewed in section
I11.3 and the constitutive equations for elastic-plastic materials {n
section III.4.

1. RATE INDEPENDENT SIMPLE MATERIALS

Pipkin (1965) formulated constitutive equations for rate
independent materials with memory. The subject was also discussed by
Owen (1970), Coleman (1970), Holsapple (1973) and White (1975).
For a simple material the dependence of the stress at any point upon the
entire history of deformation at that point may be represented by

13
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i
%

t
°ij(t) = Fij En (1) (3.1)

T=-w
Pipkin (1965) described the strain history E (1), 1 € (==, t]

by specifying the strain path and the rate of traversal of the path. The
length of the strain trajectory was defined as

;o 1/2
; - f“-m‘n’ (3.2)

where 'E” is an increment in the strain. Assuming Eij = 0 initially, and
setting s(t) = S, equation (3.1) may be replaced by
S o
cfj(t) = Fij E (s), s{t-1), t (3.3)
s =0 1T=0
For material to be rate-independent, the stress must be independent of
the rate of traversal of the strain path viz. of s. Hence,

S
oij(S) = Fij Eq (s) (3.4)

s=0
Equation (3.4) expresses the assumption that the stress of any material
point at a given time depends only upon the history of deformation at
that point up to that time without dependence upon rate of deformation.
Theories of plasticity seek simple representation for the effects of
history of deformation.
Following Pipkin(1965) the Green strain measure has been

used in the above discussion. Other measures of deformation used include

14




the strain representation in convected coordinates and the updated
Lagrangian strains. Yoshimura (1962) used a generalization

of logarithmic strains as a measure of the strain history. Alternatively,
the formulation could be based on expressing current strain as a function

of history of stress. In that case (Mroz, 1973)

t 0
Eij = ¢ij L ()] = ¢” ak](t - 1) (3.5)
18~ ® t=0
Introducing t
s - f“;u‘;u’m (3.6)
we could write
S
Eij(s) = wiJ %1 (s) (3.7)
s=0

where S is the current value of the monotonically increasing function s.

2. DECOMPOSITION OF STRAIN COMPONENTS
The traditional approach based on Prandtl 's idealization of uniaxial
stress-strain curve has been to regard the strain increment as the sum of

an elastic and an inelastic component, i.e.,

+ éll

Eqy = Efj * Efy (3.8)

Here a single prime denotes the elastic or recoverable part and the

double prime the plastic or irrecoverable part and a superposed dot de-

15
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notes an increment. For rigid plastic materials é{j = 0. Often it is
assumed that the stress is linearly related to the elastic part of the
strain, the relationship being independent of history or the mechanical

state. For nonlinear elastic materials this leads to different defini-

tions of é;j depending upon which definition is used for é%j (Mroz, 1973).

Eisenberg (1977) distinguished between the hyperelastic and hypo-

elastic definitions of é%j. In either case, the plastic strain component
would be redefined in accordance with Equation ( 3.8). Eisenberg(1977)
related these two definitions by an expression which, for the isothermal

case, reduces to the form

a¢ [ )
'u(]) - '] k] u(z)
B3 = [%6%5 TPMais oo [ Foa (3.9)
Pq
Here
.n(]) - . .l(])
Ei5 © 7 Bij - Byj
'..(2) = . - - (2)
Eij Eij Eij (3.10)
‘n(]) = -1 .
Bii T gy

éi§2) is such that y exists with the property

_ 9
Oij Dﬁﬂ— (3.11)

and

ki °*
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g = w(F(z) E;%z), qi) is the specific Helmholtz
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+ ree energy, Qs i=1,2, ..., n are a finite number of measures of
effects of prior deformation history, Kijk] are components of an elasti-
2) 3 o
city tensor and ¢, = ¢ (E?( q;) is the part of ___%LT" which is
3 k1*7ijg , i Ei‘z
temperature independent.
A multiplicative decomposition of the deformation gradient was pro-

posed by Sedov (1965) and further discussed by Lee (1967, 1968, 1968, 1970).
In this

Fij = F;kFﬁj (3.12)

F%k’ F;j are, respectively, the elastic (recoverable) and the plastic (irre-
coverable) deformation gradients. If the material particle is elastically
returned to the unstressed state, i.e. (Fij)-] is applied to F,., the re-

J

sidual deformation gradient will be F' A justification for this decom-

kit
position was based on the argument thai the additive decomposition is not
valid when both the elastic and the plastic strains are finite. Hahn (1974)
and White (1975) adopted this decomposition in development of theory of elas-
tic-plastic solids. Freund (1970) developed constitutive equations using
Lee's theory and assuming a weak thermodynamic coupling between the elas-

tic and the plastic effects. Haddow (1971) developed a flow rule for an

incompressible solid under finite strain.

Green (1971) showed that the kinematic decomposition proposed
by Lee would lead to problems associated with invariance requirements
under superposed rigid body motions in certain cases. It was noted
that Lee had avoided these difficulties by restricting his analysis to
materials which are initially isotropic and have special properties.

In defense of the additive decomposition, it was contended that it was not

17
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necessary to assign a physical or kinematic interpretation to E{j in a
general theory. Green showed that Lee's results can be deduced from

his general theory (1965). Key (1976) showed that underlying Lee's
multiplicative decomposition of the total strain is an additive decompo-
sition «f the equivalent strain rates. The multiplicative decomposition
was recarded as akin to the deformation theory of plasticity in that
total «trains are used. Holsapple (1973) pointed out that both decompo-
sitions are imbedded in the functional theory of plasticity where the
plastic strain is defined from the stress functional. Both approaches

are correct because the definition of elastic strain is arbitrary.

3. THE YIELD SURFACE
a. Basic Concepts

In analyzing uniaxial (or proportional) loading test data, it is
customary to define a yield point as the stress level below which ‘i
material behaves elastically. In actual tests the transition from elastic
to plastic behavior is smooth and the elastic limit cannot be precisely
defined. Various definitions of onset of inelastic behavior have been
proposed. It has been identified with departure from linearity (e.g.,
Naghdi, 1957; Ivey, 1961; Phillips, 1974), measurable (usually
.01 or .02 percent) nonlinear component of strain, slope of the stress-
strain curve becoming a preselected multiple of the initial slope, inter-
section of the post-yield slope with the initial slope or the ordinate
corresponding to zero strain etc. Haythornwaite (1968) compared various
definitions illustrated in Figure 1. Because of the uncertainty in loca-

tion of the yield point, theories of plasticity have been developed

18
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Figure 1. Various Definitions of Yield
(Haythornwaite, 1968; Lamba, 1976)
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(e.g., Valanis, 1971, 1974; Bodner, 1975; Stouffer, 1979) which do not

use the concept of a yield surface.

The uncertainty in the definition of yield point is not too signifi-
cant for monotonic loading. However, in unloading, reloading and cyclic
loading these become important. Assuming yield stress to coincide with
the 1imit of proportionality (Figure 2 Point Ag) a nonrecoverable plastic
strain is associated with excursion to a stress level say B beyond this
point. Upon unloading from B the process is elastic and linear up to a
point say C, and then onwards it is nonlinear. Upon reversal from D,
again the behavior is elastic upto A, and inelastic thereafter. During
the process the size of the interval of elastic stress states may change
and its mid-point shift. The change in size is termed isotropic harden-
ing (or softening) and the translation of the center is called kinematic
hardening. Figure 3 taken from Lamba (1976) i1lustrates some hardening
theories for the case of two-dimensional stress field. If the amount of
hardening is proportional to the plastic (nonrecoverable) strain, the stress
strain curve beyond the yield point is linear. In general the curve is
noniinear. Figure 2 shows the approximation of a stress-strain curve by
purely isotropic and purely kinematic 1inear hardening curves. Evidently,
neither of the two models is adequate. A combination of the two is needed,
at the least, to describe the actual behavior.

Under cyclic loading, we may assume the existence of a stable state
reached after a few cycles or asymptotically. Figure 4 taken from Jhansale
(1977a) gives a classification of cyclic transient phenomena. Essentially,
the saturation state defines a 1imiting value of stress (strain) amplitude

for given amplitude of strain (stress) cycling along with a change of mean

20
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Figure 2. Linear Kinematic and Isotropic Hardening Approximation to
Actual Material Behavior. (Mroz, 1973)
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Figure 3. Some Hardening Models for Two-Dimensional Stress. (Lamba, 1976).
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stress (irrecoverable strain). Koibuchi (1971) noted that hysteresis
loops are similar in shape (Figure 5). Figure 6 taken from Koibuchi
(1971) shows stress-strain curve obtained in an incremental step test
program. Burbach (1971) noted that an hysteresis loop was uniquely de-
fined by the location of its center regardless of prior history (Figure
7). Figure 8 from Jhansale (1971) shows hysteretic characteristics of
normalized mild steel. A description of the stable hysteresis curve is
Masing's rule. According to this (Figure 9) the ascending and the de-
scending part of the curve, i.e.,B-A, and AB'B are identical but for
change in sign and origin and are obtained from the initial 1oading curve
OA by doubling the stress as well as the stress range. Jhansale (1971,
1977a) and Sharma (1977) plotted the stable hysteresis loops (Figure 10)
superposed on their lower tips (Figure 11) and noticed that for A-36 steel
Masing's rule did not apply. Admitting transiation of hysteresis loops
along the elastic slopes they matchgd the curve with Masing's rule (Fig-
ure 12).

In uniaxial (or proportional) loading, the set of all stress
states is represented by an interval on the real line. Consequently,
loading, unloading, reloading have the obvious meaning. For extension
of the concept to multiaxial or non-proportional stress paths, it is
necessary to define a functional on the six-dimensional stress space to

order this space. In the simplest form,
f(°1j) =C (3.13)

where f is a functional mapping the six-dimensional stress space into
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Hysteresis Loops of Equal Center Point Coordinates with
Different States of Internal Stress.- (Burbach, 1971)
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Hysteretic Characteristics of Normalized Mild Steel.
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Figure 9. Cyclic Stress-Strain Curves. (Mroz, 1973)
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Figure 11. Stable Hysteresis Loops (of Figure 10) Superimposed on Their
Lower rips. (Jhansale, 1977)
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the real line. Often, the range of f is the positive interval. Equation

(3.13), for a sequence of values of c defines a family of non-intersecting

surfaces in the stress space. The surface
flog4) =x (3.14)

is called the yield surface. It encloses all possible elastic states
(f(°ij) <K). The constant K is a material property chosen such that it
corresponds to the yield stress in a uniaxial test. For ideal plasticity,
K is constant. Corresponding to different definitions of the yield point
in the uniaxial test, different yield surfaces may be constructed for
various choices of k with the attendant difficulties in modelling behavior
under cyclic stress/strain paths.

Instead of describing the state of a material particle by its stress,
the strain measure could be used. This would lead to the introduction of
a non-negative functional g on the strain space along with a definition

of yield strain. The set of all elastic states then would be

where u 1s the yield strain.

In metals, the yield level « 1is known to depend upon temperature

and previous plastic straining. Thus, in its general form

f = f(Q, H, 6) (3.16)
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where Q is a set of quantities describing the stress or load state, H is

the deformation history or a set of measures of deformation history and

6 is the temperature. Using the symmetric Piola-Kirchhoff stress tensor
°ij for Q, and assuming that the effects of history of deformation are
adequately described by the current value of the irrecoverable (plastic)

strain E%} along with parameters q,,
f = f(cij’ Eij’ Q5 e) (3.17)

Assuming the stress oij to be uniquely related to an elastic (recoverable)

strain tensor E;j, Equation (3.17) may be rewritten as

f = f(Eij' Eij’ 9y 0) (3.18)
If the additive decomposition of strain is used, i.e., E%j = Eij - E;j,
the functional in equation (3.18) is
f(E%j. E{j. Qs 8) = f(Eij. E?j' 9 8) (3.19)

This is the strain space representation of the functional (Pipkin, 1965;
Naghdi, 1975a, 1975¢). It should be noted here (Naghdi, 1975c) that the
initial yield surfaces (E!i'j =0, q " 0) in the stress and the strain
space will differ only by a scaling factor representing the transforma-
tion from stress to strain. However, subsequent yield surfaces (E;‘j #0,

q; # 0) will be shifted by E?j in addition to any scaling and rotation.
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To allow for the phenomenon of overelasticity resulting in an in-
crease of the yield limit 1f the state of stress is spatially non-homo-
geneous, Konig (1974) introduced stress and strain gradients as additional
arguments in the functional. The ordering functional would thus be

. ' f = f(0’1j. E;.j. q. e. oij’k. Enij.k) (3.20)
‘or f = ¢, where k itself may be a functional of history of deformation

and temperature, defining the yield surface, the set of elastic states

is enclosed by this surface, 1.e., for any elastic state f < x. A stress

path is designated as elastic if f < x throughout the path. If f =« to
start with and f < 0, then excepting the origin of the path, it lies en-
tirely in the region f < k. This is.called uynloading. For loading f = «
and f = 0, i.e., the stress point stays on the yield surface

and moves with it. However, the surface itself may expand,

contract, translate, rotate or distort in the space defined by the argu-
ments. These changes are described by changes in the internal variables
q as well as k. Often, the yield parameter x is included in the list of
internal parameters q;. In that case the ordering function has the im-
Plicit form and f = 0 is the yield surface. f < O represents the set of
all elastic states.

Due to the uncertainty in definition of yield, different yield
surfaces can be constructed for the same material. To overcome this
iifficulty, Phillips (1965) proposed a two surface theory. The
limit of proportionality was assumed to define onset of yield. In
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;§ addition to this yield surface, an outer surface enclosing the yield sur-

Ei face was defined as the loading surface. In the region between the two

surfaces, an unloading path would produce no plastic strain and, there-

L2t

fore, the two surfaces would not change. However, during a loading path

5
A
e
X
L
r ‘n

plastic strains would occur disturbing the two surfaces. Through each
point in the region (called metelastic region by Krieg, 1975) between

the yield and the loading surface an unique intermediate loading surface
can be identified. This implies the existence of a continuum of ordered,
non-intersecting, loading surfaces. This theory is a forerunner of the
theories recently developed by Mroz (1967, 1971, 1973) and Davalias (1975,
1976) on the oné hand and on the other, for the limiting case of vanish-
ing set of purely elastic states, of theories without a yield surface.

