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SECTION I

INTRODUCTIONS

Many failures of fasteners used on aerospace structures have been

attributed to progressive damage under cyclic operational loads. Study

of low-cycle fatigue and failure of'the fastener metal as well as analysis

of the range of stress/strain the metal is subjected to during the Oper-

ational life of the system have, therefore, been extensively studied.

To establish the spatial and temporal variation in the stresses and

strains in the fasteners, models of mechanical behavior of the metal as

well as methods of solution of the boundary value problem have been de-

veloped. The finite element method has been extensively used' to obtain

approximate solutions and several mathematical models have been implemented

in finite element schemes.

Mathematical theory of plasticity has developed quite rapidly over

the last 30 years or so and a large volume of literature on the sub-

ject has accumulated. Several surveys have been attempted covering various

topics. Some of these discuss phenomenological observations and mathemat-

ical modeling of behavior (Morrow,1965; Lin,1971; Sandor,1972; Knets,1972;

Mroz,1973; Jhansale,1973; Krempl,1974), some address finite element solu-

tion procedures for nonlinear problems (e.g. Stricklin,1972, 1973) and

still others cover the mathematical modeling as well as the solution pro-

cess (e.g. Armen,1972, 1979; Katona, 1978; Dafalias,1975; Jhansale,1977a).

1



The present investigation was motivated by the need to study cyclic

plasticity response of standard aerospace fasteners within the context

of finite element analysis. Accordingly, available literature on mathe-

matical models of plasticity along with their implementation in finite

element procedures was reviewed. To limit the scope of the investigation,

only models of rate-independent plasticity based on the existence of a

yield surface ind incremental (rate-type) theory of plasticity have been in-

*i' cluded. Undoubtedly, a more comprehensive review would also cover cyclic creep,

plasticity theories without a yield surface, models of low-cycle fatigue

damage, respo)nse to a random cyclic loading, thermodynamic considerations

in plasticity theories, experimental investigations and other topics rele-

vant to the response of fasteners to cyclic loads.

Section Ilof the report introduces certain definitions and basic con-

cepts including a, discussion of typical response of metals to cyclic loading.

. In Section II, mathematical models of plastic behavior of metals are re-

viewed and Section IV covers the finite element implementation of certain

*. models.

2
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SECTION II

PRELIMINARIES

In this section we introduce certain notations and definitions that

are repeatedly used in the remainder of the report. These include de-

scription of deformation and stress as well as certain notions about stress

and strain potentials.

.1. STRAIN AT A POINT

Let the motion of a body be referred to a fixed system of rectangular

Cartesian axes. Let the position of a typical material particle in a ref-

erence (undeformed) configuration be denoted by coordinates Xi, i = 1, 2,

3 and in the current configuration by xi. We assume that xi is a suffi-

ciently smooth function of Xi and the time variable t. We assume further,

in accordance with the principle of material impenetrability, that xI is

single-valued. Thus,

' xiXt, t) (2.1)

and the deformation gradient F exists such that

F = X .j; det(Fii) ) 0 (2.2)

Here xi j aX.

3
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The Cauchy-Green measure of deformation c is defined by

1ci = Xk,i k,j (2.3)

We define a symmetric strain tensor Eij by

E.j= -. (ci - (2.4)

where 6. is Kronecker's delta. Introducing a displacement vector ui

through the definition

ui =x "X (2.5)

the components of the Green strain tensor are

E. (u + U + u: :2 EiJ =- , J ui Uk~Uk~j)

.(2.6)

- u(ij) + 1 Uk,iUk,j

Here parentheses around a pair of subscripts denote symmetry with respect

to these subscripts. In cases where the gradients ui j << 1, the strain

components may be approximated sufficiently closely by

j Uli,j )  (2.7)

Equation (2.7) applies for the linear theory or infinitesimal strain

i4
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theory and Equation (2.6) for finite strains, Because of symmetry, both

E Ei and eij are completely defined by six components. The three invari-

ants of strain are

I I ( E kk

12~ (ijij E ki (2.8)

-3 6 1 (2EtjEikEki . 3EijEjiEkk

+ EIIEJjEkk)

* In terms of eigenvalues Ei of the strain tensor (principal strains)

11 E I + E2 +E3

1 2 a E]E 2 + E2E3 + E3 El (2.9)

13 - E1E2E3

The straindeviation tensor eij defined by

etj E - E kk (2.10)

is a symmetric strain tensor with invariants

5



*1
1 2 -f etjeij (.1

I3 -eie e3 ijjkeki

The invariant 1 is a measure of volumetric deformation. Thus, Equation

(2.11) will apply to the case of materials with no volumetric deformation.

The strain deviation tensor is defined by five independent quantities.

Often, the complete strain tensor is represented by I1 and the strain

deviation. Other measures of strain have been used. These include the

use of convected coordinates and updated Lagrangian strain. Yoshimura

(1962) used a generalization of the logarithmic strain as a measure of

the strain history.

2. STRESS AT A POINT

The symmetric Cauchy stress tensor Ttj is defined by

ti T1,inj  (2.12)

where tt, nj are components, respectively, of the traction vector per

unit area and the unit normal to surfaces in the current configuration.

The Cauchy stress tensor is related to the symmetric Piola-Kirchhoff

stress tensor, or the material stress tensor a as

T Ti [det(Fmn)] 1 FikFjlakl (2.13)

*-
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Under orthogonal transformation of the reference frame, the Cauchy stress

tensor transforms as

j QkklQj(2.14)

where Qij is a proper orthogonal transformation, i.e.

i1 Qjk " k (2.15)

Under the same transformation, the symmetric Plola-Kirchhoff stress tensor

is invariant, i.e.

ii j t (2.16)

In the case of small deformations, I.e., u 1 j << 1, the distinction be-

tween Tii and atj may be negligible.

As in the case of the strain tensor, the symmetric stress tensor is

uniquely defined by six components. The three invariants of stress are

I .~ Okk

J1 2a
* IIJ2 (c "Y i (°CYJ kk (2.17)

1 i -kk
J3" (2a0alkk 3atatk
+ oitajkoki ij i

7



In terms of principal stresses ai (elgenvalues of ati) the invariants areii
1 l + a2 + 0

1 2 3

J2 =a 12+ 0203 + '301 (2.18)

j3 1 23

The stress deviation tensor sl is defined by

ii li 1 (2.19)

The invariants of the stress deviation tensor are

" J1 =0

'2 25isijs (2.20)

.4. * 1
J -s s S
3 3 ijsjk ki

i.e., the stress-deviation tensor is uniquely defined by five quantities.

Often the complete stress tensor is defined by J1 along with the stress

deviation tensor sij.

3. STRESS AND STRAIN POTENTIALS

The discussion in this section summarizes some of the concepts pre-

8



sented by Mroz (1973). We start by assuming the existence of potentials

U - U(Ekl) and W - N(Okl) such that

F. 3U l~ lk1k1

ki (2.21)

and

Eki awk (2.22)

It is easy to show that

U = OklEkl W (2.23)

We assume further that U, W are convex, I.e., for states (1) and (2)

u(.XE8) + (1 - X)E ()) S AU(cE)) + (I - )u(E()) (2.24)
k] "kl kl) k U+1 -lUe[) 1.

and

W(X'() + (I - AX)a ()) XW 0~) + (1 -~ A)(2) (2.25)

A consequence of convexity is

U(Ew(4))) (2) 0(1~) 0 (2.26)

Also, convexity implies for states (1) and (2)

(akkl - al)d kl a 0 (2.27)

9
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'(E - E())dakl (2.28)ikl kl ) -k

For state (2) approaching arbitrarily close to state (1), the foregoing

inequalities, along with the definition of U, W imply

/ 2

< ~Jk 6~ , > 0 (2.29)

ai m

(3k~,n60k 6O0n 0 (2.30)Y"': kl am) kl mn

Considering the surface U(Ekl) = c (c a constant) in the strain space, for

states E( 1 ) E( 2 ) lying in this space, convexity implies:'-'kl lying

a'" ()(E 11 1 - En21) • 0 (2.31)

for sates (1)( (2)

Similarly foal) 0 2) on the sui'face W(okl) * constant in thekl kl l

stress space,
.;.:: E(I)(o(1) . (2)

kl kl kl 0 (2.32)

The assumption (2.21) implies a(') is directed along the normal to U(Ekl) =

kl

constant. Hence, Equation (2.31) implies convexity of the interior of U =

constant. Similarly, the interior of W(akl) * constant is convex. The

i • ,set of surfaces U - ct , I - 1, 2, ... , n represents non-Intersecting

similar surfaces each having its center at the origin. The set is ordered

by c .

10* .-



If U is homogeneous of order m, i.e., for any scalar X

UCAEki) XmU(Ekl) (2.33)

we 
have

Eka Ek-ar- - mU(Ekl) (2.34)Ekl kl - Ekl k l

For U homogeneous of order m, its conjugate W is homogeneous of order

k m (2.35)

The foregoing discussion applies if instead of strain measure Ekl

and stress aki we choose any kinematic variables qi and corresponding

force variables Qi such that U U U(qi) and W - 1(Qi) exist with

SW

qt " (2.36)

and

Q U (2.37)

This is the basis for representation of the mechanical state of a body in

the traction space or displacement space. For elastic bodies undergoing

small deformation and with homogeneous strain energy, it can be shown

(Hroz, 1973) that proportional loading on the boundaries of the body in-

duces proportionally varying stresses at each point in the body. Another

case of generalized forces and displacements is the use of man stress and

mean strain (Mroz, 1973) over representative volumes. For non-uniform

stress states, the representative volume should be sufficiently large to

11



represent macroscopic properties and small enough so that variation in

stress can be neglected. Thus, this concept may not be applicable in

regions of large stress and displacement gradients relative to grain size

of the material.

12



SECTION III

MATHEMATICAL MODELS OF MECHANICAL BEHAVIOR

OF ELASTIC-PLASTIC SOLIDS

Mathematical theories are simple models to represent experimental

data so as to be readily applicable to design and analysis. Simplicity

often implies inadequacy and care must be exercised in selecting a model

appropriate to a problem. The actual model must reflect the actual ex-

perimentally observed material behavior to an acceptable extent and still

be easy to implement. In this report we are concerned with elastic-

plastic rate-independent materials. We assume that a yield surface

exists. In this section we define rate-independence of materials and

present alternative decompositions of the strain components. In later

discussion the additive decomposition is, in general, assumed. The

notions of initial and subsequent yield surfaces are reviewed in section

111.3 and the constitutive equations for elastic-plastic materials in

section 111.4.

1. RATE INDEPENDENT SIMPLE MATERIALS

Pipkin (1965) formulated constitutive equations for rate

" independent materials with memory. The subject was also discussed by

Owen (1970), Coleman (1970), Holsapple (1973) and White (1975).

For a simple material the dependence of the stress at any point upon the

entire history of deformation at that point my be represented by

13

I



[ t ]
aij(t) = Fij ( (3.1)

Pipkin (1965) described the strain history Ekl(T), T E ( Q, t]

by specifying the strain path and the rate of traversal of the path. The

length of the strain trajectory was defined as

k 1/12

s f (( ) (3.2)

where Ekl is an increment in the strain. Assuming E1j = 0 initially, and

setting s(t) a S, equation (3.1) may be replaced by

aij(t) = Fi Ekl (S, s(t - T). t (3.3)

For material to be rate-independent, the stress must be Independent of

the rate of traversal of the strain path viz. of s. Hence,

IS

Ct (S) - Fij ( (3.4)

Equation (3.4) expresses the assumption that the stress of any material

point at a given time depends only upon the history of deformation at

that point up to that time without dependence upon rate of deformation.

Theories of plasticity seek simple representation for the effects of

history of deformation.

Following Pipkin(1965) the Green strain measure has been

used in the above discussion. Other measures of deformation used include

14
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the strain representation in convected coordinates and the updated

Lagrangian strains. Yoshlmura (1962) used a generalization

of logarithmic strains as a measure of the strain history. Alternatively,

the formulation could be based on expressing current strain as a function

of history of stress. In that case (Mroz, 1973)

" *ij I# i (() #ij )kl T)

T!L J T -0

Introducing

s ( 1/2 (3.6)

we could write

EUj(S) #j kl (s) (3.7)

where S is the current value of the monotonically increasing function s.

2. DECOMPOSITION OF STRAIN COMPONENTS

The traditional approach based on Prandtl's idealization of uniaxial

stress-strain curve has been to regard the strain increment as the sum of

an elastic and an Inelastic component, i.e.,

E Eij + E (3.8)

Here a single prime denotes the elastic or recoverable part and the

double prime the plastic or irrecoverable part and a superposed dot de-

15
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notes an increment. For rigid plastic materials E! 0. Often it isij

assumed that the stress is linearly related to the elastic part of the

strain, the relationship being independent of history or the mechanical

state. For nonlinear elastic materials this leads to different defini-

tions of E.'. depending upon which definition is used for E!. (Mroz, 1973).13 "3

Eisenberg (1977) distinguished between the hyperelastic and hypo-

elastic definitions of E! In either case, the plastic strain component

would be redefined in accordance with Equation (3.8). Eisenberg (1977)

related these two definitions by an expression which, for the isothermal

case, reduces to the form

66 K 1  kl .. (2) (3.9)

1 ipjq

Here ",,(l) ,11)

Eij :ij " ij

'E - E (3.10)

i, k,.l':"I Ek' ,  1)  = k ij'i j

(2) is such that ip exists with the property

oij P 2 (3.11)

3ij

and

= k1 E kl *2) ) is the specific Helmholtz

16
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* ,,ee energy, qi, i = 1, 2, ... , n are a finite number of measures of

effects of prior deformation history, Kljkl are components of an elasti-

city tensor and cI k(E' ) qi) Is the part of at which is
k1l

temperature independent.

A multiplicative decomposition of the deformation gradient was pro-

* posed by Sedov (1965) and further discussed by Lee (1967, 1968., 1962 1970).

In this

Fi FIk Fij (3.12)

F!k, F. are respectively,the elastic (recoverable) and the plastic (irre-

coverable) deformation gradients. If the material particle is elastically

returned to the unstressed state, i.e. (F~j) " is applied to Fij, the re-m,

sidual deformation gradient will be Fit A justification for this decom-

position was based on the argument that the additive decomposition is not

valid when both the elastic and the plastic strains are finite. Hahn (1974)

and White (1975) adopted this decomposition in development of theory of elas-

tic-plastic solids. Freund (1970) developed constitutive equations using

Lee's theory and assuming a weak thermodynamic coupling between the elas-

tic and the plastic effects. Haddow (1971) developed a flow rule for an

incompressible solid under finite strain.

Green (1971) showed that the kinematic decomposition proposed

by Lee would lead to problems associated with invariance requirements

under superposed rigid body motions in certain cases. It was noted

that Lee had avoided these difficulties by restricting his analysis to

materials which are initially isotropic and have special properties.

