
AD-A12i 451 ON SOME INEQUALITIES AND IONOTONICITY PROPERTIES WITH i
SPECIAL REFERENCE T..(U) PURDUE UNIV LAFAYETTE IN DEPT
OF STATISTICS S S GUPTA ET AL. OCT 82 TR-82-37

UNCLASSIFIED Neeei4-75-C-8455 FG 12?1i N



IV.0

31.

1111115 1.4 t.86

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDAROS - 1963 - A



. -i . ..*- . I •

;e,, • • •

lip

... . : . _,- , . .

PURDUE UNIVERSITY

DEPARTMENT OF STATISTICS

"'TElf

______ 19820
LA., .. ,r, 10S boon approvedL r p ;.,'ease and sale; itI

C-t, ib:-!3 is unlimited. A

82 11 15 031



SECURITY CLASSIVICAr'17' ') "'41 =&A,E fl.t. Fn~crrd)

~ ~ ~I~A~IkI ~READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE 1P!.FT%'rCT FORM
I. REPORT NUMBER z. GOVT ACCESSION NO. .. RECIPIENT'S CATALOG NUMBER

Technical Report #82-37

4.' TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

ON SOME INEQUALITIES AND MONOTONICITY PROPERTIES Technical
WITH SPECIAL REFERENCE TO SELECTION AND RANKING
PROBLEMS 6. PERFORMING ORG. REPORT NUMBER

Technical Report #82-37
7. AUTHOR(e) I. CONTRACT OR GRANT NUMBER()

Shanti S. Gupta
Deng-Yuan Huang
S. Panchapakesan NOOOl4- 75-C-0455

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

Purdue University
Department of Statistics
West Lafayette, IN 47907

tI. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research October 1982
Washington, DC ,s. NUMBEROF PAGES

32
14. MONITORING AGENCY NAME A ADDRESS(ii different from ControllinS Office) IS. SECURITY CLASS. (of thie report)

UNCLASSIFIED
15. OECLASSIVICATION DOWNGRADING

SCHEDULE

1a. DISTRIBUTION STATEMENT (of this Repott)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STArfA ENT (of MAc abstract entered In Block 20, II different from Report)

I$. SUPPLEMENTARY NWTES

Ig. KEY WORDS (Continue on teverse ide it necesary id Identify by block number)

Selection and ranking, stochastic ordering, monotone likelihood ratio,
generalizations, probability of corrcct selection, expected subset size,
sufficient conditions for monotonicity, restricted families, partial
ordering, i-ordering inequalities, multivariate normal, multinomial, gamma,
exponential family. reliabilitv theory.

20. AOSTRACT (Continue on reveree side If necosse:' . dentify by block number)

In this paper, we restrict our attention mainly to some inequalities and
monotonicity properties that have typically arisen in the development of the
selection and ranking theory. Basic to the setup of these problems is the assump-
tion regarding some order relations such as stochastic ordering and the monotone
likelihood property. These and other related ideas, along with some basic inequal-
ities that arise under these assumptions are discussed in Section 2. In reliabil-
ity models, partial order relations such as convex ordering, star ordering and
tail ordering play an important role. Section 3 deals with restricted families of

DD RM 1413 .(OVER)

DD , FA 1473 UNCLASSIFIED
SECURITY CLASSIFICATION OF '";S PACE . sen Det e Enree



distributions defined by such partial order relations and some important
inequalities obtained in the investigation of selection problems for such
families. Interesting inequalities appear in the study of selection rules
for normal, multinomial and gamma distributions. These are discussed in
Section 4.

UNCLASSIFIED
SiCURITY CLASSIVCATION OF TMIS PAGEF3%On Dote Entered)



ON SOME INEQUALITIES AND MONOTONICITY PROPERTIES
WITH SPECIAL REFERENCE TO

SELECTION AND RANKING PROBLEMS*

by

Shanti S. Gupta, Purdue University
Deng-Yuan Huang, National Taiwan Normal University
S. Panchapakesan, Southern Illinois University

Technical Report #82-37

Department of Statistics
Purdue University

October 1982

*This research was supported by the Office of Naval Research Contract
N00014-75-C-0455 at Purdue University. Reproduction in whole or in
part is permitted for any purpose of the United States Government.

