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I.  INTRODUCTION 

Researchers have used a variety of techniques " to obtain blast loading 
data in their study of generic shapes.  Of these basic shapes; rectangles, 
cylinders, spheres, and cones have special interest for the Army in that 
many weapons' systems include one or more of these shapes.  The blast 
loading data were obtained in the studies by means of shadowgraphy, 
interferometry, pressure-time recording, and with force balances to define 
the flow fields and drag loading generated by the blast loading from a given 
weapon. 

More recently, two and three dimensional hydrocodes have been developed 
and are being used6-8 to predict the flow fields created by blast wave loads. 
In a sense, the hydrocodes may produce predicted results that summarize 
the data from the several experimental techniques used to determine blast 
loads.  Wave systems, flow fields, and pressure or density fields may be 
generated by output from hydrocodes.   Integration of the predicted loads 
over a given target surface may be used to calculate total loads and to 
generate coefficients of pressure or drag. 

1 S.H.  J.  Allen and W.  G.   Vinaenti,   "Wall Intevfevenoe in a Two-Dimensional 
Flow Wind Tvnnel with Consideration of the Effect of Compressibility> " 
Nat.  Adv.   Corm.  for Aeronautics Report 782,   1944. 

2 
R.N.  Holbyer and R.E.   Duff,   "The Effect of Wall Boundary Layer on the 
Diffraction of Shock Waves abound Cylindrical and Rectangular Obstacles, " 
University of Michigan Report 50-2}   1950. 

■z 
W.  Bleakney and D.R.   White,   "Shock Loading of Rectangular Structures," 
Dept.   of Physics Tech.  Report II,   11,  Princeton Univ.,  January 1952. 

N.K.  Delany and N.E.   Sorensen,   "Low Speed Drag of Cylinders of Various 
Shapes," Nat.  Adv.   Corm.  Aero.  Technical Note 3028,   Wash.,  DC,   1955. 

George A.   Coulter and William T. Matthews,   "Coefficients of Drag Measured 
with a Force Balance," BRL Technical Note 1155,  December 1954. 

M.A.  Fry and others,   "The HULL Hydro-Dynamics Computer Code," AFWL-TR-76- 
182,   U.S.  Air Force Weapons Lab,  Kirtland Air Force Base,  NM,  September 
1976. 

n 
Richard E.   Lottero,   "A Detailed Comparison of 2-D Hydrocodes Computations 
for Shock Diffraction Loading on an S-280 Electrical Equipment Shelter," 
BRL Technical Report ARBRL-TR-02224,  June 1981. 

Q 

John D. Wortman ,   "Blast Computations over a Hemicylindrical Aircraft 
Shelter," BRL Memorandum Report ABBRL-MR-02115,  July 1981. 



To build up confidence in a given code or analytical method, point-by- 
point experimental comparisons are needed.  The purpose of the tests reported 
here is to provide blast loading data for a two-dimensional cylinder which 
will allow such a comparison. The loading function used is a decaying wave 
provided by the Ballistic Research Laboratory's (BRL) 57.5 cm shock tube. 
The next section describes the test procedure used. 

II.  TEST PROCEDURE 

The test procedure is discussed in three parts:  the BRL 57.5 cm shock 
tube, the cylinder, and the instrumentation. 

A. BRL 57.5 cm Shock Tube 

The BRL 57.5 cm shock tube was modified by installing a 92 cm driver 
section.  Other parameters were left the same.  The short driver allowed the 
rarefaction wave from the driver section to catch up with the shock front10 

and create an exponentially decaying shock wave in the shock tube test 
section. Figure 1.  The pressure-time history, although derived one- 
dimensionally in the shock tube, simulated quite well a free-field wave. 
Comparisons between the two types of waves are made in the Analysis Section. 

The shock tube was operated in the air-air mode with ambient air present 
in the test section. The entire downstream test section was open to the 
outside air.  No end plate was used.  Driver pressures were chosen to give 
side-on shock overpressures in the range 42.3 kPa (6.1 psi) to 112.2 kPa 
(16.3 psi).  Shots were repeated until pressure-time histories were recorded 
for 15° increments of cylinder rotation for the pressure range chosen. 

B. Two Dimensional Cylinder 

Figure 2 shows the location of the transducers and Figure 3 shows the 
cylinder in 50.8 cm square test section of the shock tube.  Because of 
transducer-connector length, four transducer locations were chosen at 45° 
intervals around the model near the center of its length.  The remaining 15° 
intervals were exposed to succeeding repetitive shots of the shock tube. 
Station 0 was defined to be facing directly into the on-coming shock front, 0' 

g 
George A.   Coulter and Brian P.  Bertrand,   "BRL Shook Tube Facility  for the 
Simulation of Air Blast Effects," BRL Memo Report No.   1685,  August  1965. 

10 
C. W.   Lampson,   "Resume of the Theory of Plane Shock and Adiabatic Waves with 
Applications to the Theory of the Shock Tube, " BRL Tech.  Note No.   139, 
March 1950. 