In defense of the additive decomposition, it was contended that it was not

17



-. necessary to assign a physical or kinematic interpretation to El. in a
1j

general theory. Green showed that Lee's results can be deduced from

his general theory (1965). Key (1976) showed that underlying Lee's

multiplicative decomposition of the total strain is an additive decompo-

sition (.f the equivalent strain rates. The multiplicative decomposition

was re,:arded as akin to the deformation theory of plasticity in that

total f.,trains are used. Holsapple (1973) pointed out that both decompo-

sitioris are imbedded in the functional theory of plasticity where the

plastic strain is defined from the stress functional. Both approaches

are correct because the definition of elastic strain is arbitrary.

3. THE YIELD SURFACE

a. Basic Concepts

In analyzing uniaxial (or proportional) loading test data, it is

customary to define a yield point as the stress level below whib ,hie

material behaves elastically. In actual tests the transition from elastic

to plastic behavior is smooth and the elastic limit cannot be precisely

defined. Various definitions of onset of inelastic behavior have been

proposed. It has been identified with departure from linearity (e.g.,

Naghdi, 1957; Ivey, 1961; Phillips, 1974), measurable (usually

.01 or .02 percent) nonlinear component of strain, slope of the stress-

strain curve becoming a preselected multiple of the initial slope, inter-

section of the post-yield slope with the initial slope or the ordinate

corresponding to zero strain etc. Haythornwalte (1968) compared various

definitions Illustrated in Figure 1. Because of the uncertainty in loca-

tion of the yield point, theories of plasticity have been developed

18
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E. Extrapolation of post yield slope to ordinate

F. Intersection of elastic slope and definition E

Figure 1. Various Definitions of Yield

(Haythornwaite. 1968; Lamba, 1976)
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(e.g., Valanis, 1971, 1974; Bodner, 1975; Stouffer, 1979) which do not

use the concept of a yield surface.

The uncertainty in the definition of yield point is not too signifi-

cant for monotonic loading. However, in unloading, reloading and cyclic

loading these become important. Assuming yield stress to coincide with

* the limit of proportionality (Figure 2 Point Ao) a nonrecoverable plastic

strain is associated with excursion to a stress level say B beyond this

point. Upon unloading from B the process is elastic and linear up to a

point say Co and then onwards it is nonlinear. Upon reversal from D,

* again the behavior is elastic upto Ao and inelastic thereafter. During

the process the size of the interval of elastic stress states may change

and its mid-point shift. The change in size is termed Isotropic harden-

ing (or softening) and the translation of the center is called kinematic

hardening. Figure 3 taken from Lamba (1976) illustrates some hardening

theories for the case of two-dimensional stress field. If the amount of

-. hardening is proportional to the plastic (nonrecoverable) strain,the stress

strain curve beyond the yield point is linear. In general, the curve is

nonlinear. Figure 2 shows the approximation of a stress-strain curve by

purely isotropic and purely kinematic linear hardening curves. Evidently,

neither of the two models is adequate. A combination of the two is needed,

-. at the least, to describe the actual behavior.

Under cyclic loading, we may assume the existence of a stable state

1i reached after a few cycles or asymptotically. Figure 4 taken from Jhansale

(1977a) gives a classification of cyclic transient phenomena. Essentially,

the saturation state defines a limiting value of stress (strain) amplitude

, for given amplitude of strain (stress) cycling along with a change of mean

20
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Figure 2. Linear Kinematic and Isotropic Hardening Approximation to
Actual Material Behavior. (Mroz, 1973)
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Nonproportional
Stressing

a. Initial Yield Surface b. Isotropic
Hardening

Ol

c. Kinematic d. Slip Theory
Hardening

Figure 3. Some Hardening Models for Two-Dimensional Stress. (Lamta, 1976).
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stress (irrecoverable strain). Koibuchi (1971) noted that hysteresis

loops are similar in shape (Figure 5). Figure 6 taken from Koibuchi

(1971) shows stress-strain curve obtained in an incremental step test

".2 program. Burbach (1971) noted that an hysteresis loop was uniquely de-

fined by the location of its center regardless of prior history (Figure

7). Figure 8 from Jhansale (1971) shows hysteretic characteristics of

normalized mild steel. A description of the stable hysteresis curve is

Nasing's rule. According to this (Figure 9) the ascending and the de-

scending part of the curve, i.e.,B-A, and AB'B are identical but for

change in sign and origin and are obtained from the initial loading curve

OA by doubling the stress as well as the stress range. Jhansale (1971,

1977a) and Sharma (1977) plotted the stable hysteresis loops (Figure 10)

superposed on their lower tips (Figure 11) and noticed that for A-36 steel

Nasing's rule did not apply. Admitting translation of hysteresis loops

along the elastic slopes they matched the curve with Nasing's rule (Fig-

ure 12).

In uniaxial (or proportional) loading, the set of all stress

states is represented by an interval on the real line. Consequently,

loading, unloading, reloading have the obvious meaning. For extension

of the concept to multiaxial or non-proportional stress paths, it is

necessary to define a functional on the six-dimensional stress space to

order this space. In the simplest form,

f(at.) c (3.13)

'q where f is a functional mapping the six-dimensional stress space into

24
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Figure 5. Similarity of Hysteresis Loops (Kolbuchi, 1971).
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Figure 6. Stress-Strain Curves in Incremntal Step Loading.
(Kolbuchl, 1971)
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Figure 7. Hysteresis Loops of Equal Center Poi nt Coordinates with
Different States of Internal Stress. (Burbach, 1971)
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UNOALIZEDO MLD STUL

- Figure 8. Hysteretic Characteristics of Normalized Mild Steel.
(Jhansale, 1971)
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(a) asing's Rule.

skeleton curve

0£

(b)

Figure 9. Cyclic Stress-Strain Curves. (Mroz, 1973)

29



601

30



., II unlL ,tie. I L . . ,, l -,, - J .. - -- . ', *" - " -" .- "-' - - *'. :, ''- . ". -

Ar 1101111.g0 CYCLIC P111ESRAIW CURVE

Isaas$ 40100Io €

0,0

!..

Lowerups. (Jhanale,197731

Figure 11. Stable Hysteresis Loops (of Figure 10) Superimposed on Their
Lower fips. (Jhansale, 1977)
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- Figure 12. Translation of the Lower Ends of Hysteresis Loops Needed
to Match the Doubled Stress-Strain Curve (Non-Masing Behavior).
(Jhansale, 1977)
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the real line. Often, the range of f is the positive interval. Equation

(3.13), for a sequence of values of c defines a family of non-intersecting

surfaces in the stress space. The surface

f(a 1 j) -Ic (3.14)

is called the yield surface. It encloses all possible elastic states

(f(oij) < K). The constant K is a material property chosen such that it

corresponds to the yield stress in a uniaxial test. For ideal plasticity,

K is constant. Corresponding to different definitions of the yield point

in the uniaxial test, different yield surfaces may be constructed for

various choices Of K with the attendant difficulties in modelling behavior

under cyclic stress/strain paths.

Instead of describing the state of a material particle by its stress,

the strain measure could be used. This would lead to the introduction of

a non-negative functional g on the strain space along with a definition

of yield strain. The set of all elastic states then would be

{EijIg(Eij) < 1) (3.15)

where j is the yield strain.

In metals, the yield level K is known to depend upon temperature

and previous plastic straining. Thus, in its general form

f , f(Q, H, e) (3.16)
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*. where Q is a set of quantities describing the stress or load state, H is

the deformation history or a set of measures of deformation history and

6 is the temperature. Using the symmetric Piola-Kirchhoff stress tensor

- for Q, and assuming that the effects of history of deformation are

* adequately described by the current value of the irrecoverable (plastic)

strain E". along with parameters qi,
ij

f = f(aij, E'.j qi, 6) (3.17)

- Assuming the stress ai to be uniquely related to an elastic (recoverable)

strain tensor Eis Equation (3.17) may be rewritten as

f ef(Ei, E6. qiq 0) (3.18)

If the additive decomposition of strain is used, i.e., E = Eij -Eij,

the functional in equation (3.18) is

f(E!j. E'!. qi, e) f(E.j E.j9 ql' o) (3.19)

-4 This is the strain space representation of the functional (Pipkin, 1965;

Naghdi, 1975a, 1975c). It should be noted here (Naghdl, 1975c) that the

initial yield surfaces (Ei'j = 0, qi = 0) in the stress and the strain

space will differ only by a scaling factor representing the transforma-

tion from stress to strain. However, subsequent yield surfaces (E" j 0,

' ql $ 0) will be shifted by E' in addition to any scaling and rotation.
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To allow for the phenomenon of overelasticity resulting in an in-

crease of the yield limit if the state of stress is spatially non-homo-

geneous, Konig (1974) introduced stress and strain gradients as additional

arguents in the functional. The ordering functional would thus be

f - f(aj. Ej, q, 6, Ctyk. E'ijk) (3.20)

:or f K K, where K itself may be a functional of history of deformation

and temperature, defining the yield surface, the set of elastic states

is enclosed by this surface, i.e., for any elastic state f < K. A stress

path is designated as elastic if f < K throughout the path. If f iK to

start with and f < 0, then excepting the origin of the path, it lies en-

tirely in the region f < K. This is.called unloading. For loading f = K

ind f a 0, i.e., the stress point stays on the yield surface

and moves with it. However, the surface itself my expand,

contract, translate, rotate or distort in the space defined by the argu-

ments. These changes are described by changes in the internal variables

q, as well as K. Often, the yield parameter K is included in the list of

internal parameters qi. In that case the ordering function has the im-

plicit form and f = 0 is the yield surface. f < 0 represents the set of

all elastic states.

Due to the uncertainty in definition of yield, different yield

surfaces can be constructed for the same material. To overcome this

lifficulty, Phillips (1965) proposed a two surface theory. The

limit of proportionality was assumed to define onset of yield. In
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addition to this yield surface, an outer surface enclosing the yield sur-

face was defined as the loading surface. In the region between the two

surfaces, an unloading path would produce no plastic strain and, there-

fore, the two surfaces would not change. However, during a loading path

plastic strains would occur disturbing the two surfaces. Through each

point in the region (called metelastic region by Krieg, 1975) betweenF." the yield and the loading surface an unique intermediate loading surface
can be Identified. This implies the existence of a continuum of ordered,

non-Intersecting, loading surfaces. This theory is a forerunner of the

theories recently developed by Mroz (1967, 1971, 1973) and Dealias (1975,

* 1976) on the one hand and on the other, for the limiting case of vanish-

ing set of purely elastic states, of theories without a yield surface.

In the foregoing summary we have used the symmetric Piola-Kirchhoff

- stress tensor as the measure of stress. Other measures have been used.

For instance, Hutchinson (1973) used convected coordinate representation

and set up the yield surface using convected stress components. Freund

(1970), Key (1976), Carter (1977), among others, summarized relationships

between various descriptions of stress. Key compared the use of Cauchy's

stress and the second (symmetric Piola-Kirchhoff stress in constitutive

models for elastic-plastic materials. He concluded that the models em-

ployed in computations while appearing quite different due to the choice

of coordinate systems, are, in fact, very nearly the same.

b. Convexity of the Yield Surface

In the case of uniaxial test, the set of elastic stresses, i.e.,
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stresses below the yield point or between the yield point in direct and

reversed loading is an interval on the real line. Convexity is an in-

herent property of such an interval. In extension of the concept of

yield to multiaxial stress states, convexity may therefore be assumed as

a primitive characteristic of the set of elastic states.

*Naghdi (1960) used Drucker's thermodynamic postulate (1952) to

prove convexity of yield surfaces. Green (1965b) showed that

for the yield surface f s Sk K plastic deformation without

volume straining is possible only if Drucker's stability postulate holds

and the plastic strain rate is normal to the yield surface. Palmer

(1967) showed that convexity may exist even in unstable materials where

the stress falls continuously with Increasing strains. On the other

hand, if the elastic response is nonlinear and is altered by plastic

deformation, nonconvex yield surfaces becue possible for stable as well

as unstable materials. For noncoincident yield and loading surfaces,

convexity of the loading surface cannot be proved (Phillips,

1965) on the basis of Drucker's postulate because the loading sur-

face is changed before it is reached during loading from an intermediate

loading surface.

Pipkin (1965) used Ilyushin's postulate, i.e.. the work

done in a closed cycle of strain is no. -negative, to establish convexity

in a strain space formulation. Naghdi (1975b) considered materi-

als in which

aij Lijk1(lkl "kl) (3.21)
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where L may depend upon history of deformation. Then the assumption

of normality of plastic strains combined with Ilyushin's postulate leads

to the condition of convexity

~ " > -L ilE ll Earn2

mn mn - mnpqEpqmn (3.22)

This condition is less restrictive than Drucker's viz.

amnimn Z: 0 (3.23)

Dafalias (1977) showed that convexity does not necessarily follow from

Ilyushin's postulate in case of elastic-plastic coupling. Justusson

(1966) used loading surfaces enclosing the yield surface which

was defined as the limit of proportionality of stress and strain. For

this case it was found that Drucker's postulate of stability in the large,

i.e., non-negative total work done during loading or non-negative total

work in a closed stress cycle, does not imply convexity of the loading

surface. The modified postulate would require that completely irreversi-

ble portions cannot exist on straight line loading paths between any two

points on or in the interior of the loading surface. Indeed, this amounts

to assuming convexity to exist as a primitive characteristic of states

interior to loading surfaces. It should be noted that the forms of the

functional dependence of yield on stress often used define norms on the

shifted stress space. Convexity is an inherent property of norms.

Convexity of the region enclosed by the loading surface places re-

strictions on the form of the loading surface. Caulk (1978)
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investigated the restrictions on the coefficients in a generalized von

Mises loading surface.

C. The Initial Yield Surface.

The initial yield surface is the yield surface before any irreversi-

ble (plastic) deformation has taken place. At this stage E" 0, qj 0.

Therefore, for the case of homogeneous stress/strain, the yield surface

has the form

f(O K) 69 = 0 (3.24)

in the stress space or

g Ej 8.) 0 (3.25)

in the strain space. If the material is isotropic, the stress (or strain)

tensor may be replaced by its invariants in the list of arguments of f

(or g). Thus, the yield surface is

or, in the strain space,

g(I1  , ,) = 0 (3.27)

In many cases, the yield is unaffected by the first invariant of stress,

i.e., the yield surface has the form

f(J2 , J e, K) - 0 (3.28)

Specific forms of f include the Tresca, von Mises, Mohr-Coulomb and other

criteria (e.g. Davis, 1978).
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For anisotropic materials, Hill (1950) proposed a quadratic function-

al on the stress space as a generalization of von Mises yield criterion.

