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THEORETICAL STUDIES ON FREE ELECTRON LASERS

I. SUMMARY

At the beginning of the contr ct year (August 1,

1981 to August 1, 1982) we undertookjon analytic and

computational study of certain theoretical questions

relating to Free Electron Lasers (FEL's). A---yf....

conceived,'_he study was divided into five tasks:

lh A proper Hamiltonian formulation of the

nonlinear equations for gain-expanded FEL's will be made

and Liouville's theorem applied to these systems.

f2. The analytic theory for gain-expanded FEL's

will be extended to include variable property gain

expanders as proposed for storage rings.

3. The results of Tasks 1 and 2 will be applied,

numerically if necessary, to the determination of whether

a steady state gain-expanded FEL is compatible with

storage ring operation.

4., The gain of a variable pitch wiggler (as a

function of signal amplitude and frequency) will be

studied using a single particle simulation code.

5 A fully self-consistent particle and EM wave

(1-D) code, with provisions for treating micro bunches

and providing frequency discrimination in order to

consider Raman instability effects, will be developed to

T_



)treat the startup and pulse formation problem for

variable pitch wigglers.

The first three cerned gain-expanded FEL's and

the last two, FEL's with variable parameter wigglers.

Tasks 1 and 2 have essentially been completed. A

Hamiltonian formulation of the electron equation of

motion for the "thin lens" gain-expanded FEL has been

derived (Appendix A). This leads to two fundamental

limitations on gain expansion schemes: (a) The Manley

Rowe relations, and (b) generalized gain-spread theorems.

Having established these limits, Task 3 remains to be

completed. The implications of these limits with respect

to the overall efficiency of gain-expanded FELs in

storage rings appear to be somewhat pessimistic.

Considerably more time and effort were devoted

to Task 4 and Task 5 than had been planned. Consequently,

it was possible to carry these tasks much further than

anticipated. The linear eigenmode analysis leading to

a calculation of the linear gain as a function of the FEL

parameters has been completed. The results for the limit

of very short electron pulses are discussed in Appendix B.

By very short electron pulses is meant pulses with pulse

length Z much shorter than the slippage distance

k wL w/ks > 2. Z, where r a 2kwLwqYr/Y r and Ayr/yr is

the fractional change in the resonant energy Yr down

2
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the wiggler. A discussion of the results for long

electron pulses is under preparation and will be

available in the very near future. A one-dimensional

self-consistent particle and electromagnetic wave code

to simulate the operation of an FEL with variable

parameter wigglers and with frequency filtering of the

electromagnetic pulse has been written. The details of

this simulation code are described in Appendix C. This

code enabled us to study not only the startup and pulse

formation problem, but also the stability of the

saturated state. The results are discussed in

Appendix C.

Our principal results are:

1. We have derived analytic results for linear

pass to pass growth of the pulse at low amplitude. For

very short pulses, these are given in Appendix B. These

results have been numerically verified in Appendix C.

2. We find that for high saturation systems

optical discrimination is required in order to prevent

nonlinear signal breakup. Qualitative agreement with the

theory of sideband instablities is obtained for the width

of the required frequency filter.

3. The further requirement that the linear

phase of growth saturate at a high enough level to ensure

trapping seems to be satisfied except for systems which

3
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seek to enhance linear gain by use of a long constant

parameter section.

4. With proper choice of frequency discrimination

(and for an ultra-short electron pulse) we have demon-

strated very high extraction systems (30% efficiency at

lp) which grow from noise to a stable steady state. We

derive and numerically verify a criterion

(U - r) Aiy
6 _ _ r<I> > 1.28 x 10 2 Amps

Yr

for the minimum current required for a system with

reflection coefficient r.

5. The limitation on beam thermal energy spread

Yth is determined more by the need for good linear gain

(yth/r < 1) than by that for effective electron

trapping, (Tth/r < 2).

The ultra-short pulse was modeled by a 6-function

in the simulation. Due to computer time limitations,

this limit is easier to simulate since the number of

particle orbits which must be followed is far fewer for a

single electron beamlet than for the many beamlets

required to represent a long continuous electron pulse.

This limit is also analytically tractable. However, the

basic physics of the electron-photon interaction is

4



expected to be qualitatively the same for long electron

pulses. Preliminary simulations of long electron pulses

have indeed exhibited a behavior qualitatively similar to

that of short pulses. The corresponding criterion for

the minimum current, however, may be slightly more

severe.

Gain-Expanded FEL's

In constant parameter FEL's, electrons initially

lose energy to the radiation field, but in so doing

experience a gradual shift in relative phase which

eventually reverses the direction of energy flow and

impairs gain of the FEL. To overcome this limitation,

Smith, et al.1 have outlined a scheme for a gain-expanded

FEL in which the sensitivity of gain to variations in the

energy of the exciting electrons is reduced. This scheme

uses a periodic magnet with transverse gradients such

that the electrons which lose energy move to different

transverse positions and continue to remain in phase with

the transverse electric field of the electromagnetic

radiation. The reduced sensitivity to energy enhances

the prospects for operation of a gain-expanded FEL in

conjunction with a storage ring, since many passes of the

circulating electrons through the FEL would occur before

j gain is significantly affected by energy spread.

JI5



However, transverse betatron oscillations of the electron

trajectories are simultaneousely excited and may negate

the effectiveness of gain expansion unless the oscilla-

tion amplitudes are kept small. For steady state opera-

tion in a storage ring, it is desirable to maximize the

gain while minimizing the level of betatron oscillations.

In this mode, a steady state is conceivable in which the

growth in betatron oscillations in the FEL is damped by

incoherent synchrotron radiation in the storage ring.

The important issue to be resolved is whether a steady

state can be extablished with a reasonable ratio of

energy gain in the laser to energy loss in synchrotron

radiation (66 laser/6esync.
2

Madey, et al. have considered the feasibility of

cancelling transverse betatron oscillations by a careful

design of the FEL magnet. Their results on the gain

characteristics of gain-expanded FEL's with excitation

cancellation were obtained from numerical integration of

the equations of motion. In our view, this procedure did

not provide a satisfactory theoretical understanding of

the effect of excitation cancellation on gain.

Excitation cancellation seemed to involve detailed

cancellation of "big" terms in the equations, and it was

not clear what residual effects were responsible for

gain.

6



In order to gain some insight regarding the gain

characteristics of gain-expanded FEL's, we have

investigated the "thin lens" gain expander as recently
3

proposed by Madey, et al. using a Hamiltonian formulation

of the electron equations of motion. The thin lens

Hamiltonian was transformed by a series of canonical

transformations to an action-angle Hamiltonian of the'

form

K =k S J + C i (+(1611)zE n ' e n wz+ f
n ,m

where J is the phase area for betatron oscillations and

its conjugate angle, y is the electron energy and T-z its

conjugate "momentum". z is the independent variable and

e is proportional to the laser field.

The Liouville equation for the electron

distribution function may now be written down,

solutions obtained by expanding in powers of e, and the

changes <6J> and <SY > after passage through the

thin lens wiggler determined. The details of the

analysis are discussed in Appendix A.

In the usual mode of FEL operation where one

resonance is of importance (which is practical, necessary
7

and desirable to get cancellation of excitation at a

definite z value) the Manley-Rowe relation holds

* - 7



<5 J> = - m >

where m # 0. Thus, gain is proportional to betatron

excitation.

The m = 0 resonance does not produce betatron

excitations, but since this depends on energy

derivatives, presumably large energy spread results.

A generalization of the Madey theorem relating

gain to spread (without making the resonant approxima-

tion; that is, keeping all m values) can readily be

derived

2 J + 2 3y JU/

2 3y \2YJ + a- 6J

These relations impose severe restrictions on

gain expander operation

l-laser

sync
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where S is the maximum beam spread allowed in the

storage ring. At the present time, the existing

proposals for operating a gain-expanded FEL in a storage

ring do not seem capable of yielding overall efficiencies

of more than a few percent.

Variable Parameter FEL'S

An alternative scheme for overcoming some of the

limitations of constant parameter FEL's is the variable

parameter wiggler discussed by Kroll, et al.4 In this

scheme, a significant fraction of electrons in the beam

is trapped in the ponderomotive potential well produced.

by the combined wiggler and radiation fields. The

resonant energy of the FEL is reduced by suitable

variations of the wiggler parameters and this in turn

results in the extraction of energy from the trapped

electrons. This reduction in energy can be much larger

than the energy which can be transferred in constant

parameter wigglers. Thus, the use of variable parameter

wigglers to produce high power radiation is a promising

prospect. The primary objectives of our investigation of

FEL's with variable parameter wigglers are to define the

area in parameter space where

1. The operation of the FEL can be initiated by

growth of the electromagnetic pulse from noise levels.

9



2. The nonlinear saturation of pulse growth

occurs with the trapping of a significant fraction of

beam electrons.

3. The finite amplitude saturated pulse

propagates without deterioration due to trapped particle

sideband instabilities.

4. The energy extraction from the electron beam

is optimized, consistent with reasonable growth rates,

effective trapping, and stable propagation.

To achieve these objectives, we have investigated

in detail the operation of an FEL configuration in which

a combination of constant and variable parameter wigglers

is positioned between mirrors. An electromagnetic pulse

generated in the wiggler is reflected repeatedly by the

mirrors, and multiple passes of the pulse through the

wiggler are obtained. Relativistic electron beamlets

are injected into the wiggler at periodic intervals

so that on each forward pass of the pulse through the

wiggler, there is overlap of the pulse and beamlets.

The pulse grows on each forward pass. Eventually, the

amplitude of the pulse becomes large enough to trap a

fraction of the beam electrons. At this stage, the pulse

is vulnerable to distortions due to the onset of trapped

electron sideband instabilities. In order to avoid

breakup of the pulse, the pulse is subjected to frequency

10



discrimination (outside the wiggler) which suppresses

growth of sidebands. The frequency discriminator

effectively acts as a band pass filter which attenuates

frequencies above and below the pulse frequency. With

stable pulse propagation, a stationary state is reached

when the energy extraction from the electron beam

balances the energy losses in the frequency discriminator

and at the mirrors.

The electron equations of motion are derived from

an approximate relativistic Hamiltonian in which the

transverse motion is taken to be nonrelativistic and

transverse spatial variations and beam self-fields are

neglected. The electron current driving the radiation

field is obtained by summing over all the single particle

currents. These equations, together with Maxwell's

equations, determine the temporal and spatial evolution

of the electromagnetic pulse in the wiggler.

The set of equations governing the operation of

the FEL as an oscillator have been formulated and they

were studied both analytically and by the use of a

simulation code.

The linear eigenmode analysis leading to a

calculation of the linear gain as a function of the FEL

parameters is described in Appendix B. Therein is

discussed the limit of ultra-short electron beamlets in

11



which the electron pulse length Z is very short

compared to the slippage distance k L /k > r Z.ww s

The linear gain per pass has been calculated for

constant parameter wigglers, variable parameter wigglers,

and a combination of constant and variable parameter

wigglers. The analysis included the effects of frequency

discrimination as well as a finite energy spread (modeled

by a Lorentzian distribution function).

It is found that the gain depends on only

two combinations of FEL parameters and graphs of the

linear gain as a function of these FEL parameters have

been plotted and the areas of good linear gain located.

A notable feature of the linear gain is its dependence

on the time delay Atrel of the electron pulse with

respect to the time of entry of the EM pulse into the

the wiggler. The linear gain is zero when At re is

zero, reaches a maximum when AtreI > 0 is finite, and

finally decreases with increasing At re. These graphs

have been used to select appropriate parameters for

input into the simulation code.

A one-dimensional code has been written to

simulate operation of the FEL in which the electro-

magnetic pulse is grown from noise levels all the way to

saturation. The details of the code are described in

12



Appendix C. This code enables us to study both pulse

formation and the stability of the saturated state.

Due to computer time limitations, most of the

simulations have been done using 6-function electron

beams. The results of the simulations are presented and

discussed in Appendix C.

In a typical run in which the EM pulse grows from

noise levels to saturation, the early phase of the

evolution is characterised by growth of the linear

eigenmode with the pulse amplitude peaked at the back.

As the evolution enters the nonlinear phase, the maximum

in the pulse amplitude moves to the front which then

continues to grow at approximately the linear rate.

Growth continues until the peak amplitude at the front of

the pulse is large enough to begin to trap the beam

electrons. At saturation, without frequency discrimina-

tion, the pulse remains peaked at the front and never

broadens towards the back. The electrons are not effec-

tively trapped throughout the length of the wiggler and

energy extracted from the electrons is only a small

fraction of that which is theoretically possible.

The failure of the EM pulse to broaden towards

the back is due to the growth of unstable sidebands (of

the order of the electron bounce frequency in the

ponderomotive potential well), which leads to a loss of

coherence and eventual detrapping of the electrons.

13



When frequency discrimination is introduced by

passing the EM pulse through a bandpass filter, the final

phase of the evolution depends critically on the band

width w of the filter. If WF is small so that theF

growth of unstable sidebands are suppressed, the pulse

broadens into a square pulse and the electrons trapped in

the ponderomotive potential well remain trapped during

its passage through the wiggler. The saturated pulse

propagates coherently and electron trapping is very

efficient.

The presence of frequency discrimination by a

band pass filter has an effect (proportional to 1/w F )

which tends to retard the advance of the EM pulse

relative to the electron beam, that is, it tends to

reduce the effective EM pulse advance produced by a

finite Attre > 0. To avoid the EM pulse running either

ahead of or lagging behind the electron beamlets, it is

indicated that a choice Atrel F = 1 is desireable.

This was confirmed by the numerical simulation. Thus to

obtain finite linear gain, wF cannot be altered

independently of AtreI .

A small value of w F is desirable to suppress

the sidebands and guarantee a stable saturated state.

However, small values of wF typically implies small

linear gain since Atrel - l/WF is then large.