10 
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SHOCK WAVE 

DIRECTION 
Pos 0 50.77 

NOTE: 
ALL DIMENSIONS IN cm. 

Figure 2.  Initial location of transducers. 
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The cylinder was fastened to the round access port in the top of the test 
section. The top of the test section was graduated in degrees so the port 
could be rotated and matched in rotation (with the cylinder) for the 
succeeding transducer locations. Appendix A gives details of the test 
cylinder. 

C.  Instrumentation 

The schematic of Figure 4 summarizes the data acquisition-reduction 
system.  The test cylinder contained four PCB 13A24, quartz element, pressure 
transducers flush-mounted with surface of the cylinder.  Signal conditioners 
and data amplifiers transferred the pressure-time histories to an FM 7600 
Honeywell recorder. 

Quick-look data could be obtained by means of the Honeywell 1858 CRT 
Visicorder.  Final data processing was accomplished with a Textronix 4051 
computer and related accessories.  Final report-ready copies of pressure-time 
histories with engineering units were made with the data system. 

III.  RESULTS 

Figure 5 shows typical side-on and stagnation pressure records for 
input pressures of 42.3, 75.9,and 112.2 kPa. 

The records were obtained from locations about 0.8 m upstream of the 
test section (Figure 1) on opposite sides of the shock tube.  Ten milliseconds 
only of the records are shown since this was the test time of interest-through 
the diffraction phase until flow had been established about the cylinder. 
The small peaks occurring after about 4 milliseconds are shock reflections 
from the cylinder and test section walls, and should be ignored.  Table 1 is 
the shot log for the test. 

A.  Results for Stations 0-50 

Pressure-time histories for the period of interest are shown for 
comparison in Figure 6-18 as a function of transducer location and input 
side-on shock overpressure.  Tables 1 and 2 summarize pertinent shot 
parameters and test results. 

The records are grouped according to increasing input overpressure for 
each station (transducer location).  For example, Station 0 is for 0°, 15 is 
for 15°, and so on.  The records from Stations 0-30 all show initially a peak 
of reflected pressure which is followed by rarefactions which decay the 
reflected pressure to the value for stagnation pressure. The small pressure 
peak at about 1.5 milliseconds is a reflection from the cylinder to the test 
section wall and back to the transducer. There reflections should be ignored. 
Similar reflections occur at later times, but are mixed in with the general 
pressure ocillations and are hard to distinguish. 

14 
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TABLE 2.  TEST RESULTS 

Shot Transducer Initial Positive Positive  Negative 
Number Position Overpressure Duration Impulse*  Pressure 

kPa ms kPa-ms     kPa 

24-81-87 0 96.2 31.5 339.4 
24-81-87 45 81.5 31.3 282.8 
24-81-87 90 51.2 33.7 227.0 
24-81-87 135 27.7 28.9 256.5 
24-81-87 side-on 43.0 32.1 307.8 
24-81-87 stag -/4S.5 31.0 331.7 
24-81-88 0 94.1 32.9 321.7 
24-81-88 45 79.4 32.7 273.0 
24-81-88 90 50.9 31.2 222.9 
24-81-88 135 27.3 32.0 262.4 
24-81-88 side-on 41.3 32.1 294.1 
24-81-88 stag 93.4/45.5 31.8 322.3 
24-81-89 15 87.8 28.2 326.9 
24-81-89 60     

24-81-89 105 42.4 28.7 251.0 
24-81-89 150 23.6 28.1 265.7 
24-81-89 side-on 42.6 28.4 305.9 
24-81-89 stag 92.0/46.0 27.2 332.6 
24-81-90 15 87.7 31.5 330.3 
24-81-90 60 68.8 31.3 243.8 
24-81-90 105 41.7 33.7 246.4 
24-81-90 150 23.5 28.9 259.2 
24-81-90 side-on 42.0 32.1 303.1 
24-81-90 stag 95.6/47.0 31.0 335.3 
24-81-91 30 88.8 30.6 302.7 
24-81-91 75 61.0 26.2 225.6 
24-81-91 120 33.8 29.2 260.7 
24-81-91 165 20.0 25.9 255.2 
24-81-91 side-on 42.6 28.5 302.2 
24-81-91 stag 95.0/46.3 27.1 332.4 
24-81-92 45 80.0 31.6 267.8 
24-81-92 90 50.1 27.7 219.3 
24-81-92 135 27.0 33.2 265.4 
24-81-92 180 42.6 28.8 270.9 
24-81-92 side-on 42.0 31.9 298.1 
24-81-92 stag 94.7/45.5 30.5 327.9 
24-81-93 0 188.6 40.0 682.9 
24-81-93 45 140.6 35.4 509.6 
24-81-93 90 86.8 43.2 378.7     -10.0 
24-81-93 135 49.0 34.1 439.8 
24-81-93 side-on 75.5 42.1 582.3 
24-81-93 stag 174.6/92.0 39.1 675.8 

*Positive impulse given for 10 milliseconds. 