:40V 15 1982

A



ON SOME INEQUALITIES AND MONOTONICITY PROPERTIES

WITH SPECIAL REFERENCE TO

SELECTION AND RANKING PROBLEMS*

by

Shanti S. Gupta, Purdue University
Deng-Yuan Huang, National Taiwan Normal University
S. Panchapakesan, Southern Illinois University' /

1. INTRODUCTION

'Inequalities play a fundamental role in nearly all branches of mathe-

matics -- especially so in probability and statistics. The impact of basic

inequalities such as those that carry the names of Cauchy-Schwarz, Chebyshev,

Cramer-Rao,and Bonferroni in statistics is well known. Inequalities have

been profitably used to obtain bounds for probabilities that are more tedious

to compute or analytically impossible to handle. Especially in reliability

problems, the limited assumptions that could be made about the nature of the

life distributions of the components of a system as well as the structure of

the system itself render inequalities not merely useful and desirable but

essential. Since interest in inequalities pervades throuqh nearly all

bralches of iIdthelliaticS, significant contributions have been made by a very

large number of researchers whose efforts span well over a century. From

time to time, books and monographs have been written which are completely

devoted to inequalities. The classic book of Hardy, Littlewood and Polya [35],

first published in 1934, is a remarkable collection of mathematical inequalities.

Some important works that followed are Beckenbach and Bellman [12], Godwin [20],

Kazarinoff [40], Marshall and Olkin [47], Mitrinovlc [49], [50], P6lya and

Szego [54], Shisha [57], and Tonq [59]. Of these, the monoqraphs of Marshall

and Olkin [47] and Tong [59] contain the recent developments in the area of

*This research was supported by the Office of Naval Research Contract

N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is
permitted for any purpose of the United States Government.
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multivariate probability inequalities; this topic has seen a major growth in

the last ten or fifteen years. In this connection we also refer to a recent

review paper by Eaton D9].

In selection and ranking problem, inequalities and monotonicity properties

have a vital role to play. Consider the classical formulations of these

problems in which one proposes a procedure which will guarantee a minimum

probability of correct selection (PCS). This amounts to evaluating the PCS,

determining the parametric configuration for which the PCS is minimum, and

then determine the constants defining the procedure so that this ?3inimum is

at least a specified level P*. Determining this configuration, known as a

least favorable configuration (LFC), is a vital part of the analysis. There

are a number of problems in which the LFC cannot be analytically established;

in such cases, recourse has been taken to obtain a good lower bound for the

PCS first and then seek the LFC for this lower bound. Even when the LFC for

the PCS can be analytically established, inequalities are useful in obtaining

conservative but easier-to-compute values for the constants of the procedure.

Similar situations arise when we consider the worst configuration for any

suitable performance characteristic such as the expected number of nonbest

populations included in the selected subset. Additional uses of inequalities

arise due to specific assumptions regarding the families of distributions

under consideration; for example, distributions having an increasing failure

rate (IFR) and increasing failure rate average (IFRA). For a general view

of selection and ranking problems and the various formulations and goals

that have been studied, we refer to Gupta and Panchapakesan [31].

In this paper, we restrict our attention mainly to some inequlities and

monotonicity properties that have typically arisen in the development of the

selection and ranking theory. Basic to the setup of these problems is the
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assumption regarding some order relations such as stochastic ordering and the

monotone likelihood property. These and other relat: d ideas, along with

some basic inequalities that arise under these assumptions are discussed in

Section 2. In reliability models, partial order relations such as convex

ordering, star ordering and tail ordering play an important role. Section 3

deals with restricted families of distributions defined by such partial order

relations and some important inequalities obtained in the investigation of

selection problems for such families. Interesting inequalities appear in the

study of selection rules for normal, multinomial and ganmma distributions.

