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A

THEORETICAL STUDIES ON FREE ELECTRON LASERS

I. SUMMARY

/
J

/
At the beginning of the cont7%ct year (August 1,
1981 to August 1, 1982) we undertookl;n analytic and

LB Cert !ofb(
computational studx«of certain theoretical questions

S
relating to Free Electron Lasers (FEL's). As—originally

conceivedf’%?e study was divided into five tasks:

(1:\ A proper Hamiltonian formulation of the
nonlinear equations for gain-expanded FEL's will be made
and Liouville's theorem applied to these systems.

2. The analytic theory for gain-expanded FEL's
will be extended to include variable property gain
expanders as proposed for storage rings.

3. The results of Tasks 1 and 2 will be applied,
numerically if necessary, to the determination of whether
a steady state gain-expanded FEL is compatible with
storage ring operation.

4. The gain of a variable pitch wiggler (as a
function of signal amplitude and frequency) will be
studied using a single particle simulation code.

.5+ A fully self-consistent particle and EM wave
(1-D) code, with provisions for treating micro bunches
and providing frequency discrimination in order to

consider Raman instability effects, will be developed to




-,treaé the startup and pulse formation problem for
variable pitch wigglers.‘i;c
The first three concerned gain-expanded FEL's and
the last two, FEL's with variable parameter wigglers.
Tasks 1 and 2 have essentially been completed. A
Hamiltonian formulation of the electron equation of
motion for the "thin lens" gain-expanded FEL has been
derived (Appendix A). This leads to two fundamental
limitations on gain expansion schemes: (a) The Manley
Rowe relations, and (b) generalized gain-spread theorems.
Having established these limits, Task 3 remains to be
completed. The implications of these limits with respect
to the overall efficiency of gain-expanded FELs in
storage rings appear to be somewhat pessimistic.
Considerably more time and effort were devoted
to Task 4 and Task 5 than had been planned. Consegquently,
it was possible to carry these tasks much further than
anticipated. The linear eigenmode analysis leading to
a calculation of the linear gain as a function of the FEL
parameters has been completed. The results for the limit
of very short electron pulses are discussed in Appendix B.
By very short electron pulses is meant pulses with pulse
length ¢ much shorter than the slippage distance
kL, /k, > T4, where I = 2k LAY /Y. and OY /Y, is

the fractional change in the resonant energy Y, down
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the wiggler. A discussion of the results for long
electron pulses is under preparation and will be
available in the very near future. A one-dimensional
self-consistent particle and electromagnetic wave code
to simulate the operation of an FEL with variable
parameter wigglers and with frequency filtering of the
electromagnetic pulse has been written. The details of
this simulation code are described in Appendix C. This
code enabled us to study not only the startup and pulse
formation problem, but also the stability of the
saturated state. The results are discussed in
Appendix C.

Our principal results are:

l. We have derived analytic results for linear
pass to pass growth of the pulse at low amplitude. For
very short pulses, these are given in Appendix B. These
results have been numerically verified in Appendix C.

2. We find that for high saturation systems
optical discrimination is required in order to prevent
nonlinear signal breakup. Qualitative agreement with the
theory of sideband instablities is obtained for the width
of the required frequency filter.

3. The further requirement that the linear
phase of growth saturate at a high enough level to ensure

trapping seems to be satisfied except for systems which




seek to enhance linear gain by use of a long constant
parameter section.

4. With proper choice of frequency discrimination
(and for an ultra-short electron pulse) we have demon-
strated very high extraction systems (30% efficiency at
ly) which grow from noise to a stable steady state. We

derive and numerically verify a criterion

6 (1 -r) AYr ;
{I> > 1.28 x 10 ———Y-—z—— Amps :
r

for the minimum current required for a system with
reflection coefficient r.

5. The limitation on beam thermal energy spread
Vth is determined more by the need for good linear gain

(Vth/r% < 1) than by that for effective electron

trapping, (Vth/T%< 2). ;
The ultra-short pulse was modeled by a §-function ‘
in the simulation. Due to computer time limitations,
this limit is easier to simulate since the number of
particle orbits which must be followed is far fewer for a
single electron beamlet than for the many beamlets
required to represent a long continuous electron pulse.
This limit is also analytically tractable. However, the

basic physics of the electron-photon interaction is
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expected to be qualitatively the same for long electron
pulses. Preliminary simulations of long electron pulses
have indeed exhibited a behavior qualitatively similar to
that of short pulses. The corresponding criterion for
the minimum current, however, may be slightly more

severe.

Gain-Expanded FEL's

In constant parameter FEL's, electrons initially
lose energy to the radiation field, but in so doing
experience a gradual shift in relative phase which
eventually reverses the direction of energy flow and
impairs gain of the FEL. To overcome this limitation,
Smith, et al.l have outlined a scheme for a gain-expanded
FEL in which the sensitivity of gain to variations in the
energy of the exciting electrons is reduced. This scheme
uses a periodic magnet with transverse gradients such
that the electrons which lose energy move to different
transverse positions and continue to remain in phase with
the transverse electric field of the electromagnetic
radiation. The reduced sensitivity to energy enhances
the prospects for operation of a gain-expanded FEL in
conjunction with a storage ring, since many passes of the
circulating electrons through the FEL would occur before

gain is significantly affected by energy spread.




e e o T T S gO= b pmar pm—mmonia < - - P

However, transverse betatron oscillations of the electron
trajectories are simultaneousely excited and may negate
the effectiveness of gain expansion unless the oscilla-
tion amplitudes are kept small. For steady state opera-
tion in a storage ring, it is desirable to maximize the
gain while minimizing the level of betatron oscillations.
In this mode, a steady state is conceivable in which the
growth in betatron oscillations in the FEL is damped by
incoherent synchrotron radiation in the storage ring.

The important issue to be resolved is whether a steady
state can be extablished with a reasonable ratio of
energy gain in the laser to energy loss in synchrotron
radiation (Aélaser/éssync)'

Madey, et al.2 have considered the feasibility of
cancelling transverse betatron oscillations by a careful
design of the FEL magnet. Their results on the gain
characteristics of gain~-expanded FEL's with excitation
cancellation were obtained from numerical integration of
the equations of motion. 1In our view, this procedure did
not provide a satisfactory theoretical understanding of
the effect of excitation cancellation on gain.

Excitation cancellation seemed to involve detailed
cancellation of "big" terms in the equations, and it was
not clear what residual effects were responsible for

gain.




In order to gain some insight regarding the gain
characteristics of gain-expanded FEL's, we have
investigated the "thin lens" gain expander as recently
proposed by Madey, et a1.3using a Hamiltonian formulation
of the electron equations of motion. The thin lens
Hamiltonian was transformed by a series of canonical
transformations to an action-angle Hamiltonian of the’

form

K=kga + cel¥s (r+(1/t3"-1)z)zﬁ (3, y) et (A 2 +me)
n’m

where J is the phase area for betatron oscillations and ¢
its conjugate angle, Y is the electron energy and t-z its
conjugate "momentum". z is the independent variable and
¢ is proportional to the laser field.

The Liouville equation for the electron
distribution function may now be written down,
solutions obtained by expanding in powers of ¢, and the
changes (83> and (8y) after passage through the
thin lens wiggler determined. The details of the
analysis are discussed in Appendix A.

In the usual mode of FEL operation where one
resonanée is of importance (which is practical, necessary
and desirable to get cancellation of excitation at a

definite 2z wvalue) the Manley-Rowe relation holds




where m # 0. Thus, gain is proportional ¢o betatron
excitation.

The m = 0 resonance does not produce betatron
excitations, but since this depends on energy
derivatives, presumably large energy spread results.

A generalization of the Madey theorem relating
gain to spread (without making the resonant approxima-
tion; that is, keeping all m values) can readily be

derived

N |-
I

(o) = b ey ok A o

N |-
I

<6y> ai <(Gy)2> +% -a% <6J6Y> .

These relations impose severe restrictions on
gain expander operation

A
"Elaser . A8

aé & 7

sync
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where &€ 1is the maximum beam spread allowed in the
storage ring. At the present time, the existing
proposals for operating a gain-expanded FEL in a storage
ring do not seem capable of yielding overall efficiencies

of more than a few percent.

Variable Parameter FEL'S

An alternative scheme for overcoming some of the
limitations of constant parameter FEL's is the variable

4 In this

parameter wiggler discussed by Kroll, et al.
scheme, a significant fraction of electrons in the beam
is trapped in the ponderomotive potential well produced.
by the combined wiggler and radiation fields. The
resonant energy of the FEL is reduced by suitable
variations of the wiggler parameters and this in turn
results in the extraction of energy from the trapped
electrons. This reduction in energy can be much larger
than the energy which can be transferred in constant
parameter wigglers. Thus, the use of variable parameter
wigglers to produce high power radiation is a promising
prospect. The primary objectives of our investigation of
FEL's with variable parameter wigglers are to define the
area in parameter space where

1. The operation of the FEL can be initiated by

growth of the electromagnetic pulse from noise levels.




2. The nonlinear saturation of pulse growth
occurs with the trapping of a significant fraction of
beam electrons.

3. The finite amplitude saturated pulse
propagates without deterioration due to trapped particle
sideband instabilities.

4. The energy extraction from the electron beam
is optimized, consistent with reasonable growth rates,
effective trapping, and stable propagation.

To achieve these objectives, we have investigated
in detail the operation of an FEL configuration in which
a combination of constant and variable parameter wigglers
is positioned between mirrors. An electromagnetic pulse
generated in the wiggler is reflected repeatedly by the
mirrors, and multiple passes of the pulse through the
wiggler are obtained. Relativistic electron beamlets
are injected into the wiggler at periodic intervals
so that on each forward pass of the pulse through the
wiggler, there is overlap of the pulse and beamlets.

The pulse grows on each forward pass. Eventually, the
amplitude of the pulse becomes large enough to trap a
fraction of the beam electrons. At this stage, the pulse
is vulnerable to distortions due to the onset of trapped
electron sideband instabilities. 1In order to avoid

breakup of the pulse, the pulse is subjected to frequency

10




discrimination (outside the wiggler) which suppresses
growth of sidebands. The frequency discriminator
effectively acts as a band pass filter which attenuates
frequencies above and below the pulse frequency. With i
stable pulse propagation, a stationary state is reached

when the energy extraction from the electron beam

balances the energy losses in the frequency discriminator
and at the mirrors. i

The electron equations of motion are derived from
an approximate relativistic Hamiltonian in which the !
transverse motion is taken to be nonrelativistic and
transverse spatial variations and beam self-fields are
neglected. The electron current driving the radiation
field is obtained by summing over all the single particle
currents. These equations, together with Maxwell's
equations, determine the temporal and spatial evolution
of the electromagnetic pulse in the wiggler.

The set of equations governing the operation of
the FEL as an oscillator have been formulated and they
were studied both analytically and by the use of a
simulation code.

The linear eigenmode analysis leading to a
calculation of the linear gain as a function of the FEL
parameters is described in Appendix B. Therein is

discussed the limit of ultra-short electron beamlets in

11




which the electron pulse length 2 1is very short

compared to the slippage distance kwLw/ks > P% L.

The linear gain per pass has been calculated for
constant parameter wigglers, variable parameter wigglers,
and a combination of constant and variable parameter
wigglers. The analysis included the effects of frequency
discrimination as well as a finite energy spread (modeled
by a Lorentzian distribution function).

It is found that the gain depends on only

two combinations of FEL parameters and graphs of the
linear gain as a function of these FEL parameters have
been plotted and the areas of good linear gain located.
A notable feature of the linear gain is its dependence
on the time delay At,,) of the electron pulse with
respect to the time of entry of the EM pulse into the
the wiggler. The linear gain is zero when Atrel is

zero, reaches a maximum when Atrel > 0 is finite, and

finally decreases with increasing At These graphs

rel’
have been used to select appropriate parameters for
input into the simulation code.

A one-dimensional code has been written to
simulate operation of the FEL in which the electro-

magnetic pulse is grown from noise levels all the way to

saturation. The details of the code are described in

12




Appendix C. This code enables us to study both pulse
formation and the stability of the saturated state.

Due to computer time limitations, most of the
simulations have been done using &§-function electron
beams. The results of the simulations are presented and
discussed in Appendix C.

In a typical run in which the EM pulse grows from
noise levels to saturation, the early phase of the
evolution is characterised by growth of the linear
eigenmode with the pulse amplitude peaked at the back.
As the evolution enters the nonlinear phase, the maximum
in the pulse amplitude moves to the front which then
continues to grow at approximately the linear rate.
Growth continues until the peak amplitude at the front of
the pulse is large enough to begin to trap the beam
electrons. At saturation, without frequency discrimina-
tion, the pulse remains peaked at the front and never
broadens towards the back. The electrons are not effec-
tively trapped throughout the length of the wiggler and
energy extracted from the electrons is only a small
fraction of that which is theoretically possible.

The failure of the EM pulse to broaden towards
the back is due to the growth of unstable sidebands (of
the order of the electron bounce frequency in the
ponderomotive potential well), which leads to a loss of

coherence and eventual detrapping of the electrons.

13




When frequency discrimination is introduced by
passing the EM pulse through a bandpass filter, the final
phase of the evolution depends critically on the band
width wF of the filter. 1If W is small so that the
growth of unstable sidebands are suppressed, the pulse
broadens into a squars pulse and the electrons trapped in
the ponderomotive potential well remain trapped during
its passage through the wiggler. The saturated pulse
propagates coherently and electron trapping is very
efficient.

The presence of frequency discrimination by a
band pass filter has an effect (proportional to l/wF)
which tends to retard the advance of the EM pulse
relative to the electron beam, that is, it tends to
reduce the effective EM pulse advance produced by a
finite At,o; > 0. To avoid the EM pulse running either
ahead of or lagging behind the electron beamlets, it is
indicated that a choice At  wp =1 is desireable.

This was confirmed by the numerical simulation. Thus to
obtain finite linear gain, wp cannot be altered
independently of Atrel'

A small value of We is desirable to suppress
the sidebands and guarantee a stable saturated state.

However, small values of w typically implies small

F
linear gain since ot o = lle is then large.

14
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In order to insure that a value of wp

found which allows both for linear gain and stable

may be

propagation, it has been deduced that the following

minimum current criterion must be satisfied:

5 -r)A

1.42x10° ‘(Lo DAY,

<I> > k2r2 Y2 Amps
w 0 r

where (1> is the beam current averaged over the
slippage distance, r is the mirror reflection
coefficient, r, 1is the beam radius, the wiggler length

Lw = ksr; is set equal to the diffraction distance, and
2R 2/m2k2¢c* = 1.
e Bw/m kwc 1
Linear gain can be enhanced somewhat,

particularly for large At by adding a constant

rel’
parameter section to the front of the variable parameter
wiggler. The constant parameter section cannot be too
long since electron trapping may be adversely affected.
The linear growth phase in the constant parameter section
will tend to saturate at an amplitude inversely propor-
tional to the square of the length of the constant

parameter section, and this amplitude may not be large

enough to trap the beam electrons efficiently.

