A NOVEL LIQUID SILAZANE
PRECURSOR TO SILICON NITRIDE

by

Dietmar Seyferth, Gary H. Wiseman
and Christian Prud'homme

Prepared for Publication
in the
Journal of the American Ceramic Society

Massachusetts Institute of Technology
Department of Chemistry, 4-382
Cambridge, Massachusetts 02139

October 28, 1982

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
A NOVEL LIQUID SILAZANE PRECURSOR TO SILICON NITRIDE

Dietmar Seyferth, Gary H. Wiseman and Christian Prud'homme

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

SUMMARY

The reaction of dichlorosilane, \(\text{H}_2\text{SiCl}_2 \), with gaseous ammonia in dichloromethane or diethyl ether solution results in formation of a silazane oil containing silicon, hydrogen and nitrogen in good yield. This ammonolysis product can be pyrolyzed in a nitrogen atmosphere (temperature to 1150°C) to give \(\alpha\text{-Si}_3\text{N}_4 \) in about 70% yield. The ceramic product formed has a relatively porous, fine-grained microstructure with some cracks and blisters.
A Novel Liquid Silazane Precursor to Silicon Nitride

Dietmar Seyferth, Gary H. Wiseman, and Christian Prud'homme

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139

Office of Naval Research
Department of the Navy
Arlington, VA 22217

October 28, 1982

Approval for Public Release, Distribution Unlimited

To be published in the Journal of the American Ceramic Society

The reaction of dichlorosilane, H_2SiCl_2, with gaseous ammonia in dichloromethane or diethyl ether solution results in formation of a silazane oil containing silicon, hydrogen, and nitrogen in good yield. This ammonolysis product can be pyrolyzed in a nitrogen atmosphere (temperature to 1150°C) to give 4-Si_3N_4.
about 70% yield. The ceramic product formed has a relatively porous, fine-grained microstructure with some cracks and blisters.
INTRODUCTION

The formation of ceramics by the pyrolysis of appropriate polymeric materials has become a research area of increasing interest and importance to both chemists and ceramists, e.g., as indicated by the mini-symposium on this topic at the American Ceramic Society Meeting in 1981. While much of the recent attention has focused on the production of silicon carbide fibers and ceramics by pyrolysis of suitable organosilicon polymers, the polymer-to-ceramic conversion should be of broad, general applicability. We report here on our application of this procedure to the preparation of silicon nitride, Si$_3$N$_4$.

At present, silicon nitride is prepared primarily by the reaction of elemental silicon with gaseous nitrogen at elevated temperatures to produce either ceramic bodies directly (reaction sintering) or powder for subsequent processing. Chemical vapor decomposition procedures, i.e., gas phase, high temperature reactions of ammonia with chlorosilanes, also have been used in the preparation of silicon nitride. Its excellent chemical inertness, thermal shock resistance and hardness make Si$_3$N$_4$ a material of great interest for a variety of applications.

Although organosilazane polymers, e.g., [(CH$_3$)$_2$SiNH]$_x$, have been used in the pyrolytic preparation of silicon nitride, with such precursors which contain organic substituents on the silicon atoms there always is the possibility that the products will contain carbon and/or silicon carbide as well as silicon nitride. Ideally, the polymeric Si$_3$N$_4$ precursor should contain only Si, N and, perhaps, other elements which will be completely lost in the gaseous products in the pyrolysis step.
The silicon halide/ammonia system would appear to meet this requirement, and, in fact, the solution reaction of SiCl₄ and ammonia has received considerable study. A solid, insoluble, cross-linked product, silicon diimide, \([\text{Si(NH)}_2]_x \), results, which is admixed with four molar equivalents of ammonium chloride. This material can be pyrolyzed to \(\alpha\text{-Si}_3\text{N}_4 \) at 1250°C, but it is of limited utility because of its insolubility. Of substantially greater applicability would be a liquid polysilazane precursor to \(\text{Si}_3\text{N}_4 \), one which is capable of being infiltrated into the pores of ceramic bodies, of serving as a binder for ceramic powders and fibers, of being used to surface-coat ceramic bodies, and which on pyrolysis gives silicon nitride. This note presents a preliminary report on such a liquid \(\text{Si}_3\text{N}_4 \) precursor.