20 
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TABLE 2.  TEST RESULTS (cont'd) 

Shot Transducer Initial Positive Positive Negative 
Number Position Overpressure Duration Impulse* Pressure 

kPa ms kPa-ms kPa 

24-81-94 15 185.4 42.1 665.1 
24-81-94 60 127.9 34.1 420.7 
24-81-94 105 71.0 41.9 435.5 -15.0 
24-81-94 150 50.0 35.2 436.5 
24-81-94 side-on 75.5 40.2 587.2 
24-81-94 stag -/93.5 38.5 676.4 
24-81-95 30 172.2 38.8 602.6 
24-81-95 75 96.6 32.7 314.6 
24-81-95 120 59.0 40.7 455.7 -5.0 
24-81-95 165 35.5 34.7 454.4 
24-81-95 side-on 76.0 40.8 589.8 
24-81-95 stag 180.0/93.5 38.9 677.2 
24-81-96 45 156.7 40.0 499.2 
24-81-96 90 88.4 33.2 384.1 
24-81-96 135 47.0 40.3 467.3 
24-81-96 180 85.0 33.6 481.0 
24-81-96 side-on 76.5 39.6 587.1 
24-81-96 stag 177.5/93.0 38.7 677.8 
24-81-97 0 297.6 46.7 1,119.4 
24-81-97 45 219.4 35.2 760.0 
24-81-97 90 121.8 39.0 447.3 -23.0 
24-81-97 135 73.0 38.8 524.6 -25.0 
24-81-97 side-on 112.0 48.5 905.1 
24-81-97 stag 287.6/146.5 47.7 1,112.4 
24-81-98 15 295.1 49.7 1,109.4 
24-81-98 60 193.2 35.0 567.0 
24-81-98 105 104.5 51.6 585.1 -35.0 
24-81-98 150 60.0 38.7 558.4 
24-81-98 side-on 114.5 47.5 919.3 
24-81-98 stag 295.9/152.0 46.8 1,127.3 
24-81-99 30 265.1 49.7 952.0 
24-81-99 75 155.3 35.4 409.4 -38.5 
24-81-99 120 84.5 53.0 570.7 
24-81-99 165 50.0 38.8 603.9 
24-81-99 side-on 112.0 48.1 902.4 
24-81-99 stag 288.2/146.5 41.5 1,102.4 
24-81-100 45 240.6 44.5 718.8 
24-81-100 90 124.2 35.4 453.4 
24-81-100 135 65.0 51.7 524.1 -40.0 
24-81-100 180 124.5 37.4 620.0 
24-81-100 side-on 110.3 50.8 903.1 
24-81-100 stag 281.1/147.0 44.4 1,104.5 

*Positive impulse given for 10 milliseconds. 
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Figure 6.  Pressure-time records for 0 degrees. 
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Figure 7.  Pressure-time records for 15 degrees. 
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B. Results for Stations 45-75 

Stations for this area of the model show initial peak pressures less than 
full reflected pressures.  The peak value becomes less with increasing 
station (angle).  At Station 75 the initial pressure is 65-75 percent of the 
initial pressure at Station 45. 

The general shape of the records are very similar for all these stations. 
At Station 75 the peak is followed by rarefactions that began to dip toward 
zero overpressure. This is seen at the higher two input pressure levels. 

C. Results for Stations 90-120 

At Station 90, for the 75.9 kPa input level pressure, a negative pressure 
occurs at about 1 ms. The rarefaction decay plus the vortex action causes 
this pressure decrease.  This has not occurred, however, at the lowest input 
pressure level.  The values for these negative pressures are listed in Table 
2. 

The initial pressure peak has continued to decrease in amplitude until 
at Station 120 the initial peak value is no longer the largest value. 

D. Results for Stations 135-180 

The negative pressure is absent on records from Station 135 at the two 
lower input pressure levels.  At Station 150 the negative pressure is absent 
at the highest input pressure also. The remaining stations show records that 
look similar to the side-on input records.  The rounded front records. Figure 
17, show a two part rise to the maximum value (neglecting the small reflection 
at about 1 ms).  The two parts are caused by different arrival times of the 
diffracted waves around the cylinder. 

For example, the first rise at the 165° position is the initial shock 
front passing the transducer position.  The second rise in pressure is from 
the interaction of the two parts of the initial shock meeting at 180° and 
passing back upstream over the 165° position.  At Station 180 the arrival 
times for the two parts of the initial shock (around each side of the cylinder) 
are equal and a single shock reflection, building up to the rounded maximum, 
is the result. 

Tables 2 and 3 summarize the test results. 