15




In view of the above considerations, we have

simulated an FEL with the following physical

parameters

Electron Energy 50 MeV
Electron Beam Current

averaged over slippage distance 50 Amps
Wiggler Wavelength 1.25 em
Number of Wiggler Wavelengths 400
Signal Wavelength i = 2nws/c 1y
Wiggler Field Amplitude 7.0 kG

Nominal Trapped Electron Energy Loss 20 Mev

Constant Parameter Length 7.5 cm

Stable propagation of the saturated state was observed
with a filter band width of 0.1 wg . An effective

trapping of ~80% of the beam electrons occurred,

resulting in an energy transfer efficiency of ~308%.
Without frequency discrimination, the energy transfer

efficiency is only 0.8%.

16
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MANLEY~-ROWE RELATIONS FOR THE THIN LENS GAIN EXPANDER
BY

M. ROSENBLUTH AND V. [ONG

I. INTRODUCTION

In this note we argue that two-dimensional free
electron lasers such as gain expanders may be described by

an action-angle Hamiltonian of the form

K =kyd + ce'’s (”(l/sn'l)z)Zh (3,1 et (Pky2+ me)

’

where J 1is the phase space area for betatron oscillations, ¢

its conjugate angle, <y the electron energy, i.e., E = yme?
and T =t - z, its conjugate momentum. 2z is the inde-
pendent variable and ¢ is proportional to the laser

field.

In Section 1I, we demonstrate a series of canonical
transformations which explicitly and exactly reduces the
"thin lens"™ expander as recently proposed by Madey, et al.l
to the above form. The details are algebraically messy but
the procedure is straightforward. 1In Section III, we show

that this Hamiltonian implies, to order ¢?, the Manley-Rowe




relations, and generalized Madey theorems. These may impose
severe restrictions on gain expander operation. We also
display in terms of the hn'm's the equations for the
energy transfer. 1In Section IV, we evaluate these for the
thin lens system at low excitation amplitude. The casual

reader should restrict himself to Section III.

21
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II. REDUCTION OF THE THIN LENS GAIN

EXPANDER TO NORMAL FORM

We use as a Hamiltonian for the thin lens model the
z momentum, and represent the wiggler by a vector potential

Az. So for Yy >> 1 we have

- {p=A) el x? (1)
K1 2y + XFI(Z) + 5 Fz(z) .

z is the independent variable. Y may be regarded as a
canonical variable and T1=t-2 as its momentum.

For the thin lens, which consists of a wiggler
composed of pairs of very thin magnets with transverse

gradients, we have:

n
cl(z) = [a+ +a_ (=) ] G(Z-nko)
(2)
F = +8 (=" s(z-nx)
(@) = {e+ i ] R

A is the vector potential of the laser A eAs/c.

Since electrons with no transverse excitation pass through




the magnets at a fixed x value, the coefficients in
equation (2) are determined by expansion around these points.
Analytic solutions are known both for the average (nominal)
motion x_(z,Y); pO(Z,Y) and for the betatron deviations
from average (when the laser is not present). We take
advantage of this to perform a series of canonical
transformations, which reduces the Hamiltonian to the
standard form.

The first transformation involves a generating

function

GI(P"XrT',Y) =p'x - xop' +oxp + T'y .

The usual canonical transformation equations are

X = 3G/3p’
P = 3G/9x
y' = 3G/9t!
T = 3G/3y

K, = K, + 3G/?z




so that

. X' = x - X
o
' = -
p p PO
axo BPO
' = ' —— - x' + x —_— (3)
T T +p 3y ( 0) 3y
Y' =y

and the new Hamiltonian is

1241 1 P, %o pA A’
= BT 4 2 g2 — - —F - + = .
K = "5y r3x¥R YT Y T 2y
Note that for p' = x' = 0, (no betatron oscillations)
: we find
2
i dt  _ p0+1 = 2 1 .
' dz 2Y2 Bn

Proper choice of o and 8 makes the system isochronous,
- i.e., 3/3y (dro/dz) = 0., We assume this hereafter. Next we

introduce a second transformation

' 24
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which simplifies the Hamiltonian to

2
t 2
K =B-—+-];x'2p _&,.,A_ (4)

3 2y 2 2 Y 2y
with
dx dp
1 0 0
r"=1—~—-—l)z+'——-'—-— . 5
(&“o P ay * &y (3)

The next transformation reduces the Hamiltonian to
harmonic oscillator form. Here we take advantage of the fact
that the harmonic oscillator coordinates P, Q must be
linear functions of the coordinates p', x'. Hence we choose

a generating function

G, = 5 + gz(z) + P x! ga(z) + thy (6)

yielding

25




= + L}
Q Pgl X 93

= 7
p' g,x' + Pg, . (7)

The functions 9, (z) may now be determined by

$2,3

requiring that the above equations are satisfied for the
desired harmonic oscillator form, i.e., P = = sin sz,
Q = cos sz and where x', p' are a known thin lens

solution as derived previously:

X' = 2 [1+(-)nn] cos nk_ A + B (z-nX )
B o Y 0
p' = X |cos(n+l)k A [1—(—)nn]
B (o] (8)

A
o

- [l+(—)nn] cos nk ko

8
These may easily be checked from the equations of motion.
Here o is a normalization coefficient, and we are at

position (n+1)>\O > 2z > nxo.

In terms of the magnet parameters, we have defined:

-
- - /
LA LR N N
NS Tex /2y \ B_A_/2Y

(9a)

with B8_>0, and the betatron frequency satisfies




cos koA, \/(' 2y 2y . (9b)

By substituting (8) into (7) and laboriously matching

coefficients of cos sz, sin sz, we find:

g, = A(z)/B(z)
g, = C(z)/B(z) ‘
:
g, = 1/B(2)
where L

A :
= 0 ‘[ _ n] . 5 ]
A _\/;inkexo)(l-nz)Y l 1+(=) 'n skau

+ :—o [(1—(-)nn) sin kB(i-Xo) - [l+(-)nn] sin ksi]

A
0 n N )
= 1 _ ] X :
B ¢(Sin kB)\o) (1-n2)y ["‘( ) n| cos 8z ;

(E-Ao) - (1+(-)nn) cos k i]}

z n
+ K: Bl-(-) n) cos kB 4

- Y IFERRL 5
¢ '\/: sin k. _(1-n?) (1-(=)"n) cos ky (-1 ) .
o) B o “

? (10)
- (1+(=)"n) cos ksi$
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Here 2z = z - nko and the f's are hence proper periodic
(period ZAO) functions of z.

A detailed calculation of the new Hamiltonian may now
be made using the equations of motion and after vast algebra

we find as we knew must happen:

B 2 2 pA A’
- —— + - — o — .
K“ =3 (p Q%) Y 2y

A final transformation to action angle variables is

performed involving a generating function:

-1
G =1ty + J |sin

V1 - %027

+

2
V2J

S
<
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III. GENERAL THEOREMS FOR STANDARD HAMILTONIAN

Thus our final Hamiltonian is

2
K=kBJ-PYA+% (11)

with J

(P2 + Q% /2.

A price has been paid for this simple form. The
canonical variables are J, its conjugate angle ¢, vy, and
a transformed time <t''" = 1. The added complication in
the time variable arises from the implicit dependence of

the f£'s since the timelike variable

T = — . (12)

Note that Yy has survived as the canonical coordinate.
Before proceeding further it is worthwhile to
determine the physical significance of J = (P2 + Q%) /2. By
using (7), (9) and (10) we can compute J as a bilinear form
in the p', x''s. Thus the constant J surface is a tilted
ellipse in the original betatron coordinates. We find as

expected from the area preserving properties of the
canonical transformations that 2mJ is simply the area of

that ellipse. This is consigtent with the observation that
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the Hamiltonian (1l) would, if kB were a slowly varying
function of 2z, have J as an adiabatic invariant.

Let us now turn our attention to the laser field. We
ﬁ may write the Hamiltonian (1ll) in the form (expanding in

laser amplitude)

where for a plane wave laser propagating in the 2z direction !

with vector potential
A=a cosuw (t-z/c) (13)
s s

we find {

. .
p +po(z) lo T
H1= - —/——— e

+ complex conjugate. (14)

Here ¢ = as/2.

The quadratic term (Az) is irrelevant to our

purposes. T, pP', and x' must of course be expressed in

terms of the canonical coordinates.
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Using the redefinition of variables we have

introduced along the way we see that H1 may be written as:

...
= |

[po(z) + /3 a(z) cos ¢+B(z)] X

eims[h(si-l) z + ¥(2) /T cos(¢+5(z))

+ p(2) Jcos (2¢+4(z)) + C(z)J] .

Here all the functions of 2z may also depend on Y, are

periodic with period ZAO, and could be determined from the
foregoing arithmetic with some effort. However in order to
see the nature of the solutions it is necessary only to note

that we may write our Hamiltonian in the general form

iw (r+ (— - 1) z) ink z+ndé
K=k J+ce S B, h (J Y)e v
n,m\"’

+ complex conjugate. (15)

While we have derived this only for the special thin lens
case it should be generally applicable for different
magnets. Note that any x dependence of the laser field

would not affect the form of this Hamiltonian.




led

The point of all this maneuvering is that we may |
write the Liouville equation for the distribution function

£(3, v, i:l $) s

(16) |
E

i RN

Expanding in powers of ¢ we have axo/a? = 9K /3¢ = 0.
We assume that fo is independent of 1 (optical phase) and
¢ (betatron phase). The latter assumption (certainly applying

to a case with no initial excitation) could probably be

T

relaxed for our purposes. Then

B poverrree ¥

of 9K of K of
L 1 o} + 0

0z o aJg 31 3y (17)
3K of 3K af
+ - - 0 =0
3J 3¢ Y 3t
and if we write
.~ (1
iw (T+(—')—l z) im
fl = e s B, Zf‘ {(z)e 0

+ complex conjugate,

we have
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of 3k

m 1 . . 8
3 — l f + - e — f
Y + lws (B" ) 1mk8fl 1ws 3y J .

ink z of of
= z h e 7 olim —2 - 40 =2
€ - n,n aJ s dY

Assuming f1 =0 at =z =0, then

of of
] [*]

m -
= v 9J S _9dY
£ = €:E::nn,m 3k g

nk +w(-—1——1)+mk cw —B g
w s B" g8 s

3y (18)

1 BkB
ink z -iw(—--l)+nk -w — [z
w —e [ s\ 8 B s 3y

e 1}

+ complex conijugate. {

Finally we look for that part of f2 which is
independent of t and ¢ given by:
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We further keep only terms which are not oscillating rapidly

on the scale of kw to find:

-2 : :
3 =g (—1m 5J + 1w 3 ) ,h , l

2

n,m
-iA z
3f
1-e n,m . afo . o l
A 5J s 3y j
n,m
+ complex conjugate
where
i
1 aks |
= + - - + - — 1
An,m nkw ws (Q; ) mkB ws 5 J (19)
so -
_ .2 ‘ - 9 2 ‘ -
fz (z) EE [m aJ ws ay] n,m -
‘ n,m -n
’ (20) -
sin? A z/2 If 3f I
m,n n o _ -} .
(;\ /2)2 3J s oy ’ .
n,m
1
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We see immediately, by multiplying by J and integrating by

parts over dy dJ, that the mean action change is given by:

2

n,m

{55y = ezz g ffodeY m[m 533 -, :—Y] ’hn'm

(21)

and the energy change by:

‘ 3 3
. = - 2 < . <
<5r> wg € 2 : J}OdeY[m T wg aY] P%hm
n,m

2

(22)

In the usual case where only one resonance is of
importance (which is practically necessary and desirable to
get cancellation of excitation at a defintie 2z wvalue) the

Manley~Rowe relation follows directly:
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<6J> = -m giiz

w

s (23)

We have already remarked that 2rJd 1is just the phase space
area, hence can not be changed by moving from one magnet to
another. Only going from one m to another seems to offer
the possibility of excitation cancellation with gain but we
haven't yet been able to implement a viable scheme.

The m = 0 resonance does not produce excitation but
since the whole effect depends on energy derivatives,
presumably large energy spread results. It should also be
noted that only m = 1 1is operative for small J, hence
only h1,1 need be calculated which is doable in spite of
the complications (see Section IV).

By taking the second moments of equation (20) it is
also easily possible to generalize the Madey Theorem relating
gain to spread without making the resonant approximation,

i.e., keeping all m values:

]
N

) = (sa’y « 3 = (sasvy

(24)

]
N =

<<5Y> ;{ <(<SY)2> +% % <5J<5Y>
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IV. ENERGY GAIN FOR THE THIN LENS EXPANDER

In order to calculate energy gain at small excitation,
J, coming from the resonance m =n = - 1, it is necessary
only to keep the terms in Hl propertional to e~i¢ and to

vJ. From equations (13) and (5) with ¢

as/z, we have:

H = -¢gy— =~ _ - -
1 Y Y dy dy
(25)
Recalling that P = - /23 sin ¢, Q = V2J cos ¢ and
using equations (7) and (8), we find readily that the terms
in p', x' which are proportional to e_l¢ are:

(26)

where A, B, C are defined in equation (10) and

37

e N i e T TR

SUPUSHIN Y



i = A - (- n i -
| D ‘/A sink A (1-n?) [l (=) n] SLnkB (2 )‘o)
| o) 8 o

| - [1 +(-)“n] sin k7
i

We further need the properties of the nominal isochronous
trajectories
po dy Bu (27)
dax

Py 3y T 2 g: vz (=) i

4 2 (28) '

S B f

ﬁ o dy Y 2 :

where the B8's specify the magnet gradients as given in

equation (2).

Equations (26) - (28) may now be substituted into
equation (25). We must still perform a Fourier Transform in

z. Note that the desired resonant Fourier component is: !

—
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A
)
_ 1 +imz/A
h_l - = —-—2)‘0 /e 0 Hl (z) dz (29)
o

A

and that the integrand consists of functions of Z = z - nlo
times constant factors and factors proportional to (-)D.
Only the latter contribute to (29). It is thus useful to
write down the parts of equation (26) which are constant and

those which go like (-)@

) ik 2z -ik A Y

C_+iD_ = -ne B8 [l+e 8 o] J -
)\Osutl% o(l ney
. ikoz | -ikgA Y
+ = 8 B0 o
Ce# 1Dy = e [e 1] ‘/x sink. X (1-n2)
o B o
ik 3 s

ia_+B_= - n/2 e 8% [(l—e lke)‘o)

=ik, A xo Y
- 25 B"o —
+ (l 2 /Ao) (l+e )] Y v)‘*SinkB)‘o (1=-n2?)

Here the subscript - denotes the terms proportional to (="

The integrals are now all elementary so that we find
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A )

1 ) Ys
X = ("+k8*o’ lzn(1+-coskBAo)+ o AO[—2(14-cosk

_B l
. - . 2
+ sin kB AO n+ R j %(s:.n kB'AO) (1-n°)y Xo

We may simplify this somewhat if we evaluate at

resonance where w A (p; + 1)/2y2 = 7 4+ kBXO to obtain

finally:

‘(l+cosk A )

8
_ 2n B8 o _ .2 : A il
X (1+p2) l T k% (1 po) +s:.n!<B 0[1+6+n]
o} 3 o
-}
* [(sinlk !A )(l-nz)y)\]
[ BlMo ° (30)
and finally from equation (22)
40
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B

n

- 9%
B o (m+k

A )
0

e




b}

() -2

with ag = eAs/m the dimensionless vector potential of the
laser as defined in equation (13), and A defined in
equation (9).