RESULTS AND DISCUSSION

Early work by Stock and Somieski showed that dichlorosilane, \(\text{H}_2\text{SiCl}_2 \), reacts with ammonia in benzene solution to give, after removal of the precipitated ammonia chloride by filtration and, subsequently, the solvent by distillation at reduced pressure, a viscous oil which was not stable at room temperature. During the course of one day it changed to a clear, hard glass. Cryoscopic molecular weight measurements showed that the oil was an oligomeric product with a molecular weight of \(\sim 350 \). This work was not followed up by Stock or by later workers.

We find that dichlorosilane reacts with gaseous ammonia more readily in polar solvents such as dichloromethane or diethyl ether to give polysilazane oils which on the basis of analysis (Si and N; absence of Cl) and spectroscopy (infrared and proton NMR) appear to deviate from the ideal formula, \([\text{H}_2\text{SiNH}]_x \). The ammonolysis product
can be isolated in good yield from either solvent simply by filtration to remove NH$_4$Cl and high vacuum distillation of volatiles. The oil which is obtained initially as a nonvolatile residue is not very viscous. (Because of the instability of the Si-N bonds of silazanes toward hydrolysis, all operations must be carried out under a dry nitrogen or argon atmosphere). The oil is stable indefinitely at -30°C in nitrogen-filled vials, but at room temperature its viscosity increases gradually; after 3-5 days a glassy solid has formed, without significant weight loss. The deviation from "ideal" composition is believed to be due to the operation of cross-linking processes. The 250 MHz proton NMR spectrum of the oil showed two complex multiplets at 4.3 and 4.7 ppm due to Si-H protons and a broad resonance between 1.0 and 1.7 ppm which is assigned to N-H protons, with an Si-H/N-H area ratio of 3.3. The infrared spectrum of the oil showed only one peak in the N-H stretching region at 3390 cm$^{-1}$ (indicating the presence of NH but not of NH$_2$), as well as bands at 2172 (νSi-H), 1180 (δN-H) and 1020-840 (δSi-N-Si). Of importance is the fact that there were no bands in the 1150-1000 cm$^{-1}$ region (Si-O-Si). Further work aimed at elucidating the structure of this ammonolysis product is in progress.

The decomposition of the oil produced in the solution ammonolysis of dichlorosilane was studied by thermogravimetric analysis (TGA). At a constant heating rate of 1.0°C/min (from room temperature to 1200°C) the decomposition proceeded smoothly and asymptotically with no inflections in the weight loss vs temperature graph (Fig. 1). The onset of weight loss occurred at about 50°C and weight loss was virtually complete at 450°C, amounting to 31% of the initial weight. The final product was a black solid. The composition of the volatile products formed in the pyrolysis is under investigation. Since the loss only
of H₂ from the "ideal" composition, (H₂SiNH)ₓ, corresponds to a weight loss of only 6.7%, the decomposition process clearly is more complex.

In our designed formation of ceramic materials, the oil which was obtained as the initial ammonolysis product of H₂SiCl₂, in a fused silica boat, was heated to 200°C in a quartz pyrolysis tube under a slow flow of argon for 1 h. This treatment resulted in solidification of the sample. Subsequently, the temperature was increased slowly to 1150°C and maintained at this temperature for 5 h. A brown, crystalline solid was produced which was identified as a mixture of α-Si₃N₄, β-Si₃N₄, and elemental silicon on the basis of its X-ray powder diffraction pattern. Eq 1 shows this process for the "ideal" composition; the formation of elemental silicon thus is to be expected. If the pyrolysis of the ammonolysis product was conducted in a stream of nitrogen (12 h at 1150°C), the X-ray diffraction pattern of the brown solid obtained showed the presence of α-Si₃N₄ and of only a trace of elemental silicon.

\[
\text{4 (H}_2\text{SiNH) } \xrightarrow{1150°C, \text{ argon}} \text{Si}_3\text{N}_4 + \text{Si} + 6 \text{H}_2 \quad (1)
\]

ducted in a stream of nitrogen (12 h at 1150°C), the X-ray diffraction pattern of the brown solid obtained showed the presence of α-Si₃N₄ and of only a trace of elemental silicon.