In the foregoing summary we have used the symmetric Piola-Kirchhoff
stress tensor as the measure of stress. Other measures have been used.
For instance, Hutchinson (1973) used convected coordinate representation
and set up the yield surface using convected stress components. Freund
(1970), Key (1976), Carter (1977), among others, summarized relationships
between various descriptions of stress. Key compared the use of Cauchy's

stress and the second (symmetric Piola-Kirchhoff stress in constitutive

models for elastic-plastic materials. He concluded that the models em-
ployed in computations while appearing quite different due to the choice

of coordinate systems, are, in fact, very nearly the same.

X

b

" b. Convexity of the Yield Surface

fi In the case of uniaxial test, the set of elastic stresses, i.e.,
&

3 %

.

e




T LT T

stresses below the yield point or between the yield point in direct and
reversed l1oading is an interval on the real 1ine. Convexity is an in-
herent property of such an interval. In extension of the concept of
yield to multiaxial stress states, convexity may therefore be assumed as
a primitive characteristic of the set of elastic states.

Naghdi (1960) used Drucker's thermodynamic postulate (1952) to
prove convexity of yield surfaces. Green (1965b) showed that
for the yield surface f = ;-sk]sk] - Kz. plastic deformation without
volume straining is possible only if Drucker's stability postulate holds
and the plastic strain rate is normal to the yield surface. Palmer
(1967) showed that convexity may exist even in unstable materials where
the stress falls continuously with increasing strains. On the other
hand, if the elastic response is nonlinear and is altered by plastic
deformation, nonconvex yield surfaces beccme possible for stable as well
as unstable materials. For noncoincident yield and loading surfaces,
convexity of the loading surface cannot be proved (Phillips,
1965) on the basis of Drucker's postulate because the loading sur-
face is changed before it is reached during loading from an intermediate
loading surface.

Pipkin (1965) used Ilyushin's postulate, i.e., the work
done in a closed cycle of strain is nc..-negative, to establish convexity

in a strain space formulation. Naghdi (1975b) considered materi-

als in which

%y " Lijkl(Ekl - E:]) (3.21)
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3 where Lijkl may depend upon history of deformation. Then the assumption
j of normality of plastic strains combined with Ilyushin's postulate leads
; to the condition of convexity

OmnEmn > - LmnpqE;qE;n (3.22)

This condition is less restrictive than Drucker's viz.

i omnE;n 20 (3.23)

Dafalias (1977) showed that convexity does not necessarily follow from

Ilyushin's postulate in case of elastic-plastic coupling. Justusson
(1966) used loading surfaces enclosing the yield surface which
was defined as the limit of proportionality of stress and strain. For
this case it was found that Drucker's postulate of stability in the large,
i.e., non-negative total work done during loading or non-negative total
work in a closed stress cycle, does not imply convexity of the loading
surface. The modified postulate would require that completely irreversi-
ble portions cannot exist on straight 1ine loading paths between any two
points on or in the interior of the loading surface. Indeed, this amounts
to assuming convexity to exist as a primitive characteristic of states
interior to loading surfaces. It should be noted that the forms of the
functional dependence of yield on stress often used define norms on the
shifted stress space. Convexity is an inherent property of norms.
Convexity of the region enclosed by the 1oading surface places re-

strictions on the form of the loading surface. Caulk (1978)
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investigated the restrictions on the coefficients in a generalized von

Mises loading surface.

c. The Initial Yield Surface.

The initial yield surface is the yield surface before any irreversi-

ble (plastic) deformation has taken place. At this stage Ei; =0, q; = 0.

13
Therefore, for the case of homogeneous stress/strain, the yield surface

has the form
f(oij' 6,k) =0 (3.24)
in the stress space or

g(E.., 6, u) =0 (3.25)

iJ

in the strain space. If the material is isotropic, the stress (or strain)
tensor may be replaced by its invariants in the list of argyments of f

(or g). Thus, the yield surface is

f(Ji. 8,x) =0 (3.26)
or, in the strain space,

9(11. 6,x) =0 (3-27)

In many cases, the yield is unaffected by the first invariant of stress,

i.e., the yield surface has the form
f(JZ’ J3, 8,k) =0 (3.28)

Specific forms of f include the Tresca, von Mises, Mohr-Coulomb and other
criteria (e.g. Davis, 1978).
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2 For anisotropic materials, Hill (1950) proposed a quadratic function-

al on the stress space as a generalization of von Mises yield criterion.

™ I

Assuming incompressibility, Hill wrote

i 2 2 2 2
f = F(oy - °z) + G(oZ - ox)2 + H(ox2 oy) + ZLGyZ
+ 2Mozx + 2N°xy -1=0 (3.29)

as the functional for initial yield. For the general case we may write

(Pifko, 1974)
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Here X, Y, Z are the yield stresses in uniaxial tension and R, S, T, the

yield stresses in uniaxial shear in x, y, z directions. Sawczuk (1959)
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considered a piecewise linear yield surface (a generalization of Tresca's

criterion) in the form
1) - il = constant, i =1,2, ....n  (3.310)
For principal stress axes coinciding with axes of material symmetry n =6,

i.e., there are six planes constituting the yield surface. Goldenblat

(1965) proposed a yield functional in the form

T—— Y
ERTh u:""

- = a 8 Y

X F= o * Wigaoifa)” * Ggam®iatm)’ * -

Fi (3.31b)

tﬁ Gotoh (1977) used a yield functional of the fourth order in the form
b

L - i,k ;

{‘;_'f, f Z oxoyoxy’ i+j+2kcd (3.31c)
[ | i,J,k

where x, y are axes of material symmetries. A survey of failure theories

of isotropic and anisotropic materials was prepared by Sandhu (1972).

More recently, Boehler (1977) discussed yield of oriented solids.
40
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d. The Subsequent Yield Surfaces
If the material behavior in an isothermal process is independent of
history of deformation and depends solely upon the stress level, the
yield condition is
f(oij) -Ka( (3.14)

L where k is the yield parameter. The material is said to be ideally or perfect-
E' ly plastic. The yield surface is invariant and indefinite plastic straining

! can occur at f(°1j) -k = 0 along with f = 0, i.e. the stress point staying

on the yield surface. However, most materials are affected by plastic
deformation. This effect may consist of expansion, contraction, trans-

lation, rotation and distortion of the yield surface.

(1) Isotropic hardening

A material is termed as isotropically hardening (or softening) if
the yield parameter x varies with plastic straining but the function
f= f("ij) is independent of history. In this casex in Equation (3.14)
is a functional defined over the history of plastic deformation. Scalar
measures most often used are the work done during plastic deformation

o

K = /oijé,'i'j(s)ds (3.32a)
0

or the length of the plastic strain trajectory

‘= /(é;jé;'j)”zds (3.32b)
0
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Depending upon which of the two measures is used, the material is termed
workhardening or strainhardening. This formulation allows for expansion

and contraction of the yield surface but not its translation, rotation or

distortion. The formulation also fails to account for Bauschinger effect.

(2) Kinematic hardening

To allow for Bauschinger effect, the yield surface was assumed
(Prager, 1955, 1956) to translate during plastic deformation. Thus, de-
fining %50 the coordinates of the origin aS internal variables, the yield

surface is

]
o

f( Q,:) = K (3.33)

%3 T %3
where « is constant. Admitting translation as well as expansion of the
yield surface, an immediate extension of Equation (3.33) would treat «

as a function of plastic strain history according to Equation (3.31) or
(3.32). For nonlinear kinematic hardening, Eisenberg (1968)

pointed out that this description of the yield surface is not appropriate
for metals insomuch as it would admit a monotonically increasing "modulus"

in reversed loading. He proposed instead a form

where K] is an additional internal variable and Ko is constant. Mroz

(1967) proposed a more general form of Equation (3.33) viz.
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f(oij - “ij) -F(k) =0 (3.35)

For x to be monotonically increasing, the workhardening definition of «

(Equation 3.32b) has to be modified to

k= /“’ij - aij)é;'j(s)ds (3.36)
0

The reason for this is that if Equation (3.32b) is used, for the case of
the origin lying outside the yield surface the rate K would be negative

and hence x would not be monotonically increasing.

(3) Anisotropic hardening

During loading, in addition to expansion and translation in the
stress space or the strain space, the yield surface may also rotate and/
or distort. Hodge (1956) considered the stretching of Tresca type sur-
faces. Berman (1959) proposed a general theory for distortion
of piecewise linear yield surfaces. Anisotropy in the initial yield
surface, in plastic flow and in the change of yield surfaces due to
loading was considered. However, it was assumed that the principal di-
rections of stress and strain coincide and remain fixed throughout the
loading process. The only part of the yield surface translating during
loading was the linear segment containing the incremental stress vector.
For the stress point at an intersection of several linear segments, ai!
of these would translate.

Baltov (1965) generalized kinematic hardening rule to

admit mechanical anisotropy. The generalization accounted for the trans-
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lation as well as rotation and expansion of the yield surface. For the
kinematically hardening yield surface for initially isotropic von Mises

solid, the yield surface was expected to be, assuming incompressibility,

Ro— - - - 2 =

where s.. is the stress deviation and Bij is the deviation of the trans-

iJ
lation “ij of the center. This was generalized to

21 _ - _2
f= Nijk](sij Bij)(SRI ak]) k€ =0 (3.38)

Here Nijk]' Bij are functions of Eij' Admitting an "initial" value cijkl

for Nijkl’ Equation (3.38) is equivalent to Edelman's (1951) and to
Shih's (1978) yield function for anisotropic materials. Baltov
followed Rivlin (1955) and expressed Nijk] as a polynomial

in E;j. Using symmetry and incompressibility conditiqns, it was shown
that the number of distinct components of Nijkl is only 15. Moreover,
Nijkl was written as

N I (3.39)

igk1 = Lz ¥ Ajga
where lijkl is the isotropic term and Aijkl represents the anisotropic
part. For incompressible materials

2

i = w8484
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and

A = RE%'.E" (3.41)

ijkl J k1
where A is a scalar function of the invariants of E?j- Assuming A poly-
nomial in E?J- noting that for incompressibility E;k = 0, the simplest
expression for Aijk] is
= nee \

Aijkl AoEijEkl (3.42)
The drawback of this formulation is that Aijkl does not depend upon the
strain path but only upon the current value of the plastic strain. The
path dependence is expected to be taken care of entirely by the parameter
k. Also, as noted by Dafalias (1975), the formulation does not account
for initial symmetries and the suggestion that addition of a constant
“tensor of initial anisotropy" to Nijkl will account for initial anisotropy

is not entirely accurate.

Shrivastava (1973) proposed a general theery to admit expan-
sion, translation as well as rotation of the yield surface. These would
explain hardening, Bauschinger effect and mechanical anisotropy. For an
initially isotrcpic solid the dependence of the yield function on °ij’ E;j
can be replaced by their invariants. To admit coupling the simultaneous

invariants were used. Thus,the yield surface is described by

f(li’ Ji’ Kp» k) =0 (3.43)

i=1,2,3
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Here Ii’ Ji have the usual meaning, the simulganeous invariants are:

K] = oingj
Kz = 953%5kEki
(3.44)
K3 = ©43E5kEks
K o. E“ n

4 = %%k K15

and f is a polynomial in its arguments. Restrictions on the admissible

arguments in Equation (3.43) were developed. For instance, in the case
of initially isotropic materials, for incompressibility, a sufficient
condition for normality of plastic strain increments to hold is that {
be independent of I], J], J3. K2. K3, K4, j.e., the yield surface has

the form

f(IZ’ Jz, K], 13) - k=0 (3.45)
Because 13 changes sign whenever E;d reverses, 13 must occur in even
powers. Hence, for small strain theory, its effect would be negligible

leading to

f(I JZ' K]) -k =0 (3.46)

2’
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For initial yield as E;j = 0, Equation (3.43) specializes to the form
f(Ji, K) =0 (3.47)
in general and

f(Jz. K) =0 (3.48)

for the special case of initially isotropic incompressible material under-

going small deformation. Tresca criterion arises using

_ 2 2 3 2, _ .6 _
f= g+ azd2 + a3J3 + a4J2 + a5J3J2 K 0 (3.49)
Writing
- 2 _
f = a]J2 + azlz + a3K] -k =0 (3.50)
leads, for appropriate selection of coefficients to
= 2 2
f = J2 +c 12 - 2cK] -k" =0 (3.51)
or
. _ >
where
5 = cE'i'j (3.53)

This is the form for kinematic hardening where the initial value of %5

is zero.

Using only 1inear and quadratic terms in J2. 12, K]. for suitable

choice of coefficients

a7




_ 2
f= sy - ag)(si5 - ay3) + Aoy sy - ag5)(sy - ay) - <" =0
(3.54)

This is Baltov's formulation (1965) for anisotropic hardening.
Including K4. for an appropriate choice of coefficients in the poly-
nomial of second degree in stress and fourth degree in strain, Svensson's

formulation (1965) is realized where

N 2 -

Another choice of coefficients yields Yoshimura's (1959) formulation viz.

2

as E'. -k =0 (3.56)

f = Nisasistia = 2545845

Second order phenomenon, e.9., axial strain accumulation in cyclic
torsion can be accomodated in the formulation by either admitting slight-
1y nonsymmetric behavior during stress reversal or by introducing non-
analytical forms characterized by edges.

Stating f as a polynomial in all the ten basic and joint invariants
of 543 and o g0 for a suitable choice of coefficients,

f= (sij - “ij)(sij - “13) + a(s1J - “15)(sjk - ajk)(ski - “ki)

-x3=0 (3.57)
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For “ij = eE;j. this is the same form as proposed by Freudenthal

(1969). Shrivastava proposed a generalization to

FoDlsyy = aypsgy - og) 1%+ alsyy - o)y - My - )

-x3ap (3.58)

Phillips (1974) found that during loading, the dimension of the yield

surface lateral to the stressing direction in the stress space did not

change, and the distortion was such that there was no cross-effect. The

distortion was more pronounced in the “forward" region of the surface

12 bl i e

during the loading process. Phillips also noted that considering loading
paths in stress space, upon loading to a certain stress point followed by
immediate unloading, the yield surface did not pass through the prestress
1 point. Also, repeated loading to the prestress point resulted in the

1 yield surface gradually approaching that point. This was ascribed to
rate effects which though ignored in the mathematical theory are often

l present in real materials. Phillips (1975) 5roposed a mathemati-

cal model describing distortion of yield surfaces as a function of the

history of deformation.

