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SUMMARY

The classical engineering theory of bending due to Bernoulli and
Euler dates back to 1705 and precedes the theory of elasticity by over 100
years. It has long been recognized as a convenient approximation for
slender beams and serves as a cornerstone for structural analysis and
design.

Limitations of engineering bending theory become apparent in
studying the propagation of elastic flexural waves of short wavelength.
The Bernoulli-Euler theory predicts infinite phase velocity for harmonic
waves as the wavelength becomes shorter. This result is of course,
physically absurd. This theoretical deficiency is corrected by the theory
proposed by Timoshenko. In Timoshenko theory, the influence of transverse
shear deformations are accounted for, which results in a finite limit for
phase velocity.

A thorough study of several exact elasticity solutions reveals that
there are two additional effects that are of the same order as transverse
shear in bending behavior. These are due to transverse normal strain and
an additional term in the axial stress. A new engineering theory of planar
bending which accounts for these is presented in this work. Predictions of
static beam bending response using the new equations agree exactly with
elasticity solutions for several uniformly distributed loading cases. The
theory is validated by means of a thorough consistency analysis and by

comparing with an exact solution to a nonuniform loading case.
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The theory is extended to dynamics and validated through a
consistency analysis. It is applied to study flexural wave propagation in
slabs and vibration behavior of beams. The theory 1is validated
quantitatively by comparing with the classic benchmark problem - -~ -
flexural wave propagation in slabs. The results indicated superior range
of applicability compared to Timoshenko or Bernoulli-Euler theories. The
theory is further established by extracting Stephen and Levinson's theory
specialized to thin rectangular beams from the new dynamic equations.

An elementary theory to static buckling analysis and preliminary
estimates of buckling loads are provided for simply supported columns.
Results are in general agreement with Timoshenko theoretical predictioms.

Applications of practical interest are provided through the study
of hygrothermal effects on the flexural behavior of composite beams of
unidirectional layup. Hygrothermally degraded mechanical properties are
used in computing the response under static and dynamic situations.

A summary of the conclusions based on the results and suggestions

for future work are provided.




CHAPTER 1

INTRODUCTION

Use of fiber reinforced resin matrix composite materials in
aerospace vehicles is increasing. This is primarily due to their superior
mechanical properties and the ease with which they can be tailored to a
specific application. The properties of composites depend omn the
individual properties of the constituents and the manner in which the
fibers are utilized. The wmost structurally efficient type of laminated
composite is composed of layers of unidirectional continuous fibers. In
this case, mechanical properties depend also upon the fiber orientatiom,
which may be chosen arbitrarily. This permits tailoring to specific design
requirements.

The directional nature of the composite materisl's mechanical
properties poses unique challenges for the analyst. Consider, for example,
a single layer or lamina made of a composite material. The extensional
modulus along the direction of fibers is usually very large relative to the
extensional moduli in the lateral directions and the shear moduli. This is
a marked departure from conventional isotropic materials. The result is
that the relative importance of physical effects is influenced by the
directional nature of properties and their relative magnitude. Transverse
shear deformations, for example, are much more pronounced for composite
structures.

Transverse shear deformation effects in connection with beam and




plate bending have been studied extensively. However, there still is no
unique way of accounting for them. An engineering theory which includes
them in a simple, rational way is desirable. This is a primary objective
of the present work.

Currently, considerable research activity in the area of composite
materials is directed towards the study of hygrothermal effects and three-
dimensional effects such as delamination. Resin matrix materials absorb
moisture, particularly in elevated temperature environments. As a result,
the matrix softens and matrix controlled properties show significant
degradation. This is due to a lowering of glass transition temperature of
the resin matrix material. The resulting degradation of stiffness-related
and strength-related properties is a serious problem for designers.

Other problems of considerable concern are attributed to three-
dimensional effects. Two such problems are matrix micro-cracking and
delamination. Analytical solutions are accomplished by using three-
dimensional numerical techniques. These solutions are very expeasive to
construct and are often inaccurate in transition regions. Interlaminar
shear stresses and transverse normal stresses are thought to be the primary
causes of the aforementioned failures. Several theories have been proposed
recently to determine these stresses more accurately. The resulting
equations are cumbersome and the results are not fully satisfactory. For a
preliminary design analysis, an engineering theory that is simple yet
reliable would be a positive contribution.

An historical discuesion of bending theory is presented to
establish the basis for new developments and to permit the present work to

be placed in proper perspective. Second, an analysis of bending behavior




is described which utilizes an exact solution from the theory of elasticity
for isotropic materials. A unique feature is the use of tracer constants
in order to track the contributions due to various physical effects
throughout the course of the analysis. With the aid of insight from this
analysis, a new engineering theory is proposed. The theory is applied to
elementary static applications for beam-type structures which illustrate
its use and permit comparisons with exact elasticity solutions to establish
its validity. It is extended to study the dynamic behavior of beams and
static buckling of columns.

The theory is applied to study the effects of the property
degradation due to hygrothermal conditioning on composite structural
behavior under static and dynamic loading situations.

The scope of this work is restricted to planar bending situations.
In its present form, the theory applies to beams with thin rectangular
cross sections which respond to planar bending in plane stress or to
infinitely wide plates which respond in plane strain (cylindrical
bending). Both isotropic and orthotropic materials are considered. Beams
of orthotropic material are the simplest type of structures where composite

material behavior can be studied.




CHAPTER 1I

HISTORICAL SKETCH

Introductory Remarks

A brief history of the development of bending theory is given below.
Although the emphasis is on engineering-type bending theories, some
studies involving three-dimensional exact elasticity equations and higher

order beam and plate bending theories are included.

Classical Theories of Bending

The detailed historical development of the mathematical theory of
elasticity is given in the books by Lovel, Todhunter and Pearsonz, and
Sokolnikoff3. The classical theory of planar bending of beams is due to
Bernoulli and Euler. James Bernoulli derived the relationship between
bending moment and curvature in 1705. Euler assumed this relation in his
analysis of the elastica and vibration of thin rodsz. However, the full
engineering bending theory in its present form is due to COulombz. Coulomb
clarified the equilibrium equations and introduced the notion of neutral
axis. The theory is based on the hypothesis that plane sections normal to
the neutral axis remain plane and unextended after bending. It provides a
convenient approximation for slender beams and serves as a cornerstone for
structural analysis and design.

The classical engineering theory of plate bending had its origin in
the pioneering work of Sophie Germain. She was awarded a prize in 1815 for

her attempt to provide a theoretical basis for the modal figures obtained




in Chladni's vibration experinentsl. Her work was finally published in
18214. It contained an error in the expression for strain energy of
bending, which was corrected by Lagrangez. The governing differential
equation for flexural vibration of plates was independently established by
Naviers, Poisson6, and Cauchy7. However, it was Kirchhoff8 who resolved
the famous controversy concerning the nature and number of proper boundary
conditions. Love1 provided an extension for the bending of shells.

The Kirchhoff-Love theory of plate and shell bending is based on the
hypothesis that normals to the neutral surface remain normal and
unstretched after bending. This permits only two boundary conditions per
edge. Three boundary conditions per edge, however, provide a more
realistic behavioral description of the plate and shell bending.

Limitations of elementary bending theory become apparent in stu-
dying the propagation of elastic waves of short wavelengths, It was

9 that Bernoulli-Euler theory is inadequate for impact

pointed out by Lamb
type loads. It leads to the physically absurd conclusion that disturbances
are propagated instantaneously throughout the beam. This is because it
predicts infinite phase velocity for harmonic waves as the wavelength
becomes shorter. According to the exact solution of Rayleighlo, this
should approach a finite limit. Rayleigh attempted to improve the

classical beam bending theory by accounting for rotatory inertia effects

and obtained a finite limit.

Elasticity Solutions

The adequacy of a specific theory can best be decided by comparing




it with exact solutions, Solutions of the full three-dimensional
elasticity equations are rare. Usually simple, closed form solutions do
not exist. Some can be found, however, for a few sufficiently simple
geometric configurations and for simple loadings. Normally, some
numerical technique is required to solve a practical problem.

Reference 1 gives some of the earliest solutions for beams bent
under arbitrarily continuous loading. Closed form solutions for beams of
arbitrary cross-section bent by terminal couples and loads are provided by
Saint Venantz. Pochhanner11 and Chree12 have studied independently wave
propagation in an infinitely long beam of solid circular cross-section. A
similar study for an infinitely wide rectangular plate was done by Lord
Rayleighlo. His solution for the flexural wave velocity of propagation in
an isotropic rectangular slab is a bench mark.

Von Karman13 and Seewald14 undertook studies of the flexure of
rectangular beams., Their attempts to correlate elasticity solutions with
the classical beam bending theory yield corrections to the moment-
curvature relationship. 1t appears that Pearson1 was first to report these
corrections. Later, Grashof, Michell and Filon1 also provided similar
corrections for beams subjected to distributed loading independently.
These are later attributed to shear deformation by several analysts.
Goodierls, however, in his three-dimensional order of magnitude analysis
of beam bending, showed that the correction term is not necessarily due
only to transverse shear stress effects. His analysis indicates that the
transverse normal stresses and an additional term in the expression for

axial stress may also contribute to beam bending response. No means of




accounting for these effects is offered, however. It is rather perplexing

that later researchers have not followed up on Goodier's work or made an
effort account for the aforementioned effects. A recent exception is
Reference 36.

16,17 obtained solutions like

Using a different approach, Donnell
those of References 13 and 14, Rashin18 proi:oosed a simple direct method to
obtain compatible stress field in beams subjected to polynomial loading.
Later, he extended it to obtain exact stresses in plane orthotropic
beam19. Hashin's approach differs from earlier work in that there is no
guess work involved in obtaining solutions. 1In the earlier work, the
solutions are guessed or found by combining known solutions so as to
satisfy boundary conditions. Though a direct method was first proposed by
Neouzo, the choice of the degree of polynomial remained arbitrary in his
study.

Recently (!heng21 has provided a plate theory based upon the three-

dimensional equations of elasticity. He did not consider any transverse

loading in the development.

Shear Deformation Theories

Attempts to remove the theoretical shortcomings in classical
bending theories gave rise to theories incorporating certain refinements.
During vibration, beam cross sections experience rotatory motions as well
as translations. Algo, the transverse deflection of a beam has
contributions due to the transverse shearing forces as well as the bending
moment. Correction for the influeace of rotatory inertia was provided by
Rayleighlo as mentioned earlier. Gt'uhof22 (1878) and Rankine22 (1895)
included the effects of transverse shear deformation in analyzing some

static beam bending problems.




A more refined theory that accounts for rotatory inertia and

transverge shear deformation was proposed by Timoshenko in his famous
paper23 in 1921. Timoshenko's theory is idely recognized and used
wherever improvement on clasgical theory is sought. It is of some his-
torical interest that both the rotatory inertia correction and transverse

shear correction were given first by the French analyst M. Bresse in 1859

in his Cours de Mecanique Appliquee. This work has been overlooked in the

later development of the subject.

In Timoshenko's theory, there is a shear correction factor, k, to
account for nonuniform shear stresses across the cross-section of the beam.
Originally it was taken as the ratio of average to maximum shear stress on
the cross-section. Thus, for a rectangular cross-section, this procedure
yields a value of 2/3 for k. In a subsequent paperza, Timoshenko proposed
a new value, 8/9, for better correlation with the experimental results of
Filonl.

Most of the refined theories that followed are based upon Timo-

25 tnd Mind1in2®

shenko-type beam equations. Uflyand have developed plate
theories including the effects of rotatory inertia and transverse shear
deformation specifically for dynamic applications. Uflyand's25 equations
are essentially an extension of Timoskenko's beam equations.

Hindlin'926 plate theory also contains the shear correction factor,
k. A unique way of obtaining k is not provided in the theory. It is chosen
by an ad-hoc criterion. He suggested two such criteria based on a matching
principle. One is to choose k such that the limiting phase velocity for

very short flexural waves is made identical with the velocity of Rayleigh's

surface waves. The other is to select k so that it gives exact circular
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frequency of the first antisymmetric mode of thickness-shear vibration.
The result is that k depends on the cross sectional shape and the mode of
motion. Values of k for various cross sectional shapes are provided in
Refereace 27. References 28 and 29 treat the analysis of thickness shear
vibration in quartz crystals where Mindlin's shear deformation theory was
used. Traill-Nash, and Collat30 and Goodman and Sutherland31 have provided
cnalogous theories for beam vibration. In the former, experimental
verification was also given.