14



In order to insure that a value of wF may be

found which allows both for linear gain and stable

propagation, it has been deduced that the following

minimum current criterion must be satisfied:

5 (l-r)¥y
1I .42 x10 r
k 2r 2  2 Amps
w 0 r

where <I> is the beam current averaged over the

slippage distance, r is the mirror reflection

coefficient, r0  is the beam radius, the wiggler length

Lw = k r2 is set equal to the diffraction distance, andS0

e 2B 2/m2k2c 4 = 1.w w

Linear gain can be enhanced somewhat,

particularly for large AtreI by adding a constant

parameter section to the front of the variable parameter

wiggler. The constant parameter section cannot be too

long since electron trapping may be adversely affected.

The linear growth phase in the constant parameter section

will tend to saturate at an amplitude inversely propor-

tional to the square of the length of the constant

parameter section, and this amplitude may not be large

enough to trap the beam electrons efficiently.

15i



In view of the above considerations, we have

simulated an FEL with the following physical

parameters

Electron Energy 50 MeV

Electron Beam Current
averaged over slippage distance 50 Amps

Wiggler Wavelength 1.25 cm

Number of Wiggler Wavelengths 400

Signal Wavelength A - 2ns /c 1

Wiggler Field Amplitude 7.0 kG

Nominal Trapped Electron Energy Loss 20 MeV

Constant Parameter Length 7.5 cm

Stable propagation of the saturated state was observed

with a filter band width of 0.1 w . An effective
s

trapping of -80% of the beam electrons occurred,

resulting in an energy transfer efficiency of -30%.

Without frequency discrimination, the energy transfer

efficiency is only 0.8%.

16
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MANLEY-ROWE RELATIONS FOR THE THIN LENS GAIN EXPANDER

BY

M. ROSENBLUTH AND V. WONG

I. INTRODUCTION

In this note we argue that two-dimensional free

electron lasers such as gain expanders may be described by

an action-angle Hamiltonian of the form

K $J + E Ws +(/5, -1) z' h (J,Y)\.. i (nk wz + 0)
K = k J + £e s hJn,m

where J is the phase space area for betatron oscillations,

its conjugate angle, y the electron energy, i.e., E - Ymc2

and T = t - z, its conjugate momentum. z is the inde-

pendent variable and e is proportional to the laser

field.

In Section II, we demonstrate a series of canonical

transformations which explicitly and exactly reduces the
1

"thin lens" expander as recently proposed by Madey, et al.

to the above form. The details are algebraically messy but

* the procedure is straightforward. In Section III, we show

that this Hamiltonian implies, to order c, the Manley-Rowe

2
20



relations, and generalized Madey theorems. These may impose

severe restrictions on gain expander operation. We also

display in terms of the h 's the equations for then ,m

energy transfer. In Section IV, we evaluate these for the

thin lens system at low excitation amplitude. The casual

reader should restrict himself to Section III.

21



II. REDUCTION OF THE THIN LENS GAIN

EXPANDER TO NORMAL FORM

We use as a Hamiltonian for the thin lens model the

z momentum, and represent the wiggler by a vector potential

A. So for y >> 1 we have

+ xF (z) + -- F (Z) . (1)
2y 2 2

z is the independent variable. Y may be regarded as a

canonical variable and T = t- z as its momentum.

For the thin lens, which consists of a wiggler

composed of pairs of very thin magnets with transverse

gradients, we have:

F(Z [ + ()n] 6(Z-nX)

(2)

F (Z) = 
8 +  a-  n]6(Z-nX)o

A is the vector potential of the laser A E eA /c.

Since electrons with no transverse excitation pass through

22
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the magnets at a fixed x value, the coefficients in

equation (2) are determined by expansion around these points.

Analytic solutions are known both for the average (nominal)

motion x(Z,,Y); p (z,Y) and for the betatron deviations

from average (when the laser is not present). We take

advantage of this to perform a series of canonical

transformations, which reduces the Hamiltonian to the

standard form.

The first transformation involves a generating

function

G (p',x,T',Y) = p'x - x 0' + xp + T'y

The usual canonical transformation equations are

x' 3G/ap'

P =3G/x

y' = aG/W'

K 2 = K I + )G/3z

23



r

so that

X1 X XX

0

T Tr +I p -x (xI + x) -a 0 (3)

and the new Hamiltonian is

12 P2 X2A A2

__ +1 + 2 2F pA

K2 2,( 2 2 2y -2 2 Y 2y

Note that for p' = x' = 0, (no betatron oscillations)

we find

d- p 2 +1 -

0 10

dz - 2y2

Proper choice of a and 8makes the system isochronous,

i.e., 3/3Y OdT /dz) - 0. We assume this hereafter. Next we
0

introduce a second transformation

24



G = p"x' + T"y -fyx d + ( - YZ
2 Y-f'ody ,

which simplifies the Hamiltonian to

2 1 , 2 pA A2

= 2y -xF - ~ A2
2y 2 2 y 2y

with

TIT= T -(L- i) z +p dx ' d p 15)
-11 y d y()

The next transformation reduces the Hamiltonian to

harmonic oscillator form. Here we take advantage of the fact

that the harmonic oscillator coordinates P, Q must be

linear functions of the coordinates p', x'. Hence we choose

a generating function

p g (Z) ,2
i xi

G P 2 + 2 (z) + Px' g (z) + T"Iy (6)
+- g2

yielding

25



=P g + x'g3

P' g2 X1 + Pg 3 (7)

The functions g1 ,2 ,3(z) may now be determined by

requiring that the above equations are satisfied for the

desired harmonic oscillator form, i.e., P = - sin kaz ,

cos kBz and where xt , p' are a known thin lens

solution as derived previously:

X' t [ (-)fln cos nk X + E (z-nA

P= [cos ( n+l ) k ° [ 1 _(_)nT]
0 Ic $(8)

- [l+(_)n.1 cos nk

These may easily be checked from the equations of motion.

Here a is a normalization coefficient, and we are at

position (n+l) X > z > nA0 .

In terms of the magnet parameters, we have defined:

T X/ / -l-
(9a)

with a_>O, and the betatron frequency satisfies

I
26



cos kA X (1 %A 2  ( 2 (9b)

By substituting (8) into (7) and laboriously matching

coefficients of cos k z, sin k z, we find:

q=A(z)/B(Z)

9= C(z)/B(Z)

whrg 3 = 1/B(z)

A (sink X~A (1_n 2)y 1 1 i

+ - )sin ks (-A) 0 sin k~ji

0

B sink, A ) (lr, 2 ), cosk i

+ x1 cos ka (i-X) - (l+ .)n) cos k B]

A sin kA (1S 2 A 0

cosk i-A ) (10)

(1+i()n cos k3 it
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Here =z - nA and the f's are hence proper periodic

(period 2X 0) functions of z.

A detailed calculation of the new Hamiltonian may now

be made using the equations of motion and after vast algebra

we find as we knew must happen:

k8 EA A 2K = (p2 + O2) - +_

2 y 2y

A final transformation to action angle variables is

performed involving a generating function:

G = T111 Y+J sin- Q + QQ2/2J

I
I
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III. GENERAL THEOREMS FOR STANDARD HAMILTONIAN

Thus our final Hamiltonian is

K = k J 2- A 
(1)

y 2y

with j = (p2 + Q 2)/2.

A price has been paid for this simple form. The

canonical variables are J, its conjugate angle 0, y, and

a transformed time T'' = T. The added complication in

the time variable arises from the implicit dependence of

the f's since the timelike variable

3G3
T - (12)

Note that y has survived as the canonical coordinate.

Before proceeding further it is worthwhile to

determine the physical significance of j = (p2 + Q2)/2. By

using (7), (9) and (10) we can compute J as a bilinear form

in the pu, x''s. Thus the constant J surface is a tilted

ellipse in the original betatron coordinates. We find as

expected from the area preserving properties of the

canonical transformations that 2n'J is simply the area of

that ellipse. This is consistent with the observation that
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the Hamiltonian (11) would, if k were a slowly varying

function of z, have J as an adiabatic invariant.

Let us now turn our attention to the laser field. We

may write the Hamiltonian (11) in the form (expanding in

laser amplitude)

K = H +H
0 1

H k J
0

where for a plane wave laser propagating in the z direction

with vector potential

A = a cos w (t-z/c) (13)
S s

we find

p'+p (z) iW T

H=- e~Y

+ complex conjugate. (14)

Here e = as/2.

The quadratic term (A2) is irrelevant to our

purposes. T, p', and x' must of course be expressed in

terms of the canonical coordinates.
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Using the redefinition of variables we have

introduced along the way we see that H may be written as:

H= [P.(Z) + /- a(z)cos 0+ (z)] x

+ -+z + c (Z) V5 Cos ( 6(z))
e

+ p(z) Jcos (2+A(z)) + r (z)J]

Here all the functions of z may also depend on Y, are

periodic with period 2A0 , and could be determined from the

foregoing arithmetic with some effort. However in order to

see the nature of the solutions it is necessary only to note

that we may write our Hamiltonian in the general form

iw z) ink z+mo
K = k SJ+ Ee h J,7e

+ complex conjugate. (15)

While we have derived this only for the special thin lens

case it should be generally applicable for different

magnets. Note that any x dependence of the laser field

would not affect the form of this Hamiltonian.

3
U
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The point of all this maneuvering is that we may

write the Liouville equation for the distribution function

f (J, 16

If~ I [3K, f] K) f]K
+ a f _ [ .I f = 0

Expanding in powers of E we have 3K /3q = aK /30 = 0.

We assume that f is independent of T (optical phase) and

(betatron phase). The latter assumption (certainly applying

to a case with no initial excitation) could probably be

relaxed for our purposes. Then

3f I K1  3f 3KA af1 0 1 0

z 3J ; 3Y (17)

3K 3f K af
0 1 0 1+ - = 0

a J 30 ay Y a

and if we write

f = e 1 f, (z)eimo

m m

+ complex conjugate,

we have
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fm + iW -lf + imkaf -iW a J f
z s m s 3Y

ink kz [ af fo]

= Fa h e 3im i sn

Assuming f = 0 at z = 0, then

0 0

f* I E h n'm 3 k
nk + WSG - ) + mk8 - s  J

w Oil aw- s (18)

in z - sL s , - 1)+ nk,-ws I-a z

+ complex conjugate.

Finally we look for that part of f which is2

independent of T and given by:

__ i a; 3 T
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We further keep only terms which are not oscillating rapidly

on the scale of k to find:
w

22 2m 

+ i s 
( @ h. m

mnm -A z rlen,m' [m _- sa fjj°

+ complex conjugate

where

AS
A =nk + ws i-) + mk,-w ;J j (19)n,m w 8\S;1 s ~

so

f (Z) = C2n~m j- hJ 2nm

n~Qm

(20)

sin 2 Am~ z/2 [3fo 3fo.

n,m
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Voom

We see immediately, by multiplying by J and integrating by

parts over dy dJ, that the mean action change is given by:

nm ff 0dJd m 1 - hn,m

(21)

sin 2 Amn z/2

(A m )2

and the energy change by:

<6y> -SC2 fdd UIn ,m  
- S y n,m

sin 2 A mn z/2 (22)

(A nm)

In the usual case where only one resonance is of

importance (which is practically necessary and desirable to

get cancellation of excitation at a defintie z value) the

Manley-Rowe relation follows directly:
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_ <6 Y>

s (23)

We have already remarked that 2nJ is just the phase space

area, hence can not be changed by moving from one magnet to

another. Only going from one m to another seems to offer

the possibility of excitation cancellation with gain but we

haven't yet been able to implement a viable scheme.

The m = 0 resonance does not produce excitation but

since the whole effect depends on energy derivatives,

presumably large energy spread results. It should also be

noted that only m = 1 is operative for small J, hence

only h need be calculated which is doable in spite of1,11

the complications (see Section IV).

By taking the second moments of equation (20) it is

also easily possible to generalize the Madey Theorem relating

gain to spread without making the resonant approximation,

i.e., keeping all m values:

<6J> ~ <(5J)2) + < v Y-~ '

(24)

6Y> 1 1 (6y)2> + <5j6Y2 2 3
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IV. ENERGY GAIN FOR THE THIN LENS EXPANDER

In order to calculate energy gain at small excitation,

J, coming from the resonance m = n = - 1, it is necessary

only to keep the terms in H proportional to e- i€ and to

J. From equations (13) and (5) with E = as/2 , we have:

H =- s p 0  dx 0 0
y Tdy dy 4 (25)

Recalling that P = - v2J sin p, Q =2-cos 0 and

using equations (7) and (8), we find readily that the terms

in p', x' which are proportional to e-  are:

p = I-J/2 c + iD

x = vi 2 B + iA

where A, B, C are defined in equation (10) and
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D = Xo sin k; (1-n 2)nsnk o-

We further need the properties of the nominal isochronous

trajectories

p 0 2 1 -~) y (27)
ody t

dx 1 X

o d y 2 a+ y

dPo P (28)

+ Po dy Y 2  2

where the 's specify the magnet gradients as given in

equation (2).
Equations (26) - (28) may now be substituted into

equation (25). We must still perform a Fourier Transform in

z. Note that the desired resonant Fourier component is:
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0
OA e+ i z/A

h e o H (z) dz (29)
0A J

-x
0

and that the integrand consists of functions of 2 z -n0
0

times constant factors and factors proportional to (-)n.