Assuming incompressibility, Hill wrote

2 2 2 2
Sf =F(a -a ) + G(a - a) + H(ax -y) + 2LO

y z z x x yyz
+ 2Mz  2Na -1 = 0 (3.29)

as the functional for initial yield. For the general case we may write

(Pifko, 1974) 2 2 2
ax2 2 a2  a2  a- T +z + _ Fz -+ - o =0 (3.30)

R S r
Here X, Y, Z are the yield stresses in uniaxial tension and R. S, T, the

yield stresses in uniaxial shear in x, y, z directions. Sawczuk (1959)

considered a piecewise linear yield surface (a generalization of Tresca's

* criterion) in the form
( f(i) = iok

=Akl = = constant, i = 2, ... , n (3.31a)

For principal stress axes coinciding with axes of material symmetry n - 6,

i.e., there are six planes constituting the yield surface. Goldenblat

(1965) proposed a yield functional in the form
f (Li ai)a+( ) a q

iiij ijklijkl + (Lijklmnlaljklamn)y+ ....

(3.31b)

Gotoh (1977) used a yield functional of the fourth order in the form

f= ' ljakxxy t+j +2k 4 (3.31c)

i,j,k

where x, y are axes of material symmetries. A survey of failure theories

of isotropic and anisotropic materials was prepared by Sandhu (1972).

More recently, Boehler (1977) discussed yield of oriented solids.
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d. The Subsequent Yield Surfaces

If the material behavior in an Isothermal process is independent of

history of deformation and depends solely upon the stress level, the

yield condition is

f(ij) - K= 0 (3.14)

where K is the yield parameter. The material is said to be ideally or perfect-

ly plastic. The yield surface is invariant and indefinite plastic straining

can occur at f(oij ) - K - 0 along with f = 0, i.e. the stress point staying

on the yield surface. However, most materials are affected by plastic

deformation. This effect may consist of expansion, contraction, trans-

lation, rotation and distortion of the yield surface.

(1) Isotropic hardening

A material is termed as isotropically hardening (or softening) if

the yield parameter K varies with plastic straining but the function

f = f(aj) is independent of history. In this caSakK in Equation (3.14)

is a functional defined over the history of plastic deformation. Scalar

measures most often used are the work done during plastic deformation

K C/ iji'j(s)ds (3.32a)

0

or the length of the plastic strain trajectory

K * (E" E" )l/ 2ds (3.32b)

0
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Depending upon which of the two measures is used, the material is termed

workhardening or strainhardening. This formulation allows for expansion

tand contraction of the yield surface but not its translation, rotation or

distortion. The formulation also fails to account for Bauschinger effect.

(2) Kinematic hardening

To allow for Bauschinger effect, the yield surface was assumed

(Prager, 1955, 1956) to translate during plastic deformation. Thus, de-

fining aijp the coordinates of the origin as internal variables, the yield

surface is

f( ij -ci j ) -K 0 (3.33)

where K is constant. Admitting translation as well as expansion of the

yield surface, an immediate extension of Equation (3.33) would treat K

as a function of plastic strain history according to Equation (3.31) or

(3.32). For nonlinear kinematic hardening, Eisenberg (1968)

pointed out that this description of the yield surface is not appropriate

for metals insomuch as it would admit a monotonically increasing "modulus"

4 in reversed loading. He proposed instead a form

* f(oij, E'j, K I ) -K o = 0 (3.34)

where K1 is an additional internal variable and K 0 is constant. Mroz

(1967) proposed a more general form of Equation (3.33) viz.
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f - ij)- F(K) = 0 (3.35)

For K to be monotonically increasing, the workhardening definition of K

(Equation 3.32b) has to be modified to

K (oij - Qij) (s)ds (3.36)

0

The reason for this is that if Equation (3.32b) is used, for the case of

the origin lying outside the yield surface the rate K would be negative

and hence K would not be monotonically increasing.

(3) Anisotropic hardening

During loading, in addition to expansion and translation in the

stress space or the strain space, the yield surface may also rotate and/

or distort. Hodge (1956) considered the stretching of Tresca type sur-

faces. Berman (1959) proposed a general theory for distortion

of piecewise linear yield surfaces. Anisotropy in the initial yield

surface, in plastic flow and in the change of yield surfaces due to

loading was considered. However, it was assumed that the principal di-

rections of stresi and strain coincide and remain fixed throughout the

loading process. The only part of the yield surface translating during

loading was the linear segment containing the incremental stress vector.

For the stress point at an intersection of several linear segments, al

of these would translate.

Baltov (1965) generalized kinematic hardening rule to

admit mechanical anisotropy. The generalization accounted for the trans-
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lation as well as rotation and expansion of the yield surface. For the

kinematically hardening yield surface for initially isotropic von Mises

solid, the yield surface was expected to be, assuming incompressibility,

S (s a .)(s.) = 0 (3.37)

where sij is the stress deviation and 8i is the deviation of the trans-

lation aij of the center. This was generalized to

f Nijkl Sii - Oij)(Skl _ Bkl) . K2 = 0 (3.38)

Here Ni are functions of E Admitting an "initial" value Ci

e jkl j aij.jkl
* for Nijkl, Equation (3.38) is equivalent to Edelman's (1951) and to

Shih's (1978) yield function for anisotropic materials. Baltov

followed Rivlin (1955) and expressed Nijkl as a polynomial
in E. Using symmetry and incompressibility conditions, it was shown

that the number of distinct components of Nijkl is only 15. Moreover,

Nijkl was written as

Nijkl =I ijkl + Aijkl (3.39)

where Iijkl is the isotropic term and Aijkl represents the anisotropic

part. For incompressible materials

lijkl - I(6ik6jl + 6ll6jk - ij6kl)3.40)
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and

A. k AE" E' (3.41)
ijkl Ui ki

where A is a scalar function of the invariants of E'. Assuming A poly-
"'13

nomial in Et , noting that for incompressibility E k 0, the simplest

* expression for Atjkl is

A A (ll Ell (3.42),.-: ijkl -o ij kl

The drawback of this formulation is that Atjkl does not depend upon the

strain path but only upon the current value of the plastic strain. The

path dependence is expected to be taken care of entirely by the parameter

K. Also, as noted by Dafalias (1975), the formulation does not account

for initial symnetries and the suggestion that addition of a constant

"tensor of initial anisotropy" to Nijkl will account for initial anisotropy

is not entirely accurate.

Shrivastava (1973) proposed a general theory to admit expan-

sion, translation as well as rotation of the yield surface. These would

explain hardening, Bauschinger effect and mechanical anisotropy. For an

initially isotropic solid the dependence of the yield function on aij, E

can be replaced by their tnvariants. To admit coupling the simultaneous

invariants were used. Thusthe yield surface is described by

f(lis J1 , KA, K) = 0 (3.43)

i =1, 2, 3
A = 1, 2, 3, 4
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Here Ii, J. have the usual meaning, the simuleaneous invariants are:

K1 =ijEij

K = 0. .0.
2 ij jk ki

3(3.44)

K K3 = ijEJk Eki

K4 = 'ij jk klEli

and f is a polynomial in its arguments. Restrictions on the admissible

arguments in Equation (3.43) were developed. For instance, in the case

of initially isotropic materials, for incompressibility, a sufficient

condition for normality of plastic strain increments to hold is that f

be independent of I, Jil J3 K29 K3  K4, i.e., the yield surface has

the form

Mf(12 ' j2 ' ( 13) " K= 0 (3.45)

Because 13 changes sign whenever E'j reverses, 13 must occur in even

powers. Hence, for small strain theory, its effect would be negligible

* leading to

7
f(I2 J2, K1) I K = 0 (3.46)
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For initial yield as E =i 0, Equation (3.43) specializes to the form

f(J 1 , K) =0 (3.47)

in general and

f(J 29 K) =0 (3.48)

for the special case of initially isotropic incompressible material under-

going small deformation. Tresca criterion arises using

2 2 J3 + 2  6
f =a Jt + a J + a J + a J + a iC = Z0 (3.49)

Writing

f = a 1J12 + a 2 12 + a3K A _K
2  0 (3.50)

leads. for appropriate selection of coefficients to

f 2 1 2 - 2cK1 I K 2 0 (3.51)

or

f a (S~ - aij )(s.1 i- Iij K K2 =0 (3.52)

where

lj-cE~ (3.53)

This is the form for kinematic hardening where the initial value of Oi
is zero.

Using only linear and quadratic terms in J29 129 K1, for suitable

choice of coefficients
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f = (sij - ij)(s1 j - ci ) + Alctal(Stj - atQl(kl -.. 1 - K 0ii Ii 13ioklsi "j (sk Okl =

(3.54)

This is Baltov's formulation (1965) for anisotropic hardening.

Including K4 , for an appropriate choice of coefficients in the poly-

nomial of second degree in stress and fourth degree in strain, Svensson's

formulation (1965) is realized where

f = N1jkl(S1J - cit)(skl - 2kl) - = (3.55)

Another choice of coefficients yields Yoshimura's (1959) formulation viz.

f=Nijkl ijSkl - as I E"j K 2 0 (3.56)ijklii l i

Second order phenomenon, e.g., axial strain accumulation in cyclic

torsion can be accomodated in the formulation by either admitting slight-

ly nonsymmetric behavior during stress reversal or by introducing non-

analytical forms characterized by edges.

Stating f as a polynomial in all the ten basic and joint invariants

of s and a for a suitable choice of coefficients,

f- (stl - tji)lsij - cti) + a(stj - aj)lSjk- mjk)lSki - cki)

-!K3  0 (3.57)
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For - eE3 , this is the same form as proposed by Freudenthal

(1969). Shrlvastava proposed a generalization to

f - [(s.t - tij)(Sij - CI)]3/2 + a(sjj - atj)(Sjk - ajk)(Ski - cki)

K3 0 (3.58)

Phillips (1974) found that during loading, the dimension of the yield

surface lateral to the stressing direction in the stress space did not

change, and the distortion was such that there was no cross-effect. The

distortion was more pronounced in the "forward" region of the surface
during the loading process. Phillips also noted that considering loading

paths in stress space, upon loading to a certain stress point followed by

immediate unloading, the yield surface did not pass through the prestress

point. Also, repeated loading to the prestress point resulted in the

yield surface gradually approaching that point. This was ascribed to

rate effects which though ignored in the mathematical theory are often

present in real materials. Phillips (1975) proposed a mathemati-

cal model describing distortion of yield surfaces as a function of the

history of deformation.

e. Cyclic Plasticity

Isotropic hardening implies that a specimen under cyclic loading will

shake down to an elastic state. Linear kinematic hardening, although

accounting for Bauschinger effect and mechanical anisotropy, predicts a

steady state involving alternating plastic strains after the first cycle.
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r- Actual materials reach a steady cycle of alternating plastic flow after

a certain number of cycles or asymptotically. Therefore, isotropic and/

or linear kinematic hardening theories are inadequate for cases involving

reversed loading, reloading and cyclic loading. In cyclic loading usually

a transient hardening state is observed during which hysteresis loops

change their form considerably. In addition, strain cumulation may occur.

Mroz (1967) proposed a rule of anisotropic hardening in the form of

a piecewise linear approximation to the nonlinear stress-strain curve

realized under proportional loading (Figure 13). This is equivalent to

assuming the existence of a sequence of non-intersecting nested yield

surfaces which, for initially isotropic material, are similar and concen-

tric enclosing the stress-free state. During loading a yield surface

translates, without change in form and orientation, with the stress point.

As the stress point reaches another surface, all the previous surfaces

along with the newly contacted surface would move with the stress point.

However, at all times, the surfaces to which the stress point is interior

would be unaffected. Allowing the yield surfaces to expand or contract

in addition to translation, the surfaces not reached by the stress point

would expand or contract uniformly without any translation.

In another study (1971) Nroz assumed the inmermost surface to trans-

" late without change in size, the outermost to change In size without

translation and the intermediate surfaces to translate as well as expand

or contract to explain material behavior in cyclic loe4 ng. U.4s model

simulates actual observations that the history of plastic pie-straining

influences material behavior but the influence of prestraining is wiped

out by subsequent plastic deformation of sufficient magnitude. This

so
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a. Stress-strain curve in uniaxial loading

b. Stress-space representation: Plane
stress

Figure 13. Approxitmation of Stress-Strain Curve by Portions of Constant
Tangent Moduli. (Mroz, 1967)
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leads to the concept of "last significant event" in the deformation history

such that the material has memory only as far back as that event. A bi-

i-i linear approximation of the work-hardening curve corresponds to two sur-

faces, the inner translating and the outer expanding isotropically.

A "simplified" model proposed by Mroz (1975) for steady

*. cyclic loading with no strain accumulation is essentially a nonlinear

* elastic model with memory of last stress reversal. The three principal

sheering strains are expected to depend upon the corresponding principal

- shearing stresses. The existence of a yield surface is not required.

*i The "skeleton" curve is described by Ramberg-Osgood equation and the

hysteresis curve by Masing's rule.

Mroz's theory Is essentially based on use of a number of ordered yield

surfaces, each Involving a limited number of internal variables associated

with its translation and expansion. In application, the skeleton curve

is plotted as the curve joining vertices of symmetric steady state loops.

. Masing hardening rule applies for reversed loading and reloading. The

material has memory of the largest strain/stress amplitude. Cyclic

straining of smaller magnitude cannot totally erase the anisotropy and

. hardening due to prestrain of larger amplitude.

Eisenberg's theory (1976) for cyclic multiaxial loading was based

*" on combined isotropic and kinematic hardening along with the assumptions

"- that(li) small plastic strains do not modify the macroscopic material

properties; (ii) the memory for the details of previous loading events

is erased by subsequent loading events; and (iii) the effect of such

prior history is described completely by the current values of the plastic
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strain, the length of the strain trajectory and the values of the harden-

ing parameters. For the special case of 304 steel the isotropic component

of hardening disappears after a few cycles and the hardening is purely kine-

matic thereafter. Linear kinematic hardening was assumed. However, the

theory permits extension to more general hardening behavior, e.g., the

non-homogeneous function described by Shrivastava (1973) which

would include distortion of the yield surface associated with cumlation

of strain. This theory is similar to Krempl's (1971) to the extent that

memory is erased by subsequent flow processes. However, the details of

specification of the memory and the representation differ.

Sharma's theory (1977) essentially follows the concept

introduced by Mroz. However, a parameter was introduced to represent non-

asing behavior in. the presaturation stage. The rate of change of this

parameter (yield strength increment) was assumed to be proportional to the

difference between the current and the saturation value. Jhansale's (1971,

1974) suggestion that the nonlinear part of various stress strain curves

is identical to each other and that a change of elastic region is suffi-

cient to yield a good approximation was discussed by Dafalias (1975).

Dafalias observes that Jhansale's theory is applicable only to the data

from fully reversed loadings and is a special case of his (Dafalias') more

general theory.

Krieg (1976) and Dafalias (1975, 1976) proposed two surface theories.

This was a generalization of Mroz's work in that the piecewise linear

approximation of the uniaxial stress curve would be replaced by a continu-

ous model (Figure 14). A set of internal variables associated with abrupt

changes of the plastic loading process (e.g., loading direction) were

53

........



xx

I.

yy-y Y I

a. Hardening and Bounds on Modulus in a-c Space.