Following the above mentioned work, there were several attempts to
improvise Mindlin-type equations. The differences primarily relate to the
selection of shear correction factor, k, according to various ad-hoc
criteria, A recent survey by Kaneko32 gives an excellent description of
them. Cowper33 provided a new formula for k which depends upon Poisson's
ratio. His equations appeared to give satisfactory results for static
applications and long-wavelength, low frequency deformation of beams. 1In
the analysis, the effects of transverse normal stress were neglected.
Leibowitz and Kennard34 have used an alternative approach to obtain k.
Exact bending moment-curvature relation of a beam bent under its own weight
was used to redefine k.,

A shear deformation theory with two arbitrary constaats is
presented in Reference 35. The underlying idea was further developed in
Refereace 36 by combining the contributions of References 33, 34 and 35.
Two constants, kl and kz, are introduced and chosen as follows. k1 is the

usual shear correction factor defined by a transverse shear stress-strain

relationship. kz ie associated with bending stiffness and comes from
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accounting for transverse normal and lateral stresses in the moment-
curvature relation. It is assumed that the stresses during beam vibration
can be approximated by those of a beam bent under uniform gravity loading.

The abouve work of Stephen and Levinaon36 is especially noteworthy.
It is the first work to make use of the observations and insights of
Goodierls. Good agreement with exact solutions for several flexural wave
propagation problems has been demonstrated for overall response
properties. The theory requires an exact elasticity solution for St.
Venant's bending problem for the beam cross section under consideration for
its application, however. It also possesses a shortcouming. The
displacement variables are averaged quantities over the cross section.
Consequently, no claims are made regarding the pointwise distributicn of
stresses or displacements,

For static applicatioms, Reissner37 has derived plate wquatious
that account for shear deformation and transverse normal stresses usiag an
entirely different approach in 1945, Consequently, his shear deformation
theory is marked by the presence of transverse normal stress effects.

He used assumed stresses and an energy principle to obtain the governing

differential equations. He clarified38 and subsequently improved his
earlier work for bending of plates without transverse normal stress39.
40

Several analogous theories for plates are surveyed in Panc's book . The

notable among them are due to Panc, Hencky and Kromm.

Refined Bending Theories

The classical bending theory and the shear deformation theories can
be considered to be related. . The former can be obtained by taking the

shear modulus in terms associated with the transverse shear deformation to




- 11

be very large in the latter. In both theories, the displacement variables

contain only linear terms in the thickness coordinate, z. More refined
theories can be formulated by taking higher order terms in z in addition to
the linear terms. These theories are sometimes called higher order
theories.

The usual procedure for developing this type of theory has been a
displacement formulation. The displacements are assumed as a power series
in the thickness coordinate, z. The governing differential equations and
the appropriate boundary conditions are then obtained using energy
principles. Refereances 41 and 42 formed the basis for subsequent works.
Whitney and Sun43 and Nelson and Lorch44 have proposed refined theories for
laminated plates and shell structures. A class of contact problems in
beams is solved in Reference 45. An excellent survey of various higher
order theories and a comparative study of relative differences is given in

Reference 46. Lo, Christensen and Wua6’47

have proposed recently a theory
for isotropic and laminated composite plates specifically for dealing with
problems which involve rapidly fluctuating loads with a characteristic
length of the order of thickness.

Displacement formulations of the above types begin with
kinematically admissible displacements, but the stress equilibrium
equations are violated. In Reference 48, a systematic approach to obtain
solutions of the three-dimensional elasticity equations is given for beams
subjected to arbitrary loading. It is generally true, however, that
assumed displacement approaches result in stresses which are not in
equilibrium and which provide poor design stress estimates. To obtaia
stresses, alternative means may have to be sought as pointed out in

Reference 49.




Reissnet's37’38’39

plate theory and the theory proposed in the
Reference 36 should also be classified as refined theories of bending.
This is because effects besides those due to transverse shear deformation

are accounted for.

Sznogsis

Although eagineering bending theory has a long and successful
history, there are issues that remain surrounded in uncertainty. Beyond
the classical theories, there are no unique or clearly superior refined or
shear deformation theories. A thorough exploration of the effects
enumerated by Goodier15 in addition to those of transverse shear has not
been undertaken. Are there relationships among the various theories that
have been proposed and are some "better" than others? Problems and
opportunities associated with composite structures require that these

issues be resolved.
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CHAPTER III

PRELIMINARY ANALYSIS

Introductory Remarks

As a first, important step in an analysis of bending behavior, a
plane stress elasticity solution for a simply supported beam under uniform-
ly distributed loading is studied. It is possible to identify the in-
dividual contributions due to various factors affecting beam response., An

assessment of their relative importance, therefore, can be made.

Problem Definition and Solution

The two-dimensional elasticity solution for a simply supported beam
under uniformly distributed loading is given in the text by Timoshenko and
Goodierzz. It is valid for very thin rectangular beams in the plane stress
form. For infinitely wide plates, the same solution remains valid if a
transformation of elastic constants for plane strain is employed.

The beam and coordinate system are shown in Figure 1. The length of
the beam is 2% and the depth is 2c. The width of the beam is taken as unity
for convenience. The beam is bent by a uniformly distributed load of
intensity q applied to its upper surface. The midspan of the beam
centroidal axis is chosen as the origin for the coordinate axes x and z. z
= 4¢c and z = -c correspond to the bottom and top surfaces of the beam. The
notation and convention are shown.

For the stresses, the usual convention and notation are followed.

Accordingly, Ox is the axial stress, Ozz is the transverse normal stress




Figure l. Uniformly Loaded Simply Supported Beam and Coordinate System
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and()xz is the transverse shear stress. They are given by the following

expressions:

3 2
- 2 _ 2 22> 2
g, =% U x)z+§f(-§——-§_’-) (1)
3 3
G d G-t I @
g, = - % (2 2O (3)

I is the second moment of the cross sectional area and is 2c3/3 for the
rectangular section under consideration. These stresses satisfy all the
governing differential equations and the stress boundary conditions on the
upper and lower surfaces. On the ends x = +2, the stress boundary
conditions are satisfied in an overall Saint Venant sense.

As an aid in this analysis, three tracer constants, LI and o
are introduced. They are defined and used so as to facilitate keeping
track of three distinct contributions to the response. The first term of
Equation (1) corresponds to the bending stress given by classical
Bernoulli-Euler theory, The underlined term is a stress contribution which
will be called the '"nonclassical axial stress". It produces no resultant
force or moment and is, therefore, a self equilibrating stress. a, is the
tracer constant associated with this contribution. If a = 1, this
contribution is fully accounted for. If Gh = 0 in the following, however,
it is ignored and the Bernoulli -~ Euler axial stress distribution is

recovered. For example, the axial stress is written using this convention
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in the form

2 .2 2 3 2 2 \
Oy = §T 2°-x%)z + a, %T (3 2" -zc z) (14)

a and a, are defined analogously and are associated with contributions due
a i .
to Ozz and x2’ respectively
The displacement components u and w are shown in Figure 1. Expres~
sions for them can be obtained by using Hooke's law and the strain dis-

placement relations. Por plane stress, Hooke's law for an isotropic

material is

= ! - (!
Exx E (a.xx va;z) +
e =1 (¢ -vag ) (5)

Y =—é— {(6)

E is Young's modulus, V is Poisson's ratio and G is the shear modulus, € x
and €,, are the extensional strains in the longitudinal and the transverse
directions and Yz is the shear strain. The strain-displacement relations

are

u_ =€ ; w_=€ 3 u_+w_ =29 7

With the aid of Equations (1) =~ (6), u and w can be obtained by direct
integratior. of Equations (7). The following boundary conditions at the

ends x = +0, -1 are imposed:
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W(z,o) = W(‘z,o) = 0 (8)

They represent support conditions applied at the beam axis. Also, from the

symmetry requirement
u(0,z) = 0 9)

These conditions are sufficient to prevent rigid body motion.

The expressions for u and w are

u(x,z)'l-&r[(lx-r)z +Q(gz £§-£

3 3
+anv(%- 2z +3-§—)x] (10)
4 22 ,3
w(x,z) = w(x,0) - gﬁ[(;.f -2 o5
2 4 2.2
T g s_;_)] (1)

In Equation (11), w(x,0) is the vertical deflection of the beam centroidal

axis due to bending. It is given by the Equation

w(x,0) =§- %ET[I 5 = [(1+v)a - (-5 nv)]czxz] a2

4 a Q
where & = y3d [1+ -I-:aj-[(lw)u,- - - -“;:]] (13)
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5 is the deflection at the midspan of the beam.

An Analysis of Beam Response

The major differences between the classical Bernoulli-Euler theory
and the elasticity solution can be clearly identified in Equation (13).
The wunderlined term represents the correction to the former due to the
presence of contributions identified by the tracer constants a,o, andu[f
Note that the contributions due to all three effects - transverse shear,
nonclassical axial stress and transverse normal strain - are of the same
order of magnitude. A static version of Timoshenko's theory23 includes
only the terms associated with(!a.

The corrections shown in Equation (13) were known to earlier

authorsl3’14.

However, they did not differentiate among the various
contributions. This differentiation provides the key ingredient for the
establishment of a rational engineering theory. Goodier15 suspected that
the other influences beside transverse shear were important, but offered no
means of estimating them quantitatively and no concrete examples of their
contribution to beam response. The approach adopted here makes the matter

transparent and settles the issue for this example.

1f Vv is taken to be 0.3 and Gn =a_=a =1 in Equation (13), then
4 2
_ Sqf c {14)
) ﬁﬁ [1-0- 2.28 p]

A corresponding result from Timoshenko's original shear deformation

theory23 can be obtained by setting an = aa = 0, and a = 1 in Equation
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(13). PFor v = 0.3, the result is

4 2
5
8 pimoshenko ™ ﬁéf [1* 3.12 ;7-] (15)

A popular alternative is to use Timoshenko theory with a = -151 This

approximately corresponds to result obtained if Reissner's approach is

adopted. This leads to

4 2
- SJ.__ c
S Limoshenko ~ Z4E [l + 2,496 12] (154)

Conclusions

On the basis of the foregoing analysis, the following conclusions
are reached:

1. A Timoshenko-type transverse shear theory does not contain the
necessary physical ingredients to treat problems with distributed
loadings.

2. Tranaverse shear, nonclassical axial stress and transverse
normal strain make contributions to the response that are of the same order
of magnitude. A theory that is purported to be more accurate or complete
than classical theory must, therefore, correctly account for all of these

influences.




{ CHAPTER IV

FOUNDATIONS OF A NEW THEORY

Objectives

The primary objective of this work is the development of a
foundation for an engineering bending theory which is consistent,
reliable, and simple to use. The theory should provide more reliable
information than existing ones. Furthermore, it must account for the three
effects that were clearly identified previously --- transverse shear
strain, nonclassical axial stress and transverse normal strain.

An engineering theory is one in which assumptions or approximations
are introduced in order to simplify the governing equations or facilitate
their solution. Hopefully only a little accuracy is sacrificed for a
congiderable reduction in computational labor. The intent is to encompass
the heart of the problem under consideration. Consistency and rationality
are degsirable, but mathematical rigor is meaningless in this context. An
engineering theory is judged solely on the basis of the results obtained
from its use,

The standard of comparison for results that is used herein is
rigorous solution to the equations of elasticity theory for the problem in
question.

A second objective is to obtain setress estimates that are
improvements over those provided by classical bending theory. This must be

accomplished if the influence of nonclassical axial stress is to be
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properly accounted for.

Statically Equivalent Stresses

Equilibrium of a beam element is governed by overall equations
containing resultant axial force, shear force and bending moment. The sign
convention and notation for these appear in Figure 2. The equilibrium

equations are

LI (16)
Q ,+a=0 (17)
M, -Q=0 (18)

The force and moment resultants are defined in terms of stresses as

c

N = fcxx dz (19)

-C

c

Q= f"xz dz (20)

=-C

[

(21)
M= f cxxz dz

=C

In the above, a rectangular cross section of unit width is assumed as
before. In addition, the beam is assumed to be of uniform depth.

According to classical theory, the stresses are
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Figure 2. Sign Convention
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o = % (c?-2%) (23)

A is the cross sectional area, which is 2c for the rectangular cross
section under consideration. These stresses are statically equivalent to

the applied loads and satisfy the stress equations of equilibrium:

0'xx,x * oxz,z =0 (25)
o +0 =0 (26)

In addition, Equations (19)-(21) are satisfied, as are apprupriate
stress conditions at z = ¢ and z = -c.