At this early stage, formation of bulk bodies has not been sought. However, ready production of solid pieces with dimensions of 1 to a few mm seem encouraging. Such pieces allowed measurement of immersion densities of 2.5 g/cc and open porosities > 10%. Scanning electron microscopy (SEM) examination of pieces of the pyrolysis products showed some cracking and blistering of the solid, probably due, respectively, to shrinkage and gas release during pyrolysis (Fig. 2). Crack spacings on the order of 20-30 µm indicate that the formation of small (1-10 µm) crack-free fibers from the ammonolysis product should be quite feasible. The SEM micrographs also show a fine grain
structure (∼0.2 μm), suggesting that fibers or bodies from this polymer-derived Si₃N₄ could show good mechanical properties (Fig. 3).

Acknowledgments. This work was supported in part by the Office of Naval Research. We are grateful to Roy W. Rice and William S. Coblenz of the Naval Research Laboratory, Washington, D.C. for useful advice concerning the preparation of this manuscript and for helpful discussions and advice concerning the ceramics aspects of this work. G.H.W. gratefully acknowledges financial support from the Naval Research Laboratory during the summer of 1982. Thanks are due to Barry Bender of the Naval Research Laboratory for the SEM pictures.
References

9 H. E. Swanson and R. K. Fuyat, NBS Circular 539, 2, 6 (1953).
FIGURE CAPTIONS

Fig. 1 TGA of Dichlorosilane Ammalysis Product

Fig. 2 SEM Micrograph of Pyrolysis Product of H$_2$SiCl$_2$-Derived Polysilazane (3h, 1200°C, under nitrogen) (a) 4X (b) 40X

Fig. 3 SEM Micrograph of Pyrolysis Product of H$_2$SiCl$_2$-Derived Polysilazane (3h, 1200°C, (a) 1KX (b) 2.8KX
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1. | | Office of Naval Research
Attn: Code 413
800 North Quincy Street
Arlington, Virginia 22217 |
| 2. | |ONR Pasadena Detachment
Attn: Dr. R. J. Marcus
1030 East Green Street
Pasadena, California 91106 |
| 1. | |Commander, Naval Air Systems Command
Attn: Code 310C (H. Rosenwasser)
Department of the Navy
Washington, D.C. 20360 |
| 12. | |Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22314 |
| 1. | |Dr. Fred Saalfeld
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375 |
| 1. | |U.S. Army Research Office
Attn: CRD-AA-IP
P. O. Box 12211
Research Triangle Park, N.C. 27709 |
| 1. | |Mr. Vincent Schaper
DTNSRDC Code 2803
Annapolis, Maryland 21402 |
| 1. | |Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, California 91232 |
| 1. | |Naval Ocean Systems Center
Attn: Mr. Joe McCartney
San Diego, California 92152 |
| 1. | |Naval Weapons Center
Attn: Dr. A. B. Amster, Chemistry Division
China, Lake, California 93555 |
| 1. | |Naval Civil Engineering Laboratory
Attn: Dr. R. W. Drisko
Port Hueneme, California 93401 |
| 1. | |Dean William Tolles
Naval Postgraduate School
Monterey, California 93940 |
| 1. | |Scientific Advisor
Commandant of the Marine Corps (Code RD-1)
Washington, D.C. 20380 |
| 1. | |Naval Ship Research and Development Center
Attn: Dr. G. Bosmajian, Applied Chemistry Division
Annapolis, Maryland 21401 |
| 1. | |Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, Pennsylvania 19112 |
| 1. | |Mr. A. M. Anzalone
Administrative Librarian
PLASTEC/ARRADCOM
Bldg 3401
Dover, New Jersey 07801 |
TECHNICAL REPORT DISTRIBUTION LIST, 356B