YIELO SURFACE

SOUNOING SURFACE

b. Yield and Bounding Surfaces in Two-Dimensional Stress.
(Distance of Stress Point from the Bounding Surface).

Figure 14. The Concept of a Bounding Surface and Plastic Moduli Based
on Distance From the Bounding Surface. (Dafallas, 1975).
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introduced as influencing changes in the yield function (the hardening

process). Both the surfaces are assumed to be isotropically as well as

kinematically hardening. The nonlinear hardening behavior is represented

by a generalized plastic modulus which is a function of the current dis-

tance from the stress point to the bouding (outer) surface and the maxi-

mum distance at the initiation of yield. Dafallas' theory includes

Prager's, Ziegler's, Phillip's and Mroz's rules of kinematic hardening as

specializations. A special feature of this theory is that unlike Mroz's

piecewise linear representation, it provides a smooth transition from the

elastic to the plastic stage for general reversed loading.

Under cyclic loading, plastic strain accumulation can occur. This

cumulation might reach a limiting value after a few cycles or might con-

tinue. The steady state might represent an elastic shakedown state or

steady plastic cycling. Mulcahy (1971), following Mroz,assumed that the

plasticity model comprises a family of convex loading surfaces. Von Mises

yield and Ziegler's linear kinematic hardening rule were used. The rate

of strain accumulation was found to be dependent upon the mean stress and

the stress amplitude, with no strain accumulation for zero mean.

4. CONSTITUTIVE EQUATIONS FOR PLASTIC DEFORMATION

a. Basic Concepts

We assume that a yield surface or loading surface exists in the stress

space, i.e. for given E3', q, defining the deformation history and tempera-

ture 6

f(oij, EjJ. qi, e) 0 (3.59)
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is the yield surface such that for f < 0, there is no plastic deformation.

Also, that changes in the yield surface occur only when EIit qi, 0 change.

Assuming f sufficiently smooth in its arguments,

.af ai + af 6 + Bf i + _.f

3a 3 3qi qi (3.60)

When there is no plastic deformation E.'j, qi vanish and f reduces to the

loading function

Lo' af +i af (3.61)
a ij ae

For f < 0 or f = J but L--5 0 there is no plastic deformation, the yield

surface does not change and the stress-strain relations are elastic.

For f = 0, L > 0, plastic deformation will occur.

If the strain-space representation is adopted, the yield surface is

g(Ek1. E I ' qiq 0) = 0 (3.62)

and the loading function is

N=- 'gE + a. (3.63)

Constitutive relations for the plastic strain as well as the other

internal variables have the form (Dafallas, 1976)

qi= q( akl' 6, k1' 6 qjq j)H(L) for f = 0 (3.64)

- 0 for f < 0
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Here H(L) isthe Heaviside step function with H(O) = 0 and C. are the in-

ternal variables associated with abrupt changes in the loading process

(e.g., change in loading direction). Using the strain-space formulation,

we would have

" e, kl. 4 qj3 &j)H(N) for g = 0 (3.65)

-0 for g < 0 (3.65)

In writing the Equations (3.64) and (3.65) we have included the plastic

strain Ei. in the set of variables qj.

For rate independence qi must be homogeneous of degree one in 6ij

and e. Similarly, qi must be homogeneous of degree one in Ei. and e.

Assuming linearity in lj and 6, following Hill (1950), Dafallas

(1976) proposed

4i riLH(L) (3.66)

i= jLH(L) (3.67)ii

_af j a

Here the factor L a ij + 5- A expresses linearity in arguments

and 6, H(L) assumes &i, E' vanishing for L s 0, Pij is a directional

vector and X, rI are functions of aoj. 0, qi, q 6 j. Green

(1965a) started with the assumption

Ell A ijkl;kl + A 1~ (3.68)
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during loading. As E' = 0 whenever L = 0.
af

(Aiki - ai )kl + (Aij - 4'i a-!) = 0 (3.69)ijkl j ac l j ij ae

where oij is a symmetric tensor function and X is a scalar function of

a E j, qi, e. Equation (3.69) is true for arbitrary values of jkl and
IJ 1

. Hence

Aijkl= XBij al (3.70)

and

A.. X af (3.71)
ij -- e

Hence

a.0 f af
ij= Xij(-kl °kl + -e ) (3.72)

= jL (3.72)
.. J

.* during loading. a1j determines the direction of the plastic strain in-

crement. If this is assumed to be normal to the yield surface (or load-
": _ af

* ing surface), 8. = and

X a L (3.73)

Often L is evaluated from Equation (3.72) as
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L -/vl = c(' / (3.74)
8kl kl

c is the "generalized plastic modulus" in Dafalias's theory (1976).

Substituting Equation (3.74) in Equation (3.66)

q( (E )l/2 (3.75)

n n iii

An alternative to the above procedure is to multiply both sides of Equa-

tion (3.66) by Oij to get

qij rnLH(L)a. (3.76)
n 13 n

r
- T by Equation (3.67) (3.77)7

Hence
-q --n (i)'1 = AnijEj (3.78)

i.e., the internal variables are linear in the plastic strain increment (Equa-

tion 3.78) or in the increment of the plastic strain trajectory (Equation 3.75).

In the strain space formulation, the plastic strain rate as well as

vanish for g < 0 and N < 0 where

N + (3.63)
aEkl kl ae

For loading (g = 0, N > 0),

E"j = ) .gN (3.79)59 5 ij



It should be noted that the conditions of loading in the stress

space and the strain space are different (Naghdi, 1975c).

Assuming the stresses to be uniquely related to the elastic strains

,ijE!. = E'. '

we have

ij El'j qi, o) = g(Eij, El., qi, 6) (3.80)

The loading function in the stress space

L af +a2f ag +
1 ae 13 ae

(E Ell.) +ii

N - -.- V'g (3.81)
As Ei;

As E 0 during loading, L f N and N > 0 does not imply L > 0.

b. Consistency

During loading f = 0 throughout i.e., f = 0. This yields

af af *+ af , ,0 (3.82)
aciae iI 1 E 1 i aqi i

II

We shall refer to this equation as the consistency condition. Substitu-

ting for E'j and from Equations (3.65) and (3.67), Equation (3.82)
4

yields
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I,

L + f X01 LH(L) + f r LH(L) =0 (3.83)

As L > 0 during loading, the above equation implies

af + afI 0 (3.84)

or, equivalently
af afXar- i r (3.85)

For A > 0, we have the inequality

af + af < 0 (3.86)Wt 7 +X aqt

during loading.

If the strain space formulation is used, 0 leads to

2LE +2 - *+a +i =0 (3.87)
aE' ij aE j I ' aqi  Se

Substitution for E" from Equation (3.79) and a similar equation for ;i,

during loading,

I + + g 0 (3.88)

1 + aE aq1

along with the inequality

a + r g 0S1g aq 0 (3.89)
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Inequalities (3.86) and (3.89) impose restrictions on the form of the

functions f and g and on the coefficients appearing in the constitutive

relations (Caulk, 1978).

c. Normality of the Plastic Strain Increment

Assuming normality and convexity in behavior of single f.c.c crystals,

Lin (1971) established normality and convexity for polycrystalline aggre-

gates. In the mathematical theory of plasticity, normality of the plastic

strain increments is often proposed as a primitive postulate. Naghdi

(1960) showed normality of the incremental plastic strain to the yield

surface to be a consequence of Drucker's thermodynamic postulate (1951).

Palmer (1967) showed that normality and convexity do not depend

upon stability in the small. Frictional materials do not exhibit normality

(Drucker, 1951). Assuming that stress is derivable from a potential,

Naghdi (1975a, b) showed that during loading, assuming a single

internal variable K,

3o. __ (3.90)
3E1 El ak Ka-W).kl kl "ij

Further, defining elastic strain Ej_ = - E"., for a.. a function of[i. j1 3 13

iE1I, E kI, K, Naghdl (1975b) showed that

3E . akl 3ckl Y IfE - Ein + -- -b + (3.91). kl mn ij

If stress is uniquely related to E and is independent of E'. and K,

U Equation (3.91) implies
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Y . a (3.92)

I.e., normality holds. Equation (3.92) is often referred to as the

"associated" flow rule.

Mroz (1973) assumed linearity and continuity of the relationship

between stress and strain increments to obtain, for nij a unit vector,

1.l, "G~lkln pq; pq (3.93)

In case nkl is an eigenvector of Gliki.

Gijklnkl --A6 ik6jlnkl = nii (3.94)

:13

and we obtain an associated flow rule viz.

= An npa (3.95)-. iip pq

i.e., normality holds.

Dafalias (1977) set up the formulation in the strain-space. For

this approach

ElI NH(N) (3.79)

and

= r1NH(N) (3.96)
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Eliminating N between Equations (3.79) and (3.96) in a manner similar to

the one that led to Equation (3.78),

i= A WEIS (3.97)!-.:. i kl k

Assume that potentials p, exist such that

(= 0, E'j, qi)

= (E!J, e, qi) (3.98)

along with

oij = -(
,• (3.99)

and r a -k I- + kl + s-k

aqi -qi ' a kkl lk +L*

Legendre's transformation yields
. = ¢(oj. e, qi) - oijEij - (3.100)

= :(a, 1 o, qi) aijEj -( 3.101)

such that

* E + ( E (3.102)

then
E tn (3.103)
Ekl = akl

E'- acy (3.104)

and

A - (3.105)aqi aqi
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1

-~_i (3.106)

Thermodynamic considerations assuming i Is the Helmholtz free energy lead

to

= ( 3.107)•k I Kkl

and

-> r .0 (3.108)
a: q I

Equation (3.108) with Equations (3.79), (3.97) and (3.99) leads to

A Xl A )Xkl (3.109)
aq Aklkl =(k1 -aqi  kl 0

or

(ckl + aqi Akl)Xg kl z 0 (3.110)

Ilyushln's postulate that in a closed cycle of strain designated by path

P, the work done

l = W oiy, idt 2 0 (3.111)

~leads to

:kl uh .k x , > 0 (3.112)

where

SAni
.:i k11J"" aEklaq n  nIJ

q A (3.113)aE;,~i" aErlaqn  ntj

with

M k1jXijnk1 2 0 (3.114)

Here nkl is an arbitrary unit vector in the strain-space.
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A stress-space formulation leads to

":X -kl = XQlij - X > 0 (3.115)

where
2 2-

= LA 6 6 + 316
Qkli = a~jl1 qn  nij ki 1j 3akl;q n (nij

Naghdi's work (1975a, b) is included in Dafalias' more general

theory as a specialization. The general result Dafalias obtained is

a Mg -l 'g 0 (3.117)

aqn nij ijkl 3Ekl aE "qn n ijkl k

in the strain-space. Or, in the stress-space

A -1 af~ (ai + -LAn -)Ql af2 0  (3.118)aqn nij ijkl Ii % q n i

Here Mijkl, 0ljkl are curvatures of i and * respectively. These inequal-

ittes impose restrictions on the constitutive relations involving elastic-

plastic coupling. If there is no coupling, i.e.,

=, 
1 I(kI, 8) + j2(qn) (3.119)

Then

Qklij = 6k161j (3.120)

and Equation (3.115) reduces to

k '~ > 0 (3.121)kl A ckl '
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which is the "normality rule." At the same time the inequality (3.118)

takes the form

(a --2 Ani)f Z 0 (3.122)

For q = E'j, the foregoing results specialize to Green's (1965) and

Phillip's (1966) theories.

Conversely, if the coupling is present, convexity does not follow

from Ilyushin's postulate and normality may not exist. Indeed assuming

only one internal parameter q, inequality (3.118) along with the assump-

tion of convexity and linear workhardening i.e.

leads to

(0 + (I 0 akl aq a1) 0 (3.123)

If normality had been assumed, we would get instead

1 +- 0

For nonlinear flow rule proposed by Mroz (1964) the plastic strain

increment depends not only upon a but also upon the curvature of the

yield surface. In this case normality does not hold in general.

Phillips (1977) investigated the behavior of tubular specimens made

of pure commercial aluminum 1100-0. It was found that E'j was always

normal to the yield surface and when the yield surface becomes tangent to

the loading surface (in the context of a two surface theory) the plastic

strain increment is normal to both the yield and the loading surface.

d. Hardening Rules

Changes in material properties during loading are described by con-
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stitutive equations for selected internal variables. These include,

among others, the isotropic hardening parameter K describing the expan-

sion of the yield surface and a the location of the center of the yield

surface.

(1) The isotropic hardening parameter K

In line with Equations (3.75) and (3.78), the constitutive equation

for the isotropic hardening parameter has the form

= ~(E~.)(3.124)

1

where for work hardening (Equation 3.78)

= Akl (3.125)

and for strain hardening (Equation 3.75)

K = c(E E6,) (3.126)

Here Akl. c are functions of alj Eij qi and 8. Caulk (1978)
combined the notions of work hardening and dependence of upon EL by

assumi ng

*:, Akl =Mklijoij + NklIJE j (3.127)

. This leads to

= Mkl lljlj~k + Nkl IjEll (3.128)
i ri
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Eisenberg (1971) regarded the yield surface as the limit of

proportionality of stress and strain. The loading surface en-

closing the yield surface hardens with plastic deformation which can

occur for points between the two surfaces. The hardening law proposed

had the form

A lil + cLH(L) (3.129)

For a 0 0 this reduces to Equation (3.125). During unloading, for points

outside the yield surface, a - 1. During reloading a S 1. The introduc-

tion of the parameter a would permit K to vary even when 1_1 = 0 i.e. the

loading point can pull the loading surface with it even during unloading.

One way of assigning values between zero and 1 to a is to use powers of

&,0 t I and set a = &n. Choice of the index n governs how close the

formulation is to the one-surface theory. For n the one surface

theory is realized as a -. 0.

For cyclic loading, Mroz (1969, 1971) suggested use of

IAaI = GO - °I

as a function of plastic strain history. Here, if f is homogeneous of

order n in its arguments and K = OP, as represents the limiting value of

a as the steady cycle is reached. IAaj is a decreasing function and has

to be determined experimentally for the prescribed loading.

Existence of a saturation condition requires that ic = 0 after K has

attained its saturation value. Caulk (1978) proposed a constitutive

relationship of the form
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Akl = Ko . Akl(cmn, E) (3.130)

where Ko, K s are the initial and the saturation values respectively, of

the parameter K.