The above stresses, although not exact, serve as a first approxi-
mation., This stress field is statically equivalent to applied loads,
however, it does not satisfy compatibility requirements. It will be used

subsequently to develop approximations for the displacement components.

Kinematics
Classical Bernoulli-Euler theory is based upon a kinematic as-
sumption that is equivalent to ignoring, and hence setting to zero,
transverse normal strain and transverse shear strain. Timoshenko-type
shear deformation theories account for transverse shear straia but still do

not permit transverse normal strain. On the basis of the previous analysis
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of the simply supported beam example, it appears necessary to completely
abandon the Bernoulli-Euler kinematic assumption. In order to obtain some
simplification from the complete elasticity equations, an assumption that
facilitates the analysis is required, however.

The central assumption that replaces the Bernoulli-Euler hypothesis
in the present development is that the statically equivalent stresses in
Equations (22)-(24) can be used to estimate the transverse normal strain
and transverse shear strain. Note that this is an assumption regarding
stresses. It is not a kinematic assumption. This is in sharp contrast to
classical and Timoshenko-type shear deformation theories.

The development will be carried out for orthotropic materials with
principal material directions corresponding to axes of the beam. The
appropriate form of Hooke's Law for plane stress (beams of thin rectangular

cross section) is

1
€ = 2 v
xX E11 (oxx 13 C'zz) (27)

o] Vi, O
e (28)
22 F33 "n

= (29)
1&2 - oxz/Gl3

€ € and € <z Are the axial strain, transverse normal strain and

xx’ “zz’

transverse shear strain, respectively. E11 and E,q are elastic moduli

associated with the x and z directions. v13 is Poisson's ratio and G13 18

the transverse shear modulus.
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Although it is impossible to obtain a unique displacement field from
the incompatible stress field, a selective use of strain displacement
relations and Hooke's Law permits an approximate form for the displacement
field to be determined. The error involved in this process will be
estimated in Chapter VII.

On the basis of the above, Equations (7), (22), (24) and (28) permit

the transverse normal strain to be approximated as

v 3

=_"13 N, Uy 2 2 2 3
w E-i-;( )+-2-E-:;;-f(-3——cz*-3-c) (30)

Integration of this equation results in the following expression for the

lateral displacement component, w:

w=W(x)- 13 r T

+ Q x (z4 - c222 + 2 caz) (31)
'2"*33"'153 Z""7°3

W(x) is the lateral deflection of the beam axis (z = 0), which is an unknown
function to be determined.

The axial component of displacement u can be estimated as follows.
Equations (7), (16), (18), (23), (29), and (31) permit ., to be expressed

in terms of the shear stress and w.

u,z = o;(z/613 - w,x
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13 o X
v
+ 13 sz _ Q,xx (z4 _ 222 +2 .3 )
AR n NS
This expression is integrated to yield
v 3
= _ 13 z
u U(x) Zw’x + El—l—f Q g—
+ el (czz - z3)_Q,xx (zS - c2z3 + 132 (32)
T, 51 TUELIRW T T3

U(x) is the axial deflection of the beam axis, which is an unknown function
to be determined.

The static displacement field is completely described by Equations
(31) and (32). U and W, the axis displacement components, emerge as
natural kinematic variables. 1If V13*'0 and E33'*® in (31) and (32), a

tranverse shear theory is obtained which includes the effects of cross

section warping. If, in addition, G, *%®, then the classical Beraoulli-

13
Euler kinematic assumption is recovered.

Considerable simplification is achieved if the underlined terms in
Equations (31) and (32) are neglected. These terms are associated with
higher derivatives of the shear force Q than the remaining terms. This
simplification is adopted here. 1Its full implication will be discussed in

Chapter VII. The accuracy of this approximation is related to how rapidly

the applied load q varies with x.
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Refined Axial Stress Distribution

The axial stress axx is the largest and most important stress
component. An accurate knowledge of it is often all that is needed in a
practical application., A refined estimate which improves Equation (22) is
central, therefore, to the improvements that are sought.

Equations (7), (24), (27) and (32) can be utilized to prciuce a

refined axial stress expression.

oxx = Ell u,x * v13 sz

v 3
z

- - 13
E1l [U,x z w,xx * EIII Q,x [

3 3

Q 2 z Q x z 2
oy e ] v 4 G

2 3
243 (33)
In the above, contributions due to the underlined terms in Equation (32)
are not included. Notice that the stress distribution throughout the
thickness is not linear as in the classical approximation (22).
Relationships for the axial force and bending moment are obtained by

using Equations (19), (21) and (33). The results are

"13c3
N=(E, U +==7Q,4A (34)
4 Y13, 2
M= - Eulw’xx + (3 kx + T)c Q’x (35)
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The parameter kx is (E11/2G13 - v13); it is unity for an isotropic ma-

terial. Equations (34) and (35) permit (33) to be rewritten as

Q

, X 3,

3 2
tgp k(g2 - 2T) (33A)

Q

1
=

+
H' 5

XX

The underiined term is the nounclassical axial stress contribution, wnicu is

the desired refinement.

Supmary

The governing equations for the new theory can be summarized now.
They encompass four categories. Overall beam-type equations consist of the
equilibrium equations (16)-(18) and the constitutive equations (34) and
(35). In addition, two sets of equations provide the distribut.ons of
stresses and displacements throughout the structure. The first set for
stresses consists of Equations (33A), (23) and (24). The second for
displacements is composed of Equations (31) and (32) with the underlined
terms omitted.

The above collection of equations requires the specification of
boundary conditionms. The classical boundary condition options are to
specify N oc U, Q or W, and M or ¢ at the ends of the beam. ¢ is a rotation-
related variable.

Three commonly used rotation-related variables are considered

below. The first is the rotation of the cross section at the beam, ¢l

= (x,0) = gy = W (36)
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Another is the rotation-related variable, ¢2, which is defined by

the following equation:

c
¢ ’-;- fuz dz
~C
w313, 4 (
,X m EH+FI_3-)Q 37)

This variable naturally arises in Reissner's development of plate bending
theoty38 based upon the complementary emergy principle.

The third is the mean rotation of the cross sectionm, ¢3.

[+
1
¢3 = e f u’zdz = lrc [u(X,c)‘u(X,'C)]
-C

.’ (g + SR (38)
1705 T

In a Timoshenko-type theory, since u is linear in z, all of the
above definitions are equivaleant. Equation (36) is the actual definition
used in the original paper.z3 These variables permit different models for

simulating clamped end conditions to be defined.

Discussion

The development of the equations requires no ad hoc kinematic
assumptions or use of a variational principle. The central assumption is
that the transverse normal and shear strain components can be estimated

from classical stresses. A selective use of strain displacement relations
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is utilized to establish the approximate form of the displacements. The
equations have the following properties:

1. Stress and displacement distributions throughout the structure

are found in terms of the response variables associated with

the axisj

2. Nonclassical axial stress and cross section warping effects,
transverse shear strain and transverse normal strain are all

accounted for in a rational manner;

3. The equations can be shown to yield exact results for the case

of uniformly distributed lateral loading;

4. For nonuniform loading, some of the equations are approximate
—— the stresses are not exactly in equilibrium and the stresses

and displacements are not exactly compatible; and

5. The equations are as simple to apply as static Timoshenko-type

shear deformation theories.

Items 1-3 and 5 are stroag points in favor of the new equations. 1Item 4
imposes some limitations on the validity of the theory, which will be
thoroughly discussed in Chapter VII, but it is responsible for the
simplicity that is achieved. The level of stress approximation which
results is analogous to that suggested by Seewaldla for isotropic

materials.

In the process of solving a particular bending problem, the only
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apparent difference from application of a static Timoshenko-type shear
deformation theory is the value for the coefficient of the Q,x- term in
Equation (35). As the applications will demonstrate, this seemingly minor
difference, together with the use of Equations (31), (32) and (33A),

produces significantly improved results.
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CHAPTER V

STATIC APPLICATIONS

Introductory Remarks

In order to illustrate the benefits of the new theory, several
elementary applications for uwniform beams subjected to wmiformly
distributed loading applied to the upper surface.- analogous to the
situation showa ian Figure 1, will be presented. One special case of a
linearly varying load is studied to illustrate a particular poiat.
Comparisons are made with the exact elasticity solution, classical
Bernoulli-Euler theory and the original Timoshenko theoryz3 in each case.
The two dimensional elasticity solution, for the present purposes, is
considered an exact solution, although the plane stress approximation
requires the width to depth ratio of the beam to be small. A discussion of
this issue is given in Reference 23, page 274.

Solutions are derived for orthotropic beams, and corresponding
results for isotropic beams are obtained by specialization. Poisson's
ratio is taken to be 0.3 throughout. For orthotropic beams, E“/G13 is
taken to be 30; this is a typical value for a modern graphite/epoxy
composite material.

In presenting results, appropriate response variables are non-

dimensionalized with respect to the corresponding values obtained from
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Bernoulli-Euler theory. This practice permits easy recognition of
departures from classical theory predictions.

Response can be separated into bending and stretching. Stretching
is governed by Equations (16) and (34), bending by Equations (17), (18),
and (35). The bending problem involving M, Q and W must be solved first. N
and U, stretching variables, are determined secondarily. For the present

purposes, only the bending portion of the response is discussed.

Simply Supported Beam

The exact solution for a simply supported (SS) isotropic beam was
presented earlier. The precise boundary conditions that have been imposed

at the ends are
SS: M=0, W=20 (39)

Such a beam is shown in Figure 1. It is a statically determinate struc-
ture, so the moment and shear distributions are known.
The response of the beam is defined if the axis lateral deflection

W(x) is found. For this type of end restraint, W can be expressed as

4
2.2 _x K 2.2 ’
”"“z&ﬁi[‘lx-rﬂa"x] (400)

In the above, the constant K is

i
8 G13

K=_]L(a

7 -a V. .,)-a

n 13 a5 (41)

The tracer constants introduced earlier are utilized to identify the origin

of the various contributions to K. §is the maximum or midspan deflection,
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which is

4
- 9qf 12 H, 2 (42)
5 208, T [1 *3K (f)]

L =2 is the total length of the beam and H = 2c is the depth of the cross

section. The stress distribution at midspan is given by

2 2 ,. 2
- 9L z H (22 _ 1
9 xx T T8I {1 ta, bk, 2 (332 10 (408)

The solution by the present theory correspond to Ota =a <& = I in
(41); it is exact for this problem. If K is set to zero in Equations (40)
and (42), then the Bernoulli-Euler result is obtained. 1If Ga =a = 0 and
a, =1 in (41), the static Timoshenko theory prediction is recovered. Note

that Timoshenko theory overestimates the midspan deflection in this case.

Cantilever Beam

For a cantilever beam, it is convenient to take the origin of
coordinates, x = 0, at the free end. x = L, corresponds to the clamped end.
Unlike the more elementary theories, the present theory does not suggest a
unique, simple model for a clamped or fixed end. Three rotation variables
were introduced earlier in Equations (36)-(38). Three definitions of
clamping, therefore, will be discussed.

All results can be cast in a common format. The three types of
clamping are denoted Cl, C2, and C3. They correspond to the following

definitions:
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Cl: w=0, 031 =0 (43)
C2: W=0, ¢2 =0 (44)
C3: wW=0, ¢3 =0 (45)

The cantilever beam is staticaily determinate with M and Q vanishing at the
free end. At the fixed end, one of the above definitions of clamping must

be imposed. The rotation variables can be expressed in the common form

2
¢i = K, EQET -W_;i=1, 2, 3. (46)
11 X
The constants KI-K3 are
E
Kl,";_sc_l.l_ (47)
13
E a E
1 [ B 2 En
K, =% |a. = _ (—— -V )] (48)
2 2 i 8 G13 5 G13 13
[ E a E
1 11 a 11
Ky =35 o ——-—(—-V)] (49)
3 2 '8 G13 3 G13 13

Since the structure is statically determinate, the axial stress
distribution can be readily obtained by appropriate substitution for N, M

and Q in Equation (33A). The result for the fixed end is

2 2 2
- -9z 2., B (3 _=z
O xx 21 {1"“. 3 Ky 2\ "2 (338)

The lateral deflection can be conveniently expressed as follows.
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w=8i-—‘1—E I[(g—-+(Ki—K)c L)x
11
2 4
KH™ 2 x .o
"'TX --2-'[:];1—1,2,3. (50)

The constants 5i (i =1, 2, 3) are the beam tip deflections; they are found

from

5 = _ﬂéi_ 1 + (2X. - K) (g)Z] ;1 =1, 2,3 (51)
i’BEuI i L ’ r T

The constant K is defined in Equation (41).