Only the latter contribute to (29). It is thus useful to

write down the parts of equation (26) which are constant and

those which go like (_)n

C- + ieDk [1+e-iks X 0

ik r -ikBX0  11C++iD+ = e BJ -i sink SA (1-n 2 )

iA- +B_= - n/2 e k Bi [( 1  ikX,,)

+ 12~A (+ik Xo)1 17 y+ 1 - 2/X 1 + e sink n2)

Here the subscript - denotes the terms proportional to (-I
n

The integrals are now all elementary so that we find

3
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with

__ _ _ _ I
s  o 2W 0

2 (l+cosk AX) + a A -2 (l + cos k X) 0
Tr +k A) 00 Y 2 A 0 (~T+k X)

+ sink X. + z (sin k8 Xo) (l-r2)y 1

We may simplify this somewhat if we evaluate at
resonance where w X (p 2 + 1)/2Y 2 = 7 + k X to obtainS 0 0 0

finally:

____ (1+ cosk Ao) 2 +
_ +p Tr r+ic k 0 lp 0- siksAo l~J

sin k IA) (l-n 2) y X
(30)

and finally from equation (22)
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r

_ . sin 2A z/2

KS - 2 2 -- 1 (31)

with a = eA /m the dimensionless vector potential of the

laser as defined in equation (13), and A defined in

equation (9).

The term proportional to $-/B+n is usually the

largest in equation (30) and yields the same result as Kroll,

et al. The m = + 1 resonance result is obtained by

changing the sign of k in equation (30).

Those results are in agreement with numerical

simulations by John Madey.
3
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I. INTRODUCTION

In the free electron laser (FEL), a relativistic

electron beam is propagated through a transverse periodic

(wave number kw) magnetic field wiggler where the electrons

acquire transverse oscillatory motion (amplitude p. ) which

enables them to couple to the transverse electric field of an

electromagnetic wave (frequency ws and wave number ks). For

low density beams (where collective effects may be neglected)

the coupling may be viewed in terms of the interaction of

electrons with a ponderomotive potential well (produced

by the combined wiggler and radiation field) moving with

velocity Vre s = w s/(k w+k s). Electrons with velocity close to

v res, or equivalently with energy close to

Yres , [ ()]

are in resonance, and net energy transfer can occur between

the electrons and the radiation field. Those with energy

slightly larger (smaller) than y lose (gain) energy to

(from) the radiation field.

In constant parameter wigglers where Yres is

constant throughout the wiggler, the energy extraction from
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the electrons terminates when their energy is reduced to

Yres . This puts severe limitations on the gain and

efficiency of the constant parameter FEL. To overcome this

limitation, variable parameter wigglers1 have been proposed

in which electrons are trapped in the ponderomotive potential

well and Yres gradually reduced by adiabatic variations of

the wave number (kw) and amplitude (Po) of the wiggler. The

energy loss of the trapped electrons translates into energy

gain of the radiation field. In this way, the energy

extraction in a variable parameter wiggler can be made to be

much larger than that in a constant parameter wiggler.

In principle,a DC electric field may be applied to keep

electrons of fixed y in resonance with a constant parameter

wiggler.

While a variable parameter FEL may be operated as an

amplifier by passing a finite amplitude electromagnetic pulse

through the wiggler, it is desirable to initiate operation of

the FEL by growing the pulse from noise levels. This

necessitates that the pulse be reflected and passed

repeatedly through the wiggler, and its amplitude increased

on each pass. However, the successful operation of the FEL

in this mode (as an oscillator) will require that:

1. The linear gain per pass be sufficient to

overcome reflection losses and grow the electromagnetic

pulse to a large amplitude in a finite number of passes;
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2. The saturation of linear gain occurs at

amplitudes large enough to trap a significant fraction of the

beam electrons in the ponderomotive well;

3. The finite amplitude saturated pulse propagates

without deterioration due to the onset of trapped electron

sideband instabilities. 1

An investigation has been undertaken to determine the

extent to which these requirements can be optimized and inte-

grated into an efficiently functioning variable parameter

FEL. The investigation will involve not only theoretical

analysis of the FEL equations, but also numerical simula-

tions, particularly when studying the nonlinear saturation of

liner gain, electron trapping, and the effects of trapped

electron sideband instabilities. This paper is primarily an

analytic study of linear gain. In a subsequent paper, the

numerical simulations will be described, and the formation and

stable propagation of the finite amplitude pulse discussed.

Our numerical simulations are similar to those in the
2

pioneering work of Colson on optical pulse formation,

although we extend his techniques in order to treat the case

of interest to us, the high extraction variable parameter

wiggler.

In Section II, the set of equations governing the

operation of the FEL are briefly formulated. A fuller
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discussion may be found in Reference 1. The electron

equations of motion are derived from an approximate rela-

tivistic Hamiltonian in which the transverse motion is taken

to be nonrelativistic, and transverse spatial variations and

beam self-fields are neglected. Thus our analysis is one-

dimensional. While rough estimates show that two-dimensional

effects such as diffraction and radially dependent

ponderomotive wells are not crucial, much further work is

required in this connection.

These equations, together with Maxwell's equations,

determine the temporal and spatial evolution of the electro-

magnetic pulse in the wiggler. In order to suppress the

growth of sideband instabilities and ensure stable propaga-

tion of the finite amplitude pulse, the formulation includes

frequency discrimination of the pulse outside the wiggler,

the effect of which is to attenuate frequencies above and

below the desired pulse frequency w . As we will see ins

this paper, while frequency discrimination is necessary to

suppress the sideband instability, it may have a detrimental

effect on linear gain. In a similar fashion, a long constant

wiggler section will be found to be desirable for linear

gain, but to lead to saturation at too low a level for

trapping. Thus, careful design is required for a successful

high extraction FEL.
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The FEL equations are linearized and the linear

eigenmode analysis leading to a calculation of the linear

gain as a function of the FEL parameters is described in

Sections III and IV.

The special case of ultra-short electron beams is

considered in this paper. By an ultra-short pulse, which we

approximate in the paper by 6(z-vt), we mean one such that

the difference in electron and photon velocity is large

enough that a photon is able to slip through the entire

electron beam while traversing the wiggler. The motivation

(aside from the intrinsic interest of short pulses) for

considering this case are: (a) Analytic tractability and,

more important, (b) the number of particle orbits which

must be followed in numerical simulation is obviously far

fewer for a single electron beamlet than for the many

beamlets which would be required to simulate a long con-

tinuous pulse.

The basic physics of electron-photon interaction

should be qualitatively the same for a long pulse whose

current times slippage length equals the number of electrons

in our 6 function pulse. The linear gain for long electron

pulses will be considered in a companion paper.

The analysis encompasses constant parameter wigglers,

variable parameter wigglers, and a combination of constant
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and variable parameter wigglers, with and without frequency

discrimination.

In Section V. we summarize our results for linear
gain and present a semiquantitative discussion of nonlinear

propagation and sideband suppression.

so

-<I
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II. BASIC EQUATIONS

A. Electron Equation of Motion

The electron equations of motion can be derived from

the Hamiltonian

H = H[x, P, y, Py' (- ' t, z]

- e°)2 - m2c2  (Px e Ax)2 (Py A)2

C 2  C 2  . .. . 2 xc

e
- -A

c z (1)

where the electron energy (-i) plays the role of the

momentum conjugate to t, and z is the independent

variable.

0o is the electrostatic potential of an accelerating
300

electric field - d The beam density is assumed small so

that the electrostatic self-fields of the beam may be

neglected.

The vector potential A is the sum of a circularly

polarized, periodic magnetic field wiggler Aw:
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ee A =a
mc -W -w

= - a(z) R cos kwdz + y sin kwdz]

and a circularly polarized electromagnetic plane wave A-S

em--A a
c -S -S

=a (z,t) cos(k z - w t + U[z,t])

- v sin(k z - w t + ;[z~t]
-S S

where aw , kw , as, and ' are slowly varying functions of z

and t. As has been shown elsewhere a linearly polarized

wiggler gives only slightly modified equations.

The assumption that A is independent of transverse

coordinates (x and y) implies that the canonical perpen-

dicular momenta Px' Py are constants of the motion. We

will assume P = 0, P - 0, an assumption corresponding tox y

the neglect of transverse velocities in the incoming beam

before it enters the wiggler.
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If we introduce as new variables the energy parameter

(8- e )-
Mc2

and the relative phase

z

k dz + k z- t
w .3 S

0

the flamiltonian H takes the form:

H =H(- 6, t, z)

- -c c[y2-_i11 2 + 2a Wa Scos(OP + 1"

(2)

- MCY + En {112 - 2a a9 cos(W + +

where Ij2 =1+ a 2 + a 2, a > a , and y 2 >> 1> 2 a aw s W wso
The electron equations of motion in terms of Y and

4,derivable from H(-ie, t, z), are then given by:
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de do 0 1 aH
dz mc d z inC2 t

(3)
e 0 -Sw S

mc dz y Si(~ + a

(4)
k k S

w 2y2

where w k. c. arnd terms of order << 1 S <
-%2 at WS at4a as <<2 «1, have been deleted.

The relative Phase 4'varies Slowly for electrons
with values of Y close to (tersnteegy

defined by:

These electrons interact strongly with the radiation field
and will exchange net energy with it. Electrons with values
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of Y far from Yr have negligible effects on the radiation

field.

It is therefore convenient to describe the electron

motion in terms of the variables Y = Y - Yr and .

In the limit of y << r , the electron equations of

motion may finally be approximated by

dy d_ r e do
dz dz mc 2 dz

(5)
ka a
Y W sin(p + )
7r

d -_ (6)
dz r

and are derivable from the approximate Hamiltonian

H( y, p, z)

k

Y ?r

(7)

y+e dzo k aw a cos(tp + )

- ., .. __ _ __I



F

dy
We define a constant parameter wiggler by = 0do °  dz

and 0 = 0.dz

In a variable parameter wiggler, Yr is allowed to
dy

vary spatially, --z 0. The presence of an accelerating

electric field do0/dzaffects the electron phase space (i, )

trajectories in a manner similar to spatial variations of

7re as may be seen from Equation (7). In subsequentdy

sections, it will be assumed that yr is constant, -e = 0.

A constant or variable parameter wiggler is then modeled by

d0 o Ur
dz 0 or - T

B. Electromagnetic Field Equations

The transverse electron beam current density J

determines the time and spatial evolution of As through

Maxwell's equation:

a2  1 a2  4r
z-s ;t -s c-i

Substitution of the assumed form of As yield:
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3a 3a
s s 2Tre

at + k mc 2 J2
s

a -+ c 27re
s at 3z k mc2

s

where

J. =j • e., j = 1,2J -1 J

e = x cos(ks z - w st + )

- y sin (k z - w t + )

e 2  -i~ t + C)

- cos(k z - w t + )
s s

The assumption that a. and vary slowly in space

jI and time has again been invoked to delete higher order terms.
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if FO(Y 0 ,IP ) is the distribution function of the

electron beam on entry at z = 0 into the wiggler at time

t =- !20 the beam density n(z,t) and transverse beam
0 W

current density J.i(z,t) are:

n(z,t) = F( )6 It -t ',z)JIdj dqWJ 0 0 0 0 0

(10)

) (zt 00 0 v1 -j it 0 (, ) 0 dp0

where the transverse electron velocity XvL is (EPL 0):

CV e-xl ~1 y- - l

(z IZ ('t 40Z
W00

r
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00 P of z) and 01( 1 z) are the phase space
coordinates of the electron trajectory with initial values

%~ and o at z = 0. t{%r 0 0, ~,z) is the time of arrival
of the electron at z and is given approximately by

z o zt(yO ,0, Z) -,t 0+ -= - -+ -

where

Let F(Q C;0  1 l/ f-),wer fy

Then, fro Eq at o (10)

3 and from Equation (11):
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J(Z't) ac a (z) H (!~t)

r

diff(yo) cos i op ' z) + (z,t)
0 0 Ye 0 

s t)

When t changes by At = 2by 27V 27r
Ws  or by Az lis : Fs, theargument 0 of ,(o' o' z) changes by 27. Assuming

Zthat the beam density H(z - t) varies slowly over these
small changes in t or z, it is appropriate to average
cos IP + I over p0 • Thus

Jllz,t) e- a (z) H 1-t
yr w

11~d~ d~p f(9^ Cos

eca (z)

Similarly
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eca w (z)
J (zt) - H t) sin + C
2 Ir

The field equations for as and C are then given

by

3a a
s C S

(12)

2 e2a

_ w H <sinY +
k cmyr

(13)

2re 2a
w H <cos iP +

s r

C. FEL Equations

S I In the FEL configuration which will be analyzed, a

combination of constant and variable parameter magnetic field

wigglers is positioned between mirrors so that an electro-

magnetic pulse can be reflected repeatedly and multiple

passes of the pulse through the wiggler achieved (see Fig. 1).
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I

IRelativistic electron beamlets of finite length are injected
jinto the wiggler at periodic intervals so that on each

forward pass of the pulse through the wiggler, there is

j overlap of the pulse and beamlet. The pulse grows on each

forward pass. Eventually, the amplitude of the pulse becomes

large enough to trap a fraction of the beam electrons. At

this stage, the pulse is susceptible to detrimental spatial

distortions due to the onset of trapped electron sideband

instabilities. To avoid breakup of the pulse, it will be

necessary to suppress the growth of the sideband instabil-

ities. This may be accomplished by passing the pulse through

a frequency discriminator which effectively acts as a band

pass filter, attenuating frequencies above and below the

desired pulse frequency. With stable pulse propagation, a

stationary state is reached when the energy extraction from

the electron beam is balanced by the energy losses in the

frequency discriminator and at the mirrors.

To facilitate formulation of the equations which

describe the operation of the FEL, it is advantageous to

transform the variables z and t to the variables

J u and v:
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C

U C

c it z)!Vc t
L c-

where L is the length of the wiggler.

The line z = 0 in z - t space maps into the line

v = - u in u - v space and z = L into v = - u + 1 (see

Fig. 2).

In u - v space, the beam electrons, entering the

wiggler at z = 0 and exiting at z = L, move on lines of

constant u. The photons of the electromagnetic pulse,

propagating in the beam direction, move on lines of constant
th

v. During the n pass of the pulse through the wiggler,

the pulse interacts with the electrons when the values of u

and v lie in the area defined by U2n > u > Uln ,

1 - u > v > - u, where the difference U2n - U1  U is

determined by the length of the injected electron beam.