The term proportional to B./B4n is usually the
largest in equation (30) and yields the same result as Kroll,
et al. The m = + 1 resonance result is obtained by
changing the sign of kB in equation (30).

Those results are in agreement with numerical

simulations by John Madey.3
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APPENDTIX B

THEORY OF LINEAR GAIYN: FREE ELECTRON
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I. TINTRODUCTION

In the free electron laser (FEL), a relativistic
electron beam is propagated through a transverse periodic
(wave number k ) magnetic field wiggler where the electrons
acquire transverse oscillatory motion (amplitude poL) which
enables them to couple to the transverse electric field of an
electromagnetic wave (frequency W and wave number ks). For
low density beams (where collective effects may be neglected)
the coupling may be viewed in terms of the interaction of
electrons with a ponderomotive potential well (produced

by the combined wiggler and radiation field) moving with

velocity v w Ak +k ). Electrons with velocity close to
res S w S

V.oes' ©F equivalently with energy close to

are in resonance, and net energy transfer can occur between
the electrons and the radiation field. Those with energy ﬁ
slightly larger (smaller) than Y es lose (gain) energy to
(from) the radiation field.

In constant parameter wigglers where Y is

res
constant throughout the wiggler, the energy extraction from




the electrons terminates when their energy is reduced to

Y This puts severe limitations on the gain and

res*
efficiency of the constant parameter FEL. To overcome this
limitation, variable parameter wigglersl have been proposed
in which electrons are trapped in the ponderomotive potential

well and vy gradually reduced by adiabatic variations of

res
the wave number (k,) and amplitude (pol) of the wiggler. The
energy loss of the trapped electrons translates into energy
gain of the radiation field. 1In this way, the energy
extraction in a variable parameter wiggler can be made to be
much larger than that in a constant parameter wiggler.

In principle,a DC electric field may be applied to keep
electrons of fixed Y 1in resonance with a constant parameter
wiggler.

While a variable parameter FEL may be operated as an
amplifier by passing a finite amplitude electromagnetic pulse
through the wiggler, it is desirable to initiate operation of
the FEL by growing the pulse from noise levels. This
necessitates that the pulse be reflected and passed
repeatedly through the wiggler, and its amplitude increased
on each pass. However, the successful operation of the FEL
in this mode (as an oscillator) will require that:

l. The linear gain per pass be sufficient to
overcome reflection losses and grow the electromagnetic

pulse to a large amplitude in a finite number of passes;
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2. The saturation of linear gain occurs at
amplitudes large enough to trap a significant fraction of the
beam electrons in the ponderomotive well;

3. The finite amplitude saturated pulse propagates
without deterioration due to the onset of trapped electron
sideband instabilities.l

An investigation has been undertaken to determine the
extent to which these requirements can be optimized and inte-~
grated into an efficiently functioning variable parameter
FEL. The investigation will involve not only theoretical
analysis of the FEL equations, but also numerical simula-
tions, particularly when studying the nonlinear saturation of
liner gain, electron trapping, and the effects of trapped
electron sideband instabilities. This paper is primarily an
analytic study of linear gain. In a subsequent paper, the
numerical simulations will be described, and the formation and
stable propagation of the finite amplitude pulse discussed.
Our numerical simulations are similar to those in the
pioneering work of Colson2 on optical pulse formation,
although we extend his techniques in order to treat the case
of interest to us, the high extraction variable parameter
wiggler.

In Section II, the set of equations governing the

operation of the FEL are briefly formulated. A fuller
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discussion may be found in Reference 1. The electron
equations of motion are derived from an approximate rela-
tivistic Hamiltonian in which the transverse motion is taken
to be nonrelativistic, and transverse spatial variations and
beam self-fields are neglected. Thus our analysis is one-
dimensional. While rough estimates show that two~-dimensional
effects such as diffraction and radially dependent
ponderomotive wells are not crucial, much further work is
required in this connection.

These equations, together with Maxwell's equations,
determine the temporal and spatial evolution of the electro-
magnetic pulse in the wiggler. In order to suppress the
growth of sideband instabilities and ensure stable propaga-
tion of the finite amplitude pulse, the formulation includes
frequency discrimination of the pulse outside the wiggler,
the effect of which is to attenuate frequencies above and
below the desired pulse frequency Wy As we will see in
this paper, while frequency discrimination is necessary to
suppress the sideband instability, it may have a detrimental
effect on linear gain. 1In a similar fashion, a long constant
wiggler section will be found to be desirable for linear
gain, but to lead to saturation at too low a level for
trapping. Thus, careful design is required for a successful

high extraction FEL.
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The FEL equations are linearized and the linear
eigenmode analysis leading to a calculation of the linear
gain as a function of the FEL parameters is described in
Sections III and 1IV.

The special case of ultra-short electron beams is
considered in this paper. By an ultra-short pulse, which we
approximate in the paper by &§(z-vt), we mean one such that
the difference in electron and photon velocity is large
enough that a photon is able to slip through the entire
electron beam while traversing the wiggler. The motivation
(aside from the intrinsic interest of short pulses) for
considering this case are: (a) Analytic tractability and,
more important, (b) the number of particle orbits which
must be followed in numerical simulation is obviously far
fewer for a single electron beamlet than for the many
beamlets which would be required to simulate a long con-
tinuous pulse.

The basic physics of electron-photon interaction
should be qualitatively the same for a long pulse whose
current times slippage length equals the number of electrons
in our § function pulse. The linear gain for long electron
pulses will be considered in a companion paper.

The analysis encompasses constant parameter wigglers,

variable parameter wigglers, and a combination of constant
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and variable parameter wigglers, with and without frequency

discrimination.

In Section V, we summarize our results for linear
gain and present a Semiguantitative discussion of nonlinear

propagation and sideband suppression.
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II. BASIC EQUATIONS

A. Electron Equation of Motion

The electron equations of motion can be derived from

1
the Hamiltonian

H = H[x, Px' Y, Pyr (‘8): t, z]

z (1)

where the electron energy (-£) plays the role of the

momentum conjugate to t, and 2 is the independent :
variable.
¢o is the ﬁgectrostatic potential of an accelerating
electric field - -Eia. The beam density is assumed small so
that the electrostatic self-fields of the beam may be
neglected.
The vector potential A is the sum of a circularly

polarized, periodic magnetic field wiggler A :
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Am

Z
- a P i
w(z) R cos kwdz + y sin s kwdz
)

and a circularly polarized electromagnetic plane wave és

e
—= A = a
mc® -=s =S

= a (z,t) [§ cos(k z - w t + 5[z,t])
s s s

- yvsin(k z - w t + c[z,t]q
= s s

where ar kw, ag, and : are slowly varying functions of =z
and t. As has been shown elsewhere a linearly polarized
wiggler gives only slightly modified equations.

The assumption that A is independent of transverse
coordinates (x and y) implies that the canonical perpen-
dicular momenta P, Py are constants of the motion. We
will assume Px = 0, Py = 0, an assumption corresponding to

the neglect of transverse velocities in the incoming beam

before it enters the wiggler.
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If we introduce as new variables the energy parameter

(e~ es,)

Y = me 2

and the relative phase

k dz + k z - . ¢t
w 3 5

>

i
[@L N ]

the Hamiltonian H takes the form:

H=H(-E, t, 2z)
= - 2 _ .2 + 0)]172
mcly u + 2awas cos (y )]
(2)
T - me . + C } 4+ oo
mcy + 2y {u 2awas cos (Y )
2 o 2 2 2 2
where u® =1 + a, + as, a, >> as and y*° >> uy“ >> 2 a, as,

The electron equations of motion in terms of Y and

¥, derivable from H(- £, t, z), are then given by:




dy e [e) 1l OoH

_...=..—7__+-_7_.

dz mc® 3t

S .
7 3z Y

2
SRV ksu
W 2y*?
where wg = ks €, and terms of order

Zaw as/u2 << 1, have been deleted.

(3)

&)
(4)
X 32
— & << ll .l_
wg 9 wg ot

The relative phase b varies slowly for electrons

with values of Y close to Y,

defined by:

x 1/2
=[5

Yr =2k "
w

These electrons interact strongly with

and will exchange net energy with it.
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(the resonant energy)

the radiation field

Electrons with values

s<<1,




of Y far from Y, have negligible effects on the radiation
field.

It is therefore convenient to describe the electron
motion in terms of the variables ; =Y-Y, and ¥.

In the limit of vy << Yoo the electron equations of

motion may finally be approximated by

e e Y
dz dz mc? dz
(5)
ksawas
- ——— sin(y + G)
Yr
2k ¥
ap _ 27 (6)
dz Yr

and are derivable from the approximate Hamiltonian

Hl( Yo Y,2)

H = )-{ﬁ y2
) SRS
t (7)
1 dYr e d¢o ' ksawas .
+ 3z + ne? dz ’w - ——;:—— cos(y + 3)
|
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We define a constant parameter wiggler by e 0
dé
o

a3z - 0.

In a variable parameter wiggler, Y, is allowed to

and

dy
vary spatially, Tﬂf # 0. The presence of an accelerating
electric fiehid¢o/dzaffects the electron phase space (Y, ¢)

trajectories in a manner similar to spatial variations of
Y as may be seen from Equation (7). 1In subseque2§

Y
sections, it will be assumed that Y is constant,iﬁf =0,

rl

A constant or variable parameter wiggler is then modeled by

do¢ d@u

—— —— n
dz 0 or dz 7

{ B. Electromagnetic Field Equations

The transverse electron beam current density J

determines the time and spatial evoluticn of A_ through

Maxwell's equation:

32 1 3

2
522 2g T o7 3t?

uP'
0

I
[ o

Substitution of the assumed form of A, yield:
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where

PR

Gl e e )

Ja da

S + e S - 2Te
5t 3z k mc? "2

3 ., QQ) _ _2me

s (at € 3z k mc? V1

J. = ce., j=1,2

J =1 p)

gl = x cos(ksz - wst + C)

- y sin (ksz - wst + z)
e, = - X 51n(ksz - wst + 3)

-y cos(ksz - wst + )

The assumption that a and

s

l

(8)

(9)

5 vary slowly in space

and time has again been invoked to delete higher order terms.




If Fo(?o,wo) is the distribution function of the

electron beam on entry at z = 0 into the wiggler at time

v
t = - o
(o) wg

current density Jj(z,t) are:

, the beam density n(z,t) and transverse beam

n(z,t) = IFO(YO, wo)dlt-t(fo wo, z)] d\?o dwo

o

Jj(z.t) = eJ.Fo(Y P V) v

(1)

where the transverse electron velocity vy, is (P, = 0):

- e -Sa -8
LT y3w ' 21
. < Ly 5
= Y, aw(z) cos 'W(Yo,wo,z)-+C[Z't(Y°.wo-2)l
A c .
v, " & -3, sinfy + ¢}

r
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Y(?o, v,r 2) and w(?o, V,s 2) are the phase space

coordinates of the electron trajectory with initial values
Yo and Y, at z = o, t(Yo, VYo, 2) is the time of arrival

of the electron at 2z and is given approximately by

q)O

w
S

t“?o' bor 2) =t + +

2
o v

<IN

where

Let Fo(Yo' wo) = 1/wsﬁ(wo/ws)f(yo), where f(Yo)
determines the energy distribution and fd?o f(?o) = 1.

Then, from Equation (10): . ?

n(z,t) = H (5 - t)

and from Equation (11):




i

ec
Jl(z,t) = Yr aw(z)

[d§0 f(;o) COS{W(\?oc lL’ol Z) +C(Z,t)}

When t changes by At =

E‘;J

(34

by =
2nvy 2w
or Z by Az=z;;-=k‘;,

argument ¥ of w(?of Yos 2) changes by 2r, Assuming

that the beam density H(é

small changes in t or z,

cos {W+’C} over ¥ _. Thus

(o]

ec
Jl(z,t) z ;; aw(Z)

~ t) varies slowly over these

it is appropriate to average

‘(59

1 - ~
Edeo dwo f(Yo) cos{& + C}

m
1]
0
']
£
N
b o]
——
<
]
v
N
o]
n
A
<
+
£
\/

Similarly
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Jz(z.t) = - + H(%—t)<sin v +¢ }>

The field equations for ag and ¢ are then given

by

Bas Bas
ETIRIRFTY
(12)
2me? a
= o, 2w sin{v + ¢}
LI 1
as\3t 9z )
(13)

271e a
. - ot # Ceon o+ ¥

C. FEL Equations

In the FEL configuration which will be analyzed, a
combination of constant and variable parameter magnetic field
wigglers is positioned between mirrors so that an electro-

magnetic pulse can be reflected repeatedly and multiple

61

passes of the pulse through the wiggler achieved (see Fig. 1).
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Relativistic electron beamlets of finite length are injected
into the wiggler at periodic intervals so that on each

forward pass of the pulse through the wiggler, there is

overlap of the pulse and beamlet. The pulse grows on each
forward pass. Eventually, the amplitude of the pulse becomes
large enough to trap a fraction of the beam electrons. At
this stage, the pulse is susceptible to detrimental spatial

distortions due to the onset of trapped electron sideband

instabilities. To avoid breakup of the pulse, it will be
necessary to suppress the growth of the sideband instabil-
ities. This may be accomplished by passing the pulse through
a frequency discriminator which effectively acts as a band
pass filter, attenuating frequencies above and below the
desired pulse frequency. With stable pulse propagation, a

stationary state is reached when the energy extraction from

] the electron beam is balanced by the energy losses in the
frequency discriminator and at the mirrors.

To facilitate formulation of the equations which
describe the operation of the FEL, it is advantageous to
transform the variables z and t to the variables

u and v: ﬁ
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where L is the length of the wiggler.

The line z = 0 in z - t space maps into the line
v==-u in u-v space and z =L into v =~ u+ 1 (see
Fig. 2).

In u - v space, the beam electrons, entering the
wiggler at z = 0 and exiting at 2z = L, move on lines of
constant u. The photons of the electromagnetic pulse,
propagating in the beam direction, move on lines of constant
v. During the nth pass of the pulse through the wiggler,
the pulse interacts with the electrons when the values of u
and v 1lie in the area defined by Y, > u >u ’

1n
1 -u>v >-u, where the difference “2n - zu is

1n (o}
determined by the length of the injected electron beam.
In terms of the u - v variables, the coupled set of
equations, (5), (6), (12), and (13), which describe the
evolution of the electromagnetic pulse passing through the

wiggler together with the electron beam, can be rewritten as

follows:
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Figure 2. Electron and Photon Trajectories
in u-v plane
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v _ (14)
av Y
|
3y = ra+d [iéeiw<-i5*e-iw] (15)
v 2
2.y n h(u) <e-iw> (16)
u

where a* 1is the complex conjugate of 3, and

[+ VY
[}
W
o

a_ = a
S
Yr YI‘ s {
1
3 2k L
Y = —3
Yr
2k L 3¢
ro= - w e o
Y, mc? v
2 kw L .
E Ay
Yr
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with AYr the change in <y which would be experienced by an
electron freely accelerating under the potential ¢°. h(u)
is a form factor which determines the beam density profile

and is defined by:

n(z,t)

i
m
——
<N
[
ot
S ———

(17)

u
2n
where 3 h(u) d u =1 and NT is the total numer of
1n
electrons in the beam per unit area, Nqp= {dz n(z, t).