Dalte 4 L S-S ierd

e. Cyclic Plasticity
Isotropic hardening implies that a specimen under cyclic loading will
shake down to an elastic state. Linear kinematic hardening, although

accounting for Bauschinger effect and mechanical anisotropy, predicts a

Pty ar Rt A an D Sl Rl et Rt ind

steady state involving alternating plastic strains after the first cycle.

49




v—v v
RADMEARA AR
elaT2at et . . .

g

 ad

R SAMGSAA Bl
S T PR R

ol

vy
M B

T N T e A A A immndiinamain e

Actual materials reach a steady cycle of alternating plastic flow after
a certain number of cycles or asymptotically. Therefore, isotropic and/
or linear kinematic hardening theories are inadequate for cases involving
reversed loading, reloading and cyclic loading. In cyclic loading usually
a transient hardening state is observed during which hysteresis loops
change their form considerably. In addition, strain cumulation may occur.
Mroz (1967) proposed a rule of anisotropic hardening in the form of
a piecewise linear approximation to the nonlinear stress-strain curve
realized under proportional loading (Figure 13). This is equivalent to
assuming the existence of a sequence of non-intersecting nested yield
surfaces which, for initially isotropic material, are similar and concen-
tric enclosing the stress-free state. During loading a yield surface
translates, without change in form and orientation, with the stress point.
As the stress point reaches another surface, all the previous surfaces
along with the newly contacted surface would move with the stress point.
However, at all times, the surfaces to which the stress point is interior
would be unaffected. Allowing the yield surfaces to expand or contract
in addition to translation, the surfaces not reached by the stress point

would expand or contract uniformly without any translation.

In another study (1971) Mroz assumed the innmermost surface to trans-
late without change in size, the outermost to change in size without
translation and the intermediate surfaces to translate as well as expand
or contract to explain material behavior in cyclic loading. Ti.‘s mode)
simulates actual observations that the history of plastic pre-straining
influences material behavior but the influence of prestraining is wiped
out by subsequent plastic deformation of sufficient magnitude. This
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b; Stress-space representation: Plane
stress

Figure 13. Approximation of Stress-Strain Curve by Portions of Constant
Tangent Moduli. (Mroz, 1967)
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leads to the concept of "last significant event" in the deformation history
such that the material has memory only as far back as that event. A bi-
linear approximation of the work-hardening curve corresponds to two sur-
faces, the inner translating and the outer expanding isotropically.

A “"simplified" model proposed by Mroz (1975) for steady
cyclic loading with no strain accumulation is essentially a nonlinear
elastic model with memory of last stress reversal. The three principal
sheering strains are expected to depend upon the corresponding principal
shearing stresses. The existence of a yield surface is not required.

The “"skeleton" curve is described by Ramberg-Osgood equation and the
hysteresis curve by Masing's rule.

Mroz's theory is essentially based on use of a number of ordered yield
surfaces, each involving a limited number of internal variables associated
with its translation and expansion. In application, the skeleton curve
is plotted as the curve joining vertices of symmetric steady state loops.
Masing hardening rule applies for reversed loading and reloading. The
material has memory of the largest strain/stress amplitude. Cyclic
straining of smaller magnitude cannot totally erase the anisotropy and

hardening due to prestrain of larger amplitude.

Eisenberg's theory (1976) for cyclic multiaxial loading was based
on combined isotropic and kinematic hardening along with the assumptions
that (i) small plastic strains do not modify the macroscopic material
properties; (ii) the memory for the details of previous loading events
is erased by subsequent 1oading events; and (iii) the effect of such
prior history is described completely by the current values of the plastic
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strain, the length of the strain trajectory and the values of the harden-

ing parameters. For the special case of 304 steel the isotropic component
of hardening disappears after a few cycles and the hardening is purely kine-
matic thereafter. Linear kinematic hardening was assumed. However, the
theory permits extension to more general hardening behavior, e.g., the
non-homogeneous function described by Shrivastava (1973) which

would include distortion of the yield surface associated with cumulation

of strain. This theory is similar to Krempl's (1971) to the extent that
memory is erased by subsequent flow processes. However, the details of
specification of the memory and the representation differ.

Sharma's theory (1977) essentially follows the concept

introduced by Mroz. However, a parametér was introduced to represent non-
Masing behavior in. the presaturation stage. The rate of change of this
parameter (yield strength increment) was assumed to be proportional to the
difference between the current and the saturation value. Jhansale's (IQZI.
1974) suggestion that the nonlinear part of various stress strain curves
is identical to each other and that a change of elastic region is suffi-
cient to yield a good approximation was discussed by Dafalias (1975).
Dafalias observes that Jhansale's theory is applicable only to the data
from fully reversed loadings and is a special case of his (Dafalias') more
general theory.

Krieg (1976) and Dafalias (1975, 1976) proposed two surface theories.
This was a generalization of Mroz's work in that the piecewise linear
approximation of the uniaxial stress curve would be replaced by a continu-
ous model (Figure 14). A set of internal variables associated with abrupt

changes of the plastic loading process (e.g., loading direction) were
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a. Hardening and Bounds on Modulus in o-e Space.

)

YIELO SURFACE

BOUNDING SURFACE

b. Yield and Bounding Surfaces in Two-Dimensional Stress.
(Distance of Stress Point from the Bounding Surface).

Figure 14, The Concept of a Bounding Surface and Plastic Moduli Based
on Distance From the Bounding Surface. (Dafalias, 1975).
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introduced as influencing changes in the yield function (the hardening
process). Both the surfaces are assumed to be isotropically as well as
kinematically hardening. The nonlinear hardening behavior is represented
by a generalized plastic modulus which is a function of the current dis-
tance from the stress point to the bouding (outer) surface and the maxi-
mun distance at the initiation of yield. Dafalias' theory includes
Prager's, Ziegler's, Phillip's and Mroz's rules of kinematic hardening as
specializations. A special feature of this theory is that unlike Mroz's
piecewise linear representation, it provides a smooth transition from the

elastic to the plastic stage for general reversed loading.

Uhder cyclic loading, plastic strain accumulation can occur. This
cumulation might reach a limiting value after a few cycles or might con-
tinue. The steady state might represent an elastic shakedown state or
steady plastic cycling. Mulcahy (1971), following Mroz, assumed that the
plasticity model comprises a family of convex loading surfaces. Von Mises
yield and Ziegler's linear kinematic hardening rule were used. The rate
of strain accumulation was found to be dependent upon the mean stress and

the stress amplitude, with no strain accumulation for zero mean.

4. CONSTITUTIVE EQUATIONS FOR PLASTIC DEFORMATION
a. Basic Concepts
We assume that a yield surface or loading surface exists in the stress
space, i.e. for given E;j, q; defining the deformation history and tempera-

ture 6

f(oij' ;J’ qi' 9) =0 (3-59)
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is the yield surface such that for f < 0, there is no plastic deformation.
Also, that changes in the yield surface occur only when E;j, q;» 6 change.

Assuming f sufficiently smooth in its arguments,

s af . | of of 2. , Of =
f = 30, %id t3e o PR D TR (3.60)

When there is no plastic deformation Egj, &i vanish and f reduces to the

loading function

_ 3f - of
L = a‘..+§§é (3.61)

For f <0 or f = J but L=0 there is no plastic deformation, the yield
surface does not change and the stress-strain relations are elastic,
For f =0, L > 0, plastic deformation will occur.

If the strain-space representation is adopted, the yield surface is
g(Ek]: EE‘: qi’ 9) =0 (3.62)

and the loading function is

= a [d a L]
N = 52 TR S5 e (3.63)

Constitutive relations for the plastic strain as well as the other

internal variables have the form (Dafalias, 1976)

éi = ai( ok]’ 0, 6k]s é: Qjo EJ)H(L) for f =0 (3-64)

=0 for f <0
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Here H(L) isthe Heaviside step function with H(0) = 0 and 53 are the in-
ternal variables associated with abrupt changes in the loading process
(e.g., change in loading direction). Using the strain-space focrmulation,

we would have

4, = 8;(E s 0, Eq. 8, a5, £5)H(N) for g = 0 (3.65)
=0 for g <0 (3.65)

In writing the Equations (3.64) and (3.65) we have included the plastic
strain Egj in the set of variables qj.

For rate independence ai must be homogeneous of degree one in éij

and 6. Similarly, ii must be homogeneous of degree one in éij and 6.

Assuming linearity in &1j and 5. following Hill (1950), Dafalias
(1976) proposed

q; = riLH(L) (3.66)

Eij = ApijLH(L) (3.67)

Here the factor L = —91;-& + 2 8 expresses linearity in arguments o
30, ij 38 ij

and 8, H(L) assumes di, E;j vanishing for L < O, Pij is a directional
vector and A, ry are functions of °1j' e, Qs Eij’ qj. Ej' Green
(1965a) started with the assumption

E;j = Aijk]&k] + Aijé (3.68)
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during loading. As E;j = 0 whenever L = 0.

+ (A5 - 28 v -0 (3.69)

(A 1J 9

ijk1 ~ 28i; aok] L

where B.. is a symmetric tensor function and A is a scalar function of

, E¥., 95, 6. Equation (3.69) is true for arbitrary values of ék] and

ij
é. Hence
. of
Aigkt = *Bij 30, (3.70)
and
e 2
Aij = Aeij 55 (3.71)
Hence
.“ = af af a
Eij ABij(aok] kl + = e) (3.72)

during loading. Bij determines the direction of the plastic strain in-

crement. If this is assumed to be normal to the yield surface (or load-

of

aoij

and

ing surface), Bij =

Eu af

ij * aoij L (3.73)

Often L is evaluated from Equation (3.72) as
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; L=/ - c(t;'jt;:j)”z (3.74)

c is the "generalized plastic modulus" in Dafalias's theory (1976).
Substituting Equation (3.74) in Equation (3.66)

1/2

q, = crn(é;jé;'j) (3.75)

An alternative to the above procedure is to multiply both sides of Equa-

tion (3.66) by Bij to get

POSED ~ Mrece:
T

G
C oot
L
™

I

nBij = rnLH(L)Bij (3.76)

r L]
n L1}
A Ei

by Equation (3.67) (3.77)

P
S v(

J

Hence
r

Gy = 2 (By5) By = A ES (3.78)
i.e., the internal variables are linear in the plastic strain increment (Equa-
tion 3.78) or in the increment of the plastic strain trajectory (Equation 3.75).

In the strain space formulation, the plastic strain rate as well as

- -k .“_'.'.".';-'

&i vanish for g < 0 and N < 0 where

_ % ¢ )
N 'a—E-i-]- Ek] + Sg' 8 (3.63)

For loading (g = 0, N > 0),
Ey. = X 22 N (3.79)
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It should be noted that the conditions of loading in the stress
space and the strain space are different (Naghdi, 1975¢c).
Assuming the stresses to be uniquely related to the elastic strains
Bis = Biy = Bij
we have
f(o.ijt E'IJ’ q1a e) = g(E.'Ja E'IJ’ q.is 9) (3-80)

The loading function in the stress space

af hd of o __89_ P 29- .
L= G,. +t 70 = E.. + 0
aoij ij 29 aEij ij 96
= a [ ) . O“ 29- o
sr (B - Efy) + 558
1]
= - a .ll
N 3ng'E1J (3.81)
L)
As F:'].'J. # 0 during loading, L # N and N > 0 does not imply L > 0.
b. Consistency
During loading f = 0 throughout i.e., f=0. This yields
of 5. +2e. A g + 2 5 <o (3.82)

= 0,. * 25 0 4+ E'. + =— Q.
aoij ij 96 aE?j ij aqi i

We shall refer to this equation as the consistency condition. Substitu-
ting for é¥j and &1 from Equations (3.65) and (3.67), Equation (3.82)

yields
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L +—-§—As jLHL) + 2 of

riLH(L) = 0
Ef; a4y

As L > 0 during loading, the above equation impiies

IH\WEB” iqu-o
or, equivalently
aE” Byt My Saaf;"'
For A > 0, we have the inequality
of i of

B + 3o
iJ aE1j A aq1

during loading.
If the strain space formulation is used, § = O leads to

.-3-9__. [ _9_ 29..3
3, Eig ¥ _a‘” Bis * 2q; % 6=0

Substitution for Eij from Equation (3.79) and a similar equation for &i,

during loading,

U B, S S YR SRR T b .

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)
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Inequalities (3.86) and (3.89) impose restrictions on the form of the
t‘ functions f and g and on the coefficients appearing in the constitutive

relations (Caulk, 1978).

b c. Normality of the Plastic Strain Increment 1
Assuming normality and convexity in behavior of single f.c.c. crystals,

Lin (1971) established normality and convexity for polycrystalline aggre-

gates. In the mathematical theory of plasticity, normality of the plastic

,:,u KR ;.

strain increments is often proposed as a primitive postulate. Naghdi
(1960) showed normality of the incremental plastic strain to the yield

surface to be a consequence of Drucker's thermodynamic postulate (1951).