In terms of the u - v variables, the coupled set of

equations, (5), (6), (12), and (13), which describe the

evolution of the electromagnetic pulse passing through the

wiggler together with the electron beam, can be rewritten as

follows:
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1 Figure 2. Electron and Photon Trajectories
in u-v plane

65



aa i n h(u) ( e(6

where a*is the complex conjugate of 'a, and

a =a e

2 k L k La
W s w

S Yr Y s

2 k L
w

Y =

2kw Le O0

rr

2 k L r
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with AY r the change in y which would be experienced by an

electron freely accelerating under the potential 00" h(u)

is a form factor which determines the beam density profile

and is defined by:

n(z,t) H t)

(17)

c 1
-- N h(u)
VL(VS ) T

where S h(u) d u = 1 and N is the total numer ofUln T

electrons in the beam per unit area, NT dz n(z, t).

The dimensionless parameter n is given by:

8re 2 N k L2 a 2

T w

Y mcVW 2  (18)
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th

Thus, for the n pass of the electromagnetic pulse

through the wiggler, the electron phase space (Y, *)

trajectories are determined by the solutions of equations

(14) and (15), with initial conditions Y = Yof 0 at

v - u. The phase of electrons entering the wiggler is

uncorrelated with that of the electromagnetic pulse. Thus, o

is distributed uniformly between 0 and 2n. The average

over 0 is indicated by < >. The pulse amplitude after

interaction with the beam electrons is given by:

a (vo) a (v, -u ) +A a (v) (i )

where

A n (v)= in du h(u) <e-i(v'u)> g(v,u)

-u
0

-u > v > -u

0 > u > -u0

g(v,u) =

o otherwise (20)
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1 In deriving equation (20), the u, v coordinates

were transformed so that the interaction of pulse and1 th
electrons during the n pass occur for u and v in the

I range 0 > u > - uo , 1 - u > v > - u. It will be assumed

that there is no overlap of the electromagnetic pulse from

pass to pass, and consequently, this transformation can be

carried out in deriving corresponding equations for the

(n + 1) th pass, etc.

The electromagnetic pulse is reflected backwards and

then forwards for the (n + 1)th pass through the wiggler.
n+l

Without optical filtering, the pulse amplitude a (v, -u 0o
th

before the (n + 1) pass may be related to the pulse

amplitude an( v, 0) after the nth pass by

a n+(v -,-u ) = r a (vo)0

1(21)
= r [an(V,-u) + n(v

1o

where r < 1 accounts for the reduction in amplitude due to

energy losses on reflection at the mirrors, and 8 repre-

I sents the tunable pass to pass shift in the position of the

I
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pulse relative to the front of the electron beam at the

moment of entry into the wiggler. As we will see the linear

growth rate depends sensitively on 8 which is physically

determined by the distance between mirrors and the interpulse

spacing of the e-beam.

If identical electron beams are injected into the

wiggler on each pass with fixed periodicity, the pass to pass

change in pulse amplitude is determined by equations (19) and

(21), independent of the value of n.

To suppress the growth of sideband instabilities when

the pulse amplitude is large enough to trap electrons, the

pulse can be filtered to attenuate sideband frequencies above

and below the desired pulse frequency ws . This filtering

may be accomplished by a band pass filter, modeled by the

equation:

^^n n ^na (v,o) + v a (v,o) = va (v,o) (22)

^n
where a is the filtered pulse amplitude, and the

frequency half width Aw of the band pass filter is

70

. . .. l| , . . . .. .



A, = vc
L( -l)

Since an+ (v -8, - u ) = ra (v,0) , the pass to

pass change in pulse amplitude after interaction with the

beam electrons, filtering, and reflection at the mirrors, is

given by

1 n + 1 (v ^n-- a (-8,-u ) + a (v-8,-U)
V v o 0

(23)

= r [n(v,-Uo) +Aan (v)

Equations (14), (15), (21), and (23) govern the

- operation of the FEL.

7
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III. LINEAR THEORY--WITHOUT FREQUENCY DISCRIMINATION

For small pulse amplitudes, the FEL equations are

linearized to obtain the linear eigenmode equations. In the

-limit of short electron beams (u 0 << 1) where

0

h(u)

0

equations (14), (15), and (21) yield:

(V, U = ~fdv' (v -v' I (v -v')

00

0

1 > V>O

(24)
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n +
(v-B, -u -rai (v,-u)

o 0

n +

3V (V,-u0

n
-r a (v, -u0

0

0 -u
0

1 > v> o

0 otherwise

(25)

where

I (V V f j. (%) i y (v' -v)

and the relative pass to pass shift 8of the pulse is

assumed to be small permitting the indicated Taylor series

expansion. r is condidered to be independent of u and

V.

Let
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an (v,u)=e an(v,-_u)
o 0

(+) an (v, -u 0

where 6 is the linear gain and phase shift per pass.

Equation (25) may therefore be approximated by:

(1-r + 6) n a~- ,n
av

in_ du<e 1P(,U>

u0 
_J

1 > v>o0 (26)

where r is assumed to be close to unity.

The boundary condition on a at v =1 is

an (v _ 1, -u) 0
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Ii

since photons with v > 1 have never interacted with the

driving electron beam.

Equations (24) and (26) are valid only in the

interval 1 > v > 0. However, the upper limit may be

extended to infinity since the solution of these equations in

the interval 1 > v > 0 are unaffected by the solutions in

the interval v > 1. With this extension of the interval to

> v > 0, the solution of these equations may be obtained

by Laplace transformation.

Define the Laplace transforms

.3 (u)= dve - p V <e- i(vU)> e 2
P I

0

i fiv 2

-pv 2
A(p) = dve-PV (v, -u o ) e

CO

I dye - p v I (v)

0

The superscript on a will be deleted except when it is

necessary to differentiate variables referring to different

passes through the wiggler.
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Equations (24) and (26) are Laplace transformed:

0 (U) = - i rU du' 0 (u -p (27)

--0

iFB -p A + BpA- (1+ 6 -r) A

0

+U du 0p (u)

0

A (o,-u ) a (28)
0 0



Equation (27) is solved to obtain

ai - i
(u) e ( (.29)

p 2 3p

and substitution of p (u) in equation (28) yields:

iI - A + BpA- (1 + 6 - r) Aap i

2 3p

+ A - = a (30)
0

The function I is determined by the initial energy
p

distribution f(Yo) of the beam electrons. If
0
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f (Y0 /7 th t

is Maxwellian, or

11

f(Y) th1+ ~ 2 ) 2]

"th 0 ~Mxela

(p+i)ht 3a

+io Lorentzia

(L) iY)A th(31a)

Sth is a measure of the energy spread. I pis comparatively

th7p



simple when f(Y ) is Lorentzian, and consequently, the

Lorentzian form of Ip is used in the subsequent analysis

unless otherwise stated.

Equation (30) is solved to obtain the solution A (p)

which vanished at - in the right half p-plane. The pulse

amplitude a(v, - uo} is then evaluated from A(p) by the

inverse Laplace transform

-i Iv2

a(v,-u e 2 dpep v A(p), 1 > v > o (32)0 2 Ti f
c

where C denotes the contour of the inverse Laplace

transform.

The eigenvalue equation is obtained from the boundary

condition

a(v=1,-u ) = 0
0

which in terms of A(p) may be written
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eT dpep A (p) =0 (33)

C

A. Constant Parameter Wiggler

In a constant parameter FEL, ris zero. Thus, from

equations (30) and (33):

1 /3

-Ee i (yB 1/3 (34)

C~~ [~ 5 i(2):/3 e 21- J

where

lr + 6) + B(th T, a (l2)1/3 6 25

+ jz7(36)
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and C- is obtained from C through the transformation

from p to F.

If (<12 ) /3 < 1, and the exponential is

approximated by

n B2)1/3 1

e -1

[which corresponds to neglecting the second term within the

square bracket of equation (24)], equation (34) simplifies to

( )1/3

1,2,3 (3& - 251) =

where E. are the roots of the cubic equation

&3 6 = 0 (38)
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Since 61 is complex, the roots . are complex.

In the limit of a long wiggler where (n/2) 1/3

a root with negative imaginary part will contribute an

exponentially large term to the sum. It may therefore be

conjectured (and established a posteori) that equation (37)

can be satisfied for (n/2a) 1/3. . if two roots (C1 and 2

have equal and negative imaginary parts. The requirement for

this to occur is

61 - 1 274/ '2 MI e (39)

where E2 - El = (2a/n) /3 C r is small and real.

Equation (37) is solved numerically, and in Figure 3,

the variable Re[(l - r + 6+6y th)(2/n82) V3 is plotted as a

function of S/n. For small 8/n, the curve follows equation

(39) with Co - 1.9 and decreases to zero at 8/n z 0.065.

B. Variable Parameter Wiggler

In a variable parameter FEL, r is nonzero.

It is convenient to define the new independent

variable

82



1.5

Noma



(p + Yth + jY)
q p1/2

and to rewrite equation (30) as follows:

iAqA + iAA

i~~ 2Fr 2

where

th
pA 1/

j The solution of equation (40) which vanishes when p

tends to infinity in the right half p-plane is
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i a o  Slq S- i  -S(q)

/2 e dq' e

q

where

Sl(q) = 2 - i Aq + - 7 dq ' - 1

The eigenvalue equation is therefore given by

e dq e r1/2q+S(q)Idq e =S(q') 0 (41)

cq q

In the limit of an infinitely long wiggler where

r * =, the integral in equation (41) may be evaluated by

8
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|i

deforming the contour Cq towards the Im q axis. The

contour approaches a saddle point at q - A + i r'/2, and

if Re A > 0, the contribution of this saddle point is

i exponentially - eA rl/2  large. This implies that

equation (41) can be satisfied only if

1-i) (q)
dq e 0 (42)

-co(l-i)

where the contour passes above the origin. Equation (42)

determines the eigenvalue 6 in the limit Ar 1/2 .

If the exponential in S1 (q) is again approximated

by

in

e 2 r q - 2+

Iequation (42) reduces to:
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o(l-i) iq Aq-

dq e- 2 +q =0 (43)

where

For at 0, equation (43) may be approximated by

Equation (43) determines A as a function of a and

it is readily verified that A(a) is a solution of the

differential equation

d2 A + dA )2 ~dA~
0a ' (44)
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For c >> 1, a solution of equation (44) is given

approximately by

i Tr -i iT
(17 )1/3 e ,14\19

6 e 1/3 + C a + i 3e -

(45)

where C is a constant to be determined.

Equation (43) is solved numerically, and in Figure 4,

the variable Re[(l - r + + a y th )(2/l82)1/3

is plotted as a function of 28F3/2/n = 1/a. For small /O,

the curve follows equation (45) with C1- - 1.61 - i 1.94

1and decreases to zero at t z 1.42.

C. Combination of Constant and Variable Parameter Wiggler

In the case of a magnetic wiggler with a constant

parameter section at v, > v > 0 and a variable parameter

section at 1 > v > v,, the eigenmode equation may be

obtained by an extension of the analysis previously

described.

Thus, in the constant parameter section v > v > 0,

the pulse amplitude is (equation (32)1:

88
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(q. ~) 1/2 V

q. e(qj-E
a (v, - u 0 a(O, -u 0 (3q 2A

j=1,2,3

(46)/

where E h+ i y r2

and q. are the roots of the cubic q 3- q1 A + ic 0.

In the variable parameter section 1 > v > vl, the

relevant equation for <e ~ (vu> is:

ir(v-v 
)V

< ei4*(V U) > e 2

- v( -V') I(v-v') a(v',U)

0

vi

+ - (v-v Idv' I(v-v') i(vl,u)
2 1~ 0

0 (47)

V ~(v' V

+ dv'(v-v') I(v-v') a(v',u) e 2
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The corresponding equation for A is:

-iq A + i. A

2 e irn/2rq 2_1 A

ia(v _-u0 2 iq2  in/2rq21 (b1 (vl) b221l
- -.- ~- e qq2 + q 2

(48)

where

V

b1 (V) f dv' (v -v') (v'-u )e (Th+T (v1-'

0 1(4?a)

V, 

I

b (v) 2~ dv' (v',-u e ('Yth+T) (v(V

0

The eigenvalue equation analogous to equation (43)

is:
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f dqe-iq2/2 + iAq-t/c

(VU) - 2ic ) + b 2

= 0 (5 )

This equation determines A as a function of a and

-2
F V Equation ',3) is solved numerically, and in Figure 4 the

variable Re [(l-r+6+ th) (2/1a2)l3 is plotted as a function

of 26f/n = 1/a for different values of
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IV. LINEAR THEORY - WITH FREQUENCY DISCRIMINATION

With frequency discrimination, the pulse amplitude

equation (eg. 23) is

A

(1+ +..) [ + -

82 a2
+2 " a +

=r[a + Aa(

where 6 is defined in Section III and 8 < 1.
1

The analysis will be restricted to the case of v -

This choice is motivated by the consideration that

Equation (22) indicates that the filtered pulse is effec-

tively an average of the preceding Av=-, i.e., it

corresponds to an effective retardation of the light pulse by
relative to the electron beam, while 8 represents a

forward shift of the light pulse. Unless the two are nearly

equal, the electron pulse and photon will separate after many

passes. Numerical work has verified that this choice is

approximately optimal.
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Equat'ion (51) then simplifies toL

82 ~2
1r + 6)a 2 TV a

0 (52)

~ du < e-i(v U)>

0 f> >

When v < 0 or v 1>

82 aV2

The solution satisfying the boundary conditions ^a- 0, v -t-

are:

{2(1-r+S)} v
e 8 v<0

a=

f2(1-r+cS)1 v
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where Re(l - r + 6) > 0. At v 0 0 and v - 1, a and

)i/3v are continuous.