The dimensionless parameter N is given by:

gne? NT k., L? a?

wr]__chu2 (18)

67




Thus, for the nth pass of the electromagnetic pulse
through the wiggler, the electron phase space (?, ¥)
trajectories are determined by the solutions of equations
(14) and (15), with initial conditions ¥ = Y , ¥ = ¥  at
v = - u., The phase of electrons entering the wiggler is

é uncorrelated with that of the electromagnetic pulse. Thus, V
is distributed uniformly between 0 and 27, The average

over wo is indicated by ¢ »>. The pulse amplitude after

interaction with the beam electrons is given by:

én(v,o) = an(v,-uo)+-Aén(v) (1%)

where

Q

A’én(v) =in du h(u) <e-1w(v,u)> g(v,u)

-
fo}
(
l-u>v>-=u
1
o>u>-uo .
g(v,u) —4
o otherwise (20)
\ ;
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In deriving equation (20), the u, v coordinates
were transformed so that the interaction of pulse and
electrons during the nth pass occur for u and v in the
range 0 > u > - U, l-u>v >=nu., It will be assumed
that there is no overlap of the electromagnetic pulse from
pass to pass, and consequently, this transformation can be
carried out in deriving corresponding equations for the
(n + 1) th pass, etc.

The electromagnetic pulse is reflected backwards and
then forwards for the (n + 1)th pass through the wiggler.

n+l

Without optical filtering, the pulse amplitude a (v, -uo)

before the (n + 1)th pass may be related to the pulse

amplitude a"™( v, 0) after the ntP pass by

+ o
3" l(v-fs,-uo) r an(V.o)

(21)

=r [Sn(v, -uo) +A'én(v)]

where r < 1 accounts for the reduction in amplitude due to
energy losses on reflection at the mirrors, and B8 repre-

sents the tunable pass to pass shift in the position of the
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pulse relative to the front of the electron beam at the
moment of entry into the wiggler. As we will see the linear
growth rate depends sensitively on B which is physically
determined by the distance between mirrors and the interpulse
spacing of the e-beam.

If identical electron beams are injected into the
wiggler on each pass with fixed periodicity, the pass to pass
change in pulse amplitude is determined by equations (19) and
(21) , independent of the value of n.

To suppress the growth of sideband instabilities when

the pulse amplitude is large enough to trap electrons, the
pulse can be filtered to attenuate sideband frequencies above
and below the desired pulse frequency « . This filtering

may be accomplished by a band pass filter, modeled by the

equation:

an an ~
=a (v,0) +va (v0) = va® (v,o) (22)

~

where a" is the filtered pulse amplitude, and the ;

frequency half width 4w of the band pass filter is
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~n+l n
Since a (v -8, = uo) = ra (v,0), the pass to

pass change in pulse amplitude after interaction with the
beam electrons, filtering, and reflection at the mirrors, is

given by

3 ~n+1 ~n+1 - -u)
= 4 (v - 8, uo) + a (v -8, °

< =

(23)

=r [én(v, -uo) +Aarl (V)]

Equations (14), (15), (21), and (23) govern the

- operation of the FEL.
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III. LINEAR THEORY--WITHOUT FREQUENCY DISCRIMINATION
For small pulse amplitudes, the FEL equations are

linearized to obtain the linear eigenmode equations. In the

limit of short electron beams (uo << 1) where

h(u)

equations (14), (15), and (21) yield:

v
<e-iW(v,u)> - %fdv' (v-v') I(v=-v")
o}
¢ NS
X an(v',-u )+ilfdu'<e‘1’i’(v Q )> e
[0} uO
-u
O .
l>v >0
(24)
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a (v-B,-uo)-ra(v,—u)
3 An+l
—(]_—B-a—v-;- ) a (v,=-u)
n

~-ra (v,=-u)
[o]

o
(i r lLE du (e-lW(v'u)>
u
b o]
-u
_< o
- l1>v>0
\o otherwise
(25)
where
J - ~ A l‘,(\ (V'-V)
I(v-v )-Id Yo f(yo) e o]

and the relative pass to pass shift 8 of the pulse is
assumed to be small permitting the indicated Taylor series
expansion. I is condidered to be independent of u and
v.

Let
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5n+1(v,-u ) = e6 an(v,-u )
o o

~ (L+68) a¥(v, -u ),
o]

6] << 1

where ¢ is the linear gain and phase shift per pass.

where

SOl b rrers ne's e o e -

Equation (25) may therefore be approximated by:

n ° n
(lL-r+8) &8 -8 ava

o
=iﬂ-s du <e-iW(v,u)>
Yo
Zu
o

l1>v>o0

r is assumed to be close to unity.

~n
The boundary condition on 2 at v =1 is
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since photons with v > 1 have never interacted with the
driving electron beam.

Equations (24) and (26) are valid only in the
interval 1 > v > 0. However, the upper limit may be
extended to infinity since the solution of these equations in
the interval 1 > v > 0 are unaffected by the solutions in
the interval v > 1. With this extension of the interval to
@ > ¢ >0, the solution of these equations may be obtained
by Laplace transformation.

Define the Laplace transforms

. Tv?

ap(u) = I ave PV (e-IW(vﬂn) e 2
o

“
™ -
LV

{ -pVv 1 2
dve P (v, -uo) e
o

A(p)

I = s dve-va(v)
o

The superscript on a will be deleted except when it is
necessary to differentiate variables referring to different

passes through the wiggler.
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Equations (24) and (26) are Laplace transformed:

o (w = - = A+i—”u du'o (u") 7p
P 2 u M T (27)
-u
[e]
iI‘Ba—A+BpA-(1+ §-r) A
Q
+ﬂ-j du @ (u)
u P
o
-1
o
= B a(o, -uo) E a (28)
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Equation (27) is solved to obtain

] oI
-in u
31 2B (=41
_ A 2 0p (u )
L—)p(u) =-3 _B_pE e o (29)

and substitution of @D(U) in equation (28) yields:

. 3
1PB$A+BpA— (L+68§ -1r) A

. oI
=1 n__P
2 3p
+ A e -l = a (30)

The function Ip is determined by the initial energy

distribution f(?o) of the beam electrons. If
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G e

—(v V2T 2
1 (Yo Y)//Yth

£(y ) = e
o
e
Yeh
is Maxwellian, or
~ 1 1
o ™ th 1-+(YO Y)
- 2
Yth
Lorentzian:
(p+i7)2/7th2 %
2 e _52
v dZ e
th
+i
(p lY)/Yth
T =
P
1
" —
P Yth‘*l Y

~<|

th
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is a measure of the energy spread. Ip

Maxwellian

(31la)

Lorentzian

(31b)

is comparatively




simple when f(?o) is Lorentzian, and consequently, the
L Lorentzian form of Ip is used in the subsequent analysis
unless otherwise stated.
Equation (30) is solved to obtain the solution A (p)
} which vanished at * in the right half p-plane. The pulse
| amplitude a(v, - u ) is then evaluated from A(p) by the

inverse Laplace transform

-ilv?
2 v
a(V'-u ) =e__'_JdPep Al(p), 1 > v > o (32)
o 271

% e

where C denotes the contour of the inverse Laplace
transform.
The eigenvalue equation is obtained from the boundary

condition

$(v=l,-u ) =0
o

which in terms of A(p) may be written
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i
e 2 gdpep A(p) = 0 (33) |

(o]

A. Constant Parameter Wiggler

In a constant parameter FEL, I is zero. Thus, from

equations (30) and (33):

1/3 1
n

el(ze) ¢

s dg -i(nBZ 77 ] I (34)
if 2\ T) g2
% |e-6 (%) { L
where

2\1/3

(L-x+6) + B(V, +i¥) = 1(%) 5, (25,
1
1/3
_ L= _.{n

oot 1T iE) s 6
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and C,. 1is obtained from C through the transformation

from p to E£.

If (nR%)Y? << 1, and the exponential is

approximated by

[which corresponds to neglecting the second term within the

square bracket of equation (24)), equation (34) simplifies to

i(—n—)l/ar -

> e e 28T =
= 1,2,3 )(3 26 =0 (37)

J - 14 g] l) ""‘

where gj are the roots of the cubic equation

g3 - 6152 -1=0 (38)
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Since dl is complex, the roots Ej are complex.
In the limit of a long wiggler where (n/28)!/?+ »

a root with negative imaginary part will contribute an
exponentially large term to the sum. It may therefore be
conjectured (and established a posteori) that equation (37)
can be satisfied for (n/28)!/®*+ «» if two roots (51 and 52)

have equal and negative imaginary parts. The requirement for

this to occur is

sy vle-a)f 5

27\ 3 27 2 1 3

61=(T) e '(1) 2 € (39)
where 52 - 51 = (28/n) /3 C° u is small and real.

Equation (37) is solved numerically, and in Figure 3,
the variable Re[(1 - r + <S+By7th)(2/nf.’>2)"’3 is plotted as a
function of 8/n. For small B8/n, the curve follows equation

{39) with Co ~ 1.9 and decreases to zero at 8/n = 0.065.

B. Variable Parameter Wiggler

In a variable parameter FEL, I is nonzero.
It is convenient to define the new independent

variable
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Figure 3. Constant Parameter Wiggler without
Frequency Discrimination -
Re(iél) vs B/n
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(p + v, + iY)
g = T 1/2

and to rewrite equation (30) as follows:

dA .
— - i + iA
3q igA 1AA
i 21"lqnz %
- Zriz ) e ~ 1l A = T (40)
BT i8r?
where
‘ A_(l-r+8)+B(Yth+lY)
! . = Fl72
I The solution of equation (40) which vanishes when p
tends to infinity in the right half p-plane is




‘”(1“1) 1
| iao Sl(q) , -Sl(q )
A ST/7 € dg e
p' q

where

The eigenvalue equation is therefore given by

In the limit of an infinitely long wiggler where

[ -+ =, the integral in equation (41) may be evaluated by

85

’5-25 r/2 q+sl(q)m(l’f) -5, (q")

e dgq e dqg e =0 (41)
(o]
q q
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A -

D O o

deforming the contour Cq towards the Im q axis. The
contour approaches a saddle point at @ ~ A + | Fl/z, and
if Re A > 0, the contribution of this saddle point is

ATY/?
e

exponentially -~ large. This implies that

equation (41) can be satisfied only if

w(l=-1i) _Sl(q)
dgq e =0 (42)

- (l-1i)

where the contour passes above the origin. Equation (42)
determines the eigenvalue ¢ in the limit ATY? > o,
If the exponential in Sl(q) is again approximated

by

equation (42) reduces to:




dq e =0 (43)

where

For a +~ 0, equation (43) may be approximated by

Equation (43) determines A as a function of a and
it is readily verified that A(a) is a solution of the

differential equation

a2 arye | an
da’ + 1(5;) 'A + @ 30 :+ é =0 (44)
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For o >> 1, a solution of equation (44) is given

approximately by

where cl is a constant to be determined.

Equation (43) is solved numerically, and in Figure 4,

the variable Rel(l - r + & + 8 Y, )(2/n8%)Y?]
is plotted as a function of 28T%%/n = l1/a. For small l/a,
the curve follows equation (45) with Cl~ - 1.61 - i 1.94

and decreases to zero at é > 1.42.

C. Combination of Constant and Variable Parameter Wiggler

In the case of a magnetic wiggler with a constant
parameter section at v, > v > 0 and a variable parameter
section at 1> v > vl, the eigenmode equation may be
obtained by an extension of the analysis previously
described.

Thus, in the constant parameter section v_ > v > 0,

1
the pulse amplitude is [equation (32)]:
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(a - ¢) ri/zy

N ) ) ) 5
a(v, uo) a(o, uo) :E: (3qj 20

(46}

where €= (§th + i ;)/I'}.

and qj are the roots of the cubic q® - q®> A+ ioa =0,

In the variable parameter section 1 > v > Vye the
. =i y(v,u)
relevant equation for (e > is:
- 2
iT ____(V vl)
<e—1¢(v,u)> e 2
V1
=% dv'(v, ~v') I(v-v") S(v',u)
2 1
o
Vi
+}-(v-v) dv' I(v-v') a(v',u)
2 1
° (47)

1V 1
+-EXdVWV-VW I(v-v') a(v',u) e
v

1




i
I
i
i

The corresponding equation for A is:

3 - igA + i’Aa

. . 2
- l;, (eln/zrq -l) A

Br™
ia(v,,-u) oo ( in/2rq? ) (bl(vl) bz(vl))
= = + e -1 + 3
1";5 BT q q
(48;
where
vl
_ r [ [ ' -(vth‘FlV) (Vl—v|)
bl(vl) =3 [ dv (vl-v Ya(v , uo) e
3 (42a)
1"1’2 " VA “(TeptiV) (v =v")
b (v) == dv a (v ,-u)e th 1
21 2 o}
(49%)
0
The eigenvalue equation analogous to equation (43)
is:
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®(1-1i)

—' 2 3 -
dq e iq/2 + iAg-a/q

-co(l_i)

A bl(vl) b2(vl) l
a(v ;0 ) - 2ia +
1 0 o] g ’

This equation determines A as a function of 2 and
- 15 .
T v . Equation {30) is solved numerically, and in Figure 4 the

1
variable Re [(1-r+6+8 Tth)(Z/nBZ)/a] is plotted as a function

2
r-2

of 28F~7n = 1/a for different values of : ‘v,.
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IV. LINEAR THEORY - WITH FREQUENCY DISCRIMINATION

With frequency discrimination, the pulse amplitude

equation (eg. 23) is

(51)

where ¢§ is defined in Section III and B8 << 1.

The analysis will be restricted to the case of v = %.
This choice is motivated by the consideration that
Equation (22) indicates that the filtered pulse is effec-
tively an average of the preceding Av=-%, i.e., it
corresponds to an effective retardation of the light pulse by
% relative to the electron beam, while R represents a
forward shift of the light pulse. Unless the two are nearly
equal, the electron pulse and photon will separate after many

passes. Numerical work has verified that this choice is

approximately optimal.
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Equation (51) then simplifies to

A 82 32 A
(L-r +48)a - CY 3;7 a

o (52)
~ in -i y(v,u)
~ ‘u— /du <e w u >
)
-u
o l1>v>0

When v <0 or v >1,

>

~ 82 32
1 -1+ - Bl o2a
( r+ §a > 392 0

The solution satisfying the boundary conditions a - 0, v+t
are:
(

{2(1-r+6)}%v
e B v<O0

>
(]
A

_ {2(1—r+6)}&v
e 8 v>1

\
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which vanishes in the right half p-plane. The pulse ampli-

tude a(v,-u,) is then evaluated from A(p) by the inverse

Laplace transform

where Re(l - r + &) > 0, At v=0 and vs=1, a and

da/3v are continuous.
The procedure of Section IIl1 may now be followed to
obtain the eigenvalue equation. Thus, Equation (52) is

Laplace transformed, and the equation for A(p) in the limit

of short electron beams is:

- loz - : 3 2 32
[o ir +2iroml 3p 392 A
in oI
e, oz, (B3R
8 B l

(53)

{2 (L-r+s) }
- P + B } a(or-uo) .