—r e
. .. IR AR R

Palmer (1967) showed that normality and convexity do not depend

upon stability in the small. Frictional materials do not exhibit normality
j' (Drucker, 1951). Assuming that stress is derivable from a potential,
Naghdi (1975a, b) showed that during loading, assuming a single

we

internal variable «,

90, . 90 . 90
] ij 2u 14 * _of Ukl
Ek“-:- Ek'l + K = «y aok'l 5E—— » Y20 (3.90)
:“ ini : 3 I - kW
?5 Further, defining elastic strain Eij Eij Eij’ for °ij a function of
%? Ei], Ekl’ Kk, Naghdi (1975b) showed that
- .. a0 90,
[ " ij k1 2. k1 °y _ of
& Ei.] 3, | 3ET 3T E Yo ) T Y 5o (3.91)
» k1 ij
E’ If stress is uniquely related to Eij and is independent of E"j and «,
r’ Equation (3.91) implies
b 62
e
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i.e., normality holds. Equation (3.92) is often referred to as the
“associated” flow rule.
Mroz (1973) assumed 1inearity and continuity of the relationship

between stress and strain increments to obtain, for "1j a unit vector,

E;J = Gijklnkl"pqopq (3.93)

In case " is an eigenvector of Gijkl’

Gisa™a = udnMa = Any (3.94)
and we obtain an associated flow rule viz.
E1j = A"ij"pqapq (3.95)

i.e., normality holds.
Dafalias (1977) set up the formulation in the strain-space. For
this approach

E;] = A8, NH(N) (3.79)
and
d; = riNH(N) (3.96)
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Eliminating N between Equations (3.79) and (3.96) in a manner similar to
the one that led to Equation (3.78),

9 = Rk (3.97)

Assume that potentials y, § exist such that

Y = W(Eij: 0, E;Ja qi)

E\..‘_ = T ]
(- along with
" oy 3P
3 JTRE vl sp
. iJ iJ
(3.99)
. and E-L = ..a_‘k_ . 3- = + =g + ']
3q; % ' ¥, 3, 3gk1 k1 "o,
Legendre's transformation yields
¢ = (04 85 Qy) = 0y 5E 5 - ¥ (3.100)
b = dlog5s 0, a5) = o4f5; - ¥ (3.101)
such that
¢$=¢ + Oingj (3.102)
then
= 99
Ep = 35 (3.103)
kl
! = _a‘.‘;_
B = 30 (3.104)
k1
and
I
3 3a (3.105)
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i 3q; Q; (3.106)

Thermodynamic considerations assuming y is the Helmholtz free energy lead

to
= N
. %1 aEk] (3.107)
- and
- .3
5-3’1- ry 20 (3.108)

Equation (3.108) with Equations (3.79), (3.97) and (3.99) leads to

3 ) 2

! } %’i"‘iklxgkl = (g - %Aik,)xﬁk, 20 (3.109)
or

(G * _a‘LAik])ka] 20 (3.110)

——y—
M 5 AL IR P

Ilyushin's postulate that in a closed cycle of strain designated by path
P, the work done

F W= Joijéijdt 20 (3.111)
i leads to

- -1

$ B = Magg a2 0 (3.112)
% where

3 Mg = k]aq Rns

T e

Trff'r- (3.113)
- 3.113
ki 2 kl

with

Mk,iJXéUnk] 20 (3.114)

Here " is an arbitrary unit vector in the strain-space.
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A stress-space formulation leads to

of

-1
M = M50 2> 0 (3.115)
k1 k1ij 3q,,
where ) )
= 0¢ - ) _
Ui 39,99, Anij = Ski®y * 39199, Anij (3.116)

Naghdi's work (1975a, b) is included in Dafalias' more general

theory as a specialization. The general result Dafalids obtained is

gl g (% % g )yl 39
3 MniMijk1 3, %5 " %, Anig)Migkr 35 2 O (3.17)

in the strain-space. Or, in the stress-space

36 -1 ef 3% -1 of
a0 il 3q7 ™ (%3 * 3q; Anig)gia 3g; 20 (3-118)
Here Mijkl' Qijkl are curvatures of y and ¢ respectively. These inequal-

ities impose restrictions on the constitutive relations involving elastic-

plastic coupling. If there is no coupling, i.e.,

6 = 61(%10 8) + 52(qn) (3.119)
Then
= §

Qi = Skidiy (3.120)

and Equation (3.115) reduces to

of
aok]
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Ay = A ,A>0 (3.121)




which is the "normality rule." At the same time the inequality (3.118)

takes the form

- 2 of

! éﬁj + aqn Ani%)iE;E'z 0 (3.122)
For 9, = E;j, the foregoing results specialize to Green's (1965) and

i Phillip's (1966) theories.

Conversely, if the coupling is present, convexity does not follow
from Ilyushin's postulate and normality may not exist. Indeed assuming
only one internal parameter q, inequality (3.118) along with the assump-

tion of convexity and 1i{near workhardening 1.e.

q = oy €],

leads to
3, % __
(0 + 50+ 3059 Gq) 20 (3.123)
If normality had been assumed, we would get instead
2
+
‘ 1 3q 20
5 For nonlinear flow rule proposed by Mroz (1964) the plastic strain
; increment depends not only upon 33{7 but also upon the curvature of the
- J
! yield surface. In this case normality does not hold in general.

Phillips (1977) investigated the behavior of tubular specimens made

of pure commercial aluminum 1100-0. It was found that ﬁ;j was always

! normal to the yield surface and when the yield surface becomes tangent to
! the loading surface (in the context of a two surface theory) the plastic
; strain increment is normal to both the yield and the loading surface.

1

d. Hardening Rules
Changes in material properties during 1oading are described by con-
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;5, stitutive equations for selected internal variables. These include,

1! among others, the isotropic hardening parameter x describing the expan-

.

sion of the yield surface and %5 the location of the center of the yield

o surface.

(1) The isotropic hardening parameter «
In line with Equations (3.75) and (3.78), the constitutive equation
for the isotropic hardening parameter has the form

% = K(E;:J.) (3.124)

o y—w AR SN e
PR P AL
R o ey e

where for work hardening (Equation 3.78)

-

-

fj and for strain hardening (Equation 3.75)

h > = - ]/2

- K C(EijEij) (3.126)

L‘ Here Ak]’ ¢ are functions of °ij’ ;j’ 9, and 6. Caulk (1978)

: combined the notions of work hardening and dependence of K upon Egj by
assuming

¥ = "

r’ Akl Mklij°ij + NklijEij (3.127)
This leads to

“ S £ “w cn
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Eisenberg (1971) regarded the yield surface as the limit of
proportionality of stress and strain. The loading surface en-
closing the yield surface hardens with plastic deformation which can
occur for points between the two surfaces. The hardening law proposed
had the form

% = AqEl) + olH(L) (3.129)

For a = 0 this reduces to Equation (3.125). During unloading, for points
outside the yield surface, a = 1. During reloading a < 1. The introduc-
tion of the parameter a would permit x to vary even when é;] =0 i.e. the
loading point can pull the loading surface with it even during unloading.
One way of assigning values between zero and 1 to o is to use powers of
d, 0 sasland seta=a". Chofce of the index n governs how close the
formulation is to the one-surface theory. For n + « the one surface
theory is realized as o + 0.

For cyclic loading, Mroz (1969, 1971) suggested use of

|ac| = |o, - o

% sI
as a function of plastic strain history. Here, if f is homogeneous of
order n in its arguments and k = og. 0 represents the limiting value of
o, as the steady cycle is reached. |Ac| is a decreasing function and has
to be determined experimentally for the prescribed loading.

Existence of a saturation condition requires that Kk = 0 after x has

attained its saturation value. Caulk (1978) proposed a constitutive

relationship of the form




Tl

K s R ( M
A, = — g , E
k1 Ko = Kg k1 mn®* "m

n) (3.130)

where Kg» K are the initial and the saturation values respectively, of

the parameter k.

(2) The kinematic hardening parameter o5

Assuming the yield surface to have the form

f(o'ij - aij) -k =0 (3.131)

Prager (1956) proposed a rule for the rate of translation in the form

a,. = CEY. (3.132)

where ¢ is a constant of proportionality. This is in line with Equation
(3.78). The yield surface was expected to translate in the direction of

the plastic strain increment. If a5 = 0 initially (at E;j = 0) integra-

tion yields

i.e., the equation for the yie'd surface is

f(oij - CE'ij) -x =0 (3.133)
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This formulation was shown to be unsatisfactory (Shield, 1958)

for subspaces of the stress space. Ziegler (1959) proposed

oy “(cij - a”), u>0 (3.134)
along with

(&ij-ca"j) j = Q (3.135)

where C is a material parameter. u is defined by the consistancy condi-
tion which for purely kinematic hardening with the yield surface defined
by Equation (3.131) is

;,af- af

— a.: =0 (3.136)
1j i:j aa,lj iJ
8f of .
Noting that —— = - —— and substituting Equation (3.134) for a..,
s of of
f = , - — , - = 3.1
30; %3 30y 5 u(oyy - ag5) = 0 (3.137)
Hence
of
acii °1J
WS —ay (3.138)
aqm' (Omn - °mn)
af
. °kl °kl
3cmn (Gon = Opn)
n




Equation (3.139) has the form of Equation (3.66), i.e., &ij are propor-
tional to L with the proportionality coefficient a function of the current
L yield surface configuration and the stress state.

Combining Equations (3.135) and (3.139) we have

b L F e F LA R A T

o.. = Cc (3-]40)
iJ of (o aq( kl
A A -a ) 1
] aq“n mn mn
f‘ which has the same form as Equation (3.78). We note that Equation (3.135)

follows from the consistency condition (Equation 3.136) for Prager's rule
for translation of the yield surface (Equation 3.132). However, Equation

(3.135) with the consistency equation implies

v

Sl vy -
' ‘ . P

= of
cky.

1) aoij
1 i.e., the difference between the translation rate &ij and the quantity

EE;j is tangential to the yield surface. The quantity Eégj is thus the

T

component of &ij along the normal to the yield surface. This relation

completely defines the role of c.

Admitting kinematic as well as isotropic hardening the consistency

D

(
E condition is
=
L.
[ : of o af .
L f = (o] + R o = K = 0
, aoij ij aaij ij
F
{ﬁ By an argument similar to the one that led to Equation (3.138) we now
- have
4
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of o
90, . 1]
b= —td (3.14)

Further if we assume

of
O. . (3.142)
aqj iJ

Re

=y

of
(-7 56,7 %4

u = (3.143)

of
5?;;'(qmn - amn)

Y = 0 implies pure translation while vy = 1 yields u = 0 and isotropic
hardening.

For nonlinear kinematic hardening, Kadashevitch (1959) proposed
c= C(Eij) (3.144)
in the hardening rule (Equation 3,132), i.e., the translation of the
yield surface was expected to be a function of the plastic deformation.

Eisenberg (1968) has shown that this is inadmissible and that no

function of the form

f(OiJ«. E,.ilj) -K = 0 (3-]45)
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with « constant or variable can satisfactorily represent stress-strain

curves produced by tensile loading followed by compressive loading of

metals. For such cases a form of the yield function can be

f(oij’ Eij’ K]) -k, =0 (3.146)

where Ko = constant and K1 is such that
Ky = K](EE]) (3.147)

A specific form proposed by Eisenberg is
f(oij - c(K])E;J.) -x =0 (3.148)

where ¢ is a constant, ¢ is the kinematic hardening function and K9 is

the length of the plastic strain trajectory, i.e.

%5 =°“ﬁ)%j (3.149)
such that
* — 0 dc n®
ajy = C(K] )Eij + &TEiJKl (3.150)
Noting that here
S = w fa y1/2
<y (Eijéij) (3.151)

Equation (3.150) represents a combination of the notions expressed by
Equations (3.75) and (3.78).
Noting that 2] = il(éﬁl). assuming E] Yinear in its argument, Mroz

(1973) proposed
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%t ay = c(K])E;j (3.152)
- where
; . - - dC "
Eg Eleq) = cley) + FEEfyeys (3.153)
’f and ¢;y are the constants of proportionality between é] and Egj, i.e.
B K1 = C,‘jEfi'j (3.154)
.‘ To admit strain cumulation, Mroz (1976) proposed
- » = e S en

&5 c(K])E,"J + d(|<1)1<.I i3 (3.155)

where «; 1s defined by Equation (3.151).

In Mroz's (1967) model based on multiple loading surfaces, the inner

surface has to translate with the stress points in such a way that as
this surface touches the next surface, the two are tangential at the
2 point of contact. Thus, if
4
(2)y _ _(2) _
- f(oij %45 ) -k 0
3 and 13.156)
. (zﬂ)) (241) _ .

are two neiéhboring loading surfaces fl and f£+] respectively, and the

s stress state is represented by a stress point P on fz' the surface fz will trans-
{ late so that it contacts f£+] at a point R where the normal to f£+] is parallel

3 to the normal to fl at P. This parallelism is retained throughout the
translation. The point R on f2+] is not necessarily the stress point.

- For K(l), K(£+]) of degree n in stress, e.g.

(0 L (), () ()
g 75
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and f homogeneous of order n in its arguments, Mroz showed that the above

relation would lead to

.« 2+ 2)\ (%) (241) (2) (241) (1)
aij = —(Ei-)- (o‘() ) - o(() )) °§J - (Oo aij - aij 00 )
0 (3.157)

In the special case where agﬁ) = a$§+]) this equation reduces to Ziegler's
rule. Like Ziegler, Mroz also defined p by the consistency condition for

constant k, i.e.

. . of  _
(aij - oij) 30 0 (3.158)
J
to get of b
aoij ij
uo= ((u ) (z)) 1 (3.159)
%1 % aok]

Figure 15 shows a comparison of Prager's, Ziegler's and Mroz's rules for
kinematic hardening. Lamba's (1976) nonproportional loading experiments
on oxygen free high conductivity copper showed that Tresca yield surface
translating according to Mroz' rule inside a stationary Tresca bounding

surface best reflected material behavior. As a further generalization,

the surfaces can be allowed to expand or contract in addition to transla-
tion. Then K(Q) =<(2)(A) where ) is a measure of the history of plastic

deformation. In this case

o .(g)
_ aijnii - 00
M= g © (3.160)
(“i‘u” - %))"m
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- da = ¢ de¢

: \

- 0

g

’[_;t

\ .