The procedure of Section III may now be followed to

obtain the eigenvalue equation. Thus, Equation (52) is

Laplace transformed, and the equation for A(p) in the limit

of short electron beams is:

[p2  2 21[pZ ir + 2if ap A

2(1-r+6)A - 2 -L- -
+ A e2 3p 1

v-O (53)

{2(1-r+6) I
= -P + 8 _(,-u)

Equation (53) is solved to obtain the solution A(p)

which vanishes in the right half p-plane. The pulse ampli-

tude a(v,-u 0 ) is then evaluated from A(p) by the inverse

Laplace transform
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-ir0 v2/2e /v
2ni dp epv A(p), > v >0

C

and the eigenvalue equation is determined by the boundary

condition at v - 1.

A. Constant Parameter Wigler

For a constant parameter FEL where r * 0, the pulse

amplitude &(v,-u 0 is:

h

&(O,-u f (ni/0 (t-63)va(0'-Uo) d e (-6,+6)g(v'-Uo= 2i

fir C1 6 )2(i2) (ei( ~2) h/2 2 ~C 2(nB2)% e -

(54)

where

+ 7th +  = 82

62 = 2(1-r+6)

2 (Tth+
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If (n62)8 << 1 and the exponential is approximated by

e i (1102) kE-1 = i(n$2) /2E2

Equation (54) simplifies to

(n/82) (E.-63)v

a(O,-u) e E M-63+6 2L
0 2 j=1,2,3,4 [( 63) (2-63 - 2]

(55)

where C. are the roots of the quartic
J

E2(-6 )2 - E26 + i = 0 (56)
3 2

The continuity of a and aa/av at v - 1 is

satisfied if

2

e J" E (-6+6 2 2

[(Ej- 6) (2 J-6) - 62] 0 (57

Equation (57) is the eigenvalue equation.

9
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If 6 = 0 (no thermal spread), the roots of the3

quartic are

As in Section III, it may be conjectured that in the limit

2 ) 4 0 , Equation (57) can be satisfied if two roots

( and ) of the quartic have equal positive real parts.!2

The requirement for this to occur is

a 2e i ir/4 +
2 2 i

2s2 (58)
2 1 2 T

where 2- (21n)k is small and imaginary.

Equation (57) is solved numerically and in Figure 5,

the variable Re -is plotted as a function

of O/n for different values of Yth (T a 0). When

7th * 0, the curve follows Equation (58) for very small

/0 , and decreases to zero at 8/n11 I .118. As 7th

increases form zero, the curve falls more rapidly and is zero

at smaller values of s/n.

9 I
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I.

The effect on linear gain of finite values of

is shown in Figure 6.

B. Variable Parameter Wiggler

For a variable parameter FEL where F # 0, it is

convenient to introduce new independent and dependent

variables:

P+ 7th + iT
q=e r

Equation (53) can then be rewritten as follows:

= - . (q-c+A1 ) 9(
0 ,-u o) e 2

r

S G(q) (59)

where
2 2(1-r+6)

s2 r

Vth + i
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If the exponential is approximated by

a2 2
+ A2B -2-- B

aq 2

= G(q) (0

where CL T
2 r 2

Numerical integration of the equation without

expansion of the exponential indicates that as expected for

n/2q 2Fr 1, the growth rates are not altered substantially.

The solution of Equation (60) is:

B- wq H (2) tAq dq1H(1 (A '' qq#G(l)

4i A L f
q

(1)(61)

-H~ (A ~f dq H~2 (Aq') q- G(q)
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S(1) (2)
where H and H are Hankel functions of order

i UV = 1 + icQ )

As p tends to infinity in the right half of the p-plane,1
B -exp (-ip 2/2r), and consequently A(p) =Bexp (ip 2/2r),

p
tends to zero.

The pulse amplitude is obtained from the inverse

Laplace transform

-i rv 2/2 r
(v, i dqU 0 (q-)v+ i () 2

Cq B(q)

> v > 0 (62)

In the limit of an infinitely long wiggler where

'F * =, the integral in Equation (62) may be evaluated by

deforming the contour Cq towards the Im q axis. The

integrand is

1
!
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. ... (q. - i E )1ISA e (v(q- E) + -

4i A

oil-i)

f dq H (A) q' G(q')

q

A1q >> 1, Im(Alq) > 0

The contour approaches a saddle point at q-E - i v + A2

and the contribution of this saddle point increases

exponentially , exp(A 1 v). However, if &(v,-u 0 ), Ivl)1

has this behavior, it will not be possible to match a to

the exponentially decaying solution ' exp(-AiP v),(v >1) in

order to satisfy the continuity of a and 3a/3v at v = 1.

This implies that the boundary condition at v = 1 can be

satisfied in the limit A I 2 CO only if1

cc(1-i)J dq H (A q) q G(q) = 0 (63)

-=11-i1
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where the contour passes above the origin. Equation (63) is

the eigenvalue equation in the limit A r 1- .

If E = 0, the integral can be expressed in terms of

Whittaker functions, and the eigenvalue equation is then

given by

d H () 2 o ) '/2 + i eo 2

z
i~r 0

4 2
e 0W3 1(Zo) + W 1 (Z]4'2 ' (64)

=0

where
-iA 2

0 2

and the contour passes above the origin.
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In the limit 1Z1 "EJ >>I 1,

2

W1 4 Z)--- 0 / (O2
4'2 7r

-(2r) e il/4(2Z 0) "6

Ai (Z0- (Z+iI4))

where K u2is the modified Bessel function of order PJ/2

and Ai is the Airy function. Thus, the solutions of

Equation (64) are given approximately by the zeros of the

Airy function. For the most unstable solution

(Z + i)
0

(2Z) 1

and therefore
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In the limit 1II0 aj < 1, Equation (64) may be

approximated by

2 + icta log Z
0

2Z k
0

and therefore

2
2a_ ( Tr a\

2 8 6log 16-

+ i(N+1 7T(66)

Equation (64) is solved numerically, and in Figure 7,

the variable Re [(l-r+S) (4/n62) ] is plotted as a function

of sr/n . As Br/n increases from zero, the curve

decreases from (2)k and asymptotes to zero as ar/ n .

The effect on linear gain of finite values of Tth

and has been calculated by numerical solution of

Equation (63), and the results are displayed in Figures 7, 8

and 9.

A more exact eigenvalue equation can be obtained by

replacing the Hankel function H() in Equation (63) with

the appropriate homogeneous solution of Equation (59), namely
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the solution B + which asymptotes to % exp(iA 1 q) forh
Iq! >> 1:

dq Bh(q) G(q)= 0 (67

-oo(l-i)

From numerical solutions of this equation, the linear gain

curves relating Re [(l-r+6) (4/nS )0 to ir/n is plotted

in Figure 12 for a value of n/P = 1 (Y th = 0 and

7 = 0). An additional parameter n/I is necessary to

completely describe the linear gain characteristics.

However, the difference in the eigenvalue solutions between

the more exact and approximate eigenvalue equations is small

when n/r :5 1.

C. Combination of Constant and

Variable Parameter Wiggler

In the constant parameter section v > v >0, the

pulse amplitude a is given by Equation (55) which may be

rewritten in the form:

a 0 ,-) -)v
(v,-Uo a(,- 0 e q (qj-c+A)

J- i- -i (68)



where q. are the roots of

q 2 (qE) 2 - A2q2 + i1l = 0

In the variable parameter section 1 > v > V1 ,

Equation (47) is applicable and the corresponding equation

for B is:

2B 2

Dq + AIB

2 2rq 2B -e -l Bi

i -) (69)
, = (q ) + G2 (q) e

; where

hre Gl(q) = - [2 -a(v 
', -uo) + (q-e) a(v

G2 (q) -
4 q z' r (ein/2rq 2_)(b (v ) + 2(v )

b1 (v,) and b2 (vi) are defined by Equations (49a) and

(49b).

11
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Thus, the eigenvalue equation analogous to

Equation (61) in the limit A Ir 2(l-v) is

~ (q-e)
dqH (A~q) q e

(+ 2 ialql + 2

(70)

=0

When e =0, the integral can be expressed in terms of

Whittaker functions.

Equation (70) determines A as a function of

Ot0 r vi, and ~

Equation (70) is solved numerically and in Figure 10,

the curves relating Re[(l-r+6)(4/rn)I to ar/n are

plotted for different values of A~v~
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V. SUMMARY AND DISCUSSION

A Summary of Linear Gain Results

In this section, the linear gain characteristics

per pass of the short pulse FEL for the most unstable mode

is summarized. However, before presenting this summary,

the relationship between the symbols introduced in the

linear eigenmode analysis and the physical variables of the

FEL will be recapitulated.

Gain per pass, i.e., the
amplitude of jhe EM pulse on
pass n+l is e times the ampli-
tude after the nth pass

k Wiggler wave number
V

k A B Wiggler magnetic field amplitude
ww w

L Wiggler length

Ws , k Design frequency and wave number
ss of the electromagnetic pulse

r Fractional reduction per round
trip of pulse amplitude due to
losses on reflection at the
mirrors
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Qw = eB /mc

S2=1 + 2/k2c2

w w

= (k/2k ) u Resonant energy in units of Mc
2

n87re2N L2  mc I 2k
T w r w

NT Total number of electrons,
f ndl, in the beam per unit
area. Note that the beam is
considered to be finite and uni-
form over a length 1 << L/2y2.

r

k c AT is the pass-to-pass temporal
sk- AT advance of the electromagnetic
w pulse relative to the electron

beam on entry into the wiggler

2k L r is the change in Y of
r - AY electrons freely accelerated byr the accelerating potential

k L Aw is the frequency half width
V s A of the frequency discriminator,k c i.e., the effective reflection

coefficient is r(w)-r/[l+i(w-w)/Aw]

2k L <Y> - Yr is the difference
= 1 (I -y between the mean energy of the

r'L beam and the resonant energy

2k L Yth is the mean energy spread
w

th -- th of the electron beam
r

vI  Fractional length of the initial
constant parameter section of a
variable parameter wiggler.
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1. No Frequency Discrimination

For an FEL without frequency discrimination, the

linear gain per pass Re 6 is conveniently expressed in

terms of the dimensionless variable

Re(i6 ) = 1e 1- r+ 6 + $7th rO

Figure 3 displays a plot of Re(i6 ) as a function

of the parameter 8/n, obtained from a numerical solution

of the eigenvalue Equation (37) for a constant parameter

wiggler. Re(i6 I ) is zero at 8/i = 0.065 and increases in

magnitude as 8/n decreases. In the limit of a very long

wiggler where 8/n - 0 while $2 n remains finite, the

linear gain is

33/2 n 2 1/

Re(l-r+6+a t ) * - ( ) / . (71)

In Figure 4, Re(i6 I) is plotted as function of

28r /i for a variable parameter wiggler. The graph is

obtained from a numerical solution of Equation (43).

Re(i61 ) is zero at 28r /n ; 1.42, and increases in

magnitude as 28a /n decreases. In the limit of

28F /n 0, the linear gain is

3 1/3

R(l-r+6+8Vth (al )  (72)
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The linear gain of a variable parameter wiggler can

be increased by the addition of a constant parameter

wiggler section at the front. In Figure 4, the

corresponding curve of Re(i 61 ) as a function of 281 / A

is plotted for a composite constant and variable parameter

wiggler. It is obtained from a numerical solution of

Equation (50), assuming that the fractional length v1 << 1

of the constant parameter section is given by 1 
v
1 = 1.5.

The enhancement of linear gain increases with F% vi.'

and can be particularly significant for 28F /n 2 1.42.

Deviations 7 of the mean energy of the beam from

the resonant energy do not affect linear gain. However, a

finite energy spread th decreases linear gain by 87th.

2. Frequency Discrimination

For a FEL with frequency discrimination (v 1/ )

the linear gain per pass Re 6 is conveniently expressed in

terms of the dimensionless variable Re62 = Re [( 1-r+ 6) (4/nS 2 ) ]

In Figure 5, the constant parameter linear gain

curve [obtained from a numerical solution of Equation

(57)] which relates Re 62 to the parameter 8/n

is plotted for different values of the energy spread Yth

(but with 7 - 0). Linear gain is possible when S/n

is below an upper limit (8/n ) . For a beam with =O,
max

(0/ ) m 0.118. In the limit $/n * 0, the linearmax

gain is:
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Re (1 - r + 6) ( (73)

'IIAs Yth increases, (ar )max decreases, and the

magnitude of Re 6 2 is reduced.

In Figure 7, the variable parameter linear gain

curve (Equation (63)) which relates Re 62 to the

parameter ar/n is plotted for different values of

t (but withY = 0). For a beam with = 0

(na2/2) a 0

Re(l-r+6)

0 A C (74)
n

A finite energy spread T th reduces the magnitude of Re 62

In Figure 10, the linear gain curve of a composite

constant and variable parameter wiggler [Equation (70)]

which relates Re 62 to SF/ni is plotte, for different

values of r v The addition of a constant parameter

section can enhance the linear gain of a variable parameter

wiggler and can be of significance for Br/n 1.0.

For a given set of FEL parameters, the linear gain

is not in general a maximum at y % 0. The effect on the

linear gain of a variation in 7 is shown in Figure 6 for

1
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a constant parameter wiggler, and in Figure 9 for variable

parameter wigglers. Some enhancement of linear gain is

possible by making an appropriate non-zero choice of 7 .

These results are applicable to the special case of

v = 1/8. The rationale for studying this case is based on

the observation that frequency discrimination has an effect

(proportional to l/v) which tends to retard the pulse

advance, that is, it tends to reduce the effective pulse

advance produced by a finite positive value of 8. To

avoid the EM pulse running either ahead of or lagging

behind the electron pulse it is indicated that one should

choose v = 1/8. Some numerical evidence from our

simulations indicates that this choice is indeed nearly

optimal.

The graphs which have so far been described are

obtained from approximate eigenvalue equations derived

after expansion of the exponential term

e 2 a p i n _ _ _
e - = -2 ap

in Equation (30) and Equation (53).