These are discussed in Section 4.

2. ORDERED FAMILIES OF DISTRIBUTIONS

Inherent to a selection and ranking problem is the choice of a ranking

parameter, say, e. The natural setup consists of k populations that are

described by their associated probability distributions P6 , i =1, ... , k

where e Q, a subset of the real line. In other words, these populations

belong to a family P = {P a} indexed by e E Q. A reasonable procedure can be

proposed if we have some knowledge of the structural properties of this

family. For example, if X19 --- 9 X k are observations from the k populations,

we would like to say that large values of X generally go witr large values

of o. Such statements bring in order relations for distributions belonging

to the family. We will now formalize such concepts and state some monotonicity

results.

2.1. Stochastic Ordering and Monotone Likelihood Ratio Property.

Let X be a real valued random variable with distribution P., e Esi . Then the

family P = {P6 ,e is said to be stochastically increasing (SI) in e if

for e01 < 0 29 the distributions P 81and P 62are distinct, and for any real number a,
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(2.1) P [XE(a,o<)]< P [XE(a,o)].002

It is well known that a stronger property is that of monotone likelihood

ratio (MLR) introduced by Karlin and Rubin [39]and this is equivalent to the

frequency function having total positivity of order 2 (TP2 ). The concept of

total positivity is, however, more general and is not restricted to frequency

functions (see Karlin [38]).

A basic result of Lehmann ([44],p. 112, Problem 11) can be stated

as follows.

Theorem 2.1. Let {P }, 0E , be an SI family of distributions and let

,(x) be a real valued function nondecreasing in x. Then E [1P(X)] is non-

dreasing in 6.

A straight forward generalization of this theorem independently

obtained by Alam and Rizvi [4] and Mahamunulu [46]is given below.

Theorem 2.2. Let {Pe}, eE , be an SI family of distributions. Let

X19 .... Xk be independent ramdom variables, X. having the distribution

P 6,9 ei E 2, i = 1, ..., k. Then E0/(X 1 .... X k) is nondecreasing in each

component of e = (e1, ...... , xk) is nondecreasing in each

of its arguments.

Theorem 2.2 has been successfully applied to many selection problems.

For suitably chosen *(xI, ... Xk), the expectation E__(Xl,..., Xk) becomes

the PCS. The monotonicity property of the expectation enables one to

obtain the LFC.

Another generalization of Theorem 2.1 in a different direction is due

to Gupta and Panchapakesan [28]who considered a class of subset selection

rules defined through a class of functions h. For evaluatinq the infimui

of the PCS, we need to minimize over o the expectation E [o(X,O)]. The

following theorem of Gupta and Panchapakesan [28]qives a sufficient condition
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for the monotonicity of E

Theorem 2.3. Let F(.;o), ot w, be a family of absolutely continuous

distributions on the real line R with continuous densities f(.;o) and let

_(x,e) be a bounded real valued function possessing first partial derivatives

x and o with respect to x and 0, respectively, and satisfying certain

regularity conditions C. Then E [(X,o)] is nondecreasing in e providede

that for all E Q,

(2.2) f(x;O)Po(x,e) - aF(x;O) (xe) > 0 a.e.x,

where the regularity conditions C are:

(i) for all eEq, &(x,e) is Lebesgue integrable onIR; and

(ii) for every [el,e 2 ] cand e3 Es, there exists g(x) depending only

on Ol, o2, 83 such that

ip(x,e)f(x;e3) - aF(x;e) x' I < g(x)

for all eE[e1 ,e2] and g(x) is Lebesgue integrable on IR.

Remark 2.4 (1) If (x,e) = *(x) for all eEQ, the sufficient con-

dition (2.2) reduces to DF(x,e) 'x(x) < 0, which is satisfied by the hypotheses

of Theorem 2.1 since {Fe } is SI and *(x) is nondecreasing in x.