IV.  ANALYSIS 

The analysis will treat three topics.  The first section will show a method 
for determining the free-air, blast equivalent of the shock wave produced 
by the shock tube for the experimental loading. The second section will 
describe a way to calculate the coefficient of drag as a function of time for 
the blast loads measured on the cylinder. The third section will be a presen- 
tation of pressure coefficients (P /P ) versus angle of incidence for the 
three input pressures. 
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TEST; 2-D CYLINDER 
SHOT: 24-81-«8 
STATION: 45 

TIME. MSEC 

o 

g 

280 

158 

188 

58 

TEST: 2-D CYLINDER 
SHOT: 24-81-93 
STATION: 45 

TIME, MSEC 

TEST: 2-0 CYLINDER 
SHOT: 24-81-97 
STATION: 45 

TIME, MSEC 

Figure 9.  Pressure-time records for 45 degrees. 
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TEST: 2-D CYLINDER 
SHOT: 24-81-98 
STATION: 60 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-84 
STATION: 68 

_l 
18 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-98 
STATION: 68 

TIME, MSEC 

Figure  10.     Pressure-time records  for  60 degrees. 
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TEST: 2-D CYLINDER 
SHOT: 24-81-81 
STATION: 75 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-95 
STATION: 75 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-98 
STATION: 75 

Figure  11.     Pressure-time  records  for  75 degrees. 
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28 

6. 

o 
4 

TEST. 2-0 CYLINDER 
SHOT: 24-81-M 
STATION: 98 

TINE, MSEC 

TEST: 2-0 CYLINOER 
SHOT: 24-81-93 
STATION: 88 

18 

TIME, MSEC 

TEST: 2-0 CYLINDER 
SHOT: 24-81-87 
STATION: 98 

Figure   12.     Pressure-time records  for 90 degrees. 
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TEST: 2-D CYLINDER 
SHOT: 24-81-98 
STATION: 185 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-94 
STATION: 185 

_i 
18 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-98 
STATION: 185 

TIME, MSEC 

Figure 13.  Pressure-time records for 105 degrees. 
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TEST; 2-0 CYLINDER 
SHOT: 24-81-81 
STATION: 128 

18 

TDC, MSEC 

4 

288 

158 - 

188 

58 - 

TEST: 2-D CYLINDER 
SHOT: 24-81-95 
STATION: 128 

TIME, MSEC 

388 

258 

1 288 

% 158 

i 188 

58 

8 

TEST: 2-D CYLINDER 
SHOT: 24-81-98 
STATION: 128 

TIME, MSEC 

Figure 14.  Pressure-time records for 120 degrees. 
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TEST: 2-0 CYLINDER 
SHOT: 24-81-92 
STATION: 135 

£! 40 

20 

o 
4 
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| 208 

£ 158 

100 I 
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TIME. MSEC 

TEST: 2-D CYLINDER 
SHOT; 24-81-83 
STATION: 135 

TIME, MSEC 

TEST; 2-0 CYLINDER 
SHOT: 24-81-97 
STATION: 135 

TIME, MSEC 

Figure  15.     Pressure-time  records  for  135 degrees, 
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TEST: 2-0 CYLINDER 
SHOT: 24-81-88 
STATION: 158 

288 
TEST: 2-0 CYLINDER 
SHOT: 24-81-84 
STATION: 158 

a 
4 

158 

188 

56 

388 

258 

£ 288 

158 

188 

58 

8 

TIME, MSEC 

TEST: 2-0 CYLINOER 
SHOT: 24-81-88 
STATION: 158 

TIME. MSEC 

Figure 16.  Pressure-time records for 150 degrees. 
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TEST: 2-0 CYLINDER 
SHOT: 24-81-91 
STATION: 165 

TIME, MSEC 

I 
g 188 - 

TEST: 2-D CYLINDER 
SHOT: 24-81-85 
STATION: 165 

TIME. MSEC 

388 

258 

i 288 

i 158 

1 188 

58 

8 

TEST: 2-0 CYLINDER 
SHOT: 24-81-99 
STATION: 165 

TIME, MSEC 

Figure 17.  Pressure-time records for 165 degrees. 
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TEST: 2-0 CYLINOER 
SHOT: 24-81-92 
STATION: 180 

TIHE. MSEC 

2z 

i 

TEST: 2-0 CYLINDER 
SHOT: 24-81-96 
STATION: 188 

TIME. MSEC 

TEST: 2-0 CYLINOER 
SHOT: 24-81-188 
STATION:  188 

Figure 18.     Pressure-time records for 180 degrees. 
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A.  Equivalent Charge Weight 

Cube root scaling  allows the blast parameters from one high explosive 
yield of TNT to be found for another yield.  For the same atmospheric test 
conditions, the scaling relationships are given by Equation 1 where the 
scaling is from charge (1) to charge (2). 

V_2     T\      h      l_2 
D1 " TA2 - t1 " ^ (1) 

D, TA, t, I, and W are the station distance, time of arrival, positive 
duration, positive impulse and charge mass of the explosive.  Subscript (1) 
parameter values are taken from Reference 12 and are listed in Table 4 for 
Cases I, II, and III. 

The equivalent charge mass to be found may be obtained by rewriting a 
portion of Equation 1 as Equation 2. 

(2) 

W2 is the equivalent weight of TNT needed to reproduce a blast wave with the 
same side-on overpressure and impulse, I . Table 4 lists these avera£e 
values for each set of test shots for the shock tube cases. The values used 
for I, are listed for Cases I, II, and III correspond to average side-on 
pressure values obtained during the shock tube tests. 