3 (a) Prager Hardening Rule

: 4.5

48 ¥ du(F-4)

(b) Ziegler Hardening Rule
FL*I

da=du(7 2 5h

(c) Mroz Hardening Rule

Figure 15. Kinematic Hardening Rules of Incremental Plasticity. (Lamba, 1976)
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Dafalias (1976) introduced a scalar measure for translation. He

defined

ia 2 )12

ij"ij T “a( ij-ij

Re
|

Re

3
I

AKaLH(L) (3.161)

where Ko is a coefficient obtained from the uniaxial test and nij is the

unit normal to f at the stress point. Then

. 1
=(—1 e LH(L) (3.162)
43 ("kl"kl) a

where v, is the unit vector along &i

Equation (3.67) leads to

j* Consistency condition along with

LH(L)\)ij (3.163)

e. The Coefficient X in the Flow Rule.
The coefficient A in the constitutive equation for plastic strain
increment has been evaluated several different ways. The evaluation may
be based ca the following

i. Linear dependence >f plastic strain rate
upon the loading function,

ii. The normality rule,
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iii. The consistency condition,
jv. Strain-space formulation, and

v. A combination of the above.

(1) A from the constitutive equation for the plastic strain increment.

Considering

E'i'j = AB”L (3.164)

during loading, Dafalias (1976) took norms of both sides to get

L= c(égjé;j)"z (3.74)

where

)
c = 8
A(Bk,sk,)”2 A

is the "generalized plastic modulus." Then

Eyy - B4 (3.165)
where
Ex = (E1,81,)"/? (3.166)
Assuming normality to hold,
By = 5%%;

This formulation essentially amounts to writing (Equations 3.74 and 3.166)

(3.167)

b =
"
r-lm
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Introducing

(3.168)

x
1}
T
o .Ifbo .

as the slope of the O E; curve, where T is the “equivalent" stress defined

as

o, = (oijoij)”2 (3.169)

Equation (3.167) gives 5
e
LH

>
]
-

o. .0
LH

:

(3.170)
%

This approach was also implemented by Swedlow (1966), Marcal
(1968, 1969) and Yamada (1968a, b) in finite element solution procedures.

(2) » from the normality rule.

Drucker (1951) stated the normality rule

. _, _of
ES A——aoij (3.17)

and directly took the norm on both sides to get

£

A = (_a__ _8_177 (3.172)
aoi‘j aoij’

Further, introducing the equivalent stress (Equation 3.169) and plastic

modulus (Equation 3.168), we obtain
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(3.173)

This formulation is the same as in Equation (3.170) for von Mises material.
It was used by Swedlow (1966), Mroz (1967), Marcal (1967), Marcal (1968,
1969), among others.

Assuming normality to hold, Mroz (1967, 1973) wrote, for the iso-

thermal process when L = a—af— o, T

O‘U

E;'j = A"i;j"kl %1 (3.174)

Multiplying both sides by E"

ij*
é;:jE;J = xzhég('] (3.175)
Hence,
" Byt
A=Tjﬁ% (3.176)
%

In similar fashion, Haythornwaite (1968) wrote, for the case of generalized

forces and displacements,

(3.177)

In this formulation, A can be evaluated at every step of the loading pro-
gram from observation on incremental displacements and tractions without

knowledge of the yield surface.
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(3) Consistent evaluation of A.

The consistency condition is
L+2f g+ 205 <0 (3.82)
aEij |

A. Linearity and Consistency.

If éi are linearly related to E?j and Egj in turn is linear in L, i.e.

&n = AnijE;j (3.78)
and
Eij = AeijLH(L) (3.67)
the consistency condition yields, during loading

-1

A= = — iﬂi.A : (3.178)
oET. Pij " 9q_ "mijtij
ij n
If the hardening rule is
s _ .u = ]/2
q, = An<EklEk1> (3.75)
the consistency conditions yields
\ = ] (3.179)
o o+ A ST (8, 8,.)V/¢ '
aE:j 1 n aqn i3 iJ

Using a combined hardening rule (e.g., strain as well as workhardening),
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b Y Su o ]/2
9 = Anistig * An(E1j 13) (3.180)

In that case, consistency implies

-1
A S (3.]8])
of of ( '}2>
5‘:11—11 313 + rqn Ah‘JB1J + An(B”B”)

This equation includes Equations (3.178) and (3.179) as specializations.
In Eisenberg's (1971) two surface theory the yield surface

corresponds to the 1imit of proportionality and the loading sur-

face encloses the yield surface. In that case, for points between the

two surfaces the hardening rule is,

q, ° AnijE;j + anL (3.129)

Use of this rule with the consistency condition yields

-(l + aif—a
| dg-0 (3.182)

48 * Ay %, b1

B. Normality and consistency

Writing the equation of plastic strain increment as

of

l!:i.j =2 aoij

f.e., assuming normality to hold, consistency condition yields
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of of of »

: L+ = Ae——+=—0q, =0 (3.183)
5 Hence L+ 2F g
] 9q. i
- i
A ——r (3.184)
3E1'.'J. aoij

For &‘. = 0, this is the form obtained by Prager (1949) and Naghdi (1960),

among others. In the general case, writing

° e cnoEn ]/2
T An(EijEij) * ol (3.185)

the consistency condition with normality gives

of  of | of of , of of of \1/21 , of -
L+A|-—.,—- + —A .. + A( ) +—al =0
I_aEij aoiJ aqn nij 3°ij aqrl n aoij aoij Bqn n
(3.186)
Hence of
(l ta aqn)L

A= - 172 (3.187)

(af+iA )3f+_§f_A<af af)

3E1.j aqn nij aoij aqn n Boij 3oij

The above formulations insomuch as they express A in terms of o, (L =

1]
a?;f 61.. + g% 8) have been (Naghdi » 1975¢c) referred to as stress-
ig W
space formulations. We note that these break down for perfectly plastic

materials where &n = 0 and f is independent of t“e plastic strain.
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(4) Total strain increment formulation.

Following Hill (1950), Felippa (1966) proposed a formulation de-

signed to express A in terms of the total strain increment éij' We pre-
sent here a generalization of Felippa's approach.
Assuming eij = Eij - Eij to be linearly related to g;; as
R Eijklé;‘] (3.188)
we have
%3 = Eigatin = Eygalba - Bl (3.189)
or
_of - _of
3a; %3 " 30 EygialBi - By (3.190)
The consistency condition, for a general hardening rule viz.,
e " " open 1/2
iy = AnggEly * A (EUE‘J) / (3.191)
gives
of of of
—_— ., = = E" —_
3°1j iJd aE aqn
- af 'II n " " ]/2
- 7By 3T, B aq [nueu (EiaEn) ]
(3.192)
Substituting Equation (3.72) for the isothermal case, i.e.,
E“ = )‘BIJ aak] %1 (3.193)
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and comparing Equations (3.190) and (3.192) we have

of of of af )
E.. 16, ., = E. A E
aou iJk17k1 (aon ijkl B'E’k"] nk1/ k1
of ('u = )1/2
- 3q, Ma\Ei5F1;
= AB (3.194)
where
of af of
B - £ - A )B
(ao i ijkl aEk] aq nk1/ k1
of ( )1/2 af »
- B..B o (3.19%)
aqn 1j71j aqnn nn
If normality is assumed to hold, 31 can be replaced by 2f Equation
1J
(3.194) implies
=1 of :
A =g 303 Ei k18K (3.196)

Felippa's formulation is valid for perfectly plastic as well as hardening

materials. Naghdi's (1975¢) strain-space formulation is essen-
tially parallel to Felippa's. This is the formulation in common use in
finite element solution procedures (e.g., Pope, 1966; Zienkiewicz,

1969; Nayak, 1972; Sandhu, 1973; and Allen, 1979).
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(5) Other methods.

Yamada (1969) used a rate of work equation along with normality and
additive splitting of the strain increment to set up the incremental
stress strain relations for a von Mises material. Reyes (1966) had pre-
viously used this approach for Mohr-Coulomb materials. These methods
gave the same final equations as Felippa's approach in the cases studied
but cannot be generalized to arbitrary yield surfaces.

Pifko (1974) ard Sharma (1977) used the normality rule in conjunc-

tion with the consistency condition for purely kinematic hardening. The
of

normality condition, Equation (3.171), upon multiplication by 3°i yields
J
of ¢ of of
EY. = A —_— (3.197)
aoij iJ aoij aoij

Instead of directly evaluating A from this equation, it was conbined with
the Ziegler's condition for kinematic hardening with constant «, Equation

(3.135), to get

1 of S = of '?_ = ) of of
¢ aoi\j i) aoij iJ aoij 3013
Hence af 5.
L1 %y 1 (3.198)
¢ of of *
aomn aomn

where ¢ is the "plastic modulus." This result is imbedded in the more

general formulation, Equation (3.183), and arises as a specialization

when 5%;— = 0 (the form of f independent of history), and a single
ij
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parameter q such that q is proportional to plastic strain increment i.e.

. . - o - of of
= A E", = «aCo—El' =5 C o A 7o (3.199)
9= Ak 3y K g . M

f. Incremental Stress-Strain Relations

Evaluation of A in the “"flow rule” finally leads to the constitutive

equation for Efi'j in the form

é;j = 64k L (3.200)

or, as is the case in Felippa's formulation

é;j = M”klék] (3.201)

Using Equation (3.200), we directly have

Ejq = Efs +E)

iJ J 4

= k1% ¥ Gk %a

& Lijk] OK] (3.202)

where Lg 1 = Cigiq * Gi5i

On the other hand, Equation (3.201) is used as follows:
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015 = Eigiafin = EiziaEq - Exr)
* B3k k1 = MymnEmn]
* E¢ 51 L%méin = MaimndEmn (3.203)

Mroz (1973) proposed a2 more general form of Equation (3.200) viz.

E“ * 64 3k1"1"q%q (3.204)
r from considerations of 1inearity and continuity. In case n,, is an
»- eigenvector of (ii R we have
’
: 63k = MySiMa = Anygy (3.205)
and
ES5 = A43m00%q (3.206)

The strain increment is along “1j’ t*2> normal to f. In this case, the

total strain increment éij is derivable from a potential W = H(&U) as

° oW
£ o W (3.207)
ij ao”.
where
] ° ™ .
W= 3 aijcijk'l Gy OU""J <0 (3.208)
4 1 A 2 ’
F: B TR T L U AL T T TR T
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To express stress-rates in terms of strain-rates, a generalization

of Mroz's approach may be stated as follows

%~ Eys1Bk1 = Eij(Eq - Eqy)

* E431lk - BkapgMipg"rs ors] (3.209)

Multiplying both sides by n;; and solving for &ij"ij

ny b

Mpq-pars “rsuvuv

%iMj " T+

= BklEk] (3.210)

where

B n: 144K

k1 1+ "pquqrs rsuv"uv

(3.211)

Substituting Equation (3.210) in Equation (3.209)

% ° EijkI[Ekl - lepq"pqsrsErs]

= Ei ik l%ris = MarsTErs (3.212)
where

"klrs * lepq"pqsrs (3.213)

Equation (3.212) is similar to Felippa‘'s formulation. Further, if

npq is an eigenvector of lepq

"klrs = A"klsrs (3.214)




Dafalias (1975) and Sharma (1977) follow the same argument as above
except that their formulation involves a scalar "plastic modulus" and
the plastic strain increment is somewhat different.

Naghdi (1975a) developed relatienships between plastic and
total incremental strains on the assumption that stress is a function of

strain history and is derivable from a potential. Thus,for the isother-

mal case,
T o”(Ek]. E";]. qn) (3.215)
Differentiation yields
90 )
14 e %§ a . 29
A 3!;;1 £q * —E.it 35-1 &, (3.216)
Assuming
9 = Anisti;
and
Ed5 * Sy % (3.200)
we have
. %y . 94y 9, .,
Solving
E;‘j = "1jk15k1 (3.201)
where
Misk1 ™ B4 jmnlumnk (3.218)
and

39 , 39 -1
Bijllm = Giméjn - Gijk](—ﬁ-u—‘l' AHIII) (3.2‘9)
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Omnk1 = Gmnpq 5!% (3.220)

This procedure establishes a relationéhip between the tensors Mijkl and
G

E ijk1°

g. Restrictions on the Coefficients.

RAartien en iy 13
S e .
Lttt Ll

The coefficients appearing in the constitutive equations cannot take
on arbitrary values. Certain restrictions and interrelationships based
on thermodynamic and/or phenomenological considerations have to be satis-

fied.

J
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Nicholson (1975) noted that the tangent modulus of one-dimensional

stress-strain curves is non-negative and decreases during loading. Also

that during reversed loading, the curvature changes sign. These properties

were stated in the form

v a =='!"‘;
LN ..:' ‘. a

" do, 2 0 (3.221)
- 2

E &d%so (3.222)
Pj dE"

X

&

;i These were shown to imply

e & 'E'n > 0 for =0 (3.223)
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Nicholson proposed a generalization of the inequality (3.223) to multi-
axial states in the form
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%3 ‘.I.j 20 for %; = 0 (3.224)

A consequence of this inequality, along with Drucker's stability postulate
(aﬁﬁ;‘j > 0) and a linear plastic strain rate relationship

EY5 = 64401 %

is seen to be

36 96 26
11k1 13k, 14k s 3.3
_33':';"' [TE‘]_" Tq.:._A ]empq Gq%Gyg 2 0 (3.225)

whenever c'ii j = 0. Here we have assumed &r' the increments of internal
variables to be 1inearly related to the plastic strain rates. Inequality
(3.223) restricts the choice of the form of the yield surface as well as

the coefficients Anm and Gi K1°

Naghdi (1975a) showed that if

55 = Wyg * %5 )€ (3.226)

301
where Lijkl = 55—1 reflects the dependence of °i:j upon Ekl and K

k1
flects the dependence of O upon history, 1.e. .,

ijk1 "e”
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several inequalities hold for the stress point on the yield surface.
These arise as a consequence of a work inequality over a closed cycle of
homogeneous deformation in the strain space. This inequality, derived
by Naghdi, is

¢
tfz(Eij -e{) g, <0 (3.228)
1

where Egg) is the origin of the path at time t] For '"ij’ qij arbitrary
tensors directed towards the interior and the exterior respectively, of
the yield surface

<0

<0

<0

0

M5 K30 %
%3 K1z %a
"5 813 Fi
Bk i By

(3.229)