This expansion of the exponential should be

reasonable for the constant parameter wiggler when
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(T2) /3 << 1 and (nO2) << 1, without and with

frequency discrimination respectively. The dominant poles

of the integrand in the integral of Equation (34) (Equation

(54)] are then determined to a good approximation by the

roots of the cubic Equation (38) [quartic Equation (56)].

In order to assess the error introduced for

the variable parameter wiggler without frequency

discrimination, the more exact eigenvalue Equation (42) is

solved numerically, and the linear gain curve relating Re(i6 )
31

to the parameter 28r/'/n is plotted in Figure 11 for a

value of n/f - 1.0 (T = 0, Yth = 0). One additional

parameter, namely n/F, is necessary to completely

describe the linear gain characteristics. Similarly, from

the more exact eigenvalue Equation (67) for the variable

parameter wiggler with frequency discrimination, the linear

gain curve relating Re 62 to the parameter 8r/n is

plotted in Figure 12 for a value of r/f - 1.0 (Y = 0, th=0).

In both the FEL with and without frequency

discrimination, the difference in eigenvalue solutions

between the more exact and approximate eigenvalue equation

is small when n/r : 1.

2. Significance of Results for FEL Design

The parameter regime of interest for variable

parameter FEL's is dictated not only by the need to grow

the electromagnetic pulse to a large amplitude in a finite
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number of passes (i.e., linear growth characteristics), but

also by the requirements of effective electron trapping and

stable propagation of the finite amplitude pulse. Although

the latter two requirements are not the main topics of this

paper, it will be useful to briefly indicate some con-

straints on the choice of parameters which they impose.

The comments on the constraints imposed by the requirements

of non-linear propagation will be abstracted from Reference

1. They are compared to those summarized for linear gain.

The electron equations of motion [Equations (14) and (15)]

are derivable from the Hamiltonian H

Y=: - I'q - a cos~t + ~2 s

+ VW~p
2

In a finite amplitude stationary state where a ands

are constant, electrons with small Y are trapped in the

* potential well V( ). The effective potential well depth

is

AV =2a cosp + (+ r -- ) sins r r 2 rI
where < is given by
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1.

sin r
s r

The oscillation 'frequency' at the bottom of the potential

well is

(a cos r)

The magnitude of the stationary value of a may

be estimated from energy balance. Assuming a5

independent of v, Equation (52) yields

(1-r) 2 n <a sin ( +

-f n r
t

where ft is the fraction of trapped electrons, which

should be close to unity.

From these properties of the potential well, the

following observations can be made:

1) To secure a finite well depth, it is desirable

to have:

rsin
r a s

(75)
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1 2) To trap a large fraction of electrons, the

energy spread __--h should satisfyI

Tth (~
- r] (76)

We will discuss below how this nonlinear limitation on

thermal spread compares with that determined by the

limiting spread for linear gain calculated herein.

In reference 1, it is shown that the gain of

sideband instabilities driven by electrons trapped in the

ponderomotive potential wells which oscillate at frequency

(S ) is of the order of 2-3 times the gain experienced

by the signal (which is by definition equal to the losses

in the reflectors in steady state). Furthermore, sideband

frequencies in the range 0.2(as) to (as) show such gain.

We can therefore make a crude estimate of the needed

frequency discrimination.

To suppress sideband frequencies of the order of a
1 1-

quarter of the oscillation frequency 1 ( s), the

Ireduction in power due to filtering by frequency discrimi-

nation should exceed the relative gain due to sideband

instabilities:

1
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a
1 - > 2(1-r) (G- 1)

16 v 2

G is the ratio of gain of the sideband instability to the

gain of the pulse amplitude. Substituting for and
1S

taking v

ta n [ =j a 2 r2 32(G-1)t [(l-r) 3/ 2

Such arguments are, of course, not quantitative,

but the results of our numerical simulation .suggest that a

rough rule compatible with the above discussion is

2 ( lr) 3' 70 (77)

where the numerical coefficient is uncertain by a factor of

the order of 2.

We note, of course, that large 8 (i.e., high

frequency discrimation) is desirable for stable propagation

in the presence of the sideband instability. Comparing now

with the linear theory of this paper, we note that Figure 6

gives a plot of (l-r+6)(4/n82) vs. 81/n . Here, of

course, small 8 is desirable for linear gain. At

marginal stability (6-0) and using the lowest value of 8

allowable from Equation (77), i.e., 8a8.5(l-r)3/rn) , we see

that Figure 6 may be regarded as a transcendental equation

U1
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determining the maximum value of (l-r)r/n for which a

value of frequency discrimination may be chosen which both

allows for linear gain and stable propagation. Solving

this equation numerically, we find

(1 - r) r/n < .05 (78)

as a fundamental limitation on the design of a variable

parameter short pulse FEL.

Obviously to provide for reasonable positive gain,

we must make (1-r)r/n somewhat less than this critical

value. The situation may be ameliorated somewhat by use of

a constant wiggler section (see Figure 6) to allow linear

gain at higher a. However, the use of such a section

leads to saturation of the linear growth phase at an

amplitude which may be too low for trapping since

(asat) T r . It appears then that in practice the

length of the constant wiggler should be limited by

r v I 1. With this optimization, Equation (78) appears

as a reasonable design limitation. Note that from

Equation (75) this limitation may also be expressed in the

form

sin 0.25
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We note also that using this value, Equation (76)

for the nonlinear limitation on temperature may be

expressed as:

Y /r < 2
th

while from Figure (8) we see that the linear gain is

strongly reduced if 7th/ > 1. Hence, we see that good

linear gain requires about twice as small an effective

energy spread as would be deduced from looking at nonlinear

trapping alone.

We have seen that the properties of a very short

pulse FEL can be characterized by the dimensionless

parameters r (related to the total variation of resonant

energy induced by the variable parameters), n (related to

the strength of electron current) and 8 the advance of

the electromagnetic pulse compared to the next pulse in the

electron train. We have also introduced a frequency dis-

crimination v in order to suppress sideband instabilities

in the nonlinear evolution. In terms of these parameters,

we have calculated the linear gain of the system and its

degradation by thermal spread. We note that small thermal

spread, low frequency discrimination, high current, and

small variation of resonant energy are conducive to good
'4

linear gain.
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In our companion paper, we will discover that large

frequency discrimination is required to suppress sideband

instabilities in the nonlinear region, thus determining a

minimum value of n/P for which good operation may be

expected with optimal frequency discrimination if beam

energy spreads and emittance can be kept low enough.
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Simulation of Short Electron Pulse Free Electron

Lasers with Variable Parameter Wigglers

B. N. Moore, M. N. Rosenbluth,

and H. Vernon Wong

I. INTRODUCTION

The free electron laser (FEL) is a device for

converting the directed energy of a relativistic electron

beam into short wavelength electromagnetic energy. This is

achieved by exploiting a resonant interaction between the

beam and wave in a region where beam dynamics is dominated
1,2

by a spatially varying magnetic field. Such devices

may be operated in either an amplifier or oscillator mode
1

and experimental lasers have been operated in each mode.

Analyses of constant parameter wiggler FELs have identified

the major limitations on energy extraction efficiency.
2

The most important is that the EM pulse tends to grow to

a level at which electrons just become trapped, but because

additional extraction would bring electrons below the

resonant energy, further growth is prevented. The

jsaturated state then is one in which efficient energy

1
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extraction takes place only near the end of the wiggler.

The variable parameter wiggler is a modification of the

FEL 2 which overcomes this problem by optimally adjusting

the resonant energy as a function of position through the

introduction of suitable wiggler amplitude and/or wave-

length variation. Alternatively, one could in principle

employ an electrostatic field to make up for radiative

losses and keep an electron in resonance with a constant

wiggler. It was anticipated that the variable parameter

wiggler would have problems associated with trapped parti-

cle instabilities at sidebands offset from the resonant

frequency. However, these instabilities can be suppressed

by the introduction of frequency discrimination into the

FEL optics. Such frequency discrimination, of course,

reduces growth in the unsaturated state. One of the

accomplishments of this simulation effort has been to

demonstrate that efficient energy extraction may be

expected in interesting parameter regimes with frequency

discrimination.

The focus of this simulation study has been the FEL

with variable parameter wiggler. A family of simulation

codes has been written and applied to an investigation of

growth and saturation of FELs with variable parameter

wigglers. This report describes the codes, the results

obtained to date and future plans. Some correlation of
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simulation results with other analyses and experiments has
3,4

been presented elsewhere. This report is organized

into sections describing the physical and mathematical

model of an FEL with discussion of the underlying assump-

tions and simplifications. This is followed by descrip-

tions of the numerical algorithms including considerations

of numerical stability and error estimation.

Due to computer time limitations, most of the

simulations have been done using ultrashort electron pulses

modeled by a 6-function. The results should apply to cases

where the electron pulse is much shorter than the slippage

distance; i.e., the difference in distance traveled by

photons and electrons in the time taken by a photon to

traverse the wiggler.

The results of the simulation of various cases are

I summarized in the following sections and particularly

interesting simulations are presented in greater detail.

In a separate report 5 we have made extensive analytic

studies of linear growth of FEL oscillators, and we will

I present in this report some confirmations of those studies.

1
1
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II. FEL PHYSICS

The essential features of an FEL oscillator are

shown schematically in Figure 1.

It consists of an EM cavity, bounded on each

end by mirrors, into which are injected pulses of high

energy electrons. The mirrors also serve to extract

EM energy and possibly as filters. Also within the

cavity is a region of spatially varying magnetic field with

its major component transverse to the direction of pulse

propagation. This is the wiggler, whose amplitude and

wavelength may be adjusted to optimize energy extraction.

The electron pulses and coherent EM pulses pass synchro-

nously through the wiggler field. The effect of the

wiggler field acting alone would be to establish the

transverse motion of the electrons. In fact the EM field

couples with the magnetic field of the wiggler to

establish an effective ponderomotive potential for the

electrons. Both fields are assumed circularly polarized.

The electron equation of motion in terms of energy

y and phase angle i are given below. A full derivation

may be found in Reference 2.

1I
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dy e dO0 ks aw as
dy-2 -j- - -W sin i+)(1dz = c 2 dz y

k 2
- = k - s (2)

dz w 2y 2

eA eA
w s

af = as --ay (3)w - =- S

k = 2r/X , k = 27r/A (4)%4W S S

P2 = + a 2 + a 2) (5)
w s

Where

is particle phase

is electromagnetic phase

A is electromagnetic vector potential amplitude
s

A is wiggler vector potential amplitudew

0 is the electrostatic potential which mocks
up the wiggler parameter variation.

A8  is the EM wave lengthts
X is the wiggler wave length1 w

I
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Ti

m, e and c are electron mass, electron charge and light

speed. y is the relativistic factor for the beam.

Electron Energy (6)

mc

The transverse electron current serves as a source

for the electromagnetic field of the EM pulse governed by

Maxwell' s equations.

3as 1 aas 27re X
3a c atk- -a- J sin s + J cos Ys) (7)

S

- kmc
s

a + =e Cos s - J  sin s (8)
3 z C a4 k mc' Y S

s

The current densities may be calculated from the electron

trajectories

eca (z)
= w n - t cos( + C> (9)

(V(9)
r

J2c (i0)
J w n( z) <i .\ (0
2 Y r V
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Where the notation < > implies averages over the initial

phase and energy distribution of the electron beam, and the

function n is the number density of the electron beamlet,

and y r is the resonant Y. Here it has been assumed that

the EM field is of the form

1 DA
E - -a (11)

c at

4.

eA 1

MC~ a S( Z't) jCos (s~ -sin (s 3) (12)

_W = - a [xcosk z + ysinkwz] (13)
mc2  w w w

= kz - w st + C(z,t) (14)

= k c (15)s s

where a and are slowly varying functions of z and ts

and are independent of x and y.

The EM pulse leaves the wiggler, propagates to the

mirror where it is filtered and partially reflected before

encountering the next electron pulse. These processes are

modeled as follows.

a - ra (z=Lwt) (16)
5 into filter s

(reflection)

(-+ F a = c a (17)

)s out of filter F s into filter

j(filtering)
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Where

W F is the bandpass cutoff frequency centered

about w

r is the extraction mirror reflection coefficient

L is the wiggler length.w

Before entrance into the wiggler on the next pass,

a fixed time delay is introduced. The electron beam

density into the wiggler is assumed to be perfectly

periodic, with the period At.

The major assumptions underlying this model are:

(1) The wiggler field has negligible axial and

fringe components.

(2) Transverse variations of all quantities are

neglected.

(3) An EM pulse is a nearly plane wave whose

amplitude and phase vary negligibly over a few

EM wavelengths.

(4) The appropriate EM filter with Lorentzian line

shape is assumed.

(5) y >> 1.
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III. SIMULATION EQUATIONS

By appropriate normalization, the FEL equations may

be further simplified for the simulation code. Other

simplifying assumptions will also be convenient.

Additionally, finite difference algorithms must be selected

which do not introduce numerical instabilities and which

efficiently approximate the time and spatial derivatives

involved.

Introduce the variables u and v,

SC t (18)
L

L

w

u - constant follows an electron, and v - constant

a photon. Lw is wiggler length, V the electron

longitudinal velocity. The electron beam runs from -u0 to

zero. The wiggler interaction occurs for 1 > u + v > 0

(See Figure 2). The equations for this region of inter-

action are:
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aa = n h(u) (0

= [i ei -ii + r (21)

- = (22)

where i, r, n~ and h(u), expressed in terms of physical

parameters, are defined by

e = ae 1  (23)

2k L k L a
A _ w S SW W

r r

2k L
WW (- (25)

Yr r

( ) (+ a 2+ a2) (26)

W

2k L dy 2kL d
-- W - (27)

Y dv Yr mc dz

8(k L )2 e(<I> 2
mc 3 (u \( % (28)

Yr1k 2 c2 s
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eBw s (29)
W u = (2k

mc 0 Lk
w w

L C l

h(u) w v I (z,t) (30)
Z S (I>

V

<I) - I (z, t=0) dz (31)

k is nominal electron pulse length

r 0  is electron beam radius

I is the beam current

In terms of the normalized variables, the pass-to-pass

EM processes are modeled as:

SCi (v)
F 4(n)

+ v a (v) = va (u= 0, v) (32)
v F

â ( n + l ) (u = u0, v) = r F (v+) (33)

Where

L k LS=-- - 1 wF -- (34)
c (V F= k sc

r = reflection coefficient of extractor

c Atre k Atre (35)

Lw  -k w w re
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7

with At re being the time delay of the electron pulse

with respect to the EM pulse at the wiggler.