After equivalent values of W2 are calculated (last column of 
Table 4)the remaining parameter of distance, arrival time, and positive 
duration may be calculated by use of Equation 1 above.  For example, for 
free-air, a blast equal in pressure (75.88 kPa] and positive impulse (1118.6 
kPa-ms) to the middle group of shock tube shots (24-81-93 to 24-81-96) would 
be produced by an equivalent mass of 4,244 kg of TNT.  The pressure would 
occur at a distance of 48.2 m from the charge center of detonation.  It 
would arrive 63.2 ms after detonation with a positive duration of 34.8 ms and 
with the required 1118.6 kPa-ms of positive impulse. 

11 
Samuel Gladstone and Philip J.  Bolan-Editors,   "The Effects of Nuclear 
Weapons,," Dept.   of Army Pamphlet No.   50-3- Hdq.  Dept.  of Army,  March 1977. 

12 
"Structures to Resist the Effects of Accidental Explosions," TM 5-1300, 
Dept.   of Army,  June 1969. 
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Table 4 above summarizes the calculations for the three blast overpressure 
levels used during the cylinder tests. 

B.  Coefficient of Drag 

13 
It is customary   to present loading data for a test object in a form 

such that a coefficient of drag, C^,  might be found for the object.  It will 
be assumed that the net horizontal load (in the diffraction as well as the 
drag phase) across the test structure can be found from the appropriate 
measured pressure-time profile multiplied by a normal projected area. The 
sum of these loads over the normal area will be the total horizontal load 
exerted on the object by the pressure from the blast wave.  Equation 3 
expresses these relationships for the coefficient of drag, Cr 

180° 
"D- 

CL = 

26A >   P(©) 
F 

D  qA       qA (3) 

where the drag force, F, is obtained from the summation of the net pressure 
difference across the cylinder for the projected normal surface, A.  6A (See 
Table 5.) is the incremental projected normal surface calculated for 7.5° each 
side of a transducer position. P(03 is the pressure as a function of angle. 
CD changes as a function of time with pressure changes in the dynamic pressure, 
corresponding to variations in the free-field blast wave. 

Equation 4 gives the relationship used to calculate q. 

2 
2.5 P s 

7P, + P 
1   s 

(4) 

where Ps is the side-on overpressure and P is the ambient pressure.  Equation 
4 is strictly correct only at the front of the blast wave but will be used 
throughout the entire blast wave's positive duration for calculations of q 
as a function of time.  This method agrees well with the exponential decay of 
q as given in Reference 14.  The method used here was considerably more 
convenient to the data processing method used than the more exact method 
given in Reference 14. 

IS 
Sighard F.   Hoerner,  Fluid-Dynamic Drag,  Published by author,   148 Busteed 
Drive,  Midland Park,  NJ,   1965. 

14 
"Design of Structures to Resist Effects of Atomic Weapons,   Weapons Effect 
Data," Dept.   of Army Technical Manual TM 5-856-1,  November 1960. 
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Figure 19 shows the force-time curves computed from the side-on blast 
wave after being multiplied by the total normal area/length, m. The pressure 
records used were smoothed through the small pressure peaks propagated 
upstream from the cylinder. This was done to better represent undisturbed 
free-stream flow. 

Table 5 lists the pertinent parameters needed for the calculation of total 
drag force, F, as a function of time. This function is displayed in Figure 
20.  Substituting the data from Figure 19, force versus time, (from q versus 
time) and Figure 20 (for drag F, versus time) into Equation 3, the coefficients 
of drag versus time can be computed for the cylinder.  This was done and is 
presented in Figure 21. 

It should be noted from Figure 21 that the initial loading of the cylinder 
during the diffraction phase caused coefficients of drag several times the 
average value after the diffraction phase. A second point of interest is that 
Figures 21-A and 21-B show negative values for the coefficients for the 
interval 1 to 1.5 ms. The remainder of the records show oscillations in the 
drag coefficients. 

Vortex shedding (Reference 15, 16, and 17) could account for the 
oscillations present.  A meaningful average value is a bit difficult to 
determine; however. Table 6 and Figure 22 attempt to relate an average early 
time coefficient (2-6 ms) for the present work and that reported in References 
15 and 16 with steady state values from Hoerner (Reference 13). Table 6 lists 
the average coefficients determined for early times after the diffraction 
phase as a function of Reynolds number (using diameter of the cylinder) and 
flow Mach number behind the shock front. 

The present results and the shock tube results reported in Reference 15 
tend to cluster about the upper curve of Figure 22 indicating Reynolds numbers 
below transition flow.  Whereas, the field data reported from the Dice Throw 
Event (Reference 16) clusters about the lower curve of Figure 22, indicating 
flows above transition Reynolds numbers.  To predict accurately the coefficient 
of drag, it is necessary for the test structure to be clearly in one or the 
other of the two flow regions.  In the Mach number region 0.45 to 0.50, one's 

15 
Valerie C.  Martin,  K.F. Mead,  and J.E.   Uppard,   "The Drag on a Circular 
Cylinder in a Shook Wave, " AWRE Report No.   0-24/67,  May  1967. 