(2) For the class of procedures defined by Gupta and Panchapakesan [28],

t(x,e) = F(h(x);O) and (2.2) becomes

(2.3) f(x;e) aF(h(x);e) - h'(x) f(h(x);O) ;F(x;e) > 0

where h'(x) = (d/dx) h(x).

(3) This condition has been specialized to the cases of (i) location parameter,

(ii) scale parameter, and (iii) convex mixtures of distributions by Gupta
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and Panchapakesan for the purposes of specific applications.

(4) An analogue of this theorem for discrete distributions is given by

Panchapakesan [52],who has given in another paper [53] sufficient conditions

for monotonicity when 0 is a countable set.

(5) The monotonicity of E [(x,e)] in e is strict if strict inequality holds

in (2.3) on a set of positive Lebesgue measure.

(6) Obvious modifications in Theorems 2.1 through 2.3 give monotonicity in

the opposite direction.

For subset selection rules the expected subset size has been used as a

performance characteristic. We naturally want to know the worst configuration

in the sense that it maximizes the expected subset size. The following theorem

(discussed and proved without a formal statement) of Gupta and Panchapakesan [28]

gives a sufficient condition for the expected subset size to be maximized

at an equi-parameter configuration,

Theorem 2.5. Let Xl. ..., Xk be independent random variables, Xi having

an absolutely continuous distribution F(,e i), ei EQ, with continuous densities

f(,Oi). Let q,(x,e) be a bounded function possessing the first partial deri-

vatives 'x and ' e with respect to x and e, respectively, and satisfying the

regularity conditions of Theorem 2.3. Define

k k
B( , ... ek) iEe [ (X,6)]. Then

i r= r
r1i

(2.4) B(o 0 1l< ... < ek) B(e el ... =ek)

provided that, for all ei < ej and a.e.x, the following holds:

(2.5) D (x'i) ( ) - (x, o.) iF(x;oi)
(25 f(x;oj) - x 0.
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Renarks 2.6. As in the case of Theorem 2.3, Gupta and Panchapakesan [28]

have specialized this for (i) location parameter, (ii) scale parameter, and

(iii) convex mixtures. For tieir class of procedures, t(x,e i) = F(h(x);oi),

i=l, ..., k. For location and scale parameter cases, the usual choices are

h(x) = x+b, b > 0, and h(x) = ax, a > I, respectively. In these cases, the

left-hand side of (2.3) is zero for all x; thereby showing that E [p(Xe)]

is independent of e. Further, the condition (2.5) in these cases reduces

to the monotone likelihood ratio property, a result directly proved by Gupta[22]. ]

Now, we note that Theorem 2.2 is a simple generalization of Theorem 2.1

to k, the k-dimenional Euclidean space. We now consider various general-

izations of the concepts of stochastic ordering and monotone likelihood ratio

to distributions in higher dimensions. To this end, we introduce the following

definitions.

Definition 2.7. A function * defined on Ik is said to be increasing

with respect to a partial order relation "<" if xI <x 2 implies (X) (x2)

k
for all x1' x2 E IR

Definition 2.8. A set S in k is said to be an increasing set if its

indicator function is increasing; that is, if 2IES and jI < x2, then x2ES.

k
Let X be a k-dimensional random vector with distribution P in R

where e =(el,...,ek). Let PO(S) = Pe(XES) for any measurable set S.

Definition 2.9. A distribution P is said to have stochastically in-

creasinj property (SIP) in e if Pa (S) < P0 2 (S) for every monotone nonde-

creasing measurable set S and for every 0 <0 2"

The following lemma is due to Lehmann [43].
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Lemma 2.10. A family of distributions Pe has SIP in 0 if and only

if E I(X) < E 2iP) for all nondecreasin integrable functions (X) and

T1 _< 2

The following theorem follows easily from Lemma 2.10.

Theorem 2.11. Let the distribution of X have SIP in o and let

(x,e) be nondecreasing in x and e . Then E 0(X,o) is nondecreasin in o.