Some preliminary attempts at algorithms for solving

these equations met with limited success, either due to

problems with numerical instabilities or lack of

computational efficiency. The EM amplitude and phase

(a s ) and the particle phase space variables (y,P) are

defined on a discrete grid in the u - v plane. The

indices iu  and i define the location on this grid.

The index i is the particle label. The following

algorithms were eventually selected.

u = U + (i -1) Au (36)

v = V + (i- 1) AV (37)0

y. e (u,v+Av) = i e (uV)- A(ac sin. + a aCos
le e c ie S 'eI

(38)

Where the centered EM field components are:

2 s >c la cos + -- nhlu) i\sn4(ulv) 2 (9

c a sin + n h(u) cos4(u,v) (40)
2 <
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The particle phases are advanced for a fixed u value.

sini (v+ AV) = a sin (V) + 8 cos ie (v) (41)

cos ie (v+ Av) = a cosiP ie(v) - 82 sin ie (v) (42)

With 81 and 82 chosen to preserve sin2 ie+Cos2 1ie =1

- (43)

B 2a (44)
2 2

The contribution of the wiggler parameter variation to the

particle phases is isolated to the term:

Nv

Steps (3) through (45) are repeated for each particle.

Then the particle currents are calculated and the

field amplitudes at the next vaue of u are determined.
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Ne

<sin (v + &v si N e(6

le e

Ne O co ie

<cosp (v+ AV)> e N (47)
i= e

e

a (u+Au,v) = a (u,v) +Au rh(u) (cos lu,v)) (48)

a c(u+Au,v) = ac (u,V) +Aunh(u) <sin (u,v)>

a - sin (50)S

a cos (51)

Steps (46) through (51) are repeated for each v interval

in the wiggler (0 < u + u < 1). For other values of v

these quantities propagate unchanged. Finally, the entire

series, (36) through (51), is repeated for each value of u.

The basic scheme is depicted in Figure 2. Specification of

the EM pulse as a function of time into the wiggler is

equivalent to specification vs v at u - -u0 .

Similarly, the electron pulse density distribution

is a specified function h(u) at v - - u. The field

. equations are integrated along the vertical characteristics

(v-constant) and the equations of motion along horizontal

(u-constant) characteristics. Note that the y, sing, and
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cos functions are advanced independently with an

algorithm which preserves sin2  + cos 2 i . The particles

at a given u are advanced from v - -u to v - 1-u with

an algorithm which estimates the effects of the averaged

EM field acting on the particles. Once the phase-averaged

particle currents are available at a given u, the EM

fields are advanced to the next u value. The process is

repeated until the electron pulse and EM pulse have moved

completely through the interaction region. The EM pulse

then propagates undisturbed to the mirrors where energy

extraction and optical discrimination are carried out.

Negligible interaction on the return through the wiggler is

assumed.

One group of simulation programs incorporates the

additional renormalization:

P EM = 1 [(uIcos f+(Iisin C)2] V (52)

1v

a ao i I (53)
a - PEM

This renormalization involves a reduction of the
output amplitude a to a such that the input pulse

energy is always at a level a0, small enough to be in the

linear regime.
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This keeps the EM pulse at a constant total energy

before entry into the wiggler. The result of many repeti-

tions of this algorithm will be a pulse corresponding to

the fastest growing linear eigenmode, which can be compared

with analytic results and used to begin the nonlinear

simulation.

Three options are provided for loading the initial

electron beam. These are: cold beam and Maxwellian and

Lorentzian thermal distributions. The distributions are
specified by < ' , which is the mean Y, and Y,

which characterizes the thermal spread.

6(y - i7) Cold (54)

f f(Y) e Y Maxwellian (55)
Yeth

=2k L [~]
II

Y W r] (57)

Ir

I
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th YW E<:

The particles are also distributed uniformly in

phase.
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IV. DIAGNOSTICS

A number of diagnostics are provided in the codes,

including growth rates, integrated power, phase space plots

and Fourier transforms. The growth rate represents the

pass to pass exponentiation as follows:

Re 6 1 ln (-PEJ (60)
0

The particle phase space corresponding to any point

in the interaction region maxy be displayed for any pass,

allowing a determination of trapping efficiency. The

energy extracted per particle is monitored as a function

of pass with the parameter:

Ne j l

6Yext = - rd h(u) N- (61)

iu 1e=1  V V -e

where Ne is the total number of simulation electrons.

The Fourier transform diagnostics and their

relation to physical parameters area
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& (v) =a c+ ia S(62)

A,, a ~ (v) eK(V) (63)

1W

K k WL W Ii 64
K= (V/c) I(~ (64)k

Note that the diagnostic frequency (or wave vector) is

expressed relative to the nominal resonant wavelength.
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V. RESULTS

The major tasks accomplished to date include the

verification of the code against established theory of the

constant wiggler FEL, confirmation and extension of the

linear theory of variable wiggler devices, including

thermal effects, and investigations of the nonlinear

phenomena associated with saturation of both short and long

pulse FELs. These investigations have established the

necessity for some frequency discrimination in order to

achieve acceptible performance for both classes of devices,

and the scaling laws for variable parameter wiggler FELs

with frequency discrimination have been determined.

Preliminary simulations of finite length electron

beams without frequency discrimination have given results
6

similar to those of Goldstein, et al. for parameters

associated with the LANL proposed experiments. In the

absence of frequency discrimination, the EM pulse shape at

saturation is irregular and characterized by random peaks.

With frequency discrimination, much smoother pulse shapes

were obtained, and the saturated pulse energy was somewhat

smaller. However, the variation with pulse length

indicates that with longer beam pulses such as those

actually envisaged, frequency discrimination would be more

I
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effective in producing not only smoother saturated pulse

shapes, but also higher pulse energies. Further work on

finite length pulse simulation will be published

separately.

In the following sections, we focus exclusively on

the limit of very short electron beams in which the

electron pulse length Z is short compared to the slippage

distance kwLw/ks >> r z or ralu 0j << 1.

In the simulation, this limit is modeled

as a 6-function; that is, h(u) - 6(u). Obviously

this model requires minimal simulation time (only one

value of u) so that long, high extraction wigglers may be

studied.

As a check on the accuracy of the code, the linear

gain per pass calculated from the linear eigenmode analysis

was compared with that observed in the simulations for a

range of FEL parameters. In the parameter regions where

the theory is applicable, the agreement between theory and

simulation is satisfactory (see Figures 3, 4, 8, 9 and 10) --

and is of the order of or better than 15%.

1. No Frequency Discrimination

In FELs without frequency discrimination, the

linear gain per pass for a very long constant parameter

wiggler (8/n 0) is given by

1
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Re Re r h3(65)

If the beam and wiggler parameters are kept

constants Re[1 (61/n)213 d6J increases from zero as the phase

advance B of the EM pulse is increased, reaches a maximum

Re 1(8/n)Y4 6,1 - .047 at S/n - .022, and finally

decreases to zero at S/n - .065. The theoretical linear

gain curve 5 is plotted as a solid line in Figure 3,

while the linear gain observed in the simulations is

represented by the circled points.

If the wiggler is made variable by applying a

finite accelerating electric field (r v 0), the linear gain

remains close to that of the constant parameter wiggler

when 2er/2/ri << . (The accelerating electric field

produces essentially the same effect as varying the wiggler

parameters, i.e., keeping trapped electrons in resonance as

they radiate energy). As the magnitude of the variation is

further increased, Re 61 decreases. In the limit of a very

long variable wiggler where $/n << 1 and F >> 1,

Re 61 0 when 2a F /n - 1.42. In Figure 4, the

theoretical linear gain curve is plotted as a solid

line indicating the variation of Re 61 as a function of

28 r4'/n. The results of the simulations are represented as

circled points for values of O/n " 3.3 x 10- 5, .01.
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The differences between the observed linear gain and the

theoretical linear gain curve for 8/q = .01 are due to

finite length effects not included in the theory. For most

cases of physical interest, the criterion 6/ > 1 for

neglecting finite length effects is well satisfied.

The pulse shape of the linear eigenmodes are

displayed in Figure 5. For a constant parameter wiggler,

the pulse amplitude increases smoothly to a maximum and

then falls to zero at the back. As the wiggler is made

variable, the change in the pulse phase angle in going from

the front of the pulse to the back progressively increases.

At the same time, the pulse amplitude becomes more sharply

peaked at the back.

In a typical run in which the EM pulse grows from

noise levels to saturation, the early phase of the

evaluation is characterized by growth of the linear

eigenmode. Eventually, nonlinearities reduce and then

saturate wave growth.

For constant parameter wigglers, the maximum pulse

energy occurs for values of the pulse phase advance parame-

ter 8 which are small and positive. This decreases as 8

increases. Similar results were previously obtained by

Colson for finite length electron beams. The effect of

B > 0 is to shift the EM pulse ahead of the electron beam

on each pass through the wiggler. As 8 increases, the
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net interaction time of each section of the pulse with the

electron beam decreases and this leads to a progressive

reduction of the saturated pulse energy.

For a variable parameter wiggler, the evolution

enters a nonlinear phase during which the peak in the pulse

amplitude moves to the front, which continues to grow at

approximately the linear rate after the back has

saturated. Growth continues until the peak amplitude at

the front of the pulse is large enough to begin to trap the

beam electrons. At saturation, without optical discrimina-

tion, the pulse remains peaked at the front and never

broadens towards the back. Most of the energy resides in

the front part of the pulse which no longer interacts

coherently with the beam.

The pulse shape and pulse spectrum at saturation

for a representative simulation run with the following FEL

parameters are shown in Figure 6:

r - 0.99

--600.

8 - 0.01

1' - 2000.

vi - .015

v - 1000

Yth - 0.
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The value of v =1000 corresponds to a filter

cutoff frequency approximately ten times the largest

observed electron bounce frequency in the ponderomotive

potential well and thus effectively models an infinite band

width filter; that is, there is no frequency discrimination.

These values for the dimensionless parameters were

chosen to simulate an FEL with the following physical

parameters:

Electron Energy 50 MeV

Electron beam current
averaged over a slippage length 50 Amps

Wiggler Wavelength 1.25 cm

Number of wiggler wavelengths 400

Signal Wavelength I

Wiggler Field Amplitude 7 kG

Nominal Trapped Electron Energy Loss 20 MeV

Constant Parameter Length 7.5 cm

A constant parameter wiggler of fractional length

v, was added to the front of the variable wiggler to

enhance the linear gain per pass, Re 6 - .071 for this

case.

In Figure 6a, the normalized integrated pulse

energy

(l-r) { Ii(v)12dv (66)
P ]nr f
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is plotted as a function of the pass number through the

wiggler. It may be noted that if P = 1, the energy

lost on reflection at the mirror is equal to the

energy extraction from the electron beam assuming all

the electrons are trapped in the ponderomotive potential

well formed by the combined field of the pulse and

wiggler. In practice, P < 1 since all the electrons are

not trapped and additional sinks for energy loss may occur

(for example, if the pulse is subjected to frequency

discrimination; see the next section).

The pulse energy P increases exponentially at

small pulse amplitudes. After nonlinear saturation of

pulse growth occurs, the pulse energy P oscillates in a

limit cycle about a finite mean.

The pulse shape at saturation is displayed in

Figure 6b. The part of the pulse extending from v - 0

to v - 1 interacts with the electron beam in the

wiggler. With positive phase advance 8 > 0, the pulse

is shifted to the left on each successive pass. The

front part of the pulse (v < 0) shifted out of the

wiggler no longer "sees" the electron beam and is damped

by reflection energy losses at the mirrors. Note that only

the front of the pulse is amplified.

1
I
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The Fourier transform of the pulse amplitude a(v)

A = e A (v) dv (67)

is plotted as a function of K in Figure 6c. For a

particular value of K, the corresponding frequency w of

the laboratory frame is

S 1 kL + H (68)
WSkwL w ks)

The location of the electrons in phase space

v- fr d , (69)

is plotted in Figure 6d at different positions v in

the wiggler. The electron energy is plotted as a function

of the phase angle modulo 2r. If the electrons are freely

accelerated,
vi

f r dv = y 
(70)

vi

where Y is the initial value of y, and is set to zero

0

for these simulations. If the electrons are trapped at

the front of the wiggler and remain trapped throughout
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the length of the wiggler, Y , and

v v

~f rdv f -r dv (71)

VI V!

As may be noted from Figure 6d, the electrons are

not effectively trapped throughout the length of the

wiggler and the energy transferred to the pulse at satura-

tion is small, P = 0.024.

The same final state was obtained by starting the

simulation run with an initial square wave pulse of

finite amplitude large enough to trap the beam electrons

(see Figure 7). The back of the pulse erodes away, and

sideband frequencies K-- 60 below the main pulse frequency

(that is, zero frequency in Figure 7) grow in magnitude

and finally dominate the spectrum. The sideband

frequencies are of the order of the electron bounce

frequency .a 78 in the ponderomotive potential well.

The growth of sidebands leads to a loss of coherence,

and the beam electrons are not effectively trapped

throughout the length of the wiggler. The amplitude of

the back of the pulse falls to a low level compared to

the peak amplitude at the front.2 This suggests that any tendency of the pulse to

broaden towards the back during growth from noise will be

hindered by the growth of sideband frequencies. Such
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sidebands have been predicted to be unstable by Kroll,

et al. 2

As we will see in the next section, the suppression

of sideband growth by passing the pulse through a band

pass filter results in a considerable improvement in the

pulse shape and the total pulse energy at saturation.