A.W.M.   Gibb and D.A.   Hill,   "Free Flight Measurement of the Drag Forces on 
Cylinders in Event Dice Throw," Suffield Tech Paper No.   453,  February 1979. 

17 
Valerie C.  Martin,  K.F.  Mead,  and J.E.   Uppard,   "Blast Loading on a Right 
Circular Cylinder," AWRE Report No.   0-95/65,  November 1965. 
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TEST: 2-D CYLINDER 
SHOT: 24-8I-C88 TO 92) 
FORCE  =  qA 

A. 

TIME, MSEC 

Input  of   42.3   kPa 

TEST: 2-D CYLINDER 
SHOT: 24-8I-C93 TO 96) 
FORCE  =  qA 

B.     Input of  75.9 kPa 
TEST: 2-D CYLINDER 
SHOT: 24-81-C97 TO 188) 
FORCE  =  qA 

4 6 

TIME, MSEC 

C.  Input of 112.2 kPa 

Figure 19. Net horizontal force-time functions 
computed from the side-on pressure- 
time records. 
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TABLE 5.  DRAG PARAMETERS 

Ambient 
Positions Pressure Area/Length Shots 

kPa m 

0 - 180a 102.7 .0132b 24-81-88 - 24-81-92C 

15 - 165 102.7 .0256 24-81-90 - 24-81-91 
30 - 150 102.7 .0230 24-81-91 - 24-81-90 
45 - 135 102.7 .0187 24-81-88 - 24-81-88 
60 - 120 102.7 .0132 24-81-90 - 24-81-91 
75 - 105 102.7 .0077 24-81-91 - 24-81-90 

P = 
s 42.25 kPa, Pj " 102.7 kPa, Tj = 20.9oC 

0 - 180 102.9 .0132 24-81-93 - 24-81-96 
15 - 165 102.9 .0256 24-81-94 - 24-81-95 
30 - 150 192.9 .0230 24-81-95 - 24-81-94 
45 - 135 102.9 .0187 24-81-93 - 24-81-96 
60 - 120 102.9 .0132 24-81-94 - 24-81-95 
75 - 105 102.9 .0077 24-81-95 - 24-81-94 

P = 
s 75.88 kPa, P1 = 102.9 kPa, Tj = 21.0oC 

0 - 180 102.9 .0132 24-81-97 - 24-81-100 
15 - 165 102.9 .0256 24-81-98 - 24-81-99 
30 - 150 102.9 .0230 24-81-99 - 24-81-98 
45 - 135 102.9 .0187 24-81-97 - 24-81-97 
60 - 120 102.9 .0132 24-81-98 - 24-81-99 
75 - 105 102.9 .0077 24-81-99 - 24-81-98 

P = 
s 112.2 kPa, Pj = 102.9 kPa, Tj = 21.20C 

Area includes factor of two to include both instrumented and 
uninstrumented sections of model. 

Normal projected areas were calculated for 7.5 degrees each side of 
transducer position except for 75 and 105 degree positions. Area to 
the 90 degree point was included for these two positions. 

C 2 
Total projected normal area, A, for all shots is 0.1016 m /length. 
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Figure  20.     Net horizontal   force/length  of 
model  as a   function  of time. 
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Figure 21.  Coefficients of drag computed 
for the net horizontal loads. 
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predictions might range from the low curve value for C of 0.34 to 1.20 for the 
high curve.  Great care is needed for accurate prediction of drag coefficients 
for test structures. 

C.  Pressure Coefficient versus Angle 

Also of interest in determining the response of a structure is knowing the 
enhancement of the side-on pressure as a function of angle of incidence.  The 
reflected pressures P divided by side-on pressures P taken from Table 2 are 
plotted in Figure 23.  Values of P /P overlap at 45 Segrees, and beyond 45 
degrees can be represented by a singll curve. 

V.  SUMMARY AND CONCLUSIONS 

A two-dimensional non-responding cylinder was tested in the BRL 57.5 cm 
shock tube at nominal overpressure levels of 42.3, 75.9, and 112.2 kPa. 
Pressure-time loading records were obtained at 15° increments of the cylinder 
for each of the pressure levels for a decaying input shock wave.  These blast 
parameters scaled to those that would be produced by detonation of 712, 
4244, and 11898 kg of TNT high explosive. 

Total loads from the pressure loading were obtained by summation of the 
pressure over the projected normal area of the cylinder.  Coefficients of 
drag as a function of time were computed from the net horizontal drag forces 
and the free-field input waves from which the dynamic pressures, q, had been 
calculated. 

The resulting coefficients of drag curves were presented for the three 
pressures tested.  A great variation of several times for the coefficient 
was seen from the values of the diffraction portion to the values of the 
semi-steady state portion of the curves.  An early time (2-6 ms) average 
coefficient was compared to the steady state coefficients listed in Hoerner 
(Reference 13). 

It is seen from these comparisons that the flow region to which the 
cylinder is exposed, has to be clearly defined in order to make accurate 
predictions of transient drag coefficients. 
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NOTES : 

1. STEEL PIPE  TO BE 
SUPPLIED. 

2. CUT TO LENGTH, 
DRILL  & TAP 
HOLES. 

DRILL & TAP 4EA. 3/8-16 NC, 
1"- DEEP ON 3" B.C. 