A

We also recall here the inequalities (3.86) and (3.89) due to require-
ment of consistency during loading. Assuming stress to be derivable
from a potential, Naghdi (1974, 1975a,b) also established in-
equalities (3.90) and (3.91). These inequalities impose restrictions on
the coefficients appearing in the constitutive relationships. Other
phenomenological restrictions might exist, e.g. the existence of a
saturation state under cyclic loading. Caulk (1978) inves-

tigated these restrictions for the case of an initially isotropic, gen-
eralized von Mises, 1inearly hardening material under cyclic loading to
saturation. We summarize here the discussion for the strain-space for-

mulation as fllustration. Caulk assumed

9%
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9(E s Epge <) = 4u2e|;]el'd - 2uae) er) + oered. - k(3.230)
for initfal isotropy and no volumetric strains along with the hardening

Taw

K = (2uBey, + fey; )y (3.231)

K =K
)

K =K
a

to ensure existence of a saturation state (Equation (3.130)). Inequal-
fties (3.89) and (3.90) lead to the conditions

Here u is the elastic shear modulus and B, n include as a factor

B+oa+d4u>0 (3.232)
and

(B+a+ 4u)2Mk]Mk] > []? ol +a) +n - Zo]ze:]e:.' (3.233)

where )
L
Mo = 2.y - 3 oe,

Noting that using (3.230), during loading
M =g - (0 - gl-2-)e" e (3.24)
kit =« 37%1%K1 -
(3.233) becomes

2
(B+a+ank>[B+a+an)o- %-) + {]g al +a) +n - 20} Z]el';]e,';]
(3.235)
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A sufficient condition for this inequality to hold for all x and e:] is

1oB+7=0anda® =140 (3.236)

Substitution of these values in Equations (3.230), (3.231) yields

g=M M, -« (3.237)

and
K = EMk]ezl (3.238)
For anisotropic materials, restrictions on the coefficients appear-
ing in Equation (3.29) were described by Hil1 (1950). Tsai (1971)
listed the restrictions on the yield parameters in Equation (3.30) im-
posed by the requivement of stability. These are

2
1,1 _1)\2
(Zr-2) >

| —

il

vy -
T b

]
R
-2 %)2 .0 (3.29)
yz y 3 X
1
ZX

5. MECHANICAL MODELS

Mechanical models to simulate hysteretic behavior of rate-independent

«
A
o
b
9
s
)
\al
.

materials were introduced by Masing and. have been developed further

by several investigators. These consist of a collection of perfectly

92




elastic and rigid-plastic or slip elements in series-parallel or parallel-
series combination. Introduced by Masing, the parallel-series model

was further developed by Ivliev (1963) and Prager (1966). Iwan (1967) consi-
dered both the parallel-series and the series parallel models (Fig. 16). The
nusber of elements was assumed to be very large and the element properties
distributed in some fashion. This distribution would define the hysteretic
behavior. In the parallel series model, for a total of N elements, assum-

ing n are in the elastic range and the remainder are in perfectly plastic
state, the total stress in all the elements is

Nee N o:
o>+ Ty (3.240)
i=] {=n+

where I-:1 is the elastic modulus of the elastic subelement in the 1th unit,
e is the common strain in all elements and o: is the 1imiting value of

stress for the rigid-plastic subelement in the ith unit. It is assumed
that all elements have the same area = % where A is the total area such
that force F = cA. For a series-parallel model, assuming the ith elastic

element to have area A, elastic modulus E and nominal length L1. the total

strain, allowing one element (i=0) to be purely elastic,

- (B ]
CTTICE'TFC 2N (3.241)

where

g - 01 *
= T_. ca Oi
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Figure 16. Mechanical Models. (Iwan, 1967)
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Iwan assumed N + » and for selecting a distribution of properties proposed
that it be related to the curvature of the observed stress-strain behavior.
This seems reasonable because the curvature i{s integrable over the stress
domain, tends to zero at both extremes (¢ ~ 0 and € + «) and the integral
changes monotonically between reversals. For stable cycling the distribu-
tion could possibly be related to the energy dissipated per cycle per unit
volume. Cycling of strain/stress within fixed 1imits was also considered,
the parallel series model for strain cycling and the series-parallel model
for stress cycling. The development for unfaxial behavior was extended

to mul ti-axial stress and strain cycling.

Mroz (1973) showed that the mechanical behavior of a finite assemblage
of elastic-plastic kinematically hardening elements is essentially equivalent
to his piecewise linearization of the hardening curve (Fig. 17). As the number
of elements in series becomes very large, a_smoo;h stress-strain curve is
real ized. | g

Martin (1971) allowed for relaxation of mean stress by making
the stiffness of each spring dependent upon the stress at which it is acti-
vated. Cyclic hardening and softening were represented by changing the
coefficients k, n in the power law

1/n
. b0, (2
b E] + (k ) (3.242)

where Xc, Ac are the strain and stress amplitudes in the hysteresis loop.

A cumulative damage theory for fatigue failure was also proposed.
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in Plane Stress Case

Figure 17. Behavior of a Series Model Consisting of Elastic-Plastic
Elements. (Mroz, 1973)
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Sharma (1977) and Jhansale (1977) found that the mechanical models
could match nonlinear behavior in uniaxial loading and model hysteresis
loop but could not model hardening or softening prior to saturation.
Experimental evidence cited by Jhansale indicates non-Masing behavior
denoted by variation in the yield strength, the nonlinear portion of the
hysteresis curve remaining practically the same. Jhansale and Sharma
introduced a single stress parameter (yield strength increment) depending
upon prior history to describe this departure from Masing rule. Rate of
increase of this parameter was found to be proportional to the difference
between its current value and the saturation value for cyclic loading.

The change in radius of the hypersurface is
Af = C(Ys -Y) (3.243)

where C is a constant of proportionality and Ys. Y are the saturation and
the current values of the yield strength parameter. This corresponds to
Caulk's (1978) hardening rule for cyclic loading (Equation 3.130).

Jhansale and Sharma's approach is essentially an extension of Mroz's

internal variable theory to the presaturation stage.

Zienkiewicz (1972) and Nayak (1972) proposed an overlay model in the
context of finite element analysis. It essentially consists of each
finite element made up from subelements with varying yield surfaces
connected in parallel. Katona (1978) proposed elastic, viscous as well

as friction elements in combined series/parallel arrangements.
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6. THEORIES BASED ON CONCEPT QF SLIP
These theories regard a metal as a polycrystalline aggregate and
seek to explain macroscopic mechanical behavior on the basis of the be-
havior of single crystals. Taylor (1938) considered rigid-plastic poly-
crystals as aggregates of randomly oriented f.c.c. (face-centered cubic)

crystals under tension. Assuming homogeneous strain, using the principle

of virtual work, strain was calculated as the minimum sum of the amounts

of slip for a given crystal orientation. Bishop (1951a, b) used the

LA AR AN
AN .. . DR

principle of maximum work to show that for rigid plastic crystal aggre-
gates, among all stress states lying within the yield surface, the actual
state giving E?j is the one which lies on the yield surface and gives

maximum work. Lin (1957) considered aggregates of elastic-plastic crys-

rrw—vriwf(.,..
O ) .l.l P

tals under homogeneous strain and assumed that slip occurs sequentially
because of the presence of an elastic component. Czyzak (1961) calcu-

lated the tensile stress-strain curve and the Bauschinger effect of a

;? f.c.c. crystal. Batdorf's theory (1949) considered an aggregate of crys-
!? tals each of which has a slip system and assumed homogeneous stress.

#f This satisfied equilibrium but not compatibility. Lin's analysis (1971),
S? based on virtual work principle, satisfied both equilibrium and compati-
4 bility. Lin assumed additive decomposition of strain and displacement.

:f The yield surface for f.c.c. crystals consists of twelve pairs of yield

-

- planes. Normality of the plastic strain increment was assumed. For

% stress points on an edge of the polyhedron, E;j was between the normals

;2 to the two adjacent planes and at a vertex E;j was within the cone bound-
ff ed by normals to the yield planes intersecting at the vertex (Koiter,

Ei 1953). Associated flow rule was assumed to apply, i.e., the yield surface
e 102
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was also a surface of constant plastic potential function. Lin found
that the theoretical initial yield surface of an aggregate of crystals
with the same isotropic elastic constants and the same initial shear
stress coincides with Tresca's yield surface of maximum sheering stress.
Normality of the incremental plastic strain was found to hold based on
the principle of maximum work. The slip characteristics predict the
existence of a vertex at the loading point for infinitesimal plastic
strain. However, for finite incremental plastic strain the loading
surface giving this strain has no vertex but the curvature at the loading
point is increased. This is close to von Mises initial yield surface.
The observation that measurable strains imply disappearance of vertex may
be taken as the explanation for the experimental observations not having
been able to directly prove or disprove the existence of vertices.

Koiter (1953) showed that the slip theory is a particular case of the
incremental theory based on an infinite set of plane surfaces. Sanders
(1954) used the plane loading surfaces to establish stress-strain rela-
tions partially resembling those of deformation theories.

Yoshimura (1962) explained Bauschinger effect as difference in pat-
terns of dislocations when viewed from the loading and from the opposite
direction. Work-hardening was described as a consequence of change in
density of dislocations and plastic anisotropy was regarded as direction-
al deviation of the way of grouping of the dislocations.

Kelley (1973) considered material behavior under constant strain
amplitude cycling. Low initial dislocation density was associated with
isotropic softening and high initial dislocation density resulted in
isotropic hardening. Bauschinger effect was explained as unlocking of
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dislocations in stress reversal. The modei proposed was:

V = ao (3.244)

where o is the effective stress, v is the velocity of mobile disloca-

tions, a is a constant and is a material parameter.
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SECTION v
FINITE ELEMENT ANALYSIS OF ELASTIC-PLASTIC SOLIDS

The finite element method is well documented in the literature (e.g.,
texts by Zienkiewicz, 1976; Gallagher, 1975; Desai, 1972; 0Oden, 1972,
1976 among others). It has been applied to elastic-plastic solids in-
cluding problems in cyclic plasticity. Among several review papers that
have recently appeared we note the contributions by Armen (1972, 1979),
Strick1in (1972, 1973) and Bergan (1978) where references to other work
may be found. The text by Zienkiewicz also contains a good summary.

In this report we shall describe application of the finite element method
to plasticity in sections dealing separately with variational formulation,

material behavior models, finite element modeling and solution procedures.

1. VARIATIONAL FORMULATIONS FOR FINITE ELEMENT ELASTIC-PLASTIC ANALYSIS.
The equations for small deformation theory of plasticity are:

Kinematics €1j = u(i.J)
Constitutive relations é” = Lijklakl
or . on R (4.1)
%; = Kz
Equilibrium 01'j j = f,l
]

Here fi are components of the body force vector and R is the spatial

region of interest. The boundary conditions for the problem are:
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T t; over s, (4.2)

uj = u; overs, (4.3)
where S1s S, are complementary subsets of 3R, the boundary of R and nj
are components of the outward normal vector on ST Because the stress-
strain relationship is in incremental form, the strain-displacement equa-
tion also has to be written in incremental form. For small strain theory

“15 7 U4,9) (@4

would replace Equation (4.1),. To make the stress terms in the equilibrium
equation and the constitutive relations correspond, the equilibrium equa-

tion can be stated in incremental form as

» e

%i5.4 " fi (4.5)

Similarly, the boundary condition, Equation (4.2), in incremental form is

= G4y ® t, (4.6)
g: Alternatively, introducing 513 as the stress at the beginning of an in-

e crement, we have the constitutive relation as

o4 = aij + Kijklékl (4.7)
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Using the incremental form of the equations, Lee (1970) introduced
the functional

1 . » % .
R s]
for the case f, = 0 and 61. é”. &U identically satisfy Equations (4.1),,
(4.3) and (4.4). This functional is analogous to the potential energy
formulation for elasticity. Stationarity of Q is equivalent to Equations
(4.5) and (4.6).
Sandhu (1973) wrote the field equations in the symmetric form

] 3 3y (s
0 0 - 284k 37 * S5k 3| \Y4 fi
0 ST €1l = 4%
1 5 3
LZ‘% Trthiw 10 %3/ \0
" (4.9)

Here ?’ij is the stress at the beginning of the increment. This leads,
with usual assumptions, to the potential energy type formulation

a = f[% €1iKigci - Ufy * '.‘1.,1‘-’11]"“ - faizids
R $ (4.10)

if the material behavior is assumed to be constant over the increment.
Other formulations of equilibrium or mixed type have been proposed. In
the context of finite element approximations these are imbedded in the
general treatment of linear problems given by Sandhu (1975, 1976).

Admitting interelement continuity constraints
1

(oin)‘-Oovors
373 107 1

(4.11)
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(Gjni)' = 0 over s; (4.12)

where s]i. s; are disjoint surfaces in the interior of R such that they
are imbedded in the union of interelement boundaries, a general function-
al for finite element representation of R and equivalent to Equation
(4.9) through (4.12) along with the boundary conditions, Equation (4.2)
and the incremental form of Equation (4.3) is:

M
&= Z[f Gy (-agy 5 = 2F) * €45(K g€ - %5 * 255)

e=1"R,
+ °u(“‘1.j - éij)}dRe + f 1'11.((11.‘].11:i - Z'ii)ds
s]ﬁ’aRe
- f o”nj(ﬁ,' - Zﬁi)ds] + _[(oijnj)-uids - ji'(l.ljni)-o”ds
szﬂi)Re $ S,

(4.13)

Here M is the number of elements, Re the region occupied by the element

e and 3Re its boundary. Noting that over any element e

fﬁio”’jdke =-fﬁi‘joudke + fﬁiaijnjds (4.18)
R R

e e aRe

Tl @S] A

the governing functional may be modified to eliminate either '.'1 j or
%3, 3 terms. This would yield two alternative formulations
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a, = Z f{- 26.f + éij(Kijklékl + Zo ) + 20, (‘.'i.j - gij)}dge

nBR szﬂaR S,

(4.15)
and

m
> {{2'.'1("’1.1..1 - f‘). + e’ﬁ(K”Hék] + Zaij) - Zoijéij}dRe

+2 f (o n -ti)ds+2 f ijjids +2f(o j)uds
naR sznaR ]

(4.16)

Specialization to the case that displacements are continuous across inter-
element boundaries, satisfy the boundary conditions on s, and strain in-

crements are derived from displacement increments, ; reduces to

93 = {-Zu f, +¢ ( 'Ijklekl + Zoij)}dk - Zf u'lt‘lds

(4.17)

which is the discretization of the functional in Equation (4.10).