Equation (53) is solved to obtain the solution A(p)
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-i 2
1FOV /2

v
2l dp A(p), 1>v>0

N>
L}

Q

1 and the eigenvalue equation is determined by the boundary

condition at v = 1.

A. Constant Parameter Wiggler

|
Por a constant parameter FEL where T = 0, the pulse |
amplitude S(v,-uo) is: ' s
-
(0.0 ) (/80 g6y o

a ' o ag e (§-6.+8.7) -

a(v,~u ) = - 3T V2

o 2ni = : : :
vzl 2 i(ng?)°/2¢e? _ f
Cg [(E §3) 62+Tf-1—82—)’; (e 1

B

(54)

where

o 2(1-r+6) ‘
2 (ng?) % ) 4

§, = (%i)k (Vth+17) : |
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If (nsz)1§ << 1 and the exponential is approximated by

ei(nsz)!’/zg2

-1 = i(nsz)l“/zs2 ,

Bquation (54) simplifies to

(n/rsz);'i (E.-8.)v

A i e _ X
a(v,-u ) = iigl:fﬂl ° Ei(Ej 8546, )
L 2 [(gj—sg)(zsj-sa) -64

(55)

j=1,2,3,4

where Ej are the roots of the quartic
E3(g-6 )% - g%, +i=0 (56)

The continuity of & and 23a/av at v = 1 is

satisfied if

"

(n/B?) 2
2 efs;-8,08.")

(655 (%5575 - &) =0 (57)

Equation (57) is the eigenvalue equation.
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1f 63 2 0 (no thermal spread), the roots of the

guartic are

As in Section III, it may be conjectured that in the limit
(n/Bz)k->w, Equation (57) can be satisfied if two roots
(g1 and 52) of the quartic have equal positive real parts.

The requirement for this to occur is

in/4

=
{

= 2e + (5= )7

%
2
E - =iC w (%—) (58)

where ¢ - £, = iczn(ez/n)k is small and imaginary.
Equation (57) is solved numerically and in Figure 5,

the variable Re [(l-r+s)(4/nez)% is plotted as a function

of B/n;5 for different values of Yen (Y = 0). When

Yen = O, the curve follows Bquation (58) for very small

B/n%, and decreases to zero at IS/n;5 & ,118. As Tth

increases form zero, the curve falls more rapidly and is zero

at smaller values of B/n%.
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The effect on linear gain of finite values of ¥

is shown in Figure 6.

B. Variable Parameter Wiggler
For a variable parameter FEL where T # 0, it is

convenient to introduce new independent and dependent

variables:
T 4T
g - PHYe, + 1Y
r*
ﬂ. 2
B = e ip®/2T

Equation (53) can then be rewritten as follows:

in
2
= VT A th - a

9q gr
-i(g-e)z
=« — (q-c+A ) &(0o,~u ) e 2
¥ 1 o
r
= G(q) (59)
where
p2 o 2(1-x+s)
1 g2r
c - Yep ¥ 1Y
ri
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If the exponential is approximated by

| in/2rq? ~ _dn
e l =~ zrqz

Equation (59) simplifies to:

3%B I
—7 + AB - — B
3q? | q

(60)

where 0 = —

Numerical integration of the equation without
expansion of the exponential indicates that as expected for
n/2q?T < 1, the growth rates are not altered substantially.

The solution of Equation (60) is:

. ©(l-i)
B=_9d_ H(z)(Aq) aq'u'' q')q'ﬁG(q')
4i 0* H ! u !
lAl
q
(61)
=(1-1) . L
- H:”(A,q)/ dq'H‘fz)(A'q')q' Gl(q") ‘ ‘
q- | |
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(1) (2)
where Hu and Hu are Hankel functions of order

Pd Gl g

U= (& + ia.)%

PR

As p tends to infinity in the right half of the p-plane,
B +i—exp (eipz/zr) , and consequently A(p) =Bexp (ip?/21),
tends to zero.

The pulse amplitude is obtained from the inverse

Laplace transform

-. 2
e 1Tv /2/ F%(q—e)V'Fi ( _E)Z
——— | dq e g;‘
2Ti
Cq B(q)

a(v,-u ) =
0

1 >v~>090 . (62)

In the limit of an infinitely long wiggler where
| [ - o, the integral in Equation (62) may be evaluated by

deforming the contour Cq towards the 1Im q axis. The

!

: integrand is

R |




®(l=-1i)

/ dq’ Hu(l)(Alq')q'%G(q')

q

lAqu >> 1, ImfA q) >0 .

The contour approaches a saddle point at g-¢ ~ i VT%4-A1,
and the contribution of this saddle point increases
exponentially ~ exp(AIF%v). However, if é(v,—uo),(v<1)

has this behavior, it will not be possible to match & to
the exponentially decaying solution ~ exp(—A}Jﬁv)Av >1) in
order to satisfy the continuity of a and da/3v at v = 1.
This implies that the boundary condition at v = 1 can be

3
satisfied in the limit Alr'z + o only if

®(1-1i)

(1) i
/ dq H (A q) q°Glg) =0 (63)
-®(1-1i)
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where the contour passes above the origin. Equation (63) is

1
the eigenvalue equation in the limit AII‘2 >

[
.

If ¢ = 0, the integral can be expressed in terms of

Whittaker functions, and the eigenvalue equation is then

given by

(-]

1) (2 ) + W
u o)
2

~|w

’

where
-ip?

and the contour passes above the origin.
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(1) Y oo, | -g?
fdg H, (ZJ?OE) [a +i 7 E] e

1
4

’

E(Zo)
2

(64)




In the limit |zo| ~ I%l >> 1,

1

2
Z 3
Wl H(ZO) — -o—;s Ku (zo/z)
4'2 m 5
% imu/4 1
— (2T) %
e (220)
_"
ai ((2z,) (2, +iw)

where Ku/z is the modified Bessel function of order u/2
and Ai is the Airy function. Thus, the solutions of
Equation (64) are given approximately by the zeros of the

Airy function. For the most unstable solution

2 +1i
( ot i)

1
4
(220)

and therefore
T : T
§ = 2e ° 1-(2-3)(-2—) e ¢ 4.
2 ay
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In the limit {lzol, “x} << 1, Equation (64) may be

approximated by

QTT%
+ i—4+— =m0
22 2
o
and therefore
3

20 2 g ma
Szz 8 -i-a {log TG_

1
+ i(2N+ 1)11:-' © (66)

Equation (64) is solved numerically, and in Figure 7,
the variable Re [(l1-r+§) (4/n32)%] is plotted as a function
3

of B8T/n°. As isr‘/n;E increases from zero, the curve
decreases from (2)% and asymptotes to zero as Br/nk->w.
The effect on linear gain of finite values of Yth
and Y has been calculated by numerical solution of
Equation (63), and the results are displayed in Figures 7, 8
and 9.
A more exact eigenvalue equation can be obtained by

replacing the Hankel function Hﬁl’ in Equation (63) with

the appropriate homogeneous solution of Equation (59), namely
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the solution B; which asymptotes to ~ exp(iAlq) for
la| >> Ll

©(l-1i)

daq B;(q) Gl =0 . (67)
—w(l-i)

From numerical solutions of this equation, the linear gain
curves relating Re [(l-r+9) (4/n62)%] to BI‘/n;5 is plotted
in Figure 12 for a value of n/T =1 (7£h.= 0 and

Y = 0). An additional parameter n/I' is necessary to
completely describe the linear gain characteristics.

However, the difference in the eigenvalue solutions between
the more exact and approximate eigenvalue equations is small

when n/T < 1.

C. Combination of Constant and
Variable Parameter Wiggler

In the constant parameter section vl >v >0, the
pulse amplitude a is given by Equation (55) which may be

rewritten in the form:

A a(0,-u,) - (qj-s)F%v
a(v,-uo) T a— E e qj(qj-e+A‘)

j=1,234 [iqj-e)<2qj-e>-Af] (68)
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where qj are the roots of

!
b‘[ q’(g-e)? - Alq® + ia =0
!
i

|

| In the variable parameter section 1> v > A

Equation (47) is applicable and the corresponding equation

; for B is:
| 3B
E 3(?* + AB
{ in
{ 2
- é—ff{em '1}3
. - 3 (g-e)? (69) .
= ;g [Gl(q) + Gz(q)] e ;
i where
| 6 (@ = - |22 a(w ,u) + (g-e) &
1Y = rks v, Vit q-¢ a(vl'-uo)]
6. (q) = 4q? (in/ZI‘q’_l) (bl (v,) . b,(v) ]
2 gt \® q q?

bl(vl) and b, (v,) are defined by Equations (49a) and .
(49b) . 4\
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Thus, the eigenvalue equation analogous to

i
Equation (61) in the limit AlF’(l-vl)+ © ig

®(1-i) i
I -= (g-¢)?
dq H:l)(Alq) q e 2

=~ (l-1i)

bl(vl) . bz(vz)

q q

[Gl{q) +2ict1 3
L3

(70)

When ¢ = 0, the integral can be expressed in terms of

Whittaker functions.
Eguation (70) determines Al as a function of
b
a, r v,, and e,
Equation (70) is solved numerically and in Figure 10,
the curves relating Re[(l-r+5)(4/n32)%] to er/nls are

plotted for different values of F&vl.

113




V. SUMMARY AND DISCUSSION

A _Summary of Linear Gain Results

In this section, the linear gain characteristics
per pass of the short pulse FEL for the most unstable mode
is summarized. However, before presenting this summary,
the relationship between the symbols introduced in the
linear eigenmode analysis and the physical variables of the

FEL will be recapitulated.

s Gain per pass, i.e., the
amplitude of %he EM pulse on
pass n+l is e° times the ampli-~-
tude after the nth pass

kw Wiggler wave number
-kwAw H Bw Wiggler magnetic field amplitude
) L Wiggler length
w o, k Design frequency and wave number
s s of the electromagnetic pulse

r Fractional reduction per round
trip of pulse amplitude due to
losses on reflection at the
mirrors

. 114
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Qw = eBw/mc
u2=1+ Q%/kx%c?
W w

v o= (k /2% ) %y Resonant energy in units of mc?
r S w

- 2 2A~2 8w, 2
n=8re NTL Qw/yrmc u kw

N Total number of electrons, i
s §f ndl, in the beam per unit ‘
area. Note that the beam is
considered to be finite and uni-
form over a length 1 << L/2Y;-

ksc AT is the pass-to-pass temporal
B = P AT advance of the electromagnetic ¢
' W pulse relative to the electron i

beam on entry into the wiggler

2k L by, is the change in Y of
r= Ay electrons freely accelerated by
r r the accelerating potential
i ksL Aw is the frequency half width
v = — Aw of the frequency discriminator,
k.c i.e., the effective reflection

coefficient is r(w)~r/[1+i(w-%¥/Aw]

2k L {y) - Yr is the difference
= w_ | |
Y= Y) =Y, between the mean energy of the
Yr £ beam and the resonant energy
3 2k L Yth is the mean energy spread
Yoo = Y of the electron beanm i
th  vy_ 'th
i
v Fractional length of the initial :
1 constant parameter section of a ‘
variable parameter wiggler.
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1. No Frequency Discrimination

For an FEL without frequency discrimination, the
linear gain per pass Re § is conveniently expressed in

terms of the dimensionless variable
Y3

s ) = - V(=
Re(lGl) = Re (1-r+6+BYth) (nBz) .

Figure 3 displays a plot of Re(isl) as a function
of the parameter B8/n, obtained from a numerical solution
of the eigenvalue Equation (37) for a constant parameter
wiggler. Re(isl) is zero at B8/n = 0.065 and increases in
magnitude as R/n decreases. In the limit of a very long
wiggler where B8/n + 0 while g8%n remains finite, the

linear gain is

- 33/2
Re(L-r+8+8Y,) ~ 7 (nB2) ¥? . (71)

In Figure 4, Re(iél) is plotted as function of
zsra%n for a variable parameter wiggler. The graph is

obtained from a numerical solution of Equation (43).

%)
Re(idl) is zero at 28T /n =~ 1.42, and increases in
¥,

magnitude as 28T /n decreases. 1In the limit of
3/2

28T /n + 0, the linear gain is

3/ A
(nB?) . (72)

LRI

R(l-r+6+BYth) -+
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The linear gain of a variable parameter wiggler can
be increased by the addition of a constant parameter
wiggler section at the front. In Figure 4, the
corresponding curve of Re(id,) as a function of ZBT%&/H

is plotted for a composite constant and variable parameter

wiggler. It is obtained from a numerical solution of

Equation (50), assuming that the fractional length vy << 1

of the constant parameter section is given by F%vd_= 1.5.

The enhancement of linear gain increases with ngi ,

3
and can be particularly significant for 28T /0 2 1.42.
Deviations Yy of the mean energy of the beam from
the resonant energy do not affect linear gain. However, a

finite energy spread Yy decreases linear gain by B8Y,, .
th th

2. Frequency Discrimination 1

For a FEL with frequency discrimination (v = 1/8)

the linear gain per pass Re § 1is conveniently expressed in

%

terms of the dimensionless variable Re62==Re[(l-r+6)(4/nBZ) i.

In Figure 5, the constant parameter linear gain

curve [obtazined from a numerical solution of Equation

(57)] which relates Re 62 to the parameter B/n%

is plotted for different values of the energy spread Yth
Y

(but with ¥ = 0). Linear gain is possible when 8/n

is below an upper limit (B/n!‘)max . For a beam with Yy =0,

k]

(B/n’i)max X~ 0.118. In the limit B8/n: =+ 0, the linear

gain is:
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B%n :
Re (1 - r + §) ~ (—3—) . (73)

%

As Vth increases, (B8/n )max decreases, and the
magnitude of Rer is reduced.

In Figure 7, the variable parameter linear gain
curve {[Equation (63)] which relates ReG2 to the
parameter Bl‘/nLz is plotted for different values of

T{'th/l‘;i (but with ¥ = 0). For a beam with Vth =0

(n82/2) ?—; + 0
n
Re(l=-r+6§) »
B , o (74)
0 i X

A finite energy spread Yth reduces the magnitude of Redz .
In Figure 10, the linear gain curve of a composite

constant and variable parameter wiggler [Equation (70)]

which relates Re§ to Bl"/n;E is plotte . for different

2
values of TI% Vie The addition of a constant parameter
section can enhance the linear gain of a variable parameter
wiggler and can be of significance for BI‘/n35 2 1.0.
. For a given set of FEL parameters, the linear gain
| is not in general a maximum at v = 0. The effect on the

linear gain of a variation in Y 1is shown in Figure 6 for

‘ 118
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a constant parameter wiggler, and in Figure 9 for variable
parameter wigglers. Some enhancement of linear gain is
possible by making an appropriate non-zero choice of Y .

These results are applicable to the special case of
v = 1/8. The rationale for studying this case is based on
the observation that frequency discrimination has an effect
(proportional to 1/v) which tends to retard the pulse
advance, that is, it tends to reduce the effective pulse
advance produced by a finite positive value of 8, To
avoid the EM pulse running either ahead of or lagging
behind the electron pulse it is indicated that one should
choose Vv = 1/B8. Some numerical evidence from our
simulations indicates that this choice is indeed nearly
optimal.