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. C. L. Shilling</td>
<td>1</td>
<td>Dr. G. Goodman</td>
<td>1</td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
<td></td>
<td>Globe-Union Incorporated</td>
<td></td>
</tr>
<tr>
<td>Chemical and Plastics</td>
<td></td>
<td>5757 North Green Bay Avenue</td>
<td></td>
</tr>
<tr>
<td>Tarrytown Technical Center</td>
<td></td>
<td>Milwaukee, Wisconsin 53201</td>
<td></td>
</tr>
<tr>
<td>Tarrytown, New York</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. R. Soulen</td>
<td></td>
<td>Dr. E. Fischer, Code 2853</td>
<td></td>
</tr>
<tr>
<td>Contract Research Department</td>
<td></td>
<td>Naval Ship Research and Development Center</td>
<td></td>
</tr>
<tr>
<td>Pennwalt Corporation</td>
<td></td>
<td>Annapolis Division</td>
<td></td>
</tr>
<tr>
<td>900 First Avenue</td>
<td></td>
<td>Annapolis, Maryland 21402</td>
<td></td>
</tr>
<tr>
<td>King of Prussia, Pennsylvania 19406</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. A. G. MacDiarmid</td>
<td></td>
<td>Dr. Martin H. Kaufman</td>
<td></td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td></td>
<td>Code 38506</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td>Naval Weapons Center</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19174</td>
<td></td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Dr. H. Allcock</td>
<td></td>
<td>Dr. C. Allen</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania State University</td>
<td></td>
<td>University of Vermont</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td>Department of Chemistry</td>
<td></td>
</tr>
<tr>
<td>University Park, Pennsylvania 16802</td>
<td></td>
<td>Burlington, Vermont 05401</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. M. Kenney</td>
<td></td>
<td>Professor R. Drago</td>
<td></td>
</tr>
<tr>
<td>Case-Western University</td>
<td></td>
<td>Department of Chemistry</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td>University of Florida</td>
<td></td>
</tr>
<tr>
<td>Cleveland, Ohio 44106</td>
<td></td>
<td>Gainesville, FL 32611</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. R. Lenz</td>
<td></td>
<td>Dr. D. L. Venezky</td>
<td></td>
</tr>
<tr>
<td>University of Massachusetts</td>
<td></td>
<td>Code 6130</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Amherst, Massachusetts 01002</td>
<td></td>
<td>Washington, D.C. 20375</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR. M. David Curtis</td>
<td></td>
<td>COL R. W. Bowles, Code 100M</td>
<td></td>
</tr>
<tr>
<td>University of Michigan</td>
<td></td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Ann Arbor, Michigan 48105</td>
<td></td>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA-Lewis Research Center</td>
<td></td>
<td>Professor T. Katz</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. T. T. Serafini, MS 49-1</td>
<td></td>
<td>Department of Chemistry</td>
<td></td>
</tr>
<tr>
<td>21000 Brookpark Road</td>
<td></td>
<td>Columbia University</td>
<td></td>
</tr>
<tr>
<td>Cleveland, Ohio 44135</td>
<td></td>
<td>New York, New York 10027</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. J. Griffith</td>
<td></td>
<td>Professor James Chien</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Department of Chemistry</td>
<td></td>
</tr>
<tr>
<td>Chemistry Section, Code 6120</td>
<td></td>
<td>University of Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td>Amherst, Massachusetts 01002</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professor Malcolm B. Polk
Department of Chemistry
Atlanta University
Atlanta, Georgia 30314

Dr. G. Bryan Street
IBM Research Laboratory, K32/281
San Jose, California 95193

Professor Michael Moran
Department of Chemistry
West Chester State College
West Chester, Pennsylvania 19401

Dr. K. Paciorek
Ultrasyncs, Inc.
P. O. Box 19605
Irvine, California 92715

Dr. D. B. Cotts
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Professor D. Seyferth
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Kurt Baum
Fluorochem, Inc.
680 S. Ayon Avenue
Azuza, California 91702
products in the pyrolysis step.