On the other hand, if stresses satisfy equilibrium, tractions are
continuous across element boundaries, and the traction boundary conditions
are satisfied, and the strain increments are derivable from stress incre-

ments, ﬂz reduces to
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(4.18)

m
2y = Z] Rf{ 9% - zaij"ijkl"kl}d"e 2 J %3";198
e=
e

This is the complementary type formulation.

To admit material and geometric nonlinearity, several different
approaches have been used. The difference between various formulations
is essentially in the derivation of the incremental form of the virtual
work equation. Early investigators (e.g. Turner, 1960; Martin, 1965;
Felippa, 1966; Hofmeister, 1971) used the incremental moving coordinate
system (Stricklin, 1972). In this, the reference coordinates were updated
after each load increment and the stresses referred to the new configura-

tion. The incremental strain was defined as

hd . ] ° °
B3 7 Y1) 2 YaitGg (4.19)

Here the derivatives are with reference to the configuration at the end
of the last increment and the reference frame is assumed to stay orthog-

onal. Felippa (1966) and Murray (1969) assumed the state at the begin-

ning of an increment to be in equilibrium and wrote the incremental

t virtual work equation in the form

E f[a 8(F G, (0 ) + 3, .80 )]dv=f§s(a)ds

3 1372 “k,17k,§ 13°40(1,9) iov

3 v 9 (4.20)
:

]
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Here oij

of the increment. Allowing for the lack of balance at the initial state,

is the initial stress referred to unit areas at the beginning

Hofmeister (1971) added the virtual work by the unbalanced forces to get

j[a”s(}z g0 ) * 9338004, 3)) IOV =
v

; Srgotias - 56000 50 - [ E 60 )ds
aR v (4.21)

In this scheme the strain increment is not derived from the Green strain
tensor referred to the undeformed configuration and the theory is applic-
able only to the case of small ;trains. In a correct theory, the incre-
mental strain must be derived from the Green strain tensor (e.g., Mallett,
1968; Haisler, 1970; Stricklin, 1972). The principle of virtual

work may be stated as (Hibbit, 1970; Hutchinson, 1973)

i3 40 . [oie
fc £, 4R ft 0;ds (4.22)
R aR

Here 3R is the boundary of the region R and the superscript over a quan-
tity denotes its contravariant components. Hutchinson wrote the incre-

" mental virtual work equations as

Tk ek aseh

i

f[és‘jeij LR WG TR - fi‘ ds  (4.23)

« 3

Recently, Brockman (1979) following Oden (1972), stated the incremental

virtual work equations in a form which, for no inertial forces, reduces to

m
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R, R

Here Ro’ aRo denote the configuration at the beginning of the increment

and m is the pseudostress equal to the components of the symmetric Piola-

J
Kirchhoff stress tensor referred to unit areas in the deformed configura-

tion.

2. MODELS OF MATERIAL BEHAVIOR.

For monotonic uniaxial or proportional loading where the stress
state can be defined by a single parameter, the nonlinear stress strain
behavior can be approximated by suitable functions. For generalization
to arbitrary stress paths scalar measures of stress and strain have often
been introduced as effective stress and effective strain. The available

test data are interpreted in terms of these effective measures to set up

L ——
R~ KROCAYORIE 9% M DERO

57 RURFONXE 9 MY
.- we's & . B 0 ' 0 . . L3 0 FErS s =0 .-

stress or strain-dependent "moduli." This approach is attractive be-

?i cause of its simplicity but fails to account properly for path dependence
_' of mechanical behavior of materials.

3 In using the mathematical theory of plasticity to represent material
E@ behavior, we need to determine the elastic properties as well as the

2 initial yield function, the parameter ) in the flow rule and the intemal
;; variables, A ...

e In early work on the application of the finite element method to

plasticity, following Drucker (1951), the coefficient in the flow rule

b was determined considering normality only (e.g., Swedlow, 1966; Marcal,

{ ] 1967; Marcal, 1968, 1969; Yamada, 1968a, b; Mroz, 1969; Lee, 1970; among
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others). This formulation failed to satisfy consistency. Mroz (1967,
1973) following Hi1l (1950) also proposed a formulation based on normal-
ity and linearity (Equation 3.176) admitting "non-associated" flow rule.
Yamada (1969) used rate of work equations to develop a consistent formula-

tion for von Mises materials. Reyes (1966) had previously used this approach

. for Mohr-Coulomb materials under plane strain. Felippa (1966) developed a

consistent approach allowing for normality and linearity as well. This
is identical to Prager (1949) for hardening materials but is valid for
perfect plasticity as well. Zienkiewicz (1969), Eisenberg (1976) and
Allen (1979) developed formulations essentially similar to Felippa's.
Pifko's (1974) and Sharma's (1977) formulation for kinematic harden-
ing can also be seen as a specialization of Felippa's formulation to the
case of purely translational hardening. It would not be applicable to
cases when Egj appears explicitly in the expression for f. Naghdi's
(1975¢) strain-space formulation is also the same as Felippa's.
Nayak (1972) extended the formulation to admit non-associated behavior.
We note that the coefficients defining the increments in internal
variables also appear in the consistency Equation (3.187). Thus, the rate
of hardening influences the stress-strain relations. The quantities re-
quired to define stress-strain behavior are the elastic properties, the
dependence of the yield function upon o
A

j* E;j, q, and the coefficients

nij which relate the increments of internal parameters to plastic strain
history. The available test data should be interpreted in the light of
this requirement. For instance, for isotropic hardening, the uniaxial
test data would define the quantity k as a function of equivalent plastic

strain or the plastic work depending upon whether strain hardening or
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work hardening approach is adopted. (For von Mises materials, these are
equivalent).

Isakson (1967, 1969) and Armen (1970) incorporated kinematic
hardening with Ziegler's hardening rule in a finite element computer
program. This was further developed by Pifko (1974) to admit anisotropy.
Eisenberg (1976) allowed for both isotropic (strain hardening) and kine-
matic hardening (Prager's rule) along with a consistent formulation for
A for initially isotropic von Mises material. Nayak (1972) considered an
"overlay" model to represent piecewise linear hardening. Hunsaker (1973)
compared four models of elastic-plastic behavior namely, isotropic harden-
ing, kinematic hardening (both Prager and Ziegler's), Mroz' piecewise
linear model and the mechanical overlay model. He found the last two
most appropriate for reversed loading.

The approaches using a plastic modulus involve a relationship between
scalar measures of stress and plastic or total strain called the effective
stress and the effective strain. Often these curves are directly inter-
preted in terms of isotropic hardening. Many attempts have been made tx
obtain simple mathematical functions to represent experimental data.
Wilson (1965) used a bilinear approximation. Admitting nonlinear harden-
ing, Jensen (1965) and Lansing (1966) used Ramberg-0Osgood formula. Salmon
(1970) included Wilson's bilinear approximation, the Ramberg-0Osgood formula
and Richard-Goldberg (1965) equation in a single computer program. For
large strain ranges, Pifkc (1974) preferred a power law. Krempl (1972),
Liu (1976) and Cernocky (1978) considered the essentials of curve fitting
for stress-strain diagram. They noted that typically the slope of the

stress-strain curves is positive, decreases monotonically with increasing
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strain, and is constant at the two ends (strain equal to zero and strain
exceeding a certain 1imiting value). Thus the slope is constant at the

two ends and the curvature of the diagram is negative. Liu (1976) pro-

A~ ROy
leta S

posed an expohential law. Cernocky (1978) described construction of non-
linear monotonic functions. In Mroz's theory (1967) the hardening curve

is approximated by piecewise linear segments leading to discontinuous

moduli. Dafalias (1976) introduced a continuously varying field of
plastic moduli. This is similar to the theory proposed by Krempl and his
coworkers éxcept for the fact that their formulation was for total strain.
A special feature of Dafalias' formulation is the dependence of the plas-
tic modulus upon the distance between the stress point and the bounding
surface. This ensures that the "modulus" has the limiting constant
values at the two extremes of the stress point being upon the inner yield
surface or the outer, bounding surface (Figure 14). Desai (1971) pro-
posed use of spline functions to describe the stress-strain curve. How-
ever, he did not enforce the criteria of monotonicity of the modulus.

For cyclic plasticity Pifko (1974) used Ramberg -Osgood law referred to
the point of last reversal of stress as the origin. Liu (1976) used an

exponential law in terms of the initial and ultimate values of the modulus.

1 3. FINITE ELEMENT DISCRETIZATION
Procedures for finite element spatial discretization of boundary

value problems are well-known. Triangular and tetrahedral elements with

the earliest to be used for finite element analysis of elastic-plastic

media (i.g. Pope, 1965; Argyris, 1966; Reyes, 1966; Yamada, 1968a,

[ ) linear interpolation of the displacement field over each element were
[
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1968b, 1969; Zienkiewicz, 1969; Hofmeister, 1971). Quadrilateral ele-
ments have been extensively used. Generally, for two dimensional problems,
these are formed as assemblages of constant strain triangles (e.g. Wilson,
1965; Lee, 1970; Sandhu, 1973; Hodge, 1975) or are four point isopara-
metric quadrilaterals (e.g. Zienkiewicz, 1968). Lee (1970) used a four
point isoparametric element with an additional local mode. For thick
tubes, Chen (1972) used interpolation which would give the exact solution
for the elastic case. In early work, based on linear interpolation of
displacement, the state of stress within an element was assumed to be uni-
form. Thus the entire element had to be fully plastic or fully elastic.
Felippa (1966) used higher order interpolation and admitted partial yield-
ing of elements. Nayak (1972) used isoparametric elements with biquadratic
interpolation. It is customary to evaluate stresses at each Gauss integra-
tion point within the element to set up the average properties of the ele-
ment. As Gauss integration points are all interior to the element this
device does not notice onset of yeild in the element till it reaches well
into the interiur. Some investigators therefore use Simpson's integration
scheme which involves points on the element boundaries.

Matrix formulation of the problem follows from insertion of finite
element discretization into the variational formulation. General form of

the equations for an increment is |

[K]{q} = (P} (4.25)

where [K] is the stiffness matrix which is dependent upon the history of

deformation and {q}, {P} are, respectively, the increments in the generalized
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displacements and 10ads. Often, the stiffness matrix is written as the

sum of a 1inear and a nonlinear component

[K] = K}, + [K] (4.26)

If the stresses and forces at the beginning of an increment are not in
equilibrium, an additional 1oad term has to be introduced (Hofmeister,

1971). 1In that case,
([K], + [K]py Q) = {P} + {E} (4.27)

Here {E} represents the initial equilibrium error term.

In developing a matrix formulation using the finite element method
in conjunction with the principle of virtual work, Stricklin (1972) ob-
tained

[K14q} = {P} + {Q}; + {Q}y (4.28)

This formulation is based on additive decomposition of the strain tensor
into elastic and plastic components as well as into linear and nonlinear

components viz.

- 1] " = L 'l

The stiffness matrix [K] is based on the linear part E%j of the strain

tensor, E;j are the components of the plastic strain tensor and E?% are
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the components due to geometric nonlinearity, {P} are the external loads

N
ij

respectively. Assuming a linear relationship between the symmetric Piola-

and {Q}I {Q}y, are pseudoforces reflecting the effects of EiJ and E,
Kirchhoff stress tensor and the elastic part of the strain

G54 = K'ijklsk] (4.30)

The component of {Q}I corresponding to q; is, using the reduced form for

strain components

Q) = [ & D& (4.31)
v
o

Similarly

Q= f(Ek PaEl * EPaR) (4.32)

Here the differentiation is with respect to q; and Vo is the volume of the
initial body. The incremental form of Equation (4.25) is (Stricklin, 1972)

(K1 + [K]; + (1] ) 4@} = (B} (4.33)
where
f(Ek g%ED * B Bkl eV (4.34)
and
) L N M L M. ML N
(kishw = S (B, 08y 3 Y EGPEr,  t EL %R, Bk, iRa By )av
Yo (4.35)
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‘4. SOLUTION PROCEDURES

Procedures for solving the nonlinear equations arising after finite
element discretization may be divided into two groups viz.,
i. Direct methods
1. Initial-value methods

a. Direct Methods

Direct methods of solving nonlinear equations generally use the Newton-
Raphson Method or one of its variants. Almroth (1979) has reviewed some
aspects of this approach. Writing the iteration scheme in the form

(M) < giln) (4.36)

the search is for the fixed point of G. Various procedures differ in the
choice of G. In the basic Newton-Raphson method

ax™ = (M _ (e(my 7 (m) (4.37)

(n)

where r is the force residual for the nth approximation, i.e.
AL UL ML (4.38)
where P is the forcing vector in the nonlinear problem

Kq = P (4-39)
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Evaluating the quantity Ax(") = (K("))']r(") represents solution of a
system of equations at each step. For this reason the method can become

(n)

expensive. Also K may be ill-conditioned. The modified Newton-Raphson

Method uses a constant reference matrix Ko and may be written as
ox{™ = x(M) gk )Teln) (4.40)

The reference matrix Ko may be the initial stiffness as shown in Figure 18
from Haisler (1970) or some other matrix with suitable properties. For
example, to improve the conditioning of the matrix ite diagoral terms may
be suitably increased, i.e.,

ex(™ - x(“) - (K, + uI)']r(") (4.41)

Here 1 is the identity matrix and u is a scalar suitably chosen for well-
conditioning. Felippa (1976) proposed a formulation

Gx(") = x(") - w(“)(Kb+ uw("))']r(") (4.42)

where w(") is chosen automatically for optimal efficiency. The residual

is assumed to be a linear function of w(") i.e.

LI w(")rgn) +(1 - w("))rén) (4.43)

(n)

where ry r(") are residuals corresponding to w(") =1 and w(") =0

0
respectively. Minimization of ||r(")|| with respect to Wi yields
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qo dl q‘ q
a. Newton-Raphson Method

® d q
b. Modified Newton-Raphson Method

Figure 18. Newton and Modified Newton Method. (Haisler, 1970). |
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where

Automatic correction is time-consuming. For this reason Schmidt (1977)
suggested choice of w(“) as a function of condition number of K.