The present solutions correspond to setting all the tracer
constants to unity; they are exact for the end conditions imposed. The
designation Cl, C2 and C3 has been chosen to correspond to the order of
increasing stiffness of the end restraint. The coefficients of (H/L)2 for
Cl, C2 and C3 are 18.08, 12.15 and 8.19, respectively, for the orthotropic
material chosen,

If Ki and K are set to zero in the above equations, the Bernoulli-
Euler results are obtained. This approximation, of course, overestimates
stiffness. The Timoshenko theory result is obtained from the Cl case by
setting a =1 and(!a =a = 0 in Equations (41) and (47). The coefficient
of (H/L)2 is 15 for the same material considered earlier. It is
interesting to note that Timoshenko theory underestimat=s maximum
deflection in this case.

Bernoulli-Euler theory tends to always overestimate stiffness,
Timoshenko theory, however, in light of the results presented here, may

either provide an overestimate or underestimate of the maximum deflection,
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depending upon the problem under consideration. It is therefore, "unre-
liable" in this sense.

A related problem is a cantilever beam subjected to a linearly
varying distributed load that varies from zero at the free end to q at the
fixed end. The exact solution is given in Reference 22. For an isotropic

beam with Cl restraint at the fixed end, the tip deflection is

qL4

HZ
8=m 1"':1?[208“'5(!“‘*5(18(1"'”)]

Og w4l (52)
"z;—(l +V) (r)"

If the present theory is used, the underlined term is not obtained. For
L/H >2, this term is negligible. For practical purposes, therefore, the

present theory results are indistinguishable from the exact omes.

Clamped Beam

Unlike the previous examples, the clamped beam is statically
indeterminate. Three solutions were found corresponding to the three
definitions of clamping given in Equations (43)-(45). They may be
expressed in a common form. It is convenient to place the origin of
coordinates at midspan and use the semi-length £. The bending moment

distribution is
M 2 1 x°) Ho (53)

Ho is the end fixing moment, which is positive if it tends to reduce the end

rotation due to the uniform load.
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The expression for the lateral axis deflection is
1 Tq 5 g 422 %
Yo g 1[4(51""*_‘)
11
2 M
L 2_0)(12_x2):, (544)

The redundant end fixing moment is different for each type of clamping. It

can be written in the common form

2

. 9L’ H2 (oo ] :
M - 1L [1+3(L) k)| i=1, 2 3. (55)

The axial stress distribution is also different for each type of clamping.

2 2 2 2 2
L 2z 1 x H H 4z 3 l
g =92 2) 21 _xX _ (R - K)= + k — <-—- - —) (54B)
xxX 41 ; 6 212 i L2 X LZ H2 5 ‘

As before, L is the total beam length and K,-K., are defined in Equations

173

(47)-(49). The occurrence of different end moment values is due to the
statically indeterminate nature of the structure. The present theory
yields the exact solutions to this problem for each form of clamping.

An end moment ratio as a function of beam slenderness is plotted in
Figures 3 and 4 for isotropic and orthotropic materials, respectively.The
subscript "B-E" refers to the value from Bernoulli-Euler theory.
Bernoulli-Euler and Timoshenko theories give identical predictions. The

present theory, however, which is exact, predicts fundamentally different

behavior that differs for each type of clamping. Departures from classical

—_ - - =
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theory are much greater for beams made of the typical orthotropic material.

An interesting phenomenon occurs for Cl restraint of orthotropic
beams. The end fixing moment acutally reverses sign for relatively deep
beams. This intriguing situation is explained by the fact that the end
rotation is forced to zero by a combination of shear force and bending
moment. By virtue of symmetry of loading and structure, the end shear
force is fixed by vertical force equilibrium considerations alone.
Consequently, only the end moment is available for controlling rotation.
Since the transverse shear stiffness to extensional stiffness ratio is
quite low for this material, a reversal of moment is required to offset the
large shear strain at the axis for shorter Cl-supported beams, A
countertrend for C3-supported beams reflects the increased relative
difficulty of achieving this rigid type of fixity as shorter beams are

congidered.

Propped Cantilever Beam

Let the origin of coordinates be the simply supported end of a
propped cantilever beam and x = L be the clamped end. Three cases
corresponding to the three types of clamping have been considered. The
bending moment is

2

H_Qox_q)_zt__ (56)

Qo is the shear force (reaction) at the propped end x = 0. It can be

expressed in common form as follows for each type of clamping.
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2

2 K.
%=%[uzi<&-§p%+fﬂw;mﬂm<m

The lateral axis deflection and the axial stress distribution are given by

Q x
W= El--[—% (Lz-xz)-%(L3-x3)+-§H2 qx(L-x)]
11
(58)
(l-"—)»«lﬁ{zx -R-%K
ixg| & 6L° T8 215 L i
o = glxz S SR (56A)
XX 1 K 2
37 % 2
3
z 3z
+ kx q(4 ;3 5 ﬁ)

End moment ratio plots appear in Figures 5 and 6 for isotropic and
orthotropic beams, respectively, for this indeterminate structural
system, Bernoulli-Euler and Timoshenko theories predict different
behavioral trends. The present theory predictions are again exact for this
problem, as will be the case always for uniformly distributed loadings.

Cl-supported orthotropic beams again exhibit a reversal of sign of
the end fixing moment similar to the clamped case. Timoshenko theory,
which approximates this end fixity condition, displays a similar trend, but
does not predict an actual reversal for values of slenderness parameter

shown.

Concluding Remarks

Several representative static applications whi:h illustrate the use
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of the new equations have been studied. The additional effects are seen to
be more pronounced for statically indeterminate and orthotropic
structures. Furthermore, the three elementary clamping model solutions
indicate that care must be devoted to matching mathematical descriptions of
boundary restraint with practical end restraint achieved in tests or
structural assemblies. The sensitivity of the response to boundary
restraint modeling is  substantial for orthotropic  structures.

Consequently, the next chapter is devoted to a study of this issue.




—~v

46

CHAPTER VI

AN APPROACH TO ACHIEVE IDEAL CLAMPING

Preliminary Remarks

The static response of a clamped beam under uniformly distributed
loading is extremely sensitive to the precise definition of the boundary
conditions. This sensitivity is more pronounced if the beam is
orthotropic. None of the three elementary models for the clamped end
satisfy exactly the generally accepted definition of zero displacement at
the fixed end. This fact is illustrated in Figure 7, 1t shows clamped end
cross section warping for a typical orthotropic beam with L/H = 4. 1In this
Chapter, an approach to eliminate the warping at the ends, thereby

achieving ideal clamping, is described.

Analysis

The analysis is based on the principle of superposition. The first
part of the solution is taken to be one of the elementary clamping models.
To this solution a second solution for the beam bent by prescribed end
displacements is added. The boundary displacements are chosen such that
they nullify the warping due to the elementary clamping model. Any of the
three elementary models may be chosen as the starting point. However, for
the purpose of illustration, the Cl clamping model solution is taken here
as a starting point. Accordii; to this solution, the clamped end axial

displacement components are

Q2 E
11
u-u(xniz)n—‘-’.—(\) - =)
1 65111 13 Gl3
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Figure 7. Cross Section Warping at the Fixed End for a Clamped
Orthotropic Bean, l!:ll/G13 = 30, L/H =4
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2
v13M°z

2,1 (59)

w =w(x=:£)=

1

The second part is a solution to the following boundary value problem:

utu o= 0 at x = + 4
- (60)
vitw o= 0 at x = + &
u and w are prescribed boundary displacements.
o =g__ =0 on z=+c for all x (61)

The addition of the two solutions leads to a refined clamping model which
will be referred as C4.

Thi. boundary value problem is solved with the aid of the principle
of virtual complementary work. This principle is appropriate for problems

with prescribed displacement boundary conditions. The statement is

XX Xz |

L
f {e 8q, * €00, * Y, $9 | dxdz
=0

’

r'x"oﬂ

[od [}
-fG 5q,, sz -f " 8o, Idz = 0 (62)

-c A -C -9

The principle requires stresses which satisfy the equilibrium equations




and stress boundary conditions. The following stress field is selected.

3 3 2
Gy = Bz + fz(x) (z~ - 5¢ z) (63)

f
2,% 2.2 4 4
= - -
Oyz ——'——20 (6c”z c 5z )

2,xx 2 2.2
= -
T22 20 z(z7- ¢)

B is an arbitrary constant and fz(x) is an arbitrary function to be
determined by application of the principle. The distribution of oxx has
been selected based on the physical nature of the problem.'lxz and ozz are
then obtained by using the equilibrium equations (25) and (26) and the
boundary conditions given in Equations (61). The use of assumed solutions
employing free functions is due to Kantorovichso.

Substitution of Equations (59) and (63) into (62) leads to the

following functional:

1 ¢ 2 2.2
£ 2 £ z(z- ¢°) 2
ff Bz EZ (z3- ;;_c zy _ 513 gozxx 8B + (z3- 3% Zyg¢
€ ~cil’l1 11 11
2 2,2
£ z(z2 c2)2 Vi3 Vi3 ¢ (23_ ez k. 2(z°~ ¢°)
+ -—-—LZOE E—-B -—= "2 5 2,xx 20
33 11 11




13
c
L
Q E l
- o 11 _ J 3.3 .2 d
J[ 1 (G v13) z> 1z 6B + (z c’z) 5f2f z
-C 11 13 _gl

il
o

{
26 1 |20 624)

2 L

v,.M 2" (6f

:]- 130 122, (6c222- - 5z4)f ’ dz
1 -2

Simplificatiou and rearrangement of the terms of Equation (62A) results in

%
8c’¢ 32¢7k 11
S S + —16c & £, dx
175 E 7875 2,xx 86625 E 2, XXXX 2
-5, 11 33
I 7 %
. 2&:33 - t6e \)l_z f + -2- (v - 5‘_1-.) _Q_P-.. cs' 64
38, 2100 2,x 5 V13 G, 61 i
i 7 9 7 L
Lfaeett I R E A AAS € 5 G € i T B
L86625 E,, 2xx 2100 E;, 7875 525 €, |1 2,% )
1 16y .c 16c° ¢
o |26 13 L 2x
86625 E 2, xxx 7875 2,x 7875 G
! 33 13
)
7 Q E
8c 0 11
— v, - =) | §f = 0 (64)
175 T6E T V13 T G 2




The above functional yields the Euler equations

4 2 990
Mec fz’xxxx 22 kx c fz’xx * fZ 0 (65)
A
2qQ E V, o€
3¢ 0 11 2 13 -
B*3u 61 M3 T 613) 135 e 70 (66)
vhere Uis the ratio Ell/EB3'
The natural boundary conditions are
2 165 B Vig M
£ _165 B 165 ‘13
Mo, 7T Vi P WVt - =52 =0 (6D
c Ic
4 E 2
c_ 11, ¢ 990 E Q. _
ne + 1y, - =) S 220, _ 1y To =0 )
Z,xxx L 13 G13 L T2,x 4t M3 613) 61 (68

Equations (65)-(68) have precise physical significance. The Euler

Equations are the relations to be satisfied for the kinematic compatibility

of the strains. Equations (67)-(68) are displacement type boundary

conditions, The first represents transverse shear strain. The second

repregents axial strain. ax

The solution to Equation (65) may be chosen as e ', which yields

the following characteristic equation




52

Consequently

L
o —'-2- (65B)

c

2 3{ 22k +\/484kx2 - 990.} 2

The roots are real, equal or complex depending on whether

k2/u > 2,05, = 2.065, <2.045

In terms of elastic constants the above is

E 2
11
{2613 i v13= (B} /By5) > 2.045, = 2.045, < 2.045

For an orthotropic material with properties EII/GI3 = 30,

= 2 = 3 .
Eu/E33 15 and Vi3 0.3, kx/p 14.406. Consequently, the roots are

real and the most general form of solution to Equation (65) may be written

m,X m,X

2 m, X m,X
= — s ' 3 —— J 3 —_—
f2 C cosh T + D cosh T + C' sinh ) + D' sinh )

Since ka is symmetric with respect to x, the above reduces to

m, x m,x
f2 = C cosh —- + D cosh g~ (69)
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®, and m, are to be obtained from
- 7 X
o 22k ¥ \/484kx 990 X
1’72 2u c
(70)
For an  isotropic material k:/u=l. The roots are

%—i 1.528 %’). The solution form is, therefore selected as

A3

(+ 3.656

m, X m. X m,x m, x
fz-CcosthosT+sznhTslnT (71)

where w, and m, are given by

2

n, = 3.656 %
1 c

m, = 1.538 % (708)
It is interesting to note that for isotropic materials, the solution
is independent of the material constants E, G and V. Also, there exists a
possibility of complex and equal roots for orthotropic materials as
indicated by Equation (65B). However, this situation is not usually
encountered in practical situations. The practical ranges for the

parameters kx and Y are 20-50 and 10-25, respectively.