(2) The kinematic hardening parameter aij

Assuming the yield surface to have the form

f(oj - ci.) -K =0 (3.131)

Prager (1956) proposed a rule for the rate of translation in the form

= cEi (3.132)

where c is a constant of proportionality. This is in line with Equation

(3.78). The yield surface was expected to translate in the direction of

the plastic strain increment. If = 0 initially (at E". = 0) integra-
13

tion yields

Oij= cE.j

i.e., the equation for the yied surface is

f(i- cE'j) - K= 0 (3.133)
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This formulation was shown to be unsatisfactory (Shield, 1958)

for subspaces of the stress space. Ziegler (1959) proposed

:ij " (°ij - ij ) ' 1 > 0 (3.134)

along with

af ) 0 (3.135)
ij3011

where E is a material parameter. U is defined by the consistancy condi-

tion which for purely kinematic hardening with the yield surface defined

by Equation (3.131) is

30f - -c =f0 (3.136)
f ;)oij CiJ + TO aij =  

1.16

ar af oNoting that = - and substituting Equation (3.134) for 'Notig t ati ai °i j

fi -0if P(oj - Cij) = 0 (3.137)

Hence

af i,a . i (3.138)

mnc mn

af k1

=C - n (ij - aij) (3.139)
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Equation (3.139) has the form of Equation (3.66), i.e., are propor-

tional to L with the proportionality coefficient a function of the current

yield surface configuration and the stress state.

Combining Equations (3.135) and (3.139) we have

ij ( j )  af ,,ea : .zf (3.140)

i a ' (omn - Cmn) a k

mn

which has the same form as Equation (3.78). We note that Equation (3.135)

follows from the consistency condition (Equation 3.136) for Prager's rule

for translation of the yield surface (Equation 3.132). However, Equation

(3.135) with the consistency equation implies

af af

i.e., the difference between the translation rate aij and the quantity
cE". is tangential to the yield surface. The quantity EL. is thus the

component of a.. along the normal to the yield surface. This relation

completely defines the role of E.

Admitting kinematic as well as isotropic hardening the consistency

condition is

af + af 0
= 3  ij +  aij

By an argument similar to the one that led to Equation (3.138) we now

have
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af _
jj =(3.141)

~n mn

Further if we assume

af
Y = af - (3.142)

ij

Y) (f ;%ij

~n mn

y = 0 implies pure translation while y - 1 yields p = 0 and isotropic

hardening.

For nonlinear kinematic hardening, Kadashevitch (1959) proposed

c i c(E (3.144)

in the hardening rule (Equation 3.132), i.e., the translation of the

yield surface was expected to be a function of the plastic deformation.

Eisenberg (1968) has shown that this is inadmissible and that no

function of the form

f(ij, E'j) - K = 0 (3.145)

73



with K constant or variable can satisfactorily represent stress-strain

curves produced by tensile loading followed by compressive loading of

metals. For such cases a form of the yield function can be

f(aijq E'3  Kl) - KO = 0 (3.146)

where K= constant and K1 is such that

I 1 (EII) (3.147)

A specific form proposed by Eisenberg is

f(o.E" - C(K,)E~j) -K = 0 (3.148)

where K is a constant, c is the kinematic hardening function and KI is

the length of the plastic strain trajectory, i.e.

aij = C(KI)EI - (3.149)

such that

a. K dcEU

II

Noting that here

I=  [V~i1)/2 (3.151)

Equation (3.150) represents a combination of the notions expressed by

Equations (3.75) and (3.78).

Noting that 'I = 1 (El). assuming l 1inear in its argument, Mroz

(1973) proposed
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i= (i (3.152)

where

(K c(KI) + AL El'ci. (3.153)

and Cj are the constants of proportionality between and E ' i.e.

K I = cijE''j (3.154)

To admit strain cumulation, Mroz (1976) proposed

& "( 1)El + d(K1) IEtj (3.155)

where K, is defined by Equation (3.151).

In Mroz's (1967) model based on multiple loading surfaces, the inner

surface has to translate with the stress points in such a way that as

this surface touches the next surface, the two are tangential at the

point of contact. Thus, if

ij- 1 (t) =0
and ( t()) (t+l) 03.156)

f aii - aii +-K --0

are two neighboring loading surfaces f and f +l respectively, and the

stress state is represented by a stress point P on f, the surface f will trans-

late so that it contacts f t+l at a point R where the normal to f9.+1 is parallel

to the normal to ft at P. This parallelism is retained throughout the

translation. The point R on f 1+1 is not necessarily the stress point.

For K ) K of degree n in stress, e.g.

M ((L))n (
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and f homogeneous of order n in its arguments, Mroz showed that the above

relation would lead to

ij - ( 1 - ij

0 (3.157)

In the special case where = ct +I) this equation reduces to Ziegler's
.Ij 1iJ

rule. Like Ziegler, Mroz also defined p by the consistency condition for

constant K, i.e.

f ) = 0 (3.158)

to get af

7-(+I) _(t), af (3.159)

(Okl Al a 'kl

Figure 15 shows a comparison of Prager's, Ziegler's and Mroz's rules for

kinematic hardening. Lamba's (1976) nonproportional loading experiments

on oxygen free high conductivity copper showed that Tresca yield surface

translating according to Mroz' rule inside a stationary Tresca bounding

surface best reflected material behavior. As a further generalization,

the surfaces can be allowed to expand or contract in addition to transla-

tion. Then =K(9 ' (X) where X is a measure of the history of plastic

deformation. In this case

i ij nij - ;

0 - (3.160)
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(a) Prager Hardening Rule

(b) Ziegler Hardening Rule

(C) Mroz Hardening Rule

Figure 15. Kinematic Hardening Rules of Incremental Plasticity. (Lamba, 1976)
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Dafalias (1976) introduced a scalar measure for translation. He

defined

a ijnij = K ij 1/2

= )K LH(L) (3.161)a

where K is a coefficient obtained from the uniaxial test and nij is the

unit normal to f at the stress point. Then

ij uvl k LH(L) (3.162)"j (5k Inkl) t

where v is the unit vector along aij" Consistency condition along with

Equation (3.67) leads to

°',j --(klk)( LH(L)v.. (3.163)

e. The Coefficient X in the Flow Rule.

The coefficient A in the constitutive equation for plastic strain

increment has been evaluated several different ways. The evaluation may

be based ca the following

i. Linear dependence if plastic strain rate
upon the loading function,

Ii. The normality rule,
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ii. The consistency condition,

iv. Strain-space formulation, and

v. A combination of the above.

(1) x from the constitutive equation for the plastic strain Increment.

Considering

"XojL (3.164)

during loading, Dafallas (1976) took norms of both sides to get

1 = c(j j (3.74)

where
1 1

)L(tkl Okl )l/2 T

Is the "generalized plastic modulus." Then

j eii' (3.165)

where

e= (ill' ;'j) 1 / 2  (3.166)

Assuming normality to hold,
af

eij - i

This formulation essentially amounts to writing (Equations 3.74 and 3.166)

X= (3.167)
L
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Introducing

H =- (3.168)

e

* as the slope of the oe , E" curve, where ae is the "equivalent" stress definedee

| as
= 12 (3.169)

Equation (3.167) gives e

= 1" (3.170)
LH ayhe

This approach was also implemented by Swedlow (1966), Marcal

(1968, 1969) and Yamada (1968a, b) in finite element solution procedures.

(2) X from the normality rule.

Drucker (1951) stated the normality rule

E aa x= af (3.171)

and directly took the norm on both sides to get

= e (3.172)

Further, introducing the equivalent stress (Equation 3.169) and plastic

1i modulus (Equation 3.168), we obtain
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e

e / (3.173)

7-7

This formulation is the same as in Equation (3.170) for von Mises material.

It was used by Swedlow (1966), Hroz (1967), Marcal (1967), Marcal (1968,

1969), among others.

Assuming normality to hold, Mroz (1967, 1973) wrote, for the iso-

thermal process when L * ;ij

aa1 jn
ij jnkl 9kl (3.174)

4

Multiplying both sides by t'

'j'j = Xkl (3.175)

Hence,

X = ii ii (3.176)

okl kl

In similar fashion, Haythornwalte (1968) wrote, for the case of generalized

forces and displacements,

SI S

;.: ), _ "i l( 3.177 )

In this formulation, X can be evaluated at every step of the loading pro-

gram from observation on Incremental displacements and tractions without

knowledge of the yield surface.
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(3) Consistent evaluation of X.

The consistency condition is

af ,,l af
L + - + -q 4i 0(3.82)

W ir i j qi =

A. Linearity and Consistency.

if are linearly related to and in turn is linear in L, i.e.

Anijij (3.78)

and

l = XoijLH(L) (3.67)

the consistency condition yields, during loading

X : -I (3.178)

arr- Oij aq Anij ij
1i n

If the hardening rule is

q~~n = An kl'kl3.5

the consistency conditions yields

1 -1
ij + A 1 (3.179)Daf + An af n/

Using a combined hardening rule (e.g., strain as well as workhardening),

82



=AnjE; + An(E'jE'j)I/ 2  (3.180)

In that case, consistency implies

"!-L /(3.181)
IE f 0 + @. (Anijij + An(0

This equation includes Equations (3.178) and (3.179) as specializations.

In Eisenberg's (1971) two surface theory the yield surface

corresponds to the limit of proportionality and the loading sur-

face encloses the yield surface. In that case, for points between the

two surfaces the hardening rule is,

in = Anij + nL  (3.129)

Use of this rule with the consistency condition yields

- A+-Lan (3.182)
af + 1f

3, nij 3q i

B. Normality and consistency

Writing the equation of plastir strain increment as

"* i.e., assuming normality to hold, consistency condition yields
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L + af af q. = 0 (3.183)
R7 A a qi

Hence L + 1L

S-(3.184)

ij ij

For 0. = 0, this is the form obtained by Prager (1949) and Naghdi (1960),

among others. In the general case, writing

+ 2 + L (3.185)

the consistency condition with normality gives

3f_ af af faf Aa L 0
~~L + rL -- - + qnAnjai + LL- A-i a'i; L +0n(316

L 13 j f 1/ (3.186)

Hence + fqn

-"= -- - n) (3.187)
'af + -ifA af + af A a \1J I
13 aq n nij ) 3. aq n -a ac)

The above formulations insomuch as they express X in terms of (L =

ao ;ij f 6) have been (Naghdi, 1975c) referred to as stress-

space formulations. We note that these break down for perfectly plastic

materials where qn = 0 and f is independent of t,"e plastic strain.
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(4) Total strain increment formulation.

Following Hill (1950), Felippa (1966) proposed a formulation de-

signed to express X in terms of the total strain increment E1i" We pre-

sent here a generalization of Felippa's approach.

Assuming Ilj = - l to be linearly related to ;ij as
i j Ii

.j oEikikl (3.188)

we have

=-j E, Ei 1 (3.189); l = EJkltl "EjkIEtkl "4kl

or

a. °ij 3LEL klEkl - kl]  (3.190)

The consistency condition, for a general hardening rule viz.,

= A niE + An(Ei' .J)1/2 (3.191)
n nijlj i iJ

gives

f =af afa ij ij E° i aqn (n

= af Ej"naf [Anil + An 1~l)/2]Ellj -J -li i j n j

(3.192)

Substituting Equation (3.72) for the isothermal case, i.e.,

I " =k~ljaf

i 8i a 1 (3.193)
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and comparing Equations (3.190) and (3.192) we have

f E E a Ek f f An3aii Eijkl kl =TCIi Eijkl - rl aq n k)kI

af A 1~ l'

= B (3.194)

wherer

B= [ f Ef f An[ijkl nq / 1

af A 1/2 a (3.195)
_n n~oijlj a 0. mn

If normality is assumed to hold, a can be replaced by a_ Equation

(3.194) implies

B Ei jkEkl (3.196)

Felippa's formulation Is valid for perfectly plastic as well as hardening

materials. Naghdis (1975c) strain-space formulation is essen-

tially parallel to Felippa's. This is the formulation in common use in

finite element solution procedures (e.g., Pope, 1966; Zienkiewicz,

1969; Nayak, 1972; Sandhu, 1973; and Allen, 1979).
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(5) Other methods.

Yamada (1969) used a rate of work equation along with normality and

additive splitting of the strain increment to set up the incremental

stress strain relations for a von Mises material. Reyes (1966) had pre-

viously used this approach for Mohr-Coulomb materials. These methods

gave the same final equations as Felippa's approach in the cases studied

but cannot be generalized to arbitrary yield surfaces.

Plfko (1974) ard Sharma (1977) used the normality rule in conjunc-

tion with the consistency condition for purely kinematic hardening. The
af

normality condition, Equation (3.171), upon multiplication by yields

IE' = A -f a (3.197)

Instead of directly evaluating X from this equation, it was conbined with

the Ziegler's condition for kinematic hardening with constant K, Equation

(3.135), to get

1 af . af . af af
d aoij ij o -iij @0 oij ac ij

Hence af
Do aij i

x = 1 f f (3.198)Caf af
ac ac

mn nm

where E is the "plastic modulus." This result is imbedded in the more

general formulation, Equation (3.183), and arises as a specialization

afwhen -w= 0 (the form of f independent of history), and a single
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parameter q such that is proportional to plastic strain increment i.e.

qrn lji -2!-j a2 aa k (3.199)

37kl = 
3'kl 3'kl

f. Incremental Stress-Strain Relations

Evaluation of A in the "flow rulen finally leads to the constitutive

equation for f". in the form
lj

elf G(3.200)
j Gijkl ki

or, as is the case in Felippa's formulation

ii ijl kl(3.201)

* Using Equation (3.200), we directly have

i ii = i + ii

z C ijkl kl + Gi Jkl kl

a Ljkl kl (3.202)

where Lijkl = C ijkl + Gijkl

On the other hand, Equation (3.201) is used as follows:
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ii E ijkl1 1 q Ei kl(ikl "- l)

U Et1 k.[El - Nklmn imn

= Eijkl1km61n - MIcklimn]mn (3.203)

Nroz (1973) proposed a more general form of Equation (3.200) viz.

E ln (3.204)i jk G klnpq9~q

from considerations of linearity and continuity. In case nkl is an

elgenvector of Gijkl, we have

Gijklnkl = 6ik 6jlnkl = Ant1  (3.205)

and

= ,ntnpqipq (3.206)

The strain increment is along ntj, tl,. norml to f. In this case, the

total strain increment EUis derivable from a potential W - W(;tj) as

.ij = (3.207)
* ij

where

W a . ijCijkl jkl' oijnij <(0 (3.208)

.,, + 1 (;,jn,J)2 . c ,j.,j .0
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To express stress-rates in terms of strain-rates, a generalization

of Mroz's approach may be stated as follows

E1J 1Ej Eijl;l 'jkl('kl - kld

= -jl~k G klpqnlpqfs n rsJs (3.209)

Multiplying both sides by nlj aid solving for ; ijfn jj

0ij~ij T1 + nfliEikl G
pq pqrs rsuv uv

B BkEk (3.210)

where

B kl I + n E G_ nik (3.211)
pq pqrs rsuv uv

Substituting Equation (3.210) in Equation (3.209)

j EjkEkl lp pq rs r

-E~jl6rl - 1Iirs 3Ers (3.212)

where

G1tr = kpqfqr (3.213)

Equation (3.212) is similar to Felippa's formulation. Further, if

n pq is an eigenvector of kp

Nkr In klBrs (3.214)
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Dafalias (1975) and Sharma (1977) follow the same argument as above

except that their formulation involves a scalar "plastic modulus" and

the plastic strain increment is somewhat different.