90° APART 

DRILL & TAP 
1/2-20 NF-2A FIT 
SPACED AT 45° 

FRONT 

i; i 

k.-i 

n r 

—i 

k.-j 

■<>- 

i. 
+i 

LT 

Si 

* 

rzz 

k 

7.00" 

50" 

0.00" 

11.5C 

r- 

19.99 ::g? 

Figure A-1.  Sketch of two-dimensional model cylinder. 
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NOTES : 
1. MTL - STEEL 
2. MACHINE CENTER 

POINT ON  PLUG. 
3. MAKE  ONE. 

CENTER POINT 

2.00" 

CENTER, DRILL & TAP 
1/2-20 NF -2A FIT 

Figure A-2.  Bottom plug for model 
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NOTES: 
1. MOUNTING PLATE TO BE FURNISHED. 
2. TRY BOTTOM PLUG FOR FIT. 
3. FURNISH 3/8-2 3/4 LONG MOUNTING BOLTS. 
4. SCRIBE  MOUNTING PLATE AT FRONT- 0°. 

SCRIBE 
LINE -0° 

4-3/8 BOLTS ON 
3" B.C. 

(25/64 CLEARANCE 
HOLES) 

MOUNTING 
PLATE 

2-D CYLINDER 
MODEL 

BOTTOM PLUG 

Figure A-.3.  Assembly drawing. 
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TEST; 2-0 CYLINDER 
SHOT: 24-81-87 
STATION: 88 

TIME, MSEC 

Figure B-l.  Pressure-time records from cylinder for 
input overpressure of 42.3 kPa. 
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STATION:  135 
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TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-87 
STATION: STAGNATION 

18 

TIME, MSEC 

Figure B-l.  Pressure-time records from cylinder for 

input overpressure of 42.3 kPa. (cont'd) 
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TEST: 2-0 CYLINDER 
SHOT: 24-61-88 
STATION: 8 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-88 
STATION: 45 

o 
a. 

& 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-88 
STATION: 88 

Figure  B-1.     Pressure-time records  from cylinder for 
input  overpressure of 42.3 kPa.      (cont'd) 
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SHOT: 24-8l-8§ 
STATION: 15 

TIME, MSEC 

160 
TEST: 2-D CYLINDER 
SHOT: 24-81-89 
STATION: IBS 

a 
60 

8 ui  40 
2 

Si 

£ 

20 

0. 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-88 
STATION: 150 

TIME, MSEC 

Figure B-l.  Pressure-time records from cylinder for 

input overpressure of 42.3 kPa.  (cont'd) 
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180 r 

TEST: 2-D CYLINDER 
SHOT: 24-81-88 
STATION: 13S 

TIME, MSEC 

TEST; 2-D CYLINDER 
SHOT: 24-81-88 
STATION: SIDE-ON 

TIME, MSEC 

TEST: 2-0 CYLINDER 
SHOT: 24-81-88 
STATION: STAGNATION 

TIME, MSEC 

Figure B-1.  Pressure-time records from cylinder for 
input overpressure of 42.3 kPa.  (cont'd) 
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60 

TEST: 2-D CYLINDER 
SHOT: 24-81-89 
STATION: SIDE-ON 

TIME, MSEC 

100 r 

o a. 
-XL 

to 
«r> 
UJ 
QL 
CL. 

TEST: 2-D CYLINDER 
SHOT: 24-81-89 
STATION: STAGNATION 

Figure B-l.     Pressure-time records from cylinder for 
input overpressure of 42.3 kPa.     (cont'd) 
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UJ 
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TEST: 2-D CYLINDER 
SHOT: 24-81-88 
STATION: IS 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-88 
STATION: 68 

TIME, MSEC 

188 
TEST: 2-D CYLINDER 
SHOT: 24-81-98 
STATION: 18S 

48 

28 

8. 

TIME, MSEC 

Figure B-l.  Pressure-time records from cylinder for 
input overpressure of 42.3 kPa.  (cont'd) 
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TEST: 2-D CYLINDER 
SHOT: 24-81-88 
STATION: 158 

188 
TEST: 2-D CYLINDER 
SHOT: 24-81-88 
STATION: SIDE-ON 

2  48 

28 

8. 

o 

UJ 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81- 
STATION: STAGNATION 

TIME, MSEC 

Figure B-l.  Pressure-time records from cylinder for 
input overpressure of 42.3 kPa.  ("cont'd) 

18 

66 



UJ 

9 

80 

4 

UJ 

TEST: 2-0 CYLINDER 
SHOT: 24-81-81 
STATION: 38 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-81 
STATION: 75 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-81 
STATION: 128 

TIME, MSEC 

Figure B-l.  Pressure-time records from cylinder for 
input overpressure of 42.3 kPa.  (cont'd) 
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TEST: 2-D CYLINDER 
SHOT: 24-81-91 
STATION: ie 

TIME. MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-91 
STATION: SIDE-ON 
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S  48 f- 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-91 
STATION: STAGNATION 

TIME, MSEC 

Figure B-l.  Pressure-time records from cylinder for 
input overpressure of 42.3 kPa.  (cont'd) 
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UJ 

48 

20 

8. 