Results and Discussion

The axial stress distribution in C4 restraint beam is

2 2 k_q
- [t - xD) ]3 X332
O exc4 [ ) Morli* 31 (2 -5 ¢®)
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3 3 2
+ Bz + f2 (z7 - 3c z) (71)

Mol is the end moment due to Cl clamping. From Equation (55) it may be

written as

M, o= ag 1- 3—°2 13, -—-k")] (72)
ol 3 2 2 5
L
Equations (71), (72) and (66) can be combined to cast o xxC4 inEO the

following convenient form:

' N 4
xxC4 xxC2 2 c 3 3 2
= + = v — f z +f (z7 -=c¢ z)]/o .
t 7 B‘E
B -E FB-E [175 13 ¢ 2,x 2 5

o
p-g is the maximum axial stress at the center according to Bernoulli-Euler

theory and O x is the axial stress distribution in C2 restraint beam.

C2
They are given by

o - a&z_c (74)
B-E 61
2 2 2 2 k q
= 2| 9@ -x") _gt”  _6v ., x (3.3 2
OxxCZ 3 [ 5 3 (1 5 13 22) + T (z £« z)

(75)
The underlined term in Equation (73) represents a correction to be added to

C2 stress distribution. This will be referred as local disturbance

parameter in the subsequent text.
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It is possible to show, for large values of L/H, that £, can be
represented approximately by

f2 = CL/H e

'“é:

+ DL/H e (76)

C and D are constants and & is the dimensionless distance measured from the

end.
= x
Equations (73) and (76) allow the following to be written
LIP - 12 Ei (2) {Cm.e ™ E,= - F
175 3 ‘¢ 18 17 ¢ Dme 2
-m E -m E 3
c )= 1 = 2 z 3 (2
+ GI{Ce + De }{(E)—g (-E)} (17)

LDP refers to the local disturbance parameter.

An important counclusion can be reached by observation of the
Equation (77). The local disturbance decays exponentially from the ends;
for relatively slender beams, therefore, the solution due to C4 approaches
C2 results in the interior zone. This decay phenomenon is well understood
and is usually termed as an end effect or boundary layer effectSI. The
maximum value of the local disturbance parameter is shown graphically in
Figure 8.for several length-to-depth ratios. Results are obtained from the

complete expression (69). Another point of interest is the maximum axial

stress at the edges and the influence of the orthotropicity on it. Figure
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Figure 8. Local Effect Decay in a Clamped Orthotropic Beam, E = 30
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9 provides this comparison. In the calculations, the ratio E“/E33 is
taken to be equal to 311/2613 and Eu/G13 is varied between 10 to 50.
The isotropic value is also shown for comparison.

The presence of a boundary zone near ends limits validity of the
elementary theory to the interior zone. The lower of the two exponents m,
and m, primarily governs the extent of the boundary zone. An approximate
estimate of a decay length, or the dimension of the boundary zone, can be

obtained by equating the corresponding term to e—3, which is approximately

0.05 in value. The lower of the two roots m ., is given by

(718)

2k Jasau - 9904 %
m =

s
fod
c

for orthotropic materials. The calculation of decay length is illustrated

below.
(22 \lABbk - 9901)* x,
i D e . 79)
l 2y | -3
T e
Xy is decay length and is obtained as 1.682 H. For isotropic materials, an

approach similar to the above is followed starting from Equation (72). Xy
is obtained as 0.410 H. It is independent of material constants.
Equation (79) indicates a strong dependence of the decay length on
the material properties. The decay length defines limits for application
of a decay type solution of the form given in Equation (76). A minimum of

two decay lengths is required for the beam to be considered long so that

corrections of the type in Equation (77) are applicable. Beams with
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——T

lengths less than 2xd must be considered short and a full solution of the
T‘ type in Equation (71) should be used in the computations of refined

clamping model solution.

An estimate of the clamped end warping C . splacement may be obtained

by integration of the constitutive relation

[al \)
u = E_"."_-Eliio “86)
X 11 33 %*%

u is nondimensionalized with respect to maximum deflection at the center

according to Bernoulli-Euler theory for convenience and is expressed as

ulg,2) _ Ye2 sn| 2 n A
W w7t T {175 R L (& - 15 &
max B-E max B-E L 13 H "2 23 H
. 1y 4 2

[ M e D . 13 H z .7 s

Loy i siah '“.z}' TOE w7 B m sinhomy s du ah )

{ | o 1, & i | 2

(81,

Yoy is the axial displacement at the clamped end due to C2 restraint.
u E 1.
€2 48 ll{ z 2 .B1 .
Iraat THK = K)) = ¢ S(z -, ) & D
Whnax B-E L 2" H 36, 137 3]
Woax B-E is the maximum deflection at the center according to Bernoulli-
Euler theory and is given by
L4
W - YT (83)
max B-E 3848111
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The clamped end transverse displacement w is of secondary
importance for the present study. It is usually Poisson's effect and
therefore much smaller. It may be obtained, in a similar manner, by

integrating

" SN N
.
’z 533 Ell XX \~-lO,'
The result is
U BT R fi -sﬁ(v_lg,g)}
"max B-E 3 L2 HZ L2 2 5
+zi vV ﬂ.a_ (El_l_ -V ) EE
S 13 L& 613 13 H2
2 6
96 Tz H . .
{5 Vi3 7 T8 (c m, sinh m o+ Dm2 sinh m,l)
H L
Ha 24 3 z2 )
-384 v < (— - iz 5)(Ccoshm +Dcoshm,
13 L4 AHQ 40 H2 1
E 6 6 4 2
+ 2%& A Eg (—Eg - ~£Z + 2 3 (le2 cosh m, + Dm,,2 cosh m,)
Eys L® en® g 32H

(85)

The clamped end displacement components are shown in Table 1. It
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can be concluded that the approach adopted in the present study provides a
simple, reliable model for ideal clamping.

Since the stresses do not satisfy compatibility relations exactly,
the above approach is not a unique way of determining the displacement

components. It is, however, rational and the most direct.

Concluding Remarks

On the basis of the results presented above the following
conclusions are reached,

1. A way of determining the boundary zone stresses is presented
which indicates that the interior solution is best represented by C2 model.

2. It is demonstrated with confirmatory results that C4 model
clamping is extremely good.

3. An estimate of end zone correction for long beams is provided
through LDP. The region of local effects is quantified with the aid of the

decay length; it is shown to be a strong function of material properties.
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i Table 1. Clamped End Displacements for an Orthotropic Beam with
L E, /Gy = 30 and L/H = 4

2/H u/wﬁax B-E w/wmax B-E
,l_-—.———---.-..—..r.__..- - - ——
e c | c2 ] c4
4 - 1 R
1 i
- 0.5 - .7425 | - 0.0018 .0315 | 0.0230
- 0.4 - .0594 0.0013 .0202 | - 0.0212
0.3 | - .2673 0.0006 0.0114 |- 0.0293
- 0.2 - .3267 | - 0.0004 | 0.0050 |- 0.0190
[} ]
|
- 0.1 - .2079 | - 0.0006 0.0013 |- 0.0057
- 0.0 - .0000 0.0000 .0000 |  0.0000
i
] [}
| |
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CHAPTER VII

VALIDATION OF THE THEORY

Preliminary Remarks

It is demonstrated in Chapter V that the new equations yield
exact results or results that are indistinguishable from exact for the
static examples considered. The loading is uniform in all but one case. A
linearly varying load is considered in the exceptional case. The validity
of the theory for arbitrarily varying load remains to be established. This
is accomplished by completing the following three tasks:

(1). A thorough analysis to determine error estimates for the
equations is presented.

(2). Reissner plate equations, specialized for planar bending, are
demonstrated to be obtainable from the present equations.

(3). A quantitative demonstration for a classic benchmark problem
is provided.

The benchmark problem is the response of a simply supported beam tc
a sinusoidally distributed loading. Exact solutions for this problem
appear in References 52 and 53, which facilitate a critical comparison.
This is a generic problem which has been used as a test case by others.
Predictions of the present theory are compared with the exact solutions
using an approach which yields the range of validity of the theory as a
function of beam length-to-depth ratio. Consequently, a direci indication
of the applicability of the theory in this nonuniform loading situation is

obtained for specific geometrical and stiffness characteristics.




A Consistency Analysis

Analytical Approach

The stresses given by the present theory are approximate for
nonuniformly distributed loadings. It is desirable for the errors in the
equations of equilibrium, compatibility equations and displacements to be
consistent with the level of approximation of the stresses. To study this
issue, a systematic order of magnitude analysis has been undertaken. The
approach adopted and the underlying philosophy of the arguments presented

are similar to those employed by Koitersa’

in conjunction with a
critical study of shell theory equations.
The magnitudes of spatial derivatives are egtimated in the

following way: a wavelength for the deformation is defined such that

|40 . 0[¢_m] (ar.:
dx A

ﬂn is the maximum absolute value of the quantity ¢ in the region under
consideration. A is associated with the wavelength of load variation and
the wavelength of deformation. Derivatives with respect to z are dealt with

in a similar way.

42 - o[ ] X

This implies that the smallest wavelengch of deformation to be considered

in the z direction is of O(H).




»(._ Let L be the measure of beam length. For applications of interest

here, L = 0(A) and H/A is small.

In bending, axx is the largest stress and is chosen as a convenient
reference. Let O be its maximum value. With the aid of Equations (22),

(16)-(18), the following estimates are obtained:

M| = ot u?) (87)
la] = o(o B2/A) (88)
2
o} = o(-‘%‘) (89)
H

Equations (23), (24) and (88) permit the estimation of Oz 3047 .

lo__| = oo u/r) (90)

Xz
lou [ = oC au?/22) (91)

The nonclassical axial stress is represented by the underlined term in

(33A). From the result (88), this may be estimated as

- 2,2
O NG o(kxou A (92)

The subscript "NC" refers to the nonclassical part of the stress.

Error Estimates for the Equilibrium Equations

In the classical theory, the stress equilibrium equations are
satisfied identically. Due to the nonclassical bending s3tress in the
present theory, stress equilibrium is not satisfied exactly for nonuniform

loading. In order to facilitate the argument that follows, the stresses




o and O are written as
xX Xz

= (s
g xX JxxC * GxxNC (93)

X2 xzC  YxazNC (94)

The subscript "C" refers to the classical part of stresses. It has been

1 . . . _
shown by Seewald 4 that © contains higher order terms in addition to

xxNC
the term used in the present theory for nonuniform loading. The
2
representation forUxx is, therefore, valid up to terms of 0((155 kx). The
A

nonclassical term is seen to be a function of beam geometry and the
relative stiffness represented by kx' Equation (33A) for oxx provides a
good approximation for small values of the combination kx Hzllz. The
nonclassical axial stress effects are more significant for orthotropic
materials with large kx values.

Introduction of Equations (93) and (94) into (25) leads to

k

X 3 3 2
gszC,z * Q,xx 1 (27 - 5 cz) 0 (95)

The above permits to estimate the nonclassical shear stress to be of
O(k)?l-l:s/ 13) and the error in equilibrium is of 0(C %;kx). It can be
concluded, therefore, that the error in the stress field is at most of
0(1%; kx). This is consistent with the original approximation for O__.