2. Frequency Discrimination

In FELs with frequency discrimination where the

EM pulse is passed through a band pass filter in order to

attenuate undesirable sideband frequencies, the band

width v of the filter appears as an additional

parameter. Frequency discrimination by a band pass

filter has an effect proportional to 1/v which tends

to retard the pulse advance, that is, it tends to reduce

the effective pulse advance produced by a finite

positive value of 8. To avoid the EM pulse running

either ahead of or lagging behind the electron beamlets,

it is indicated that a choice of v - 1/B is desirable.

This was confirmed by the numerical simulations. A small

value of v is desirable to suppress the sidebands;

*however, linear gain is reduced if v < 1/B (see Table 1).

1

170I



TABLE 1

Variation of linear gain Re 6 with v.

r - 0.99 ni -600 r - 2000

8 0.01 V1  0.015 7 0 th 0

v 160 140 120 100 = 1/8 90 80 

Re 6 .017 .0294 .0367 .0287 .0143 -0.01

In the simulations we discuss hereafter, we will

consider only the case of v - 1/8.

With v - 1/8, the linear gain per pass for a

very long constant parameter wiggler (8/ri - 0) is

5
given by

Re 6 = Re 2(1-r+ 5) 2  (72)

(r 62) !
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where 7th = 0 and 7 0. If the beam and wiggler

parameters are kept constant, Re 1862 /] increases

from zero with increasing a, reaches a maximum

Re /6 = .012 at 8/n = .042, and finally decreases

to zero at 8/ni = 0.118. The theoretical linear gain

curve is plotted as a solid line in Figure 8 while the

linear gain obtained in the simulations is represented by

the circled points. The agreement between theory and

simulation improves as a is made smaller.

If the wiggler is made variable (r 4 0), the

linear gain remains close to that of the constant parameter

wiggler when 6 2r 2/n << 1. As the magnitude of the

variation increases, Re 6. decreases and asymptotes to

zero. The theoretical linear gain curve 5 for a very

long variable wiggler (w/ << I, r << I) is plotted in

Figure 9 as a solid line indicating the variation of 6

as a function of Br/0. The results of the simulation

are represented as circled points for values of 8/

5.8 x 10- 4, .01. The differences between the observed

linear gain and the theoretical linear gain curve for

8/O - .01 are due to finite length effects not included

in the theory.

The reduction of linear gain due to a finite

energy spread of the beam becomes significant when
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gth/r 1. This may be seen from Figure 10 where
th

Re 62  is plotted as a function of 7th/r for four

values of ar/n . The energy spread of the beam was

modeled by a Lorentzian distribution function.

The early phase of the evolution of the EM pulse

growing from noise levels is similar to that discussed in

the previous section.

For a variable parameter wiggler, the linear

eigenmode grows in amplitude, the peak amplitude moves from

the back to the front of the pulse, and the peak amplitude

at the front continues to increase to levels where

electron trapping in the ponderomotive potential occurs

(a - '). Thereafter, the pulse width broadens towards

the back in addition to increasing in amplitude. The

final phase of the evolution depends critically on the

band width V of the filter. If v is small, the

pulse broadens into a square pulse (approximately) of

width v - 1 and the electrons trapped in the pondero-

motive potential well remain trapped during its passage

through the wiggler.

The results of a simulation run for the same

parameters previously shown without frequency discrimina-

tion, showing the evolution of the pulse energy, pulse

shape, and pulse spectrum are presented in Figure 11. The

FEL parameters are
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r - 0.99

n - 600

--. 007

r - 2000

vi = .015

V - 1/.007

Yth ' 0.

In contrast to the simulation results of the

previous section, the pulse spectrum remains narrow with

a large peak at zero frequency. Sidebands have been

suppressed and the large amplitude saturated pulse

propagates coherently. Electron trapping is very

efficient. From Figure llj, it may be seen that -.20%

of the electrons on exit from the wiggler have -r dv-0

and therefore these electrons have been freely accelerated

through the wiggler. The remaining -80% of the electrons

have - dv - -2000, which implies that these have been

trapped throughout the length of the wiggler.

The energy extracted is about 80% of the maximum

possible in contrast with 2% for the same parameters

without frequency discrimination. About 14% of the energy

extracted from the beam is lost in the frequency

discriminators.

Results for pulse energy and the fraction of

electrons trapped at saturation are presented in Table 2.
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TABLE 2

r - .99 v - 1/8

4 1-2]
r) vl P (l-r) f t

.032 1000. 300. .022 .49 561. .7

.02 1000. 300. .022 .57 219. .75

.01 1000. 300. .022 .68 54.8 .79

.005 1000. 300. .022 .06 13.7 ---

.022 2000. 600. .015 .54 530. .67

.007 2000. 600. .015 .69 53.7 .80

.005 2000. 600. .015 .06 27.4 ---

The total pulse energy is increased by increasing

the electron current n. The efficiency of energy transfer

is improved by increasing r.

Further increase in total pulse energy may be

obtained by increasing the band width v - 1/8 up to

some critical value v crit.

As v is increased above the critical value

v crit, the pulse shape at saturation exhibits a
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IF

progressive depression in the amplitude at the back of the

pulse. Figure 12 displays the results of a simulation

run with FEL parameters similar to Figure 11 but with

v increased slightly to v = 1/8 - 1/.005. The electrons

are no longer effectively trapped throughout the whole

length of its passage through the wiggler, and the energy

transfer from beam electrons to the pulse is less

efficient. At the same time, the spectrum is no longer

narrow. Sideband frequencies of the order of the electron

bounce frequency begin to appear and eventually dominate

the spectrum.

The deterioration of the pulse is attributable to

the growth of the sidebands. When v < Vcrit, the filter

is narrow enough to suppress the growth of the unstable

sidebands and the saturated pulse propagates coherently

as a finite amplitude square pulse. We discuss the impli-

cations in Section 4 below.

Linear gain can be enhanced significantly,

particularly for large a, by adding a constant parameter

section to the front of the variable parameter wiggler.

The constant parameter section however cannot be too long

since electron trapping may be adversely affected. The

linear growth phase in the constant parameter section

will tend to saturate at (a) v, 7, and this amplitude

1

I 182



to-1 14.4

12.0.

t- 2

10.

a..

0.3

N7.2

104
4.8

0.4 .0 16 2. 2.0a2.4

Pass Number -0.9 -0.3 0.3 0.9 1.5 'v

Figure 12&. Pulse Energy vs. Pass Number Figure 12b. Aplitude vs. v

PAU UM 100

2.4 0.4

2.0 -0.2

1.4 x C *-4-

x

1.2 -. 0. 2

0.S 0.

0.4 -0.5

0 -0.8
-210 -110 -t0 lie,0 -5.0 -. 0 1.0 2.0 5.0 0

Figure 12c. Complex Amplitude vs. Frequency K Figure 12d. tnergy Extracted vs. Phase

183[



A'

4 .6 C, 1.

2.-4

1.2 J0.4

-1.5 -0.7 0.1 0.9 1.7 v 210 L 110 -10 Of Ko

Figure 12s. Amplituae, vs. v Figure 12f. complexc Amplitude vs. requency K

PASS 3365X32000

0.3-1

04.9

- 166 It .:

-18



(a)"2 n/v 1  may not be large enough to begin to trap the

beam electrons.

In Table 3, we present the results of a series of

runs in which the effect of varying the fractional length

of the constant parameter wiggler is investigated. It

appears that the length of the constant parameter wiggler

should be limited by r' v i t 1 to ensure effective electron

trapping. The enhancement of gain is not sufficient to

alter our previous conclusions.

TABLE 3

r = .99 n 60. r - 200. B -. 05

r v 6 P

0. .006 .37

.283 .01 .38

.566 .02 .38

.85 .023 .37

1.13 .031 .02

1.41 .034 .01
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3. Thermal Effects

The presence of a finite thermal energy spread

7th in the electron beam affects not only the linear gain,

but also the fraction of electrons trapped at saturation.

As may be seen from Figure 10, the linear gain is

significantly reduced if 7th /' > 1.

In order to trap a large fraction of electrons,

Yth/2 should be less than the well depth of the pondero-

motive potential well. The effective well depth at

saturation, estimated from energy conservation, is

0 Eft nr/(l-r)]2, and thus the limit on energy spread is
0

th < ( - (73)

If the smallest values of n/(l-r)r, as determined

by Equation (80) in the next section, is substituted in

Equation (73), the limitation on energy spread may be

written

-th < 2 (74)

1 '
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Good linear gain therefore restricts the energy spread to

about half that which would be deduced from looking at the

requirement for effective electron trapping.

Figure 13 summarizes the results of a simulation

using an electron beam with 7th = 25. The other FEL

parameters are identical to that of the simulation

presented in Figure 11.

The linear gain was reduced by a factor of 3 from

ReS 0.029 ( th = 0) to Re 6 : 0.01 (Yth - 25.0). Note

that in these runs a constant parameter section of length

v = 0.015 was included to enhance the linear gain.

The fraction of electrons trapped was reduced from

ft - 0.8 (7th = 0) to ft - 0.6 (Tth - 25), while the

integrated pulse energy was reduced by 75% from

P = 0.69 (Tth = 0) to P - 0.52 (T = 25).

These results support the conclusion that the

limitation on beam energy spread will probably be

determined more by the need for linear gain than by that

for effective electron trapping.

4. Discussion

We may interpret the results of Section 2 (Tth-0)
2

in terms of the theory of sideband instabilities, which

indicates that modes of frequency , 0.2 wb < s - < bo
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where wb x a is the bounce frequency, should be unstable
bi

with gains several times the signal gain, leading to

detrapping.

To suppress sideband frequencies Aw of the order

of a qarter of the electron bounce frequency h1al'
the reduction in the pulse energy due to filtering, i.e.,

a 2  [1 2 ___

[see Equation (32)] should exceed the relative gain due to

sideband instabilities. Thus

a > 2(1 - r) 1G-) .(75)

where G is the ratio of gain of sideband instability

to the gain of the pulse amplitude. Substituting for

the amplitude at saturation ^2a nrf t/(l-r) and taking

f 1t
V(-1 

-Pt7

Theoretical estimates indicate = 2 to 3.
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From a survey of the simulation results for a range

of FEL parameters, sumarized in Table 2, it was estimated

that for stable propagation,

5 0rn(77)
[1_r)1 50

where the numerical coefficient is approximate.

This appears in good agreement with the above theory.

It may be noted that large a (that is narrow

band width) is desireable for stable propagation in the

presence of the sideband instability. However, linear

gain becomes small if B is too large (see Figure 7).

From the linear eigenmode analysis of a very long

variable parameter wiggler, the linear gain Re 62 is a

known function of the dimensionless parameter ar/rA

Re6 = f(P/rj2). Thus, to ohl.ain linear gain, it is

required that

(1-r)r < (78)

Equation (77) may be rewritten as

(1 - r) r < . (79)

I
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By equating the right-hand sides of Equations (78) and

(79), which may be done graphically, we determine that the

inequalities can only be satisfied ift

U1- r)Ir < 0.06 (80)

to ensure that a value of frequency discrimination may

be chosen which allows both for linear gain and stable

propagation.

From the definitions of r and n (Equation 21

and Equation 28). it may be seen that the above inequality

imposes the following lower limit on the electron beam

current

1.42x 105  (l-r)
I> > k 2 r 2  amps (81)

w 0 r

where <I> is the beam current averaged over the slippage

distance (u0 - 1), the wiggler length LW - ksr 0
2 is set

equal to the "diffraction" distance, and Q2/k2c2 - 1. Ifw

the beam radius is restricted to kwr0  so that the

transverse variation of the pulse amplitude across the beam

is small, the minimum current criterion is
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<I> > 1.28 x 106 (1-r) Ai- amps (82)
r

This minimum current implies a minimum circulating

power Pmin of

t(,yr 
)2

Pmin =  6 54 f GW (83)

In the case of the simulations presented in

Figure 11,

p - 84 GW
min

This value of P min is about two times the

estimate of minimum circulating power calculated by Kroll,
*2

et al. for AYr/Y - 0.4. Their calculation takes account

of the constraints imposed on pulse amplitude variations

transverse to (kwr - 1/3) and along (Lw - ksr2) the

direction of propagation, but does not include the need for

good linear gain and suppression of unstable sideband

frequencies.
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5. Summary

We have developed a 1-D code for the simulation of

FELs following the self-consistent interaction of electrons

and the EM wave in a wiggler, while reflecting and

optically filtering the EM pulse for multiple passes

through the system. In this way, both pulse formation

and the steady state may be studied. We have included

provisions for both constant and variable wigglers and

for thermal energy spread in the entering electron

pulse. In this paper we concentrate on the results

obtained with electron pulses of zero length

(6-function) which reduces the simulation time required.

This should be a good representation for pulses such that

r2 u <1.

Our principal results are:

(1) We have verified analytic results previously

obtained for linear pass to pass growth of the pulse at

low amplitude.

(2) We find that for high saturation systems

optical discrimination is required in order to prevent

nonlinear signal breakup. Qualitative agreement with the

theory of sideband instabilities is obtained for the width

of the required frequency filter.

(3) The further requirement that the linear phase

of growth saturate at a high enough level to ensure

trapping seems to be satisfied except for systems which
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I seek to enhance linear gain by use of a long constant

parameter section.

(4) With proper choice of frequency discrimination

F(and for an ultrashort electron pulse) we have demonstrated

very high extraction systems (30% efficiency at i1

which grows from noise to a stable steady state. We

derive and numerically verify a criterion

(1 - r) Ayr

<I> > 1.28 x 106 2) Amps
r

for the minimum current required for such a system.

(5) The limitation on beam thermal energy spread

Yth is determined more by the need for good linear gain

(7th/r < 1) than by that for effective electron trapping,

(h/r < 2).

I
I.h
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