The graphs which have so far been described are
obtained from approximate eigenvalue equations derived

after expansion of the exponential term

oI
5t =L 31
e ® _q).-in_p
2 3p

in Equation (30) and Equation (53).
This expansion of the exponential should be

reasonable for the constant parameter wiggler when
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1, ?
(n82%) " << 1 and (nBz)% << 1, without and with r

frequency discrimination respectively. The dominant poles
of the integrand in the integral of Equation (34) [Equation
{54)] are then determined to a good approximation by the
roots of the cubic Equation (38) {quartic Equation (56)].
In order to assess the error introduced for
the variable parameter wiggler without frequency
discrimination, the more exact eigenvalue Equation (42) is
solved numerically, and the linear gain curve relating Re(idl)
to the parameter 2er34/n is plotted in Figure 11 for a
value of n/T = 1.0 (Y =0, Y, = 0). One additional
parameter, namely n/T, is necessary to completely
describe the linear gain characteristics. Similarly, from

the more exact eigenvalue Equation (67) for the variable

parameter wiggler with frequency discrimination, the linear

)

gain curve relating Re 62 to the parameter B8T/n is

plotted in Figure 12 for a value of n/T' = 1.0 (y=0, Yoy~

In both the FEL with and without frequency
discrimination, the difference in eigenvalue solutions
between the more exact and approximate eigenvalue equation

is small when n/T < 1.

2. Significance of Results for FEL Design

The parameter redgime of interest for variable
parameter FEL's is dictated not only by the need to grow

the electromagnetic pulse to a large amplitude in a finite

121

e e

R LM




R e L e

:\«gmm sA A.cﬁvum - UOTJIRUTWTIIOSTQ
€

Aousnboaag noyztm 1976HTM 1932weaed arqeraeps Iy °iInbig

:\mahu~

T°2 02 @.-Wi 9°t__¥71I 2T _O0'1 _8'0C 9°0 #°C 0

)
@
s-s«-«ht)]u

-5
-
a3,

=)

L

122




z
m:\hu sa  ( 9)®y
- uoTjeuTWIIOSTQ Aousnbaxl yjitm .uwﬁmmqs J93auweaed afqetaea °z1 2anbrg
u
5 /19
z'Z 0°z 8°T 9T ¥'T 2Z°'T 0T 60 9°0 ¥0 Z°0
450
s
—
ol
[}
"
+
=
go.u —_—
o
=
3
=
4s°1
0°1 = J/u

123




ol oowd

number of passes (i.e., linear growth characteristics), but
also by the requirements of effective electron trapping and
stable propagation of the finite amplitude pulse. Although
the latter two requirements are not the main topics of this
paper, it will be useful to briefly indicate some con-
straints on the choice of parameters which they impose.

The comments on the constraints imposed by the requirements
of non-linear propagation will be abstracted from Reference
l. They are compared to those summarized for linear gain,
The electron equations of motion [Equations (14) and (15)]

are derivable from the Hamiltonian H :

T
(]
ol

-Ty - Sscos(w + £)

H

52
Y? + V(Y .

In a finite amplitude stationary state where 35 and ¢
are constant, electrons with small Y are trapped in the
potential well V(y). The effective potential well depth

is

~ il .
AV = 2as coswr + (wr - 2) Slnwr

where ¥ < is given by

(Y
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The oscillation 'frequency' at the bottom of the potential

well is

A ]
(as cos wr) .

The magnitude of the stationary value of 38 may
be estimated from energy balance. Assuming SS

independent of v, Equation (52) yields

A~

(1-r) as2 % N ( Ss sin (y + g)>

~ f nT'T

where ft is the fraction of trapped electrons, which

should be close to unity.
From these properties of the potential well, the
following observations can be made:
1) To secure a finite well depth, it is desirable
to have:
sin ¢ _ = ;;
r a

s
(75)

. . L
]
tn
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2) To trap a large fraction of electrons, the

energy spread Vﬁh should satisfy

- ~ vk Y
Yen (a_s) A
rk r (1-0)T . (76)

We will discuss below how this nonlinear limitation on
thermal spread compares with that determined by the
limiting spread for linear gain calculated herein.

In reference 1, it is shown that the gain of
sideband instabilities driven by electrons trapped in the
ponderomotive potential wells which oscillate at frequency
(és)% is of the order of 2-3 times the gain experienced
by the signal (which is by definition equal to the losses
in the reflectors in steady state). Furthermore, sideband
frequencies in the range 0.2(38)lﬁ to (Ss)!i show such gain.
We can therefore make a crude estimate of the needed
frequency discrimination.

To suppress sideband frequencies of the order of a
quarter of the oscillation frequency -~ % (as)%, the
reduction in power due to filtering by frequency discrimi-
nation should exceed the relative gain due to sideband

instabilities:
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= v—f > 2(1-r)(G-1) X

G is the ratio of gain of the sideband instability to the

gain of the pulse amplitude. Substituting for Ss, and
1

takin = =
aking v 2

3
8r: | 32(8-1) | (1-njr|”
n £,k n )

Such arguments are, of course, not quantitative,
but the results of our numerical simulation suggest that a

rough rule compatible with the above discussion is

%
a2 [__(12)3] > 70, (17)

where the numerical coefficient is uncertain by a factor of
the order of 2.

We note, of course, that large B (i.e., high
frequency discrimation) is desirable for stable propagation
in the presence of the sideband instability. Comparing now
with the linear theory of this paper, we note that Figure 6
gives a plot of (l-r+8)(4/nB2)% vs. B8I/n%. Here, of
course, small B is desirable for linear gain. At
marginal stability (6=0) and using the lowest value of 8
allowable from Equation (77), i.e., B=8.5(1-r)VPn)k, we see

that Figure 6 may be regarded as a transcendental equation
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determining the maximum value of (l-r)T/n for which a
value of frequency discrimination may be chosen which both
allows for linear gain and stable propagation. Solving

this equation numerically, we £find
(L «xr) T/n < .05 (78)

as a fundamental limitation on the design of a variable
parameter short pulse FEL.

Obviously to provide for reasonable positive gain,
we must make (l-r)T/n somewhat less than this critical
value. The situation may be ameliorated somewhat by use of
a constant wiggler section (see Figure 6) to allow linear
gain at higher 8. However, the use of such a section
leads to saturation of the linear growth phase at an
amplitude which may be too low for trapping since

)15 v =~ m. It appears then that in practice the

sat
length of the constant wiggler should be limited by

I‘;5v1 < 1. With this optimization, Equation (78) appears

as a reasonable design limitation. Note that from
Equation (75) this limitation may also be expressed in the

form

sin wr < 0.25 .
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We note also that using this value, Equation (76)
for the nonlinear limitation on temperature may be
expressed as:

’Y_th/l";5 < 2 '
while from Figure (8) we see that the linear gain is
strongly reduced if 'Y'th/I‘li > 1. Hence, we see that good
linear gain requires about twice as small an effective
energy spread as would be deduced from looking at nonlinear
trapping alone.

We have seen that the properties of a very short
pulse FEL can be characterized by the dimensionless
parameters I (related to the total variation of resonant
energy induced by the variable parameters), n (related to
the strength of electron current) and 8 the advance of
the electromagnetic pulse compared to the next pulse in the
electron train. We have also introduced a frequency dis-
crimination v in order to suppress sideband instabilities
in the nonlinear evolution. In terms of these parameters,
we have calculated the linear gain of the system and its
degradation by thermal spread. We note that small thermal
spread, low frequency discrimination, high current, and
small variation of resonant energy are conducive to good

linear gain.
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In our companion paper, we will discover that large
frequency discrimination is required to suppress sideband
instabilities in the nonlinear region, thus determining a
minimum value of n/T' for which good operation may be
expected with optimal frequency discrimination if beam

energy spreads and emittance can be kept low enough,

. e

ol o
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Simulation of Short Electron Pulse Free Electron

Lasers with Variable Parameter Wigglers

B. N. Moore, M. N. Rosenbluth,

and H. Vernon Wong

I. INTRODUCTION

The free electron laser (FEL) is a device for
converting the directed energy of a relativistic electron
beam into short wavelength electromagnetic energy. This is
achieved by exploiting a resonant interaction between the
beam and wave in a region where beam dynamics is dominated
by a spatially varying magnetic field.l'2 Such devices
may be operated in either an amplifier or oscillator mode
and experimental lasers have been operated in each mode.l
Analyses of constant parameter wiggler FELs have identified
the major limitations on energy extraction efficiency.2
The most important is that the EM pulse tends to grow to
a level at which electrons just become trapped, but because
additional extraction would bring electrons below the
resonant energy., further growth is prevented. The

saturated state then is one in which efficient energy
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extraction takes place only near the end of the wiggler.
The variable parameter wiggler is a modification of the
FEL2 which overcomes this problem by optimally adjusting
the resonant energy as a function of position through the
introduction of suitable wiggler amplitude and/or wave-
length variation. Alternatively, one could in principle
employ an electrostatic field to make up for radiative
losses and keep an electron in resonance with a constant
wiggler. It was anticipated that the variable parameter
wiggler would have problems associated with trapped parti-
cle instabilities at sidebands offset from the resonant
frequency. However, these instabilities can be suppressed
by the introduction of frequency discrimination into the
FEL optics. Such frequency discrimination, of course,
reduces growth in the unsaturated state. One of the
accomplishments of this simulation effort has been to
demonstrate that efficient energy extraction may be
expected in interesting parameter regimes with frequency
discrimination.

The focus of this simulation study has been the FEL
with variable parameter wiggler. A family of simulation
codes has been written and applied to an investigation of
growth and saturation of FELs with variable parameter
wigglers. This report describes the codes, the results

obtained to date and future plans. Some correlation of

[ ererm—
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simulation results with other analyses and experiments has

4
been presented elsewhere. '

This report is organized
into sections describing the physical and mathematical
model of an FEL with discussion of the underlying assump-
tions and simplifications. This is followed by descrip-
tions of the numerical algorithms including considerations
of numerical stability and error estimation.

Due to computer time limitations, most of the
simulations have been done using ultrashort electron pulses
modeled by a §-function. The results should apply to cases
where the electron pulse is much shorter than the slippage
distance; i.e., the difference in distance traveled by
photons and electrons in the time taken by a photon to
traverse the wiggler.

The results of the simulation of various cases are
summarized in the following sections and particularly
interesting simulations are presented in greater detail.

In a separate report5 we have made extensive analytic

studies of linear growth of FEL oscillators, and we will

present in this report some confirmations of those studies.
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I1. FEL PHYSICS

The essential features of an FEL oscillator are
shown schematically in Figure 1.

It consists of an EM cavity, bounded on each
end by mirrors, into which are injected pulses of high
energy electrons. The mirrors also serve to extract
EM energy and possibly as filters. Also within the
cavity is a region of spatially varying magnetic field with
its major component transverse to the direction of pulse
propagation. This is the wiggler, whose amplitude and
wavelength may be adjusted to optimize energy extraction.
The electron pulses and coherent EM pulses pass synchro-
nously through the wiggler field. The effect of the
wiggler field acting alone would be to establish the
transverse motion of the electrons. 1In fact the EM field |
couples with the magnetic field of the wiggler to
establish an effective ponderomotive potential for the
electrons. Both fields are assumed circularly polarized.

The electron equation of motion in terms of energy
Y and phase angle ¢ are given below. A full derivation

may be found in Reference 2.
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ay e d¢o ksawas
az - " mef @z T Ty sin (y + 1) (1)
‘ kZ
? - i (2)
‘ dz W 2y?
t eh eh
a = — a = ——% (3)
w mc® ‘ s mc
k = 2 k =2 4
- W/Aw ’ s ﬂ/ls (4)
2 2 2
: H (1 + a, + as) (5)
E
Where
v is particle phase
) { 1is electromagnetic phase
1 - A is electromagnetic vector potential amplitude
. Aw is wiggler vector potential amplitude
¢o is the electrostatic potential which mocks

up the wiggler parameter variation.

A is the EM wave length

—q

A is the wiggler wave length
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m, e and ¢ are electron mass, electron charge and light

speed. Yy is the relativistic factor for the beam.

Electron Energy
= 2 - (6)
mc

The transverse electron current serves as a source
for the electromagnetic field of the EM pulse governed by

Maxwell's equations.

ja sa
s , 1_s _ _2re, (J siny_ + J cosw) (7)
3z c 3t ksmc X s Y s

2ne

k mc? 2
s

g 1 3¢ 271e .
35 = 2= = - J sin (8)
%s (az e at) k_mc? (chosws Y q"s)
27e
= J
k mec? "1

The current densities may be calculated from the electron

trajectories
eca (z)
W z
Jl = —Yr_ n (‘—, - t) <COS(¢ + ;)> (9)
ecaw(z) 2
J2 = - ———?:T—— n( G - t) <sxn(w + ;)> . (10)
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Where the notation < > implies averages over the initial
phase and energy distribution of the electron beam, and the
function n is the number density of the electron beamlet,
and Yy is the resonant Y. Here it has been assumed that

the EM field is of the form

1 32

->

= - 23 (11)
->

eAs .

=z = as(z,t) [xcos(ws) - y51n(¢s4 (12
5y

=7 = - aw [xcos sz + ysin sz} (13)
vy ksz wt + g{z,t) (14)
ws = ksc (15)

where as and 7 are slowly varying functions of z and t
and are independent of x and y.

The EM pulse leaves the wiggler, propagates to the
mirror where it is filtered and partially reflected before
encountering the next electron pulse. These processes are

modeled as follows.

a = ra (z=L ,t) (16)
S into filter s w
(reflection)
(_?_ +w ) a = w_a (17)
t F soutof filter F sinto filter
(filtering)
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Where
4 wp is the bandpass cutoff frequency centered
‘ about

s

; r is the extraction mirror reflection coefficient

Lw is the wiggler length.

Before entrance into the wiggler on the next pass,
a fixed time delay is introduced. The electron beam
density into the wiggler is assumed to be perfectly
periodic, with the period At.
The major assumptions underlying this model are:
(1) The wiggler field has negligible axial and
fringe components.
(2) Transverse variations of all quantities are
neglected.
(3) An EM pulse is a nearly plane wave whose
amplitude and phase vary negligibly over a few
EM wavelengths.
(4) The appropriate EM filter with Lorentzian line

shape is assumed.

(5) v >> 1.
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III. SIMULATION EQUATIONS

By appropriate normalization, the FEL equations may
be further simplified for the simulation code. Other
simplifying assumptions will also be convenient.
Additionally, finite difference algorithms must be selected
which dc not introduce numerical instabilities and which
efficiently approximate the time and spatial derivatives
involved.