TEST: 2-D CYLINDER 
SHOT: 24-81-82 
STATION: 45 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-82 
STATION: 88 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-82 
STATION: 135 

TIME, MSEC 

Figure B-l.  Pressure-time records from cylinder for 
input overpressure of 42.3 kPa.  [cont'd) 
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TEST: 2-D CYLINDER 
SHOT: 24-81-92 
STATION: 188 

TIME, MSEC 

188 r 
TEST: 2-D CYLINDER 
SHOT: 24-81-92 
STATION: SIDE-ON 

o 

hJ 
| 

48 

28 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-92 
STATION: STAGNATION 

68 

[2     48 B a. 

28   - 

TIME. MSEC 

Figure  B-l.     Pressure-time  records  from cylinder for 
input  overpressure  of 42.3  kPa.      (cont'd) 
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TEST: 2-D CYLINDER 
SHOT: 24-81-93 
STATION: 8 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-83 
STATION: 45 

TIME, MSEC 

TEST; 2-D CYLINDER 
SHOT: 24-81-93 
STATION: 99 

TIME, MSEC 

Figure B-2.  Pressure-time records from cylinder for 
input overpressure of 75.9 kPa. 
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STATION: 68 

TIME. MSEC 

TEST: 2-D CYLINDCR 
SHOT: 24-81-84 
STATION: IBS 

TIME, MSEC 

Figure B-2.  Pressure-time records from cylinder for 
input overpressure of 75.9 kPa. (cont'd) 

18 

72 



288 
TEST: 2-D CYLINDER 
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STATION:  135 
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TIME, MSEC 

288 
TEST: 2-D CYLINDER 
SHOT: 24-81-93 
STATION: SIDE-ON 
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188 

58 

18 

TIME, MSEC 

288 
TEST: 2-0 CYLINDER 
SHOT: 24-81-93 
STATION: STAGNATION 

4 
158   - 

§    188 

UJ S 5. 
58 

_J 

18 

TIME, MSEC 

Figure  B-2.     Pressure-time  records  from cylinder  for 
input  overpressure of 75.9 kPa.    (cont'd) 
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TEST: 2-D CYLINDER 
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58 

TIME, MSEC 

288 
TEST: 2-D CYLINDER 
SHOT: 24-81-84 
STATION: SIDE-ON 
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58 

TIME. MSEC 

18 

288 r 
TEST: 2-D CYLINDER 
SHOT: 24-81-84 
STATION: STAGNATION 

4 
158 

188   ■ 

58 

TIME, MSEC 

Figure  B-2.     Pressure-time records  from cylinder  for 
input overpressure of 75.9 kPa.     (cont'd) 
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TEST; 2-D CYLINDER 
SHOT: 24-81-95 
STATION: 30 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-95 
STATION: 75 
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TEST; 2-D CYLINDER 
SHOT: 24-81-95 
STATION:  120 

Figure  B-2.     Pressure-time records  from cylinder  for 
input  overpressure of  75.9  kPa.     (cont'd) 
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Figure B-2.  Pressure-time records from cylinder for 

input overpressure of 75.9 kPa. (cont'd) 
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TEST: 2-D CYLINDER 
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Figure  B-2.     Pressure-time records  from cylinder  for 
input  overpressure of 75.9 kPa.     (cont'd) 
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Figure B-2.  Pressure-time records from cylinder for 
input overpressure of 75.9 kPa. (cont'd) 
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TEST: 2-D CYLINDER 
SHOT: 24-81-97 
STATION: 0 

TIME, MSEC 
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SHOT: 24-81-97 
STATION: 45 

TIME, MSEC 

TEST: 2-D CYLINDER 
SHOT: 24-81-97 
STATION: 98 

TIME, MSEC 

Figure B-3.  Pressure-time records from cylinder for 

input overpressure of 112.2 kPa. 
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Figure B-3.  Pressure-time records from cylinder for 
input overpressure of 112.2 kPa. (cont'd) 
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TEST; 2-D CYLINDER 
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TIME, MSEC 
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TEST: 2-D CYLINDER 
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STATION: 105 

TIME, MSEC 

Figure B-3.  Pressure-time records from cylinder for 
input overpressure of 112.2 kPa.  (cont'd) 
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Figure B-3.  Pressure-time records from cylinder for 
input overpressure of 112.2 kPa. (cont'd) 
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Figure B-3.     Pressure-time  records  from cylinder for 
input  overpressure of  112.2  kPa.   (cont'd) 
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Figure  B-3.     Pressure-time  records  from cylinder  for 
input  overpressure  of  112.2 kPa.    (cont'd) 
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Figure B-3.  Pressure-time records from cylinder for 
input overpressure of 112.2 kPa. (cont'd) 
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Figure B-3.  Pressure-time records from cylinder for 
input overpressure of 112.2 kPa. (cont'd) 
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