Error Estimates in the Compatibility Equations

The relevant compatibility equation expressed in strains for planar

bending is given by
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+ - =0
Exx,zz €zz,xx Yxz,xz (96)

|3 ZZaXX ZG13 13 XZ , X2

7|
—
'
L -
x‘d
x
-
Y
o~
+
[0
—

E
— q st -y g }-—-0

Substitution of Equations (33A), (94), (23) and (24) into (96A) leads

to
E
it
===~ -v,.)
2G,. 13 E,. Q 3 "
,...._...l_é., e - 3 + _.l.'!. E—E—“—-&% {E—j- - C"'. 4 :'_-;— (_‘“, ® 1)
Ell xzNC, x2 533 2By S _1
(97)
H2
The error represented by the underlined term is of 0 ‘E_o__ = and
33
. Bl
the nonclassical shear stress is of Ofo =3 7 .
AT S die S SR
33 2G13 13

It is concluded, therefore, that the error in the stress field is at most

3 E
of 0 o !3- E“ . This is consistent with the
NE, (s

5 ~ V3’
33 2613 13

original approximation for 0 x in Equation (33A) and with the error estimate
found for the equilibrium equations based upon Equation (95).

Error Estimates in Displacements

The error in u due to the error ia stresses may be estimated frow
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equations (7) and (27).
" =(5ﬁ-ﬁl_3_o) (274)
E E 2z
X 11 1
The error in W may be estimated from Equations (7) and (29)
g
W =y o+ X2 (294)
9 X 'Z G13
H3
Tte error in the stresses is of 0(C 3 kx). Congsequently, from Equations
A
(27A) and (29A)
. g H3
|Exror in u| = 0(z— = k_) (98)
E 2 x
11
A
o H3
[Eeror inm w| =  0(z— k) (99)
E 2 x
11 A

In view of Equations (98) and (99), it is justified to omit terms of the

order indicated or higher in the expressions for displacements in Equations

3
(31) and (32). The underlined terms in these equations are of O(éL" !5)
4 It A
and O(ET_ Es), respectively, It is consistent to ignore these terms on
11

the basis of the above discussion, so the approximations made are
consistent.
Summar y

The study of the order of magnitude of the errors in stresses,
displacements, equilibrium equations and compatibility equations has
demonstrated that the present equations are self-consistent and provides a

valid approximation when the error terms are negligible.

This implies (H/)A) is sufficiently small.
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Relation to Reissner Theory

Reissner's plate theory equations are derived by using a
complementary energy princip1e37’38. The definitions of the kinematic
variables are clarified in the latter paper. Weighted kinematic variables

naturally arise due to the approach used to develop the theory. For planar

bending, they are given by

~ 1 2 2,
W 71 fw(c z ) dz (100)
Zc
~ 1
? - 3 uz dz (101)

In the following derivation, the Reissner variables are constructed
using present theory displacement expressions. Equations (100) and (31)

permit w to be written as

3y 4M (102)

=
]

£
]

$ is identical to ¢ 2 given in Equation (37).

\Y)
~ 3 V13 4
¢ ¥ . * oA ('ET; + °13) Q (374)

Equations (104), (37A) and (18) allow the following to be written.

3 .- 6Q_ (103)
¢ w,x * 5‘313*

The above is the Reissner relation for transverse shear strain. Intro-
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duction of Equation (102) into (37A) and the use of Equation (18) results

in

~ 2Q xc2 f-:11
M = -E LW + X ] il )
7, xx 5 G5 V13 (104

By virtue of Equation (103), (104) may be rewritten in the following

familiar form:

~ Q v
M 6 x'13
= —— — _L_.__.. ’ N
Yo E L5 TE & <105
11 1
The above demonstrates that Reissner equations can be obtained

from the present theory, a fact which further establishes the validity of
the new equations. Also, it can be observed that all of the essential
physical effects do not appear in the Reissner theory. This is because a
knowledge of Reissner's variables does not permit the determination of the
response throughout the structure. The effect of nonclassical axial stress
on response is totally lost in the averaging process. However, by the use
of the relations presented above, the response in terms of Reissner

variables can be converted to obtain the response throught the structure

Beam Under Sinusoidal Loading

The problem under consideration is described in Figure 10. The two
dimensional elasticity solution for it is given in Reference 52 for an
isotropic material and in Reference 53 for an orthotropic material. A
solution to the above problem has been obtained by using the present

theory.




71

One half wavelength of the deformed beam 1is isolated for
consideration and is treated as being simply supported. Although only one
half wave length is considered the results are applicable to the case of
general loading of the form sin 2%5. This follows from the fact that each
half wavelength may be considered separately with an appropriate reduction
in beam length. The coordinate axes and notation are also given in Figure
10.

The boundary conditions to be enforced are given in Equations (39).

In addition, the following are also satisfied:

Uxx(O,Z) - Oxx(L,z) =0 (106)

The transverse displacement component W for the above boundary

conditions is obtained by integrating Equation 35. The result is

Ry 2mx 2 4 V13
W=~ —f— sin 3E |1+ 4 LG + 5D (107)
167'E X A X

The stresses 0__, 0 and 0__ at any section x, are given by
xx’ “xz zz

quz q k
o ™ [--—Jl—— -2X (z3 - % czz)] gin 23X (108)

411 31 A
Aq
o 2 2 2nx
oxz = i (¢c® ~ 2°) cos ~ (109)
qo 23 czz c3 . 2 x
% T & 77 "3 iy (1o
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It is possible to obtain further refinements to the present theory
by retaining the underlined terms in Equations (31) and (32). The

constitutive relations are obtained as

3
\ ¢ AQ 3
= 13 1 X _ e~
N Ey, AU+ 5T e U (34A)
4 MER) 13 4
Moo= SE TW 4Gk o+ ) e —Ezso Qe € (358)

Q k
. Mz xx 3 3 2
axx 1 31 (z 5 € z)

The corresponding transverse deflection is given by

4 2[4k v 4
o . 2mx R ( x 13) 13 *H

W=- ——%——— sin 1+ + - —_— (112)
16 TE, I A 2\ 3 2 280 4

The underlined terms in Equations (111) and (112) are the refinements to
the present theory. Equations (109)-(110) will be called Approximation 1
and Equations (111) and (112) are Approximation II in the following
discussion. The purpose of the above refinements is to determine the

influence of the underlined terms in Equations (31) and (32) for this
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problen.

Results and Discussion

The results are presented in a common format and appear in Figures
11-18. For the orthotropic beam, the following properties are chosen:
E11 = 25, E33 =1, G13 = 0.5 and V13 = 0,25. These are the material
constants used in computing the exact solution in Reference 53.

The relative merits of each theory under consideration are assessed
on the basis of the percentage error with respect to the exact solution.
For the present purposes, a five percent error is assumed to be an
acceptable limit. The range of beam length-to-depth ratio in which the
error is less than five percent is considered the range of validity for the
theory. The point at which a theory just exceeds the limit is a cut off or
limit value of beam length~to-depth ratio.

The salient features of the results are listed below.

(1) Present approximations provide superior predictions for the
response.

(2) The improvements are more significant for orthotropic beams.

(3) The Approximation Il appears to be only marginally better than
Approximation I. Approximation I is fully adequate for most applications,
therefore.

In Figure 11 a curve that corresponds to Reissner theory equations
(103) and (105) is also shown for comparison. The Reissner theory
prediction appears to be in excellent agreement with the exact solution.
However, this is illusory as the quantities under comparison are not the

same. Reissner's displacement variable is a weighted average.
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Pigures 17 end 18 show the axial stress distribution through the
depth of besnm st widspen. The agreement of Approximstion I1 with the exact
is exceliont while Approxisation I cen be considered satisfactory. The
effect of nouclassicel exial stress is seen to be more pronouncaed for the
orthotropic besm. Tensile otresses are predicted by both Approximation I
and Approximstion 1l near the ceater of the cross section as seen in Figure
18. There sre errors in the present aspproximstion in this portion of the
cross section. Maximum stresses are predicted quite well.

1t is interesting to note that & Reissner or Timosheako type theory
would have givea the same result as classical theory. MNonclassicsl sxisl
stress coatribdution is sot preseat in those theories.

The transverse ohear otress and tramsverse norasl etress
distcidutions st sectioms where they are msxioum are preseated in Tables 2

and 3. The agreement with the exact welues is satisfactory.

Conclusions
A quiitetive wlidetion (s provided through a onsistency

analysis. The theory ie further eotablished by showing that Reisswer
theory of plates, reduced to plasar beading, can be developed (rom the
preseat theory. A quantitetive wslidation is provided throwgh a
correlative study with the exsct solution to e classic hbenchaark prodiea -
- the response of a simply supported besa to ¢ sinueoidally distriduted
loeding.
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figere 17, Anial Stress Diotribation ot the Ceater for a Simesoidelly
Loaded Siaply Sepported lootropic Besm, L/G » 1.9
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AJGAL STRESS RATIO
Oxx Oxx 9-& MAX

Pigete 18. Anial Strese Disteibetion ot the Center Cor ¢ Sinusnidally
Losded Simply Suppotted Orthetropic Bess, L/ » ),
~ $1/01y * 30, 8 /8y, o 13




. Table 2. Transverse Stresses in lsotropic Ream wmder Simusoidally
Oistributed Loading, L/ > 1.), and v+ 0.)

1) ] o “Io““ oax oulqo
Enact Present Sxact Present
0.9 0.000 0.000 ).000 1.000
0.4 0.)%) 0.0 0.9) o.M
o) 0. 601 0.640 o.e72 0.8%
0.2 o.M 0. 800 0. M9 0. 78
o 0. 989 0.960 0.610 0.648
.0 0. %4 1.000 0.48? 0. %00
0.4 0. %9 0. 90 0.3 0.)%2
0.2 0.8 0.800 0.200 0.216
<.) 0.7 0.640 0.101 0. 106
0.4 0.438 0. 360 0.028 0.028
<9.% 0. 000 0.000 0.000 0.000

. .
c -
228 4 sas 7Y
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Table ). Trensverse Stresses in Ovthotropic Beaw wnder Simmsoidally
Distributed Losding, LM = 4.0, l“ s 23, l” =),
Gn 0.9 snd Iy * 0.2%
L °u ’cul-( oas au"o
Eeact Preseat Suact Preseat

o9 0.000 0.000 1.000 1.000




A TNSCRY FOR OVEANICE AND APPLICATIONS

Qwrview
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in e static case. The theery propomed M Stephen ad winm“.
spacialized far hin rectonguler crevs sections, i9 obaiand from he
present oquations, Wich s o point of reference for walidation. Twe
theory (o thon applied te flemrel wave propagetion i 01ods and videotion
behavior of beamn with different @d restroiats. e dccwrecy of
theoty is dousnetreted through o conparstive stuly wilh eaact wivtions ond

o ettoe amalysis.

fermeletion
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Hhile L rensins (he came a¢ in the static case, o differont farw for L
is obtainsd because of the difference 10 bonadary cosditioas.

With the 214 of Bquatiems (1), (22), (23), (2ea), €21), amd 124),
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For flewrs) sptions of presest interest, the traasverse imeriia term is of
the same ogdetr as the bonding stiffaess tevrm. la this cese, uwis eslimated

weing Squations (B8), (12)) and (12¢).
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The above cannot be satisfied identically for all z. 1In view of the
approxisation inherent in the stresses, it is desirable to satisfy Equation

(127) to the same degree of approximstion. The terms may be rearranged in

the folloving way

{n - Qla L l Q
‘ i * ps U'. 26"" k‘ -'-—n (z 5 ¢ z)
.3 ., (1274)
3 TR R
n 13

By forcing the first term in brackets to zero, the following equation

of motion (s obteined

MN_-QepIb (115A)
X 1

Were 0. is the rotation related variadble given in Bquation (36). Since
the wmderliand teras are ot most of 0(0:2—3 k‘). Bquation (115A) implies
that the approsimetion ishereat in the equation of motion is consistent
with thet of the etresses and compatidility equation. This is similar
to the stotic sitwstion of Chepter Vil. Equation (115A) is the overall
egoation of wotion of the originel Timoshenko thoory”. Equations (23),

(117) end (119) yield the second equation of motion as

Q..p{u (114)

_—-——M
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the static displacements.

Relstion to Stephen and Levinson Theory
A dymsmic theory for isotropic beams wes proposed receatly by
Stephen md hﬂ-u“. The euthors' results demomstrate excellent
correlation with elasticity solutions for flemural wsve propegstion. Ia
this section, it is chowm that their theory, specislised for plane stress,
can be obtsined from the preseat theory.
The Stephen md Levinson theory wtilises asveraged kissmatic

voriobles T and § . They are dafined &y

i-k[.a (128)
3'*7["" (129)

Concequent iy, the response thioughout the strutture cemnet be predicted.
Only the overell recponse charseteristics oush ae frequeety or the averaged
voriables, for enmmple, con bo obtained.