Introduce the variables u and v,

1 gz-ct
u = - (18)
L c_,
w v
v=LL SE'_E (1¢)
w —-=1
v

u = constant follows an electron, and v = constant
a photon. L is wiggler length, V the electron
longitudinal velocity. The electron beam runs from -u, to
zero. The wiggler interaction occurs for 1 >u + v >0

(See Figure 2). The equations for this region of inter-

action are:
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_ oo o
da _ ., =iy
=2 = innw () (20)
ER g l[laeiw-lé* e-iw] + T (21)
v 2
Y - 3 (22)
v
where &, I, n and h(u), expressed in terms of physical
parameters, are defined by
a = a et (23)
s
2kwL k L a
as = w as (2_4) R
Yr Yr I
2k L
~ w
Y = (vy=-v.) (25)
Y r
r
5
ks : %
= | -5 2 2
Y, (2k (l+aw+ a ) (26)
w
2k L dy 2k L d¢
W W r w e
r=- av v mc? dz (273
Tr v r
2
8(kwLw) egI; I 2
= me” g )2 (28)
n 1+ 22 0 rozks k c
Yr k 2c? w
w
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hagh |

Tar—— T

eBw ka
= — = 20
& mc ' 4 L k (22)
W w
C
(5 )
w\Vv I(Z,t)
h(u) = (30)
. & O
v
1 _ (31)
(1}-2 I(z, t=0) dz

£ 1is nominal electron pulse length
x, is electron beam radius

I 4is the beam current

In terms of the normalized variables, the pass-to-pass

EM processes are modeled as:

aéF(v) ) (n)
— 4+ va_(v) = va (u=0, v) (32)
v F
2D 2w, ) =ra_ (veB) (33)
0 F
Where
Lw c kwLw

\)=—C—(G-l)wp=kch (34)
s

r = reflection coefficient of extractor
k ¢

B = = At (35)

c
c _1) Atrel k L rel
v




with Atrel being the time delay of the electron pulse
with respect to the EM pulse at the wiggler.

Some preliminary attempts at algorithms for solving
these equations met with limited success, either due to
problems with numerical instabilities or lack of
computational efficiency. The EM amplitude and phase

(as,c) and the particle phase space variables (?,w) are

defined on a discrete grid in the u - v plane. The
indices iu and iv define the location on this grid.
The index i is the particle label. The following

algorithms were eventually selected.

* u=u_+ (i -1) Au (36)
o u
|
v=v + (i =-1) Av (37) ;
o v :
A _ ~ - ~ N " ~ 75
Yie(u,v+ Av) = Yie(u,v) Av (ac sin Vie+ a_ cos wie) !
(38)
Where the centered EM field components are: ,
%
i
~ - g2 Au .
i = la] cosz + 5 nhiu) {siny(u,v) (39)
~ -2 . Au |
i = la| sinz + ey nh(u) {cos ¥ (u,v) (40) !

l 146

O et S e e 0 i e o VL AT A i A R ¥ b 1oy o

N _—




The particle phases are advanced for a fixed u value.

sin wie (v + Av) B1 sin wie(v) + 82 cos wie(v) (41)

cos wi (v + Av)

. B1 cos wie(v) - B2 sin wie(v) (42)

Wwith and chosen to preserve sin?y, +cos?y, =1.
8, 8, P Yie wle

l-a

= 43

8, 1+ a? (43)
20,

. (44)
Bz _'I,+C!.2

The contribution of the wiggler parameter variation to the

particle phases is isolated to the term:

N
v
~ Av
a =y, (Vv+av) +2 I‘Av) -— (45)
ig = 2
v v

Steps (38) through (45) are repeated for each particle.
Then the particle currents are calculated and the

field amplitudes at the next vaue of u are determined.
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(46)

™M

<sin Y (v + Av)>

N
e cos Y
<cos Y (v+ Av)> Z —-—\1—1-e— (47)
L

i=1 e

e
as(u+ Ma,v) = as(u,v) + Aunh(u) {(cos w(u,v)> (48)
ac(u+ Au,v) = ac(u,v) + Aun h(u) SinW(u,V)> (49)
a_ = la] sinzg (50)
a, = lal cos g (51)

Steps (46) through (51) are repeated for each v interval
in the wiggler (0 < u + u < 1). For other values of v
these quantities propagate unchanged. Finally, the entire
series, (36) through (51), is repeated for each value of u.
The basic scheme is depicted in Figure 2. Specification of
the EM pulse as a function of time into the wiggler is
equivalent to specification vs v at u = -u..
Similarly, the electron pulse density distribution
is a specified function h(u) at v = - u. The field
equations are integrated along the vertical characteristics

(v=constant) and the equations of motion along horizontal

(umconstant) characteristics. Note that the Yy, siny and
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cos ¢ functions are advanced independently with an
algorithm which preserves sin?y + cos?y . The particles
at a given u are advanced from v = -u to v = l-u with
an algorithm which estimates the effects of the averaged
EM field acting on the particles. Once the phase-averaged
particle currents are available at a given u, the EM
fields are advanced to the next u value. The process is
repeated until the electron pulse and EM pulse have moved
completely through the interaction region. The EM pulse
then propagates undisturbed to the mirrors where energy

extraction and optical discrimination are carried out.

Negligible interaction on the return through the wiggler is

assumed.
One group of simulation programs incorporates the

additional renormalization:

el
]

EM E [(151008 tP+(la]sin C)Z] Av (52)

1y

a
a = -T°-— |a] (53)
V "EM
This renormalization involves a reduction of the
output amplitude a to a such that the input pulse
energy is always at a level a:, small enough to be in the

linear regime.
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This keeps the EM pulse at a constant total energy
before entry into the wiggler. The result of many repeti-
tions of this algorithm will be a pulse corresponding to
the fastest growing linear eigenmode, which can be compared
with analytic results and used to begin the nonlinear
simulation.

Three options are provided for loading the initial
electron beam. These are: cold beam and Maxwellian and
Lorentzian thermal distributions. The distributions are
specified by <'y> , which is the mean Yy, and Y

th’
which characterizes the thermal spread.

( ~ —
~8(Yy - V) Cold (54)
J _G-v)?
f(y) = \ ~e Qih Maxwellian (55)
(G-n21t
\~ [1+—Y—,\7Y—] Lorentzian (56)
Yth
kalb
Y = —-—Y-—— [Y‘Yr] (57)
r
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~ W W
- W W 58
Yth Y Yth (8)
r
2k L
7os—E [a- v, ] (9)
Y, r

The particles are also distributed uniformly in

phase.
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IV. DIAGNOSTICS

A number of diagnostics are provided in the codes,
including growth rates, integrated power, phase space plots
and Fourier transforms. The growth rate represents the

pass to pass exponentiation as follows:

P
Re & =§1n (—-Eﬂ) ) (60)

The particle phase space corresponding to any point
in the interaction region may be displayed for any pass,
allowing a determination of trapping efficiency. The
energy extracted per particle is monitored as a function

of pass with the parameter:

E Z ( JI‘dv) h(w 2 (61)

e
iy le-l

where N, is the total number of simulation electrons.
The Fourier transform diagnostics and their

relation to physical parameters are:
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a(v) = a +1ia (62)

C S
Ac =X a(v) eMFUvAV) (63)
1y
= -1
kwI"w Wg (64)
< (v/e) \1 + ky

ks

Note that the diagnostic frequency (or wave vector) is

expressed relative to the nominal resonant wavelength.
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V. RESULTS

The major tasks accomplished to date include the
verification of the code against established theory of the
constant wiggler FEL, confirmation and extension of the
linear theory of variable wiggler devices, including
thermal effects, and investigations of the nonlinear
phenomena associated with saturation of both short and long
pulse FELs. These investigations have established the
necessity for some frequency discrimination in order to
achieve acceptible performance for both classes of devices,
and the scaling laws for variable parameter wiggler FELs
with frequency discrimination have been determined.

Preliminary simulations of finite length electron
beams without frequency discrimination have given results
similar to those of Goldstein, et al.6 for parameters
associated with the LANL proposed experiments. In the
absence of frequency discrimination, the EM pulse shape at
saturation is irreqular and characterized by random peaks.
With frequency discrimination, much smoother pulse shapes
were obtained, and the saturated pulse energy was somewhat
smaller. However, the variation with pulse length
indicates that with longer beam pulses such as those

actually envisaged, frequency discrimination would be more
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effective in producing not only smoother saturated pulse
shapes, but also higher pulse energies. Further work on
finite length pulse simulation will be published
separately.

In the following sections, we focus exclusively on
the limit of very short electron beams in which the
electron pulse length £ is short compared to the slippage
distance kL /k, >> I'*1 or Milu | << 1.

In the simulation, this limit is modeled
as a 0-function; that is, h(u) = §(u). Obviously
this model requires minimal simulation time (only one
value of u) so that long, high extraction wigglers may be
studied.

As a check on the accuracy of the code, the linear

5
gain per pass calculated from the linear eigenmode analysis

was compared with that observed in the simulations for a
range of FEL parameters. In the parameter regions where
the theory is applicable, the agreement between theory and
simulation is satisfactory (see Figures 3, 4, 8, 9 and 10)

and is of the order of or better than 15%.

1. No Frequency Discrimination

In FELs without frequency discrimination, the
linear gain per pass for a very long constant parameter

wiggler (8/n + 0) is given by
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l-r+d+ BYth

X ~ 2 (65)

4
'u

Re § = Re
(n g2

If the beam and wiggler parameters are kept
constant, Re [(B/n)z'3 51] increases from zero as the phase
advance B of the EM pulse is increased, reaches a maximum
Re [(s/n)z” 51] = .047 at 8/n = .022, and finally
decreases to zero at f8/n = .065. The theoretical linear

gain curve5

is plotted as a solid line in Figure 3,
while the linear gain observed in the simulations is
represented by the circled points.

If the wiggler is made variable by applying a
finite accelerating electric field (T # 0), the linear gain
remains close to that of the constant parameter wiggler
when ZBITVVn << 1. (The accelerating electric field
produces essentially the same effect as varying the wiggler
parameters, i.e., keeping trapped electrons in resonance as
they radiate energy). As the magnitudé of the variation is
further increased, Re §;, decreases. In the limit of a very
long variable wiggler where £/n << 1 and T >>1,

Re §, ¥ 0 when 28 I‘%/n = 1.42. In Figure 4, the
theoretical linear gain curve is plotted as a solid
line indicating the variation of Re §; as a function of

3
28 F4/n. The results of the simulations are represented as

circled points for values of 8/n= 3.3 x 10'5, .0l.
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The differences between the observed linear gain and the
theoretical linear gain curve for B8/n = .0l are due to
finite length effects not included in the theory. For most
cases of physical interest, the criterion §/8 > 1 for
neglecting finite length effects is well satisfied.

The pulse shape of the linear eigenmodes are
displayed in Figure 5. For a constant parameter wiggler,
the pulse amplitude increases smoothly to a maximum and
then falls to zero at the back. As the wiggler is made
variable, the change in the pulse phase angle in going from
the front of the pulse to the back progressively increases.
At the same time, the pulse amplitude becomes more sharply
peaked at the back.

In a typical run in which the EM pulse grows from
noise levels to saturation, the early phase of the
evaluation is characterized by growth of the linear
eigenmode. Eventually, nonlinearities reduce and then
saturate wave growth.

For constant parameter wigglers, the maximum pulse
energy occurs for values of the pulse phase advance parame-
ter B which are small and positive. This decreases as B
increases. Similar results were previously obtained by
Colson for finite length electron beams.3 The effect of
8 >0 is to shift the EM pulse ahead of the electron beam

on each pass through the wiggler. As £ increases, the
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net interaction time of each section of the pulse with the
electron beam decreases and this leads to a progressive
reduction of the saturated pulse energy.

For a variable parameter wiggler, the evolution
enters a nonlinear phase during which the peak in the pulse
amplitude moves to the front, which continues to grow at
approximately the linear rate after the back has
saturated. Growth continues until the peak amplitude at
the front of the pulse is large enough to begin to trap the
beam electrons. At saturation, without optical discrimina-
tion, the pulse remains peaked at the front and never
broadens towards the back. Most of the energy resides in
the front part of the pulse which no longer interacts
crherently with the beam.

The pulse shape and pulse spectrum at saturation
for a representative simulation run with the following FEL

parameters are shown in Figure 6:

r = 0099

n = 600.

B = 0.01

r = 2000.
v, = ,015

v = 1000
Yth = Q.
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The value of v = 1000 corresponds to a filter
cutoff frequency approximately ten times the largest
observed electron bounce frequency in the ponderomotive
potential well and thus effectively models an infinite band
width filter; that is, there is no frequency discrimination.

These values for the dimensionless parameters were
chosen to simulate an FEL with the following physical

parameters:

Electron Energy 50 MeVv
Electron beam current

averaged over a slippage length 50 Amps
Wiggler Wavelength 1.25 cm
Number of wiggler wavelengths 400
Signal Wavelength lu
Wiggler Field Amplitude 7 kG

Nominal Trapped Electron Energy Loss 20 MeV

Constant Parameter Length 7.5 em

A constant parameter wiggler of fractional length
v, was added to the front of the variable wiggler to

enhance the linear gain per pass, Re § = .071 for this

case.
In Figure 6a, the normalized integrated pulse
energy
It =2 NPYCIE (66)
P = T I la(v)|?av

163

‘ St | Su———
et A | o]

"
[E—




is plotted as a function of the pass number through the
wiggler. It may be noted that if P = 1, the energy

lost on reflection at the mirror is equal to the

energy extraction from the electron beam assuming all

the electrons are trapped in the ponderomotive potential
well formed by the combined field of the pulse and
wiggler. 1In practice, P < 1 since all the electrons are
not trapped and additional sinks for energy loss may occur
(for example, if the pulse is subjected to frequency
discrimination; see the next section).

The pulse energy P increases exponentially at
small pulse amplitudes. After nonlinear saturation of
pulse growth occurs, the pulse energy P oscillates in a
limit cycle about a finite mean.

The pulse shape at saturation is displayed in
Figure 6b. The part of the pulse extending from v = Q
to v = 1 interacts with the electron beam in the
wiggler. With positive phase advance 8 > 0, the pulse
is shifted to the left on each successive pass. The
front part of the pulse (v < 0) shifted out of the
wiggler no longer "sees" the electron beam and is damped
by reflection energy losses at the mirrors. Note that only

the front of the pulse is amplified.
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The Fourier transform of the pulse amplitude a{(v)
A =J etV a(v) av (67)

is plotted as a function of « in Figure 6¢. For a
particular value of «, the corresponding frequency w of

the laboratory frame is

w K k v
;;=1+WLW 1+;‘: = (68)
The location of the electrons in phase space
vy
Q-Ide, v (69)
Vl

is plotted in Figure 64 at different positions v in
the wiggler. The electron energy is plotted as a function
of the phase angle modulo 27. If the electrons are freely

accelerated,

Y -J rdv = Yo (70)

where 90 is the initial value of Y, and is set to zero
for these simulations. 1If the electrons are trapped at

the front of the wiggler and remain trapped throughout
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the length of the wiggler, Y=Y, and

v

)'4
?-frdv= ?o-]rdv . (71)
vl

v,

As may be noted from Figure 64, the electrons are
not effectively trapped throughout the length of the
wiggler and the energy transferred to the pulse at satura-
tion is small, P = 0.024.