Success of the iterative procedures depends upon the rate of conver-
gence. Yamamoto (1973), among others, investigated convergence of itera-
tive solutions for elastic-plastic continua and proposed a scheme to
accelerate convergence. Convergence is assured if the mapping G is con-

tractive, i.e. if a < 1 exists such that
[16x - Gy|| <a ||x - y]] (4.45)

in some norm, the system x("+]) = Gx(") converges. To check if a
given scheme is indeed convergent one method, used by Sandhu (1974) for

time-domain solutions, is to evaluate

o = IIX("*‘) - X(n)ll

4.46
™ T (4.46)

If the correct solution is x, G contractive implies
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. Hence,
: (0 - @™ - x 1 <a 1RO e ]
. sa |Ix(™D My (gan

Hence,a < .5 1s sufficient for convergence. In case o exceeds .5, the
increment is reduced (halving) and if a is extremely small, it is alright
to increase the increment (doubling) in the next step. Thus, the size of
the increment is automatically designed to ensure convergence. Almroth
(1979) reported an automatic procedure in which the increment size is
determined from the iterations requirved for convergence in the preceding
increment. In situations of rapidly changing behavior, this may not be
fully effective. Sandhu (1974) would use the information from the pre-
ceding step only as the first estimate to be checked, after three solu-

tions are available and, if necessary, reduced.

If the system is known to be convergent, the process can be accelera-

ted. One such procedure was proposed by Boyle (1973) based on Jenning's
(1971) modification of Aitken's 6°-method.
Another iterative procedure (e.g. Sandhu,1973) is analogous to modi-

- fied Euler Method. It is based on the existence of a mean stiffness Ig“
’ for the increment such that

q

4 Kpd = P (4.48)

}

l_
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gives the exact solution for the incremental displacements. It is

assumed that
Km = aKo + (1 - a)Kf (4.49)

where Ko. Kf represent the stiffness at the beginning and the end of the
increment and a [0, 1]. For a = 1 we have the purely incremental (ex-

plicit) technique and for o = 0 the scheme is totally implicit. Generally,
a is assumed to be 0.5 though it is possible to optimize it following

Yamamoto's (1973) method. An alternative is to assume K to be the stiff-
ness corresponding to the mid-increment values of the displacements
(Argyris, 1966; Felippa, 1966; Akyuz, 1968; Sandhu, 1973). The method
is illustrated in Figure 19. For parabolic variation in the solution,
the midincrement stiffness is identical to the mean of the slopes at the
ends of the increment. Thomas (1973) proposed use of the average value
of the solution from these two procedures. The error in the solutions

was shown to be

9§ - 94
qilmeani

€ = %-maxi (4.50)

where {q'}, {q"} are the solutions from the two procedures and {qmean}
the average of the two. For material nonlinearity, to allow for an
element going from the elastic to the plastic state during an increment,
Marcal (1969) proposed choosing o as the proportion of the load increment
needed to the onset of yield.

To economize on computational effort, Sandhu (1973) proposed a two-

level iteration scheme. For each iteration, a local iterative process
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Figure 19. The Mid-Increment Stiffness Method
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for each iteration was carried out to convergence assuming no changes in

the displacement increment solution. The unbalanced element stresses
were included as additional loads in the next iteration for the system
(Figure 20). Singh (1975) proposed an improvement on this procedure.
For cases where the local iteration converged slowly, or not at all due
to very low stiffness, the strain in the element would be scaled down
and the element assumed to deform incrementally to the calculated value
of strain. For problems where plasticity is confined to a local region,
the procedure has been found to be very successful.

Admitting variable increment size, each increment can be designed
to correspond to an element passing from the elastic to the plastic stage
and/or to meet the requirements of convergence discussed earlier. A load
increment can be "scaled back" for this purpose (Zienkiewicz, 1969;
Stricklin, 1971; Sandhu, 1973). If for any element, f] = f(éij) <0

and f, = f(Bij + 6ij) > 0, let r be such that
f(aij + r&ij) =0 (4.51)
Assuming linear variation in f, a first estimate is
ryoso—t (4.52)
However, to allow for nonlinearity of f in r, Nayak (1972) proposed

fa
r=ry - 37 5 (4.53)

E. !
aoij ijk17k1
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increment
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of stresses evaluated
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Figure 20. Local Iteraticn with Stiffness Based on Midincrement Stresses.
Unbalanced Stress is Added to the Next Load Increment.
(Sandhu, 1973)
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Here Ei] is the strain increment assuming elastic behavior during the
increment. Sandhu (1973) would solve Equation (4.51) for the smallest
positive value of r less than one. The least value of r among all elements
having f] < 0 and f2 > 0 is the ratio governing the scaling back of the
load increment. Using variable increment concept, Sandhu (1973) would
apply all the "remaining" load at each incremental step and then scale
back as necessary. This incorporates an automatic equilibrium check at
each step and automatically uses the largest possible increment consistent
with convergence and other constraints. Tracey (1979) determined the
increment size by a process of iteration requiring convergence of a scheme
based on Equation (4.49) and a constraint on the magnitude of the incre-

mental displacement solution.

b. Initial Value Methods

The problem of gradual loading of a structural system is an initial
value problem. Both single-step and mul tistep methods have been used.
The single step methods are often similar to Euler's method. The "tangent
stiffness", i.e. stiffness based on the state of the body at the beginning
of a load increment, is assumed to apply throughout the load increment.
The incremental solution tends to drift away from the correct solution
due to error accumulation (Figure 21). A sequence of solutions with de-
creasing size of the load increment is needed to estabiish the correct
solution. The number of load increments has to be quite large and as at
each step the stiffness changes, the solution process is generally expen-

sive, The incremental equation is

Kq = P (4.25)
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Figure 21. Drifting in Incremental Stiffness Procedure
(Haisler, 1970)
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Separating K into constant and displacement-dependent components K', K"

respectively
K=K +K" (4.54)
Then, Equation (4.25) may be written as
K'q = P - K"q (4.55)

In early work, it was customary to use K“é on the right hand side as the
load equivalent to initial strain, i.e. corresponding to the plastic
strain from the previous increment. This procedure was used, among others,
by Gallagher (1962), Argyris (1966), Isakson (1967) and Armen (1970).
The process was slow to converge with reduction in size of the load in-
crement. Isakson (1967) suggested use of an extrapolated value for the
initial strain. An immediate improvement is the use of an iterative pro-
cedure in which K"q is based on a mean value of the plastic strain effect
during the load increment. Baker (1969) used this approach which essen-
tially amounts to a Modified-Euler method for the increment. Even with
the use of acceleration techniques, convergence was very slow and uncer-
tain. Use of variable increment techniques based on convergence needs
would be much preferable.

Hofmeister (1971) introduced incremental equilibrium check into the
formulation (Equations (4.21), (4.27)). Figure 22 from Hofmeister shows

the effect of the check. Without this correction the displacement solution

would be 62. With the correction the solution q, is close to qu) the correct
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Second increment without
equilibrium correction

Second increment with
equilibrium correction
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- Without Equilibrium Correction.
L (Hofmeister, 1971)
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solution. The procedure represents single step Newton-Raphson method at
each increment with the error included in the remaining load. A multi-
step Newton-Raphson within each load increment, would further improve
the accuracy.

Mul tistep incremental procedures have been used. Richard (1969)
implemented fourth order Runge-Kutta method.

Oden (1973) wrote the nonlinear equation in the form

f(q, p) = 0 (4.56)
In incremental form:
s of o  Of & _
f = sa-q + 5B-p =0 (4.57)

Haisler (1970), and Stricklin (1971) introduced two forms of self-
correcting initial value formulations as follows. Consider the incre-

mental equation
K'g=P-Kq=P-4Q (4.58)
along with the imbalance of force
f=P-Q-K'g (4.59)

Combining the two, for u a scalar

(K' + K")§ + uK'q = P + pP - uQ (4.60)
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or, i
K'(§ +uq) = P+ uP - (Q + Q) (4.61)

For p = 1 the formulation reduces to Hofmeister (1971) and Stricklin
(1970). Differentiation of Equation (4.58) and adding linear combination

of f and f leads to the second formulation
K'Y§=-0 + uf +wh (4.62)

This is an equation for damped motion and can be solved by standard
methods, e.g. Houbolt method with four point backward difference form

for § and three points backward difference for q. Both the formulations
are self-correcting i.e. incorporate equilibrium check and any error will
decay. Success of the scheme depends largely on the choice of the damping

coefficient (Oden (1973)).

c. Displacement Incrementation
As the nonlinear system approaches instability, the ratio for scaling
down on the size of the increment from convergence considerations will
decrease till, theoretically, no matter how small the increment there is
no solution. This stage corresponds to singularity of the stiffness
matrix. Bergan (1977, 1978) related the increment size to a “current
stiffness parameter." This essentially is a rough measure of the con-

ditioning of the stiffness matrix and would automatically control the

increment size. Near instability, displacement incrementation must re-

place lToad incrementation till the system is again well conditioned.
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& The displacement incrementation must, obviously, be in the space of the
Ei eigenvector(s) corresponding to the vanishing eigenvalue(s). Argyris
(1966) and Pian (1971) proposed incrementing displacement components as
E} independent variables to determine the 1oad increment size. Zienkiewicz
Ei (1971) admitted a pattern of applied loads in the scheme assuming the
increment to be small enough to permit superposition. Haisler (1977)
described a procedure for displacement as well as load incrementation

?l based on his self-correcting procedure. The incremental equation is

K = P + E (4.27)

Assume increment éi is to be specified. Then, subscript 1 denoting

the parts of K, q, P, E after deletion of ith components,

K]]q] = P] + E] - K]iqi (4.63)
and
Kiqdy = Py + Ej - Kisdy (4.64)
Solving (4.63)
9, = A+ A8 (4.65)
where A is such that ﬁ]= iRland
K]]A = E] - K]iq'i (4.65)
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and
K”B = P.I (4.67)
Substituting Equation (4.65) in (4.64) and solving for i
c
E; - Ki:Qy - Ki7A
* i iy il
. A= Kiiﬁ-- 1 (4.68)

Equation (4.65) now defines &i. This procedure avoids the solution of
non-symmetric equations. Bergan (1978), using his current stiffness
parameter to define the stage at which displacement incrementation would
replace load incrementation, proposed the increment to be proportional

to the incremental solution for the preceding step. This, for sufficient-
ly small steps. would be quite close to the eigenvector corresponding to
the smallest (in absolute magnitude) eigenvalue. To control drift, the
size of the increment must be kept small. Evidently, iteration for

equilibrium has no meaning in the vicinity of a stationary point.
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SECTION Vv
SUMMARY AND RECOMMENDATIONS

The finite element method is a powerful tool for approximate solu-
tion of engineering problems. Several investigators have applied it to
the problem of cyclic plasticity with varying degrees of success. We
note here specially the recent work by Armen, Dafalias, Eisenberg, Jhan-
sale, Pifko, and Sharma. A satisfactory procedure must be based on a
correct definition of strain displacement relationships and simulate the
stress-strain-yield behavior of the metal under cyclic and non-porportion-
al loading. Also the numerical procedure must be economical to use and
yield results of sufficient accuracy.

In this report, all the three components of the analytical proce-
dure have been reviewed. It appears that the incremental formulation for
finite strain must be based on the total Lagrangian formulation and not
on the incremental Lagrangian formulation except in cases of infinitesi-
mal deformation when the distinction between various incremental formula-
tions disappears.

Cyclic plasticity tests indicate that a saturation state is achieved
after a few cycles. Also, models based on purely kinematic or purely
isotropic hardening are inadequate. For satisfactory modeling a combina-
tion of isotropic and kinematic hardening is at least required. Theories

of rate-independent materials cannot model frequency-dependence of cyclic
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hardening in a low-cycle fatigue test. This emphasizes the need for
viscoplasticity theories admitting rate effects.

Using rate-independent incremental theory of plasticity, we note
that convexity of the set of elastic states is a reasonable postulate
and the form of the initial and subsequent yield surfaces must satisfy
this requirement. Fairly general mathematical models currently exist.

To describe nonlinear hardening, the mechanical element overlay and Mroz's
piecewise linearization with fields of hardening moduli have been found to
be successful. Jhansale and Dafalias introduced continuously varying
moduli. Lamba's experimental work on non-proportional loading supports
this approach.

In setting up constitutive relations for incremental plasticity,
there has been some confusion due to the fact that the factor A can be
determined several different ways. Here we note that the formulations
using the consistency condition in addition to normality or linearity
would be preferable. A strain-space formulation of the type proposed by
Felippa is now in common use. The incremental formulation is referred to
the last load reversal and the state variables are defined by the last
significant event. This is in line with the experimental evidence that
the influence of prior history is wiped out by a plastic deformation of
sufficient magnitude.

The finite element solution process may be either incremental appli-
cation of Newton-Raphson or other iterative (implicit) procedure or an
initial value technique with equilibrium correction. Some investigators
believe that the Newton-Raphson method is inadequate to allow unloading

(1oad reversal). However, when used with variable increment procedure
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as well as displacement incrementation where necessary, the Newton-Raphson
or other implicit methods ought to be satisfactory. Bergan's method of
displacement incrementation appears to be the best candidate.

Survey of existing finite element models of cyclic plasticity response
has shown that none of the currently available models incorporates all the
desirable features and avoid the errors and shortcomings described above.
To develop the technology for prediction of strength-failure of fasteners
under cyclic plasticity environment, further work is indicated in three
distinct yet inter-related areas. Evidently, there is the need for collect-
ing more information on metal response under non-proportional cyclic load-
ing and on its mathematical modeling. Secondly, it appears necessary to
implement the available knowledge of material behavior and efficient solu-
tion techniques in a suitable finite element analytical procedure capable
of handling plastic deformation in two- and three-dimensional situations.
Lastly, using the finite element method to establish local plasticity his-
tories under cyclic loads, cumulative damage criteria need to be estab-
lished for prediction of local fatigue damage and its influence on fastener

life.
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