Naghdi (1975a) developed relationships between plastic and

total incremental strains on the assumption that stress is a function of

strain history and is derivable from a potential. Thusfor the isother-

mal case,
Z;I~i a~l- at(Ekl Ell , n (3.215)

Differentiation yields

;a. +o aj
a m ~Lkl kltJ Ekl +  kl kl + qn q (3.216)

Assumi ng

A E"

and

E j a (kl 1 13.200)

we have

- a,1 cakl akl] m
E ii Gijkl EM aT- 91 r Ac1  r~m i (3.217)

Solving

E a Mtjkl~kl (3.201)

where

Mijkl Bi,,mnmnkl (3.218)

and
B 6 6 G jkl(-- +ar A (3.219)

ijam im jn ik n ar rn
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.1

Dmnkl = Gnpq 3E (3.220)

This procedure establishes a relationship between the tensors Mijkl and

Gijkl-

g. Restrictions on the Coefficients.

The coefficients appearing in the constitutive equations cannot take

on arbit-ary values. Certain restrictions and interrelationships based

on therniodynamic and/or phenomenological considerations have to be satis-

fied.

Nicholson (1975) noted that the tangent modulus of one-dimensional

stress-strain curves is non-negative and decreases during loading. Also

that during reversed loadingthe curvature changes sign. These properties

were stated in the form

d,- 2, 0 (3.221)

d2a

d 0 (3.222)
75 dEI' 2

These were shown to imply

." E" 0 for a 0 (3.223)

Nicholson proposed a generalization of the inequality (3.223) to multi-

axial states in the form
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Ei j > 0 for *61j " 0 (3.224)

A consequence of this Inequality, along with Drucker's stability postulate

(a t 1 j . 0) and a linear plastic strain rate relationship

iij -ijkl 9d

is seen to be

[ . BEN~ + .. 4k q A mnGmnpq] dM ij a1  0 (3.225)

whenever 6 ] 0. Here we have assumed 4r, the increments of internal

variables to be linearly related to the plastic strain rates. Inequality

(3.223) restricts the choice of the form of the yield surface as well as

the coefficients Antm and G ijki.

Naghdi (1975a) showed that if

*ij a (Ltjkl + KIJkl)Ekl (3.226)

where L reflects the dependence of otj upon Ekl and Kijkl re-whreLjkl a a kEkllre

kl
flects the dependence of atj upon history, i.e..

3E" ILkl +  rklkl [Aj 3~ rkJkpqq
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several inequalities hold for the stress point on the yield surface.

These arise as a consequence of a work inequality over a closed cycle of

homogeneous deformation in the strain space. This inequality, derived

by Naghdi, is

j E )), , 0 (3.228)
(I.i

where E(o) is the origin of the path at time tv. For mij, qij arbitrary

tensors directed towards the interior and the exterior respectively, of

the yield surface

Smtj ktjkl qkl 0

qij k.ikl qkIl 0tkk:0(3.229).mij O~ijkl E)( k,50

B ii ~ui 
I~! Bjkl k <-oS

We also recall here the inequalities (3.86) and (3.89) due to require-

ment of consistency during loading. Assuming stress to be derivable

from a potential, Naghdi (1974, 1975a,b) also established in-

equalities (3.90) and (3.91). These inequalities impose restrictions on

the coefficients appearing in the constitutive relationships. Other

phenomenological restrictions mitht exist, e.g. the existence of a

saturation state under cyclic loading. Caulk (1978) inves-

tigated these restrictions for the case of an initially isotropic, gen-

eralized von Mises, linearly hardening material under cyclic loading to

saturation. We summarize here the discussion for the strain-space for-

mulation as illustration. Caulk assumed
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g(E , Eln K) = 4p2 ekei - 2 lel + celel - K(3.230)

for initial isotropy and no volumetric strains along with the hardening

law

, (2,je1, + ;el1)el (3.231)

K - K S

Here U is the elastic shear modulus and i, include K-I-- as a factor

to ensure existence of a sattration state (Equation (3.130)). Inequal-

ities (3.89) and (3.90) lead to the conditions

+ a + 4vJ > 0 (3.232)

and

+ ai + 4) 2M~~ + ct) + 2 2]en1e" (3.233)

where

Noting that using (3.230), during loading

2
Mklkl = - ( - ,-,ok1,ekl (3.234)

(3.233) becomes

( o +4v)2K: > ( + a, + 4v)2 a ') + O[ a(O, + m) + n-2a)} ]elel

(3.235)
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4
A sufficient condition for this inequality to hold for all K and e" is

•kl
.4

+ n =0 and 02 = 4a (3.236)

Substitution of these values in Equations (3.230), (3.231) yields

9 klkl - K (3.237)

and

= k i  
(3.238)

For anisotropic materials, restrictions on the coefficients appear-

ing in Equation (3.29) were described by Hill (1950). Tsai (1971)

listed the restrictions on the yield parameters in Equation (3.30) im-

posed by the requirement of stability. These are

I l/1(_1 10
x " x y z

S> 0(3.239)
y z ~yz x

z x \z xy

5. MECHANICAL MODELS

Mechanical models to simulate hysteretic behavior of rate-Independent

materials were introduced by asing and.have been developed further

by several investigators. These consist of a collection of perfectly
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elastic and rigid-plastic or slip elements in series-parallel or parallel-

series combination. Introduced by Masing, the parallel-series model

was further developed by Ivlev (1963) and Prager (1966). Iwan (1967) consi-

dered both the parallel-series and the series parallel models (Fig. 16). The

number of elements was assumed to be very large and the element properties

distributed in some fashion. This distribution would define the hysteretic

behavior. In the parallel series model, for a total of N elements, assum-

ing n are in the elastic range and the remainder are in perfectly plastic

state, the total stress in all the elements is

n N*
lN +  (3.240)

it1 -n+1

where Ei ts the elastic modulus of the elastic subelement in the ith unit,

e is the common strain in all elements and a iis the limiting value of

stress for the rigid-plastic subelement in the ith unit. It is assumed

that all elements have the sam area - q where A isthetotalareasuch

that force F - cA. For a series-parallel model, assuming the ith elastic

element to have area A, elastic modulus E and nominal length Li. the total

strain, allowing one element (1-0) to be purely elastic,

0 a + I 1 (3.241)
0 01=

where

C - 0 , 0 a g 0,

- a1  *
" -c---", O a
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a. Parallel-Series Model.
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b. Series-Parallel Model

Figure 16. Mechanical Models. (Iwan, 1967)
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Iwan assumed N - and for selecting a distribution of properties proposed

that it be related to the curvature of the observed stress-strain behavior.

This seems reasonable because the curvature is integrable over the stress

domain, tends to zero at both extremes (c .0 and e * c) and the integral

changes monotonically between reversals. For stable cycling the distribu-

tion could possibly be related to the energy dissipated per cycle per unit

volume. Cycling of strain/stress within fixed limits was also considered,

the parallel series model for strain cycling and the series-parallel Model

for stress cycling. The development for uniaxial behavior was extended

to multi-axial stress and strain cycling.

Mroz (1973) showed that the mechanical behavior of a finite assemblage

of elastic-plastic kinematically hardening elements is essentially equivalent

to his piecewise linearization of the hardening curve (Fig. 17). As the number

of elements in series becomes very large, a smooth stress-strain curve is

realized.

Martin (1971) allowed for relaxation of mean stress by making

the stiffness of each spring dependent upon the stress at which it is acti-

vated. Cyclic hardening and softening were represented by changing the

coefficients k, n in the power law

- A a (3.242)

where be, Ao are the strain and stress amplitudes in the hysteresis loop.

A cumulative damage theory for fatigue failure was also proposed.
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a)Stress-Strain Curve

C def

(b) A Set of Yield Surfaces
in Plane Stress Case

Figure 17. Behavior of a Series Model Consisting of Elastic-lsi
Elements. (Mroz, 1913)
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Sharma (1977) and Jhansale (1977) found that the mechanical models

could match nonlinear behavior in uniaxial loading and model hysteresis

loop but could not model hardening or softening prior to saturation.

Experimental evidence cited by Jhansale indicates non-Masing behavior

denoted by variation in the yield strength, the nonlinear portion of the

hysteresis curve remaining practically the same. Jhansale and Sharma

introduced a single stress parameter (yield strength increment) depending

upon prior history to describe this departure from Masing rule. Rate of

increase of this parameter was found to be proportional to the difference

between its current value and the saturation value for cyclic loading.

The change in radius of the hypersurface is

Af = C(Ys - Y) (3.243)

where C is a constant of proportionality and Ys, Y are the saturation and

the current values of the yield strength parameter. This corresponds to

Caulk's (1978) hardening rule for cyclic loading (Equation 3.130).

Jhansale and Sharma's approach is essentially an extension of 11roz's

internal variable theory to the presaturation stage.

Zienkiewicz (1972) and Nayak (1972) proposed an overlay model in the

context of finite element analysis. It essentially consists of each

finite element made up from subelements with varying yield surfaces

connected in parallel. Katona (1978) proposed elastic, viscous as well

as friction elements in combined series/parallel arrangements.
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6. THEORIES BASED ON CONCEPT OF SLIP

These theories regard a metal as a polycrystalline aggregate and

seek to explain macroscopic mechanical behavior on the basis of the be-

.* havior of single crystals. Taylor (1938) considered rigid-plastic poly-

crystals as aggregates of randomly oriented f.c.c. (face-centered cubic)

crystals under tension. Assuming homogeneous strain, using the principle

of virtual work, strain was calculated as the minimum sum of the amounts

of slip for a given crystal orientation. Bishop (1951a, b) used the

principle of maximum work to show that for rigid plastic crystal aggre-

* gates, among allstress states lying within the yield surface, the actual

state giving I). is the one which lies on the yield surface and gives

* maximum work. Lin (1957) considered aggregates of elastic-plastic crys-

tals under homogeneous strain and assumed that slip occurs sequentially

because of the presence of an elastic component. Czyzak (1961) calcu-

:. lated the tensile stress-strain curve and the Bauschinger effect of a

f.c.c. crystal. Batdorf's theory (1949) considered an aggregate of crys-

tals each of which has a slip system and assumed homogeneous stress.

. This satisfied equilibrium but not compatibility. Lin's analysis (1971),

based on virtual work principle, satisfied both equilibrium and compati-

Ibility. Lin assumed additive decomposition of strain and displacement.

The yield surface for f.c.c. crystals consists of twelve pairs of yield

. planes. Normality of the plastic strain increment was assumed. For

stress points on an edge of the polyhedron, was between the normals

to the two adjacent planes and at a vertex was within the cone bound-ij
ed by normals to the yield planes intersecting at the vertex (Koiter,

: 1953). Associated flow rule was assumed to apply, i.e., the yield surface
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was also a surface of constant plastic potential function. Lin found

that the theoretical initial yield surface of an aggregate of crystals

with the same isotropic elastic constants and the same initial shear

stress coincides with Tresca's yield surface of maximum sheering stress.

Normality of the incremental plastic strain was found to hold based on

the principle of maximum work. The slip characteristics predict the

existence of a vertex at the loading point for infinitesimal plastic

strain. However, for finite incremental plastic strain the loading

surface giving this strain has no vertex but the curvature at the loading

point is Increased. This is close to von Mises initial yield surface.

The observation that measurable strains imply disappearance of vertex may

be taken as the explanation for the experimental observations not having

been able to directly prove or disprove the existence of vertices.

Kolter (1953) showed that the slip theory is a particular case of the

incremental theory based on an infinite set of plane surfaces. Sanders

(1954) used the plane loading surfaces to establish stress-strain rela-

tions partially resembling those of deformation theories.

Yoshimura (1962) explained Bauschinger effect as difference in pat-

terns of dislocations when viewed from the loading and from the opposite

direction. Work-hardening was described as a consequence of change in

density of dislocations and plastic anisotropy was regarded as direction-

al deviation of the way of grouping of the dislocations.

*' Kelley (1973) considered material behavior under constant strain

amplitude cycling. Low initial dislocation density was associated with

isotropic softening and high initial dislocation density resulted in

isotropic hardening. Bauschinger effect was explained as unlocking of
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dislocations in stress reversal. The model proposed was:

v -aon (3.244)

where a is the effective stress, v is the velocity of mobile disloca-

- tions, is a constant and is a material parameter.
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SECTION Iv

FINITE ELEMENT ANALYSIS OF ELASTIC-PLASTIC SOLIDS

The finite element method is well documented in the literature (e.g.,

texts by Zienkiewicz, 1976; Gallagher, 1975; Desal, 1972; Oden, 1972,

1976 among others). It has been applied to elastic-plastic solids in-

cluding problems in cyclic plasticity. Among several review papers that

have recently appeared we note the contributions by Armen (1972, 1979),

Stricklin (1972, 1973) and Bergan (1978) where references to other work

may be found. The text by Zienkiewicz also contains a good summary.

In this report we shall describe application of the finite elementmethod

to plasticity in sections dealing separately with variational formulation,

material behavior models, finite element modeling and solution procedures.

1. VARIATIONAL FORMULATIONS FOR FINITE ELEMENT ELASTIC-PLASTIC ANALYSIS.

The equations for small deformation theory of plasticity are:

Kinematics e.ij "u(tj)

Constitutive relations tj& Li k
I iJkl kl

or * on R (4.1)t, " K klk

Equilibrium °tjj " ft

Here ft are components of the body force vector and R is the spatial

region of interest. The boundary conditions for the problem are:
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Oajn i st over s1  (4.2)

ui =u 1 over s2  (4.3)

where s1 , s2 are complementary subsets of 3R, the boundary of R and n

are components of the outward normal vector on s1 . Because the stress-

strain relationship is in incremental form, the strain-displacement equa-

tion also has to be written in incremental form. For small strain theory

= -. = u (4.4)

would replace Equation (4.1)1. To make the stress terms in the equilibrium

equation and the constitutive relations correspond, the equilibrium equa-

tion can be stated in incremental form as
"a =

ijj - f(4.5)

Similarly, the boundary condition, Equation (4.2), in incremental form is

atjn j "t (4.6)

Alternatively, introducing a1 as the stress at the beginning of an in-

crement, we have the constitutive relation as

i-'aot = at + 147
Gu ij Kijkl ki (4.7)
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Using the incremental form of the equations, Lee (1970) introduced

the functional

f(4.8)

j R s1

for the case f1 " 0 and ;I' t ;ij identically satisfy Equations (4.1)3,

(4.3) and (4.4). This functional Is analogous to the potential energy

formulation for elasticity. Stationarity of a is equivalent to Equations

(4.5) and (4.6).

Sandhu (1973) wrote the field equations in the symmetric form

oI
0 0

0 ijkl -l i

21,i 6 + 61 -3' -1 0 1

(4.9)

Here ri ,j is the stress at the beginning of the Increment. This leads,

with usual assumptions, to the potential energy type formulation

a -f .jKi jkl~l - If + ui jaij]dR - fitds
Rs 1  (4.10)

if the material behavior is assumed to be constant over the increment.