The same final state was obtained by starting the
simulation run with an initial square wave pulse of
finite amplitude large enough to trap the beam electrons
(see Figure 7). The back of the pulse erodes away, and
sideband frequencies K~ 60 below the main pulse frequency
(that is, zero frequency in Figure 7) grow in magnitude
and finally dominate the spectrum. The sideband
frequencies are of the order of the electron bounce
frequency ~|a|% ~ 78 in the ponderomotive potential well.
The growth of sidebands leads to a loss of coherence,
and the beam electrons are not effectively trapped
throughout the length of the wiggler. The amplitude of
the back of the pulse falls to a low level compared to
the peak amplitude at the front.

This suggests that any tendency of the pulse to
broaden towards the back during growth from noise will be

hindered by the growth of sideband frequencies. Such
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sidebands have been predicted to be unstable by Kroll,
et a1.2

As we will see in the next section, the suppression
of sideband growth by passing the pulse through a band

pass filter results in a considerable improvement in the

pulse shape and the total pulse energy at saturation.

2. Frequency Discrimination

In FELs with frequency discrimination where the

EM pulse is passed through a band pass filter in order to

attenuate undesirable sideband frequencies, the band
width v of the filter appears as an additional

parameter. Frequency discrimination by a band pass

filter has an effect proportional to 1/v which tends
to retard the pulse advance, that is, it tends to reduce 4
the effective pulse advance produced by a finite

positive value of 8. To avoid the EM pulse running

either ahead of or lagging behind the electron beamlets,

it is indicated that a choice of v = 1/8 is desirable.
This was confirmed by the numerical simulations. A small :
value of v is desirable to suppress the sidebands;

however, linear gain is reduced if Vv < 1/B (see Table 1l).
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TABLE 1

Variation of linear gain Red with v.

r = 0.99 n = 600 r = 2000
B = 0.01 v, = 0.015 Y =0 ?th =0
\Y 160 140 120 100 = 1/8 20 80

In the simulations we discuss hereafter, we will
consider only the case of v = 1/8.
With v = 1/8, the linear gain per pass for a

very long constant parameter wiggler (B/n;i + 0) is

given bys
2(l-r+‘5) 1
Re = ———— | e 2
62 e (nB8?) s 2 (72)
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where §th =0 and Y = 0. If the beam and wiggler
parameters are kept constant, Re[ Sdz/n%I increases

from zero with increasing 8, reaches a maximum

Re lBSz/n%l = .012 at B/n*% = .042, and finally decreases
to zero at B8/n% = 0.118. The theoretical linear gain
curve is plotted as a solid line in Figure 8 while the
linear gain obtained in the simulations is represented by
the circled points. The agreement between theory and
simulation improves as B is made smaller.

If the wiggler is made variable (I # 0), the
linear gain remains close to that of the constant parameter
wiggler when B82r'?/n << 1., As the magnitude of the
variation increases, Re §, decreases and asymptotes to

zero. The theoretical linear gain curveS

for a very
long variable wiggler (8/n% << 1, T << 1) is plotted in
Figure 9 as a solid line indicating the variation of &
as a function of Bf/n%. The results of the simulation
are represented as circled points for values of B/n!‘i =
5.8 x 10_4, .01l. The differences between the observed
linear gain and the theoretical linear gain curve for
B/n* = ,01 are due to finite length effects not included
in the theory.

The reduction of linear gain due to a finite

energy spread of the beam becomes significant when
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‘Y'th/l‘;i 2 1. This may be seen from Figure 10 where
Re 62 is plotted as a function of Vth/r% for four
values of BF/nﬁ. The energy spread of the beam was

modeled by a Lorentzian distribution function.

The early phase of the evolution of the EM pulse

growing from noise levels is similar to that discussed in

the previous section.

For a variable parameter wiggler, the linear

eigenmode grows in amplitude, the peak amplitude moves from

the back to the front of the pulse, and the peak amplitude

at the front continues to increase to levels where
electron trapping in the ponderomotive potential occurs
(a ~T). Thereafter, the pulse width broadens towards
the back in addition to increasing in amplitude. The
final phase of the evolution depends critically on the
band width v of the filter. If v is small, the
pulse broadens into a square pulse (approximately) of
width v =1 and the electrons trapped in the pondero-
motive potential well remain trapped during its passage
through the wiggler.

The results of a simulation run for the same

parameters previously shown without frequency discrimina-

tion, showing the evolution of the pulse energy, pulse
shape, and pulse spectrum are presented in Figure 1l1l.

FEL parameters are
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r = 0.99

n = 600

g = .007
r = 2000
v = .015

v =1/.007

Y = 0.

In contrast to the simulation results of the
previous section, the pulse spectrum remains narrow with
a large peak at zero frequency. Sidebands have been
suppressed and the large amplitude saturated pulse
propagates coherently. Electron trapping is very
efficient. From Figure llj, it may be seen that ~20%
of the electrons on exit from the wiggler have ?-—II‘dv~0
and therefore these electrons have been freely accelerated
through the wiggler. The remaining ~80% of the eleétrons
have ¥ - dev- —2000, which implies that these have been
trapped throughout the length of the wiggler.

The energy extracted is about 80% of the maximum
possible in contrast with 2% for the same parameters
without frequency discrimination. About 14% of the energy
extracted from the beam is lost in the frequency
discriminators.

Results for pulse energy and the fraction of

electrons trapped at saturation are presented in Table 2.
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TABLE 2
5
B8*In
B T n v, P [?I:;Tj] ft
.032 1000. 300. .022 .49 561. .7
.02 1000. 300. .022 «57 219. .75
.01 1000. 300. .022 .68 54.8 .79
. 005 1000. 300. .022 .06 13.7 -
.022 2000. 600. .015 .54 530. .67
. 007 2000. 600. .015 .69 53.7 .80
.005 2000. 600. .015 .06 27.4 -——

The total pulse energy is increased by increasing
the electron current nN. The efficiency of energy transfer
is improved by increasing T.

Further increase in total pulse energy may be
obtained by increasing the band width v = 1/8 wup to
some critical value v __. .
crit
As Vv is increagsed above the critical value

Verit’ the pulse shape at saturation exhibits a .
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progressive depression in the amplitude at the back of the
pulse. Figure 12 displays the results of a simulation
run with FEL parameters similar to Figure 11 but with
v increased slightly to v =1/8 = 1/.005. The electrons
are no longer effectively trapped throughout the whole
length of its passage through the wiggler, and the energy
transfer from beam electrons to the pulse is less
efficient. At the same time, the spectrum is no longer
narrow. Sideband frequencies of the order of the electron
bounce frequency begin to appear and eventually dominate
the spectrum.

The deterioration of the pulse is attributable to

the growth of the sidebands. When Vv < v the filter

crit’
is narrow enough to suppress the growth of the unstable
sidebands and the saturated pulse propagates coherently

as a finite amplitude square pulse. We discuss the impli-
cations in Section 4 below.

Linear gain can be enhanced significantly,
particularly for large 8, by adding a constant parameter
section to the front of the variable parameter wiggler.
The constant parameter section however cannot be too long
since electron trapping may be adversely affected. The

linear growth phase in the constant parameter section

will tend to saturate at (3)!5 v, = 7, and this amplitude

182




A xl.o3

Figure l2a.

R R o
1.6 2.2 2.8x120°
Pass Number

Pulse Znergy vs. Pass Nunber

PASS NUNBER 100

x 103

Av.xt

=210 ~110

Figure l2c.

<10 ”0 190 x

Complex Amplitude vs. Frequency «

183

(N IR

¥
0.3 0.9 .5 Vv

Figure 12b. Amplitude vs. v

T T - T
PASS WUMBER 800
v e §
0.4 T
e.2pF T
.
] 4 — ~4 +
-0.2F T
-0.4 B
. {
0 -
-9 L L]
2l i .
.
'.. ¢ PO
0.8 A i 2 S
-3.0 -1.0 1.0 3.0 5.0 []

Pigure 12d.

Energy Extracted vs. Phase




L

ixl.o3

Y

4

PASS NUMBER 1000

2.0
9 - 1.6
o
-t
%
*
b < 1.2

1w

T
-1.% -0.7

Figure 12e.

1
=¥
e.

3 o.%

Amplitude vs. v

v -2

Figure l2f.

10 «110

-~ p
- p
P 3

1

Complex Amplitude vs. Frequency x

PASS NUIGZR 3000
v = 3
0.3 +
e i + —~
-0.1p° T -
R + .
(-]
-t
x
o -_-
3 o'
»
<
-1.3F ¢ 4
. ) . -
-1.7p 'T
-2.1 ' i - "
-3.0 -1.0 1.0 2.8 e
Figure 12g. Energy Extracted vs. Phase ¥

184

T
-10 0




(a)% ~ n/v1 may not be large enough to begin to trap the

beam electrons.

In Table 3, we present the results of a series of

* runs in which the effect of varying the fractional length

of the constant parameter wiggler is investigated. It

appears that the length of the constant parameter wiggler
5

i should be limited by T v, =1 to ensure effective electron

trapping. The enhancement of gain is not sufficient to

' alter our previous conclusions.




Y

3. Thermal Effects

The presence of a finite thermal energy spread

Yen

but also the fraction of electrons trapped at saturation.

in the electron beam affects not only the linear gain,

As may be seen from Figure 10, the linear gain is
significantly reduced if Vth/l"35 > 1.
In order to trap a large fraction of electrons,
t;/2 should be less than the well depth of the pondero-
motive potential well. The effective well depth at
saturation, estimated from energy conservation, is

A l’ s . [}
a ~ [ftnF/(l—r)]z, and thus the limit on energy spread is

~<I
[
e
Hh
3
I\

(73)

< 0 ~
Ty T% (1-r)T

If the smallest values of n/(l1-r)l, as determined
by Equation (80) in the next section, is substituted in
Equation (73), the limitation on energy spread may be

written

L (74)
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Good linear gain therefore restricts the energy spread to
about half that which would be deduced from looking at the
requirement for effective electron trapping.

Figure 13 summarizes the results of a simulation
using an electron beam with Vth = 25. The other FEL
parameters are identical to that of the simulation
presented in Figure 11.

The linear gain was reduced by a factor of 3 from

Re § = 0.029 (Vt = 0) to Red &~ 0.01 (Tth = 25.0). Note

h
that in these runs a constant parameter section of length
v = 0.015 was included to enhance the linear gain.
The fraction of electrons trapped was reduced from
£, = 0.8 (Y, _=0) to £ ~ 0.6 (Y__ = 25), while the
g = 0.8 (T, =0) p ~ 006 (Y )
integrated pulse energy was reduced by 75% from
p .69 (Y = to = 0. Y . = 25).
= 0.6 (Yth 0) P 0.52 ( th 25)
These results support the conclusion that the
limitation on beam energy spread will probably be

determined more by the need for linear gain than by that

for effective electron trapping.

4. Discussion
We may interpret the results of Section 2 (Ythto)
in terms of the theory of sideband instabilities.2 which

indicates that modes of frequency w, 0.2 Wy < wg =W < Wy v
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where w, « a is the bounce frequency, should be unstable
with gains several times the signal gain, leading to
detrapping.

To suppress sideband frequencies Aw of the order
of a quarter of the electron bounce frequency 1s|aa'i|;E P

the reduction in the pulse energy due to filtering, i.e.,

[see Equation (32)] should exceed the relative gain due to

sideband instabilities. Thus

a =
TevZ 2l -xr) G-1) . (75)
where G is the ratio of gain of sideband instability
to the gain of the pulse amplitude. Substituting for

the amplitude at saturation &2 ~ nrft/(l-r) and taking
v = 1/8:

%
) T'n 32(G-1)
Bl -l '—;}—- (76)

Theoretical estimates indicate G = 2 to 3.
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From a survey of the simulation results for a range
of FEL parameters, summarized in Table 2, it was estimated
that for stable propagation,

Y

'n

—n = 50 (77)
(1-1r)° >

BZ

where the numerical coefficient is approximate.

This appears in good agreement with the above theory.

It may be noted that large g (that is narrow
band width) is desireable for stable propagation in the
presence of the sideband instability. However, linear
gain becomes small if B8 is too large (see Figure 7).
From the linear eigenmode analysis of a very long
variable parameter wiggler, the linear gain Re §, is a
known function of the dimensionless parameter BF/n%

Re § = f(BP/n%). Thus, to ol.ain linear gain, it is

required that

(1-r)T Br BI ) 78 :
n < (n‘f) f(n’ﬁ) R '

Equation (77) may be rewritten as

(L-nir (8T s
n e y

(79)
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By equating the right-hand sides of Equations (78) and
{79), which may be done graphically, we determine that the

inequalities can only be satisfied if:

(l-x)r
n

< 0.06 (80)

to ensure that a value of frequency discrimination may
be chosen which allows both for linear gain and stable
propagation.

From the definitions of T and n (Equation 27
and Equation 28), it may be seen that the above inequality
imposes the following lower limit on the electron beam

current

(1-r) Ayr

5
(1) 1.42x10 . amps (81)

sz r? Y

where <{I) is the beam current averaged over the slippage
distance (u, = 1), the wiggler length L, = ksroZ is set
equal to the "diffraction" distance, and Qﬁk;cz =1, If
the beam radius is restricted to k,r, g % so that the

transverse variation of the pulse amplitude across the beam

is small, the minimum current criterion is




6 AYr
(1) > 1.28 x10 (1-r) —7 amps (82)
r

This minimum current implies a minimum circulating

power Pmin of

P = 654 ft -_— GW (83)

In the case of the simulations presented in

Figure 11,

P. = 84GW .
min

This value of Pmin is about two times the
estimate of minimum circulating power calculated by Kroll,
et al.2 for AYr/Yr = 0.4. Their calculation takes account
of the constraints imposed on pulse amplitude variations
transverse to (kwr° = 1/3) and along (Lw = ksr:) the
direction of propagation, but does not include the need for

good linear gain and suppression of unstable sideband

frequencies.
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5. Summary

We have developed a 1-D code for the simulation of
FELs following the self-consistent interaction of electrons
and the EM wave in a wiggler, while reflecting and
optically filtering the EM pulse for multiple passes
through the system. 1In this way, both pulse formation

and the steady state may be studied. We have included

provisions for both constant and variable wigglers and

for thermal energy spread in the entering electron

pulse. In this paper we concentrate on the results

obtained with electron pulses of zero length ?
i (6-function) which reduces the simulation time required. !
This should be a good representation for pulses such that
I rsu_ <1,
o)

Our principal results are:

(1) We have verified analytic results previously
obtained for linear pass to pass growth of the pulse at

low amplitude. i

(2) We find that for high saturation systems

optical discrimination is required in order to prevent T

nonlinear signal breakup. Qualitative agreement with the

theory of sideband instabilities is obtained for the width
of the required frequency filter.

(3) The further requirement that the linear phase

of growth saturate at a high enough level to ensure

trapping seems to be satisfied except for systems which -
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seek to enhance linear gain by use of a long constant
parameter section.

(4) With proper choice of frequency discrimination
(and for an ultrashort electron pulse) we have demonstrated
very high extraction systems (30% efficiency at 1lu)
which grows from noise to a stable steady state. We
derive and numerically verify a criterion

6 (1-r) AYr

{I> > 1.28 x 10 ———— Amps
Te

for the minimum current required for such a system.
(5) The limitation on beam thermal energy spread

Tth is determined more by the need for good linear gain

(Yth/r¥< 1) than by that for effective electron trapping,

1,
(Tth/r'z < 2).
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