O ¢ § ore construeted wing the Squstions (119) md (120)
speciolicond fter lootropic asteriale:

a.'_vz% (1)
sew - a! 5 » o (131)
1 )

by virten of Dygmtions (199) ead (131) it is poesible to write
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3
Underlined in the above is & rotatory inertis termj it is of O ['\g _Il_i] 1t
.) \
1

It this tevm is asglected, the result is ome of the relations of Stephen

implies ervors of 0(-”‘ ) in v which were neglected in Bquation (128).
and Leviason's theory for thia rectasguler cross section beams.
Squetion (122A) for the isotropic case, reduces to

. 2.4
ne g oq (3 %w (I

Squations (1154), (130), (132) and (133) permit » relation between % and §

to de wilten oo

- Q.v
0."§i'm- (13)

la obtaining the sbove, enderlined terme of the type in Rquation (132) are
onitted for the sgme reason mentioned esriier.
Squeticns (132) sad (134) ere the ceatrel relations of the Stephen

and uﬁ.n“

theoty for the dynsmics of thia recteagelar cross section
beatn. The ovetall equetions of sotion remsin sisilar to (11)), (114) and
(11%A) in the functional fore with the hinemstic varisdles replaced by the
svetaged vatisbles. The sbove deudnstrates that the essence of their
theoty is intleded in (he arw equations. [a eddition, stresses ond
displotemmnts are obtained throsghout the structuete with the presest

theoty.




Dymamic Applicstions

The folloviag eections provide seversl ensmples which illustrate
the use of the aov dynsmic equations. The applicetions iaclude wewve
propagation in rectangular elabes of isotropic and orthotropic materiale
and Cree vidration of beems.

Yiemrsl Vave Propagstioce

The otudy of flemsrel wave propagstion uwswuslly comsiste of
deternining dispereion curves for sismsoidal disturbences. A dispersion
curve relates the phase wlcocity of waves to their wavelength. The plane
strain flemral ooletion for bhermomic waves for am iafiaitely wide
iootropic plate is o claseic benchmark for o dyasmic theory. The exact
soletion for this prodlem was first published by Rayleigh'® (a 1009

flere & disperecion relstion is determined for s thia vectamguioer
orthotropic boan. The leetropic result is obtained by specialisstion. Two
wvave velocity paremeters, <, and ¢y Gre detined for coaveaience through
the folloviag relatione:

CESER———

€ ° ‘Tcﬂb‘

5 Y4k

e, is the shesr wvave wiloeity. ¢y is the weleocity of toagitulinal waves ia
wmitore bars, which is often referred as the bar welocity. ESquations
(114}, (11%4) snd (122A) con Do combined to obtain the following governiang

equationt
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a
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LI | B Abx At L KRR &
L T
. % —g——’ g. . %-,—- =0 (1%6)
9 %
0 i» radivs of gyration of the croes sectiona.
A soletion to Equation (136) cam be selected ia the fore
veu ois =R siewe (13

v, is the amplitude of the motion. A phase velocity parameter { and o wave
avaber porsmeter [ are iatroduced through the relstions

¢ &y ;.l}‘. (138)
)
¢ (s the phase velocity and A is vaveleagth they are related to w ond Lt
ieku (139
A= 2L

Substitetion of Bquation (1)7) iato (136) leads to the dispetsion equstion

4 v t 2

(140)
T™he anial stress distribution is obtsined with the sid of Iquations

(134), (122A), (114) and (137).
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As (*» , Squation (140) gives two soymplotes for the phase welacity
patometer {. The lower reot corresponds to flemral weve wlocity for
hermonic wves. The lower bresch io plotted agoinst the wevelesgth
pocameter, { in Pigere 19, for essct, presest sad Timosheahs'’ theories,
Polsson’s retio is tahen o0 0.29 in the computatiens. The enact solution
hao been reconstructed frem the mslysis is Reference 3. The curve for
Timcohenko theory is besed wpon the erigissl equetione®),mot che loter
versions vhich “od just™ the shesr covrrection factor. The exect eoletion is
for an laflaitely vide plate. This correspends to plane otreia. & ond v
sre therefore, replaced by B/(1 - v2) ead v/(1 - v) (o the present
equations. fesults due to the preseat theery are ia encelleat ggreemrst
with the enset ooletion for the reage of wwveleagths considered. The
ssymptotic values of the ghase welecity persmeter are 0.9238, 0.9652 ond
0.8163 for ensct, presest and Timeoheako theories, respectively.

The exact soletion leads to infinite bremches for the dispersion
catve. All the bhigher braaches reach assymptotically the ohesr weve
velotity. Enginsering bending theeoties give caly two Sranches, the second
of Which is a poor spproniastion. The second asymptote for the ghase
veloe ity peremeter is 1.420 and 1.69 for precent and Timoshenko theories.

The ossymptotes for the ghase welocity persmeter obtaimed woing

M




Pigere 19. Dispersion Cerves for sa 1sotropic Slab




Stephen and Leviases theory are 0.9012 and 1.6A1? for the first and socond
brench, respectiwly.

The shbove recults con be weed o further wilidete che asw equations.
The sppresch is anslagoue to the wlidetion otudy of che static theory. Ao
enast oolution to @ orthotropic olad io aseded for this purpese. (¢ i
doveloped in Appondia A. lestrepic resuits are odcained by specialinstion.

feselts of the wmiidetion otudy (or m isetropic slad apposr in
Figeres 20-22. The pevcentage errers io ghese wicsity showe is Pigure 20
indiente thet the present theery predicticns are csmpersdie to Stephen and
Leviasen theery recultss deth are wlid in the entire ronge of slendersess
peremnter wadsidered. Figeres I and 12 indicste that the preseat Cheory
bending otreee eotimstes are owperier to Berusuili-fuler and Timeshesbhs
theoreticnl resulits; the axial strese distridution through the depth is in
encelient agreenant with the emset coleticn. Steghen and Leviasen theory,
ia its present fern, conmst preovide emplicit otrese estimstes.

Corvecponding resuits for @ eorthetrepic sled are presented is
Pigaree 23-25. Similer bsheviersl trends Co the icetrepic cose ote
oboerved. Present theery predictions, hovewver, show aware proasunced
inprovenmtes over these of Timseheonhe and Derusslli-Guler theeories. Per
easaple, bDesed wpen the percentage earrer ia the sxisl stress showm in
Pigare 24, Timscheahe theery is wlid ep to L/ » 15.5 shereas the present
theory is ¢ good spprexiastion wp to L/B = 2.5. Preseat theory prediction
of the sxnial strese distribeticn theough depth is ia encelient agreemsat
with the enset resuit. Oy contrast, a9 shown in Pigure 23, Timoshenko and
Seravulli-Buler predictions, which sre lisssr through the depth, ate i

very peetr agreenset vith the enset soletion.

e ————— SR
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Pigere 21. m:_u' Serrer in Mesines Axisl Stress for o 1setreopic




' 192

Pigete 22. Amial Sttese Disteribution Thtough Depth for an toetropic
Slab, L/0 = 1.3




Pigwee 23. Puoreentage Breer 1o Phose Velority for aa Orthetrepic
Slab, l“IC"O »
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Pigere 25. Asisl Strees Distridbution Through Depth for an Orthotropic
Slad, L/B = 3, .llml) = 30




Ho recults for Stophen and Leviasen (heory are preseatad 3¢ i( hae

been developed anly for setropic materiols.
Vidbrotion Probdless

Vibvation Obehevior for basms Wit weriess andé restraiats s
obsinnd wsing the procedure outlined in Belferonces 57 ond 38.

Typical results for o clomped orthotlropic dedm appesr ia Figures N
and 2). w , refers to the Bernoulli-Buler (requency (or & siaply svpportied
dbeam. The dilferonces smong the control waoment cratio plote ere eligatly
sore thea thoee reflected in the frequency retio graphe.

T™he results for isotropic besme and for siaply supported and clamped
restraints olso have been obtained. The reswits hove showm genersl
agreemaent of treade with Tisseheaho Ctheery. There (o semsitivity *»
nodeling of the downdary restreint, det it (e lese prosvwsced than ¢

thund in the static epplicetions.
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Pigere 26. Prequencey Ratio for o Clamped Octhotropic Seen, lnlc“ = 3




Figere 27. Ceatral Noment Ratio for a Clemped Orthotropic Beam,
8/ 2
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caAPme X

AN ELEMENTARY SUCKLING TUSORY

Prelisinsry Remerks
In this chapter, en eleumtary buckling theory ie developed with the

aid of the equations developed {n Chapter IV. The primery objective of the
preseat ostudy is to compare buckling load predictions wich chose of
Timoshenko and Bersovlli-Suler theories. Consequently, linsarised
equetions are etilised. A fully acalimsar, large displacemsnt theory {e
beyond the ecope of the preseat work.

At the omset of buckliing, Bquation (22) is aesumed to provide first
approsnination to the axial etress. The remaining etresses, which ace

consiotent with this spproximstioca, sre takea to be

N

Ope ° -ﬁ(ez-ca) (23a)
] 3

0 “ 4 5 -0 (2¢8)

The form for 0. is olightly d¢ifferent from that of the corresponding
static distridbution decasse of differemces in the bouwadary conditions.
Streses free conditions om ¢ = ¢ ¢ surfoces are setisfied. 1n this respect,
it ieo smalogouws to the dynsmic etrese distribution giveo ia Equation (244A).
Also, the streesses are expressed in terms of the dendiag moment M and its
derivatives only. This ie because Equation (18) is oo longer valid, but

the spetial distridution of stress over the cross sectioan remeins similar




to the claseical caee.

By follawiag the development uweed in Chapter IV, the expression for
the bending moment i{s obtained as

1
N e - I“l "n 4 '.Il a .'b (163)

LS is & perameter defined in Rquation (142)

y 3 v)
% T %TE, T AT NCWT (12)

The Buckling Squstiom
An oversl) equilidrius equation is derived from static equilibrius

of a deflected desm element accordiag to the ad jaceat equilibrium spproach.
Pigure 28 shows the forces on & deflected beam element of fliaite length.
The woamt equilidrium requires

R - NOI° (164)

ll° ie the cosstast mowent et = = 0, which i{s uwsed to satisfy perticular

boundary coeditioms. With the eid of Bquations (143) sod (144), che
following equation for the buckled coafiguratioa is obtaeianed:

| 4
U' IS : ." ",n -0 (14%)

g1 (1 -2 =)
11 A l“t

Bquation (143) is eecen to de of the ssme form as the claseicel column

equation, which msy de obtained by eetting a, "o, - 0 in the

s
above.

Por eimply swpported eads, the boundary conditions to be enforced
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Pigure 28, Deflected Beanm Element




i

sre given in Bquations (39). A buckling losd ratio, 9c/r.. io obtained
vith the aid of Bqustions ()9) ead (143).

Pclr' L —"';—",—- (166)
1o v F
L
rc is the bduckling loed end P' is the classical Buler buckling loed for s
simply supported columm.
e W8
P. ] -:{-—- (167)

p = V1/a is the radius of gyration of the besm cross sectiomn. The ratfo
L/p ie the slendernsss ratio of the columm.
Rquation (148) offers & convenieat wesns for & defiaition of

slenderness of a columm.

W, 1. (1674)
/" P P

9 is & wiversal slenderness pacameter defiaoed by

e %J-E (148)

This perameter is a functiom of both geometry and stiffaess of the column
matecial. As ite velue increases, classical Ruler column behavior ie
approached. A "short™ colwsn, thea, implies a departnre from classical
Ruler bdehavior end is cheracterised by small velues of s.




Results and Discussion

The buckling loed retioce sre calcwlated for as orthotropic simply
supported column with lulcu e 30 ad Vi * 0.3. Pclt' predictions
sccording to the present and Timosheako theory are 0.529 and 0.479
respectively,for L/P= 20. Timosheoko theory gives a lower value for the
buckling l1oed retio amd is, therefore, overly comservative. Departures
from classical theory sre substaatiel in this caee.

If a ftive percent deperture from classicel theory (s eet as o
practicel limit to differentiate detween slender and short columns, then o
threshold velue Y for the wmiversal slenderness parsmetec cas be obtaiaed
from Bquation (1474). A weefu!l approximstion is

." = 13 (149)

The correspoadiag gecmetrical slendersess cstio, L/p, values for an
isotropic westerial with v = 0.) and @ orthotropic wmsteriel with

lnlcIJ 30 ead v,, = 0.3 are 26.6 snd 90, reepectively. These values

3
indicate that geometric olendernese alone (s ot iadicative of column

behavior.