Other formulations of equilibrium or mixed type have been proposed. In

the context of finite element approximations these are imbedded in the

general treatment of linear problems given by Sandhu (1975, 1976).

Admitting interelement continuity constraints

(ojnj)' - 0 over sI  (4.11)
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(jni)' 0 0 over s (4.12)

where s1 , s are disjoint surfaces in the interior of R such that they

are imbedded in the union of interelement boundaries, a general function-

al for finite element representation of R and equivalent to Equation

(4.9) through (4.12) along with the boundary conditions, Equation (4.2)

and the incremental for, of Equation (4.3) is:

* = ~~~4J {;i(9j~j - f ij ( ijkl kl- i+2i)

e- Re
+ - .))dRe + f u(aijnj - 2^t)ds

s lnaRe

- f ajnj(Ia - 2ai)ds] + f (i1jnj) 'utd - (u n )'a 1 ds

s2  naRe  s l 2

(4.13)

Here N is the number of elements, Re the region occupied by the element

e and Re its boundary. Noting that over any element e

~+ f totjfjdRe -fSijjaijdRe + faiaijnjds (4.14)

.. R aR
e e e

the governing functional may be modified to eliminate either W or

oj, terms. This would yield two alternative formulations
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U

f 2- f + (K + 2E1j. + 2a. - otj, dRe01~~ ~~ = ij [fijkljkl13 iij 1~

-~~( 2 1 ~s- 1 n( 1 - 1 )ds] 2 f (jni) cr1 ds

s I aRe naRes2 2
(4.15)

and

02 1 2a 1(-ij~j - 'fi) + ij(Kijk1lk1 + 2~i j) - 2aij~ii dRe

+ 2 f ,i(oijnj - Y1)ds + 2 f ci" nj td ] + 24(cy jnj)',iids

(4.16)

Specialization to the case that displacements are continuous across inter-

element boundaries, satisfy the boundary conditions on s2 and strain in-

crements are derived from displacement increments, A1 reduces to

a03 = Z[fl2 i fi + ij (K ijkl ikl + 2i13)IdRe - 2 f a t ids]

e _e 5il nRe

(4.17)

which is the discretization of the functional in Equation (4.10).

On the other hand, if stresses satisfy equilibrium, tractions are

continuous across element boundaries, and the traction boundary conditions

are satisfied, and the strain increments are derivable from stress incre-

ments, 12 reduces to
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= ~:1$ qL 44 , 2iiklldRe - 2 J a ii n juidsI
e=l s2 n aRe

(4.18)

This is the complementary type formulation.

To admit material and geometric nonlinearity, several different

approaches have been used. The difference between various formulations

is essentially in the derivation of the incremental form of the virtual

work equation. Early investigators (e.g. Turner, 1960; Martin, 1965;

Felippa, 1966; Hofmeister, 1971) used the incremental moving coordinate

system (Stricklin, 1972). In this, the reference coordinates were updated

after each load increment and the stresses referred to the new configura-

tion. The incremental strain was defined as

"ij+ *I* Uk .k,j (4.19)

Here the derivatives are with reference to the configuration at the end

of the last increment and the reference frame is assumed to stay orthog-

onal. Felippa (1966) and Murray (1969) assumed the state at the begin-

ning of an increment to be in equilibrium and wrote the incremental

virtual work equation in the form

f";ij6( + )]dV ;=R

(4.20)
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Here j Is the initial stress referred to unit areas at the beginning

of the increment. Allowing for the lack of balance at the initial state,

Hofmeister (1971) added the virtual work by the unbalanced forces to get

:'.5 /[otaj61 &( lkj + ;ij6(u(; ])]dV =

V

fti6(;i)ds - fij6(6(i.j))dV - fii6(6i)ds
9R V 3R (4.21)

In this scheme the strain increment is not derived from the Green strain

tensor referred to the undeformed configuration and the theory is applic-

able only to the case of small strains. In a correct theory, the incre-

mental strain must be derived from the Green strain tensor (e.g., Mallett,

1968; Haisler, 1970; Stricklin, 1972). The principle of virtual

work may be stated as (Hbbit, 1970; Hutchinson, 1973)

fa1'JiiuiR f fVN1 ds (4.22)

R 3R

Here 3R is the boundary of the region R and the superscript over a quan-

tity denotes its contravarlant components. Hutchinson wrote the Incre-

mental virtual work equations as

f li J + ;ij Uk .a .i3 f ^ids (4.23)

R aR

Recently, Brockman (1979) following Oden (1972), stated the incremental

virtual work equations in a form which, for no inertial forces, reduces to
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rf is "-k f+ IudR f ds (4.24)
Ro 0 Ro

Here Ro , DRo denote the configuration at the beginning of the increment

and 7 ij is the pseudostress equal to the components of the symmetric Piola-

Kirchhoff stress tensor referred to unit areas in the deformed configura-

tion.

2. MODELS OF MATERIAL BEHAVIOR.

For monotonic uniaxial or proportional loading where the stress

state can be defined by a single parameter, the nonlinear stress strain

behavior can be approximated by suitable functions. For generalization

to arbitrary stress paths scalar measures of stress and strain have often

been introduced as effective stress and effective strain. The available

test data are interpreted in terms of these effective measures to set up

stress or strain-dependent "moduli." This approach is attractive be-

cause of its simplicity but fails to account properly for path dependence

of mechanical behavior of materials.

In using the mathematical theory of plasticity to represent material

behavior, we need to determine the elastic properties as well as the

initial yield function, the parameter X in the flow rule and the internal

variables, Anij .

In early work on the application of the finite element method to

- plasticity, following Drucker (1951), the coefficient in the flow rule

was determined considering normality only (e.g., Swedlow, 1966; Marcal,

-- 1967; Marcal, 1968, 1969; Yamada, 1968a, b; Mroz, 1969; Lee, 1970; among
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others). ibis formulation failed to satisfy consistency. Mroz (1967,

1973) following Hill (1950) also proposed a formulation based on normal-

ity and linearity (Equation 3.176) admitting "non-associated" flow rule.

Yamada (1969) used rate of work equations to develop a consistent formula-

tion for von Mises materials. Reyes (1966) had previously used this approach

for Mohr-Coulomb materials under plane strain. Felippa (1966) developed a

consistent approach allowing for normality and linearity as well. This

is identical to Prager (1949) for hardening materials but is valid for

perfect plasticity as well. Zienkiewicz (1969), Eisenberg (1976) and

Allen (1979) developed formulations essentially similar to Felippa's.

Pifko's (1974) and Sharma's (1977) formulation for kinematic harden-

ing can also be seen as a specialization of Felippa's formulation to the

case of purely translational hardening. It would not be applicable to

cases when E! appears explicitly in the expression for f. Naghdi's

(1975c) strain-space formulation is also the same as Felippa's.

Nayak (1972) extended the formulation to admit non-associated behavior.

We note that the coefficients defining the increments in internal

variables also appear in the consistency Equation (3.187). Thus, the rate

of hardening influences the stress-strain relations. The quantities re-

quired to define stress-strain behavior are the elastic properties, the

dependence of the yield function upon ai, Ej, n and the coefficients

Anij which relate the increments of internal parameters to plastic strain

history. The available test data should be interpreted in the light of

this requirement. For instance, for isotropic hardening, the uniaxial

test data would define the quantity as a function of equivalent plastic

strain or the plastic work depending upon whether strain hardening or
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work hardening approach is adopted. (For von Mises materials, these are

equivalent).

Isakson (1967, 1969) and Armen (1970) incorporated kinematic

hardening with Ziegler's hardening rule in a finite element computer

program. This was further developed by Pifko (1974) to admit anisotropy.

Eisenberg (1976) allowed for both isotropic (strain hardening) and kine-

matic hardening (Prager's rule) along with a consistent formulation for

X for initially isotropic von Mises material. Nayak (1972) considered an

"overlay" model to represent piecewise linear hardening. Hunsaker (1973)

compared four models of elastic-plastic behavior namely, isotropic harden-

ing, kinematic hardening (both Prager and Ziegler's), Mroz' piecewise

linear model and the mechanical overlay model. He found the last two

most appropriate for reversed loading.

The approaches using a plastic modulus involve a relationship between

scalar measures of stress and plastic or total strain called the effective

stress and the effective strain. Often these curves are directly inter-

preted in terms of isotropic hardening. Many attempts have been mades t.

obtain simple mathematical functions to represent experimental data.

Wilson (1965) used a bilinear approximation. Admitting nonlinear harden-

ing, Jensen (1965) and Lansing (1966) used Ramberg-Osgood formula. Salmon

(1970) included Wilson's bilinear approximation, the Ramberg-Osgood formula

and Richard-Goldberg (1965) equation in a single computer program. For

ill large strain ranges, Pifkc (1974) preferred a power law. Krempl (1972),

Liu (1976) and Cernocky (1978) considered the essentials of curve fitting

for stress-strain diagram. They noted that typically the slope of the

stress-strain curves is positive, decreases monotonically with increasing
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strain, and is constant at the two ends (strain equal to zero and strain

exceeding a certain limiting value). Thus the slope is constant at the

two ends and the curvature of the diagram is negative. Liu (1976) pro-

posed an exponential law. Cernocky (1978) described construction of non-

linear monotonic functions. In Mroz's theory (1967) the hardening curve

is approximated by piecewise linear segments leading to discontinuous

modull. Dafalias (1976) introduced a continuously varying field of

plastic moduli. This is similar to the theory proposed by Krempl and his

coworkers except for the fact that their formulation was for total strain.

A special feature of Dafallas' formulation is the dependence of the plas-

tic modulus upon the distance between the stress point and the bounding

surface. This ensures that the "modulus" has the limiting constant

values at the two extremes of the stress point being upon the inner yield

surface or the outer, bounding surface (Figure 14). Desai (1971) pro-

posed use of spline functions to describe the stress-strain curve. How-

ever, he did not enforce the criteria of monotonicity of the modulus.

For cyclic plasticity Pifko (1974) used Ramberg-Osgood law referred to

the point of last reversal of stress as the origin. Liu (1976) used an

exponential law in terms of the initial and ultimate values of the modulus.

3. FINITE ELEMENT DISCRETIZATION

Procedures for finite element spatial discretization of boundary

value problems are well-known. Triangular and tetrahedral elements with

linear interpolation of the displacement field over each element were

the earliest to be used for finite element analysis of elastic-plastic

media (i.g. Pope, 1965; Argyrts, 1966; Reyes, 1966; Yamada, 1968a,
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1968b, 1969; Zienkiewicz, 1969; Hofmeister, 1971). Quadrilateral ele-

ments have been extensively used. Generally, for two dimensional problems,

these are formed as assemblages of constant strain triangles (e.g. Wilson,

1965; Lee, 1970; Sandhu, 1973; Hodge, 1975) or are four point isopara-

metric quadrilaterals (e.g. Zienkiewicz, 1968). Lee (1970) used a four

point isoparametric element with an additional local mode. For thick

tubes, Chen (1972) used interpolation which would give the exact solution

for the elastic case. In early work, based on linear interpolation of

* displacement, the state of stress within an element was assiumed to be uni-

form. Thus the entire element had to be fully plastic or fully elastic.

4' Felippa (1966) used higher order interpolation and admitted partial yield-

ing of elements. Nayak (1972) used isoparametric elements with biquadratic

interpolation. It is customary to evaluate stresses at each Gauss integra-

tion point within the element to set up the average properties of the ele-

ment. As Gauss integration points are all interior to the element this

device does not notice onset of yeild in the element till it reaches well

into the interiur. Some investigators therefore use Simpson's integration

-- scheme which involves points on the element boundaries.

Matrix formulation of the problem follows from insertion of finite

4( element discretization into the variational formulation. General form of

the equations for an increment is

[K]{q} = {P} (4.25)

where [K] is the stiffness matrix which is dependent upon the history of

deformation and {1}, {A} are, respectively, the increments in the generalized
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displacements and toads. Often, the stiffness matrix is written as the

sum of a linear and a nonlinear component

[K] = [K]L + LKJNL (4.26)

If the stresses and forces at the beginning of an increment are not in

equilibrium, an additional load term has to be introduced (Hofmeister,

1971). In that case,

([K)L + [K]NL){i} ={I + [E) (4.27)

Here (E) represents the initial equilibrium error term.

In developing a matrix formulation using the finite element method

in conjunction with the principle of virtual work, Strlcklin (1972) ob-

tained

[K]{ql = {P} + {Q1 + {Q}NL (4.28)

This formulation is based on additive decomposition of the strain tensor

into elastic and plastic components as well as into linear and nonlinear

components viz.

E =Ej + E+ ENI (4.29)
Eu = E j E1i i

The stiffness matrix [K] is based on the linear part E L of the strain

tensor. E' are the components of the plastic strain tensor and ENj are
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the components due to geometric nonlinearity, {P} are the external loads

and {QI 1 " {QL are pseudoforces reflecting the effects of Eli and E

respectively. Assuming a linear relationship between the symmetric Piola-

Kirchhoff stress tensor and the elastic part of the strain

ij= KijkEl (4.30)

The component of {Q) 1 corresponding to qt is, using the reduced form for

strain components

i= f EkiDklE 1dV (4.31)

V0

Similarly

(Q (E)N EL D ENL + E NL D E )dV (4.32)ikaf ,i kl I k, I I1"
V0

Here the differentiation is with respect to qi and Vo is the volume of the

initial body. The incremental form of Equation (4.25) is (Stricklln, 1972)

([K] + (K], + (IJL){q1 = {() (4.33)

-I where

(Kij) I = - f (Ek ijDklE ' + Ek,iDklE ',J)dV (4.34)

V
* 0

* and

L NL ENL EL NLD NL ENL
(K=ij)NL f (E lEj + Ekt kL lj + Ek , kll +1EjD l)dV

V0  (4.35)
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4. SOLUTION PROCEDURES

Procedures for solving the nonlinear equations arising after finite

element discretization may be divided into two groups viz.,

i. Direct methods

ii. Initial-value methods

a. Direct I'ethods

Direct methods of solving nonlinear equations generally use the Newton-

Raphson Nethod or one of its variants. Almroth (1979) has reviewed some

aspects of this approach. Writing the iteration scheme in the form

(xn + l) = Gx(n) (436)

the search is for the fixed point of G. Various procedures differ in the

choice of G. In the basic Newton-Raphson method

GX(n) x(n) - (K(n))' r( n)  (4.37)

where r(n) is the force residual for the nth approximation, i.e.

r(n) = (K(n-l))X(n) - P (4.38)

where P is the forcing vector in the nonlinear problem

Kq - P (4.39)
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Evaluating the quantity Ax(n) = ( lr ( n ) represents solution of a

system of equations at each step. For this reason the method can become

expensive. Also K( n) may be ill-conditioned. The modified Newton-Raphson

Method uses a constant reference matrix Ko and may be written as

Gx(n) x(n) - r(n) (4.40)

The reference matrix Ko may be the initial stiffness as shown in Figure 18

from Haisler (1970) or some other matrix with suitable properties. For

example, to improve the conditioning of the matrix its diagornal terms may

be suitably increased, i.e..