When we have independence, it is easily verified that the MLR property

implies SIP (Lehmann [43]). When we deal with correlated random variables

X19 .... X, it is natural to look for a generalized concept of MLR in

higher dimensions. For a density f(x;o) in the one-dimensional case, the

MLR property says that

(2.6) f(x1; 1 ) f(x2 ;02) f(x1 ;e2) f(x2 ;6l) > 0.

for every x< X2 and e < e2  We can rewrite (2.6) in the form

(2.7) f(x;e) > f(x; (1,2)o)
2

where f(x;e) H f(xi;ei), (e1 ,e2), and (1,2)e is the vector obtained
i=l

from e by interchanging e1 and 82. This provides the motivation for the

following definition of Property M by Eaton [18].

Definition 2.12. A family of real valued density functions

{f (x;e)}, aE,is said to have Property M if, for each a and for each

pair (ij), 1 < i I j < k, the following holds:

(2.8). x .i > x and ei > o. f_ (x'e) > f_ (x; (i,j)6).

Eaton [18] has given a necessary and sufficient condition for a class

of densities to possess Property M. Bechhofer, Kiefer and Sobel ([111,p. 41)
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in their monograph on sequential identification and selection rules define

a rankability condition which is same as Property M. Hollander, Proschan

and Sethuraman [36] have defined a concept of decreasing in transposition

(L) ) whi iLh is dlISO Sd~e ds lroperLy M; however, thei r mot i vdtion comes from

finding classes of functions which share certain properties of Schur func-

tions. In fact, when q(x,e) = h(x-g), q is DT on R 2k if and only if h

is Schur-concave on IRk

It is important to note that, unlike in the case of one-dimensional

distributions, Property M does not imply SIP. The following simple example

of Hsu [37] illustrates this point.

Example 2.13. X = (XI,X 2 ) has the following distribution for four

permissible values of a = (e1,o2).

(5,6) (6,5)

(1,2) 0.9 0.1

(2,1) 0.1 0.9

(3,4) 0.6 0.4

(4,3) 0.4 0.6

Further, we can have SIP without Property M; this is true in one-

dimension also. Finally, it is possible to have both SIP and Property M as

it is the case with the multinomial distribution.

Another generalization of MLR is given by Gupta and Huang [25) who

obtained for a family of densities having this generalized MLR property an

essentially complete class of multiple decision rules.
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Definition 2.14. A probability density f(x;o) is said to have a

generalized monotone likelihood rati (GMLR) in x, if for every i and all

fixed x, j = 1 ... , k, j P i, f(x;el)/f(x;e2) is nondecreasing in xi , where

S(en, ... . = 1, 2; elj = e2j for all j fi,and eli >E2i.

What we have discussed so far are some basic assumptions that are

usually made regarding the underlying family, and the monotonicity behavior

of the expectations of certain functions. Also of relevance here is the con-

cept of stochastic majorization and inequalities obtained by majorization.

One definition of stochastic majorization is to say that X is stochastically

majorized by Y if E(p(X)) < E( (Y)) for all Schur-convex functions ; of course,

there are other possible definitions (see Marshall and Olkin [47], chapter 11).

Majorization techniques can be used to show that E[p(X)] < E[b(Y)] for sev-

eral other families of functions 4. The relevance of these results to selection

problems is obvious, when (X) is the indicator function of the event "a

correct selection is made." For several useful inequalities in this direction.

we refer to Chapters 12 and 13 of Marshall and 01kin [47].

3. RESTRICTED FAMILIES OF DISTRIBUTIONS

By restricted families of distributions, we mean a family of distri-

butions 3 each member of which is partially ordered in a sense with respect

to a given distribution G. Such families do arise naturally in reliability

studies. More commonly known families of this type are those with increasing

failure rate (IFR) and increasing failure rate on the average (IFRA) and

naturally those with corresponding decreasinq properties. In dealing with

such classes we do not know the exact forms of the distributions that belong

to 3, but we do know the nature of the partial order relation and the distri-

....... .... .....-
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bution G. Precisely this knowledge enables one to find bounds for quantities

of interest such as the probability of survival and mean life in terms of

G. Inequalities are thus very important in reliability studies. As a matter

of no surprise, significant contributions to inequalities for restricted

families have been made by researchers in mathematical reliability -- Barlow,

Marshall and Proschan, to mention a few. Typical of these problems is the

use of order statistics. Many important order statistics inequalities that

arise in inference problems of reliability are reviewed by Gupta and

Panchapakesan [29].