Jacroduscory Remerks
The gprodlems aesscciated with hygrotherwsl effects in fCiber

reiaforced recin matriz conpositee heve been nmntioned esrlier. Ome of the
more seviocus cossequences of hygrothermal conditioning is the degredatios
of wtiffusse-velated and stresgth-related properties. 1In the presest
otuly, cuphasis is pleced on property degradation effects in otiffmsse
eritical applicaticme. Swelling otrecses dus to tramsiest wofsture
discridution are not otudied.

Sstimstes of loee of performsnce due to hygrothermsl conditioning
for midirections] composites sre preseated in this chapter. Orthotropic
solutions derived {a previous chapters are wtilised to obtain these
estimstes. The followiag solutions ere spplicadle to wmidirectiomal
leyupe. T™he ostimates ohould Ve viewed @8 providiag qualitacive
iaformetion for issight isto poteatisl practical comsequences. It is
aaticipated that composite streuctures vith off axis ply laywps will exhibit

greater hygrothermel effects.

Nechenical Properties
Three eaviroomeatsl coaditions 1isted bdelow are selected for the

stuly!




Conditions A: Dry no‘r

Condition Bs 1.053 Moisture Comtest 200°r
Condition C: 1.6% Moisture Conteat 200°F

Condition A is for refereace. Conditions B represeats a reslistic
situntion. The typicsl level of woisture, 1.032 by wight, is =
spproxiset ion to long-tere sircraft sevvice. Coadition C is ssturation for
a AS J301-6 Graphite/Bpoxy end repreceats the @oet severe degrodation
level ot the selected temperasture. Typical properties have bees chosen
with the aid of eperimentsl dots provided is Reference 39. Theee are
presented in Tabdle &,

Seesics epd Discuesion

The response of aa orthotropic deam wmder simmwsoidelly distriduted
loading is computed ot the three levels of hygrotharual conditioniag. The
reselts eare presented ia Pigures 3l and 32. The response wmder conditions
A ad B is o little different, while coaditioan C respomse emhidits
sebotantial differences from A and 8. The axial stress distribution ot
aidepen shows in Pigere 12 iadicetes ascceatuwsted monclassical effects
ander hygrothermal coaditioniang. By ocoutrest, the classical or a
Timceheako-type theory f(ails to predict hygrothernal seasitivity of
bemdiag stress. The temnsile stresses predicted aear the ocentre of cross
section, adove the asetral axis ere dee to errors in the present
approximstion in this portion of the cross sectioa.

Clsmped orthotropic beem resuits showiag the frequency ratio changes
dee to hygrothermel comditioning eppear ia Pigure 3]. The clamping

condition corresponds to C2 restraint. The bDebavioral trends sre similer




' 1

|

' Table 4. Properties of the Orthotrepic Waterial at Conditians A, § and C.

Condition A Coadition § Coadition C

Property 20%. oy 0°%r, 1.053 wet 20%, 1.63 wet
., 19.3 » 0ivesie? 9.3 » 10%0eria?  *19.3 & 10%1007s0?
4, 1.0 s 00ivezial .0 = 0%10e71a? 33 5 10100740’
6y .7 s wlivesial 04 s 10%100710d 29« 10%10e71a?

.Io the buchliing leed retie coupetations, ¢ five peceont ond & 20 percest
redustion i l" ore soouned for Condition 8 eand OCsnditien C, respectively.
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te these of the asbeve. Condition C hows swbstaatial frequency
dogradatim.

Resel ts showing bygretherns)l offects am duchling lasds of 3 aimply
supported orthelropic colamn appear 18 Figure . The difforences wwruses
A nd 8 ore wove signifi-ant 10 thio cuample. Condition €, once agiis,
conses seriows stiffanss reductions.

™e btuchling losd retio for o sinply swperied coilumn i dis0
conputed (or wariovs levels of apisture 2boorpiion ad tempersture. T
saterial wed i Wis aniiysis 0 different Mmd e witesponding
properties ore cotimated with (he 0id of o anslytical asde! presented i
Relercnce 60 Ia s sadel, & perticular sechonical preperty of the
eateis aaterial ot any woe temperat wre and GOIsture couteont is epressesd &
8 (emction of roenm temperat-we éry property and o aultiplying factor. This
fastor depends an the vee temperature, pereeatage of (he moistute contest
and (the glass transition temperature. e fider propetties are sesumnd to
tenaie the 00 and (he groes properties of composit: sre computed by wing
ol cromnehanics.

The resuits are preseated in Pigere J3. They iadicete that
Wygrethernel effects Move sinet influrences an the Buchling lend tatio in
the tsage of teupetateres 2% - 130°0 fer the toage of @pisture codtent
consideted. Accontuwnted effects doe to @oistute pich wp ste observed i
the DMigher Cteupersture tedges. ™e wpisture tolerence limit s
sebstantislly tedeced st highet eoe teapetstetes.

T™he folloviag ste conclusions based on the sbove study:

1. Use of apdern Crophite/Bpony - type (omposite satetisls in the

above spplications do mot puse seriows problems in sidelated sircroft wosge




situntion Which is ropresented typicelly by Cenditian .
2. Use of theee asteriale ot wsar ssturaties canditiens sheuld

be aveided.
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Pigere 29. Rygrothermal Bffects on the Maximum Deflection for a
Sisply Supported Orthotropic Besm Under Sinusoidally
Distributed Loading
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Pigure 30. Hygrothermal Effects on the Midspan Axial Stress Distribution
for a Simply Supported Orthotropic Beam Under Sinusoidally
Distridbucted Loading, L/H = 3
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Clamped Orthotropic Beam
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Pigure 33. Rffects of Moisture and Temperature on the Buckling Load
Ratio of a Simply Supported Orthotropic Columm, L/P = 50.
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CIAPTER XI
CONCLUSIONS AND RECOMMERDATIONS

A nev enginsering theory for plemar bending has been developed,
validated and aspplied. 1Its predictive capabilities have been firmly
established through correlative studies with exact eolutions and s
systematic consistency enalysis. The theory has been successfully
wodified so as to apply to dynamice and static duckliang. It accounts for
three essential physical effects ~ - ~ u;mnru shear strain, transverse
normal strain and nonclassical axial stress. The equations sre as simple
to spply as any transverse shear deformstion-type theory yet they provide
response throughout the structure.

The present theory predictions are superior to other cowparabdle
enginsering theoretical predictions. The theory yields exact results for
the case of uwniforuly distributed loading. Por nonuniform loading, it has
been walidated by means of a thorough consistency analysis of a qualitative
nature and by quantitative correlative studies with classic benchmark
problems.

The theory includes asll information coatained ia Reissner plate
theory for plansr bending and Stephen and Levinson's dynamic theory
specialized to thin rectaangular cross section beams.

There is a sensitivity of the predictions to boundary restraint
wodeling. It is more pronounced in static bending response of statically
indeterminate structures. A boundary sone cotrectiom approach has been

presented and illustrated which permits localised boundary restraint to bde




accurately modeled.

Accentuated nonclassical axisl stress effects are observed in the
responss of hygrothermally conditioned orthotropic beams. Other
enginsering theories fail to predict this interesting behavior.

Based upon the findings of present work, there are logical
suggestions for future ressarch.

1. The study of alternative clamping definitions has indicated the
presence of an edge zone and decay length. These are much more pronounced
in orthotropic structures. A reappraisal of composite materials testing
methods vhen the specimens are relatively short is, therefore, a vorthwhile
study.

2. Another important ares of practical iaterest is buckling and
postbuckling behavior of advanced composite structures. A large
displacement theory based upon the new equations is recommended to be
developed to pursus the above issue.

3. Pinite element models based on the present theory would be

useful in the numerical analysis of practical structures.
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APPRNDIX A
ORTHOTROPIC SLAD SOLUTION

A plane eotress oolution for flexural wave propagation in en
orthotropic bess is developed. This, by suitable modification of elastic
constants, cen be used to obtain stresses and phase welocity in an
infinitely wide olad. The results sre used in the dynsmic theory
validation study.

The Booke's Lav for orthotropic materials may be expressed as

O™ Eplo *vg v, (a.1)

s - i’, "’. ‘“13 ":‘ (‘oz)

Opg ™ °13 {n’. . v" (A.3)

The above are obtaimed by inverting Equations (27) - (29) and using
Rquations (7). ill and £, are given by
Byy = Byy/(1 -Vg, v, y) (A.5)

The equations of motion in two dimensions are

-,
on.‘odn’. ® Pu (116)

xt,x * %ge8 " L

(117)
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Let the besm vidbrate with circular frequency w . The lowest wode
has one helf-wave in the x direction. The displacement components u and v

may bde taken as

-g
’-
u-ll‘ co-!{-cin wt @ (A.6)
\ - Pe
we H‘ sin < sianwte (A.7)

01 and w, are srdbitrary constants. p should be chosen such that the above
satisfy Equations (116) and (117). This condition leads to

(;h)‘ . (F»h:)2 [c’z (ney) ¢ Ez (2 UVy, = Y ¢Y vsl“l;)]

oezyw;‘u-;’ e:u(l ey) = 0 (A.8)
wvhere

-212

e “_‘— (A.9)
P i
i1
4

¢ v = £,,/6,, (A.1D)
E = wne/L (A.12)




Let p, end p, be the roots of Bquation (A.8). Then the solutiom for

u and v may de expressed as

n d e il (A.13)
9 = cos L.‘..t[‘l .idi-—e—- 0‘3 .iﬂ-—-‘ o

2L Po8 ]
v = oin !-:-: oin ut[A’ cosh -i— . A‘ cosh -:-—J (A.14)

‘l - A‘ are arbitrary constante. The relations among these are obtained as
follows: Substitution of Bquatione (A.6) end (A.7) into (117) using
Squations (A.2) end (A.3) leads to

» Gy W, Ry 2 =

Bquation (A.15) must be satisfied independently by the solutions for u and
w associated with the roots p, and p,. Therefore from (A.13) for the root
[ 2Y) it i{s required

2 - -
=2 Nty 21, . |"%  ™afun
A, [m . 2 -Gy :5] Al[ e . ie (A.16)

Equation (A.16) is expressed in the following form for convenieace ia the

subsequent smalyeis.
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Ep, 1 I v |
wore e — "B (a0

(v(c: . ::T' ) -Cz)

$imilarly

A, = T4 (a.19)

Ev, f1 ¢ Lv |
vhere r, - 2 | 13 (4.20)

(ne:o%hz’)

The erbditrery cosstaante A‘ ond ‘1 are eliminsted to produce o

frequency determimant by wsing the stress bdoundary conditiocns given in
Rquations (61). The results ere

7.p |
1”1 3
‘l !——- T t olah P * 0

(a.21)

) "n'
[ -}

olsh p ¢ ‘s;

b J e g ey [ 2y oy - 0

(A.22)
The frequesncy determinmant is
1 ) " Q PP, V4
1 3 252 13
‘T""‘c—"“'n {—a"-:.— sheh 7y
0
fn N P ")
l""T; o *-‘-.T’mh "2 (A.23)
Consequently
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temh p, (pzl: - v“t) e €)
w_'z - t—-'c" N ’vu ('z ry ¥ (A.26)

Bquation (A.24) is solved sumerically to obtsia the emsllest value of €
The phase wlocity psrameter zlc.. vhich wae wsed in the dispersion curves,
ie obtaimd from Bquatione (1394) and (A.9). The resslt s

3
- 11
ce/le = ¢ ¢ (a.2%)
. p” Va,,TT-,%

Axisl Stress Distridution
An expressioa for Oux fo obteined below with the aid of Squstioss

(A.1), (A.19) and (a.14).

o_¢ X X
"'?; © {A) sish == (Y, 7, py C) ¢ Ay sish = (VP09 -0

oin -'f oin e (A.2¢)
The sbove is weed in the walidstion stuly of dymsmic theory.
Treasverse Displacemnt

With the oid of Bquaticns (A.14) end (A.19) v fo expreseed e

ve "l‘l ecooh -"L. * PoA, coeh :;2: : th!{ sianwe (A.27)

Consequently, W is givea by




Ve (T4 ¢ TA,) m'lf ole we (a.20)

A couperisen of Squatiens (A.28) end (134) {adicates thst the folloving
sseds to be setisfied oo that preseat theory otrese w®ay be compared vwith

the enset
Vo ® A o Py (a.29)
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