Gx(n) = x(n) - (K0 + I) -lr(u) (4.41)

Here I is the identity matrix and p is a scalar suitably chosen for well-

conditioning. Felippa (1976) proposed a formulation

Gx= n )  x(n) - w(n)(K + ,Wln) )'r ( n )  (4.42)

where wi n) is chosen automatically for optimal efficiency. The residual

is assumed to be a linear function of w(n) i.e.

e n) 1wn) (n) a(n) ( n )

where r(n) rn) are residuals corresponding to w(n) = 1 w(n)  0
(n)(nrespectively. Minimization of hjr 11 with respect to win) yields
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a. Mde Newton-Raphson Method

Figure 18. Newton and Modified Newton Method. (Haisler, 1970).
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1-w + py(.4
I.

where 1 (n))
b..r r o

(n 2<1

(n) 2.... nIIr~~l

0" P =~~r II'nl2"

Automatic correction is time-consuming. For this reason Schmidt (1977)
(n)suggested choice of w as a function of condition number of K.

Success of the iterative procedures depends upon the rate of conver-

gence. Yamamoto (1973), among others, investigated convergence of itera-

tive solutions for elastic-plastic continua and proposed a scheme to

accelerate convergence. Convergence is assured if the mapping G is con-

tractive, i.e. if a < 1 exists such that

IIGx - Gyll < a jjx - Yll (4.45)

in some norm, the system x(n+l) = Gx converges. To check if a

given scheme is indeed convergent one method, used by Sandhu (1974) for

time-domain solutions, is to evaluate

I x(n+l) - x(n)lJ (4.46)

l ix(n) x(n-1) I I

If the correct solution is x, G contractive implies
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x (n) X I I < t I lx(n-i) x II

Hence,

(lnl ) x I " lx - x II

S I lx 0-1) - xln)jI (4.47)

Hencea < .5 is sufficient for convergence. In case exceeds .5, the

increment is reduced (halving) and if a is extremely small, it Is alright

to increase the Increment (doubling) in the next step. Thus,the size of

the increment is automatically designed to ensure convergence. Almroth

(1979) reported an automatic procedure In which the increment size Is

determined from the iterations required for convergence in the preceding

increment. In situations of rapidly changing behavior, this may not be

fully effective. Sandhu (1974) would use the information from the pre-

ceding step only as the first estimate to be checked, after three solu-

tions are available and, if necessary, reduced.

If the system is known to be convergent, the process can be accelera-

ted. One such procedure was proposed by Boyle (1973) based on Jenning's

(1971) modification of Aitken's 62 -method.

Another iterative procedure (e.g. Sandhu,1973) is analogous to modi-

fied Euler Method. It is based on the existence of a mean stiffness Km

for the increment such that

Kmq - P (4.48)
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gives the exact solution for the incremental displacements. It is

assumed that

Km - K° + (I -)Kf (4.49)

where Ko, Kf represent the stiffness at the beginning and the end of the

increment and a [0, 1]. For = 1 we have the purely incremental (ex-

plicit) technique and for c = 0 the scheme is totally implicit. Generally,

ai is assumed to be 0.5 though it is possible to optimize it following

Yamamoto's (1973) method. An alternative is to assume K to be the stiff-

ness corresponding to the mid-increment values of the displacements

(Argyris, 1966; Felippa, 1966; Akyuz, 1968; Sandhu, 1973). The method

is Illustrated in Figure 19. For parabolic variation in the solution,

the midincrement stiffness is identical to the mean of the slopes at the

ends of the increment. Thomas (1973) proposed use of the average value

of the solution from these two procedures. The error in the solutions

was shown to be

. X g-max1 ,q 1(mean) (4.50)

where {q'), {q") are the solutions from the two procedures and (qmean }

the average of the two. For material nonlinearity, to allow for an

element going from the elastic to the plastic state during an increment,

Marcal (1969) proposed choosing a as the proportion of the load increment

needed to the onset of yield.

To economize on computational effort, Sandhu (1973) proposed a two-

level iteration scheme. For each iteration, a local iterative process
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Figure 19. The Mid-Increment Stiffness Method
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for each iteration was carried out to convergence assuming no changes in

the displacement increment solution. The unbalanced element stresses

were included as additional loads in the next iteration for the system

(Figure 20). Singh (1975) proposed an improvement on this procedure.

For cases where the local iteration converged slowly, or not at all due

to very low stiffness, the strain in the element would be scaled down

and the element assumed to deform incrementally to the calculated value

of strain. For problems where plasticity is confined to a local region,

the procedure has been found to be very successful.

Admitting variable increment size, each increment can be designed

to correspond to an element passing from the elastic to the plastic stage

and/or to meet the requirements of convergence discussed earlier. A load

increment can be "scaled back" for this purpose (Zienkiewicz, 1969;

Stricklin, 1971; Sandhu, 1973). If for any element, f1 = f(oi ) < 0

and f2 = f(ai. + &i.) > 0, let r be such that

f(1l +rj) = 0 (4.51)

Assuming linear variation in f, a first estimate is

f
r I f f (4.52)

However, to allow for nonlinearity of f in r, Nayak (1972) proposed

~f2

r=r I _f 2 (4.53)

-. a Eijkl kl
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am mean stress for the
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Figure 2JI. Local Iteration with Stiffness Based on Midincrement Stresses.

Unbalanced Stress Is Added to the Next Load Increment.
(Sandhu, 1973)
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Here El is the strain increment assuming elastic behavior during the

increment. Sandhu (1973) would solve Equation (4.51) for the smallest

positive value of r less than one. The least value of r among all elements

*: having fl < 0 and f2 > 0 is the ratio governing the scaling back of the

* load increment. Using variable increment concept, Sandhu (1973) would

- apply all the "remaining" load at each incremental step and then scale

- back as necessary. This incorporates an automatic equilibrium check at

each step and automatically uses the largest possible increment consistent

with convergence and other constraints. Tracey (1979) determined the

*i increment size by a process of iteration requiring convergence of a scheme

based on Equation (4.49) and a constraint on the magnitude of the incre-

mental displacement solution.

b. Initial Value Methods

The problem of gradual loading of a structural system is an initial

value problem. Both single-step and multistep methods have been used.

The single step methods are often similar to Euler's method. The "tangent

stiffness", i.e. stiffness based on the state of the body at the beginning

of a load increment, is assumed to apply throughout the load increment.

* The incremental solution tends to drift away from the correct solution

*due to error accumulation (Figure 21). A sequence of solutions with de-

creasing size of the load increment is needed to estabiish the correct

o solution. The numbev of load increments has to be quite large and as at

*. each step the stiffness changes, the solution process is generally expen-

sive. The incremental equation is

4 Kq = P (4.25)
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Figure 21. Drifting in Incremental Stiffness Procedure
(Haisler, 1970)
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Separating K into constant and displacement-dependent components K', K"

respectively

K' K' + K (4.54)

* Then, Equation (4.25) may be written as

K'4 - K" (4.55)

In early work, it was customary to use K" on the right hand side as the

load equivalent to initial strain, i.e. corresponding to the plastic

strain from the previous increment. This procedure was used, among others,

by Gallagher (1962), Argyris (1966), Isakson (1967) and Armen (1970).

The process was slow to converge with reduction in size of the load in-

crement. Isakson (1967) suggested use of an extrapolated value for the

initial strain. An immediate improvement is the use of an iterative pro-

cedure in which K'14 is based on a mean value of the plastic strain effect

during the load increment. Baker (1969) used this approach which essen-

tially amounts to a Modified-Euler method for the increment. Even with

the use of acceleration techniques, convergence was very slow and uncer-

tain. Use of variable increment techniques based on convergence needs

would be much preferable.

Hofmeister (1971) introduced incremental equilibrium check into the

formulation (Equations (4.21), (4.27)). Figure 22 from Hofmeister shows

the effect of the check. Without this correction the displacement solution

would be q2 With the correction the solution q2 is close to q(T) the correct
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solution. The procedure represents single step Newton-Raphson method at

*: each increment with the error included in the remaining load. A multi-

step Newton-Raphson within each load increment, would further improve

- the accuracy.

Multistep incremental procedures have been used. Richard (1969)

* implemented fourth order Runge-Kutta method.

Oden (1973) wrote the nonlinear equation in the form

f(q, p) = 0 (4.56)

In incremental form:

+  I 0 (4.57)

Haisler (1970), and Stricklin (1971) introduced two forms of self-

correcting initial value formulations as follows. Consider the incre-

mental equation

K'4 - K"1 -(4.58)

along with the Imbalance of force

Sf= P -Q-K'q (4.59)

Combining the two, for u a scalar

(K' + K")4 + pK' = P + IJP pQ (4.60)
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Or,

KI(4 + pq) -* + pp- (+Q) (4.61)

For p 1 the formulation reduces to Hofmetster (1971) and Stricklin

(1970). Differentiation of Equation (4.58) and adding linear combination

of f and # leads to the second formulation

K14- -& + pf + w# (4.62)

This is an equation for damped motion and can be solved by standard

methods, e.g. Houbolt method with four point backward difference form

for 4 and three points backward difference for q. Both the formulations

are self-correcting i.e. incorporate equilibrium check and any error will

decay. Success of the scheme depends largely on the choice of the damping

coefficient (Oden (1973)).

c. Displacement Incrementation

As the nonlinear system approaches instability, the ratio for scaling

down on the size of the increment from convergence considerations will

decrease till, theoretically, no matter how small the increment there is

no solution. This stage corresponds to singularity of the stiffness

matrix. Bergan (1977, 1978) related the increment size to a "current

stiffness parameter." This essentially is a rough measure of the con-

ditioning of the stiffness matrix and would automatically control the

increment size. Near instability, displacement incrementation must re-

place load incrementation till the system is again well conditioned.
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The displacement incrementation must, obviously, be in the space of the

eigenvector(s) corresponding to the vanishing eigenvalue(s). Argyris

(1966) and Pian (1971) proposed incrementing displacement components as

independent variables to determine the load increment size. Zienkiewlcz

(1971) admitted a pattern of applied loads in the scheme assuming the

increment to be small enough to permit superposition. Haisler (1977)

described a procedure for displacement as well as load incrementation

based on his self-correcting procedure. The incremental equation is

K= P + E (4.27)

1*
~Assume increment qiis to be specified. Then, subscript 1 denoting

the parts of K, q, P, E after deletion of ith components,

Kl -1 - Kliqt (4.63)

and

Kilql Pi + Ei- Kiiqi (4.64)

*i Solving (4.63)
i l = A + IB (4.65)

where A is such that l P 1 and

KIIA = E- Kliq (4.66)
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and

K11B = P1  (4.67)

Substituting Equation (4.65) in (4.64) and solving for

E - K1 Bq1 - K1 1A (4.68)

Equation (4.65) now defines 4i. This procedure avoids the solution of

non-symmetric equations. Bergan (1978), using his current stiffness

parameter to define the stage at which displacement incrementation would

replace load incrementation, proposed the increment to be proportional

to the incremental solution for the preceding step. This, for sufficient-

ly small steps. would be quite close to the eigenvector corresponding to

the smallest (in absolute magnitude) eigenvalue. To control drift, the

size of the increment must be kept small. Evidently, iteration for

equilibrium has no meaning in the vicinity of a stationary point.
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SECTION V

SUMMARY AND RECOMMENDATIONS

The finite element method is a powerful tool for approximate solu-

tion of engineering problems. Several investigators have applied it to

the problem of cyclic plasticity with varying degrees of success. We

note here specially the recent work by Amen, Dafalias, Eisenberg, Jhan-

sale, Pifko, and Shama. A satisfactory procedure must be based on a

correct definition of strain displacement relationships and simulate the

stress-strain-yield behavior of the metal under cyclic and non-porportion-

al loading. Also the numerical procedure must be economical to use and

yield results of sufficient accuracy.

In this report, all the three components of the analytical proce-

dure have been reviewed. It appears that the incremental formulation for

finite strain must be based on the total Lagrangian formulation and not

on the incremental Lagrangian formulation except in cases of Infinitesi-

mal deformation when the distinction between various incremental formula-

tions disappears.

Cyclic plasticity tests indicate that a saturation state is achieved

after a few cycles. Also, models based on purely kinematic or purely

Isotropic hardening are inadequate. For satisfactory modeling a combina-

tion of isotropic and kinematic hardening is at least required. Theories

of rate-independent materials cannot model frequency-dependence of cyclic
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hardening in a low-cycle fatigue test. This emphasizes the need for

viscoplasticity theories admitting rate effects.

Using rate-independent incremental theory of plasticity, we note

that convexity of the set of elastic states is a reasonable postulate

and the form of the initial and subsequent yield surfaces must satisfy

this requirement. Fairly general mathematical models currently exist.

To describe nonlinear hardening, the mechanical element overlay and Mroz's

piecewise linearization with fields of hardening moduli have been found to

be successful. Jhansale and Dafalias introduced continuously varying

moduli. Lamba's experimental work on non-proportional loading supports

this approach.

In setting up constitutive relations for incremental plasticity,

there has been some confusion due to the fact that the factor A can be

determined several different ways. Here we note that the formulations

using the consistency condition in addition to normality or linearity

would be preferable. A strain-space formulation of the type proposed by

Felippa is now in common use. The incremental formulation is referred to

the last load reversal and the state variables are defined by the last

significant event. This is in line with the experimental evidence that

the influence of prior history is wiped out by a plastic deformation of

sufficient magnitude.

The finite element solution process may be either incremental appli-

cation of Newton-Raphson or other iterative (implicit) procedure or an

initial value technique with equilibrium correction. Some investigators

believe that the Newton-Raphson method is inadequate to allow unloading

(load reversal). However, when used with variable increment procedure
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as well as displacement incrementation where necessary, the Newton-Raphson

or other implicit methods ought to be satisfactory. Bergan's method of

displacement incrementation appears to be the best candidate.

Survey of existing finite element models of cyclic plasticity response

has shown that none of the currently available models incorporates all the

desirable features and avoid the errors and shortcomings described above.

To develop the technology for prediction of strength-failure of fasteners

under cyclic plasticity environment, further work is indicated in three

distinct yet inter-related areas. Evidently, there is the need for collect-

ing more information on metal response under non-proportional cyclic load-

ing and on its mathematical modeling. Secondly, it appears necessary to

implement the available knowledge of material behavior and efficient solu-

tion techniques in a suitable finite element analytical procedure capable

of handling plastic deformation in two- and three-dimensional situations.

Lastly, using the finite element method to establish local plasticity his-

tories under cyclic loads, cumulative damage criteria need to be estab-

lished for prediction of local fatigue damage and its influence on fastener

life.
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