Selection procedures for restricted families of distributions were

first studied by Barlow and Gupta [7]. In these problems, we cannot evaluate

the infimum of the PCS when we have k populations from U; however, we can

evaluate a lower bound for this infimum in terms of the known distribution

G using probability inequalities. We describe in this section such inequalities

and explain the contexts of the selection problems. For purpose of describing

these results, we need to introduce some definitions.

Assuming that all our distributions are absolutely continuous, we now

define some of the special order relations of interest to us. F and G denote

distribution functions.

Definitions 3.1. (i) F is said to be convex with respect to (w.r.t.)

G (written F < G) if and only if G-1 F(x) is convex on the support of F.
c

(ii) F is star shaped w.r.t. G(F G) if and only if F(O) = G(O) = 0 and

G F(x)/x is increasing in x - 0 on the support of F. (iii) F is tail

ordered w.r.t. G(F G) if and only if F(O) = G(O) = 1/2, and G- IF(x) - x

is nondecreasing on the support of F.

If G(x) = 1-e
-x, x > 0, then (i) defines the class of IFR distributions
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studied by Barlow, Marshall and Proschan [9] while (ii) defines the class of

IFRA distributions studied by Birnbaum, Esary and Marshall [14]. Convex

ordering was studied by van Zwet [60]. Doksum [17] has used the tail ordering.

It is easy to verify that the above order relations are all partial order

relations. One can also easily see that convex ordering implies star ordering.

Without the assumption of the common median zero, the definition (iii) has

been used by Bickel and Lehmann [13] to define an ordering by spread with the

germinal concept attributed to Brown and Tukey [15] by them. This kind of

ordering has also been perceived by Saunders and Moran [56] in the context of

a neurobiological problem and is called ordering by dispersion by them. We

now give a formal definition below.

Definition 3.2. G is more dispersed than F (F < G) if
d

(3.1) G- (8) G- (c) > F-(B) - F- ( ) for all 0 < o t 1.- -
By setting x = F N) and y F(), it is easy to see that (3.1) is

equivalent to saying that G- F(t) - t is increasing in t. However, (3.1)

presents the idea more clearly, that is, any two percentage points of G are

at least as far apart as the corresponding percentage points of F.

Finally, we define a general partial order relation through a class of

real functions introduced by Gupta and Panchapakesan [29] The star and tail

orderings can be obtained as special cases.

Definition 3.3. Let Ai = h(x)l be a class of real valued functions

h(x) defined on the real line. Let F and G be distributions on the real line

such that F(O) = G(O). We say that F is 4-ordered w.r.t. G (F < G) if

(3.2) G-1F(h(x)) - h(G- IF(x))

for all h EA and all x on the support of F.
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All the order relations we have defined so far can easily be verified

to be partial order relations in that they satisfy only reflexivity and

transitivity. It can be seen immediately from the above definition that, if

14 = {ax,a >1I and F(O) = G(O) = 0, we get the star ordering and that the

tail ordering is obtained by taking 1 = {x+b, b>01 and F(O) = G(O) = 1/2.

Also, if we do not include F(O) = G(O) in the definition, then the dispersion

ordering becomes a special case.

The next theorem gives the basic inequality of Gupta and Panchapakesan [29]

and some related inequalities.

Theorem 3.4. Let XO, Xl,, Xp(Yo l , .... Y ) be independent and

identically distributed, each with distribution function F (G), and let

F - G. Then the following inequalities hold.

(a) Prfh(X 0) > X, i=l, ... , p} > Pr{h(Yo) > Yi' i=l, ..., 1p0

(b) PrfX0 > h(Xi), i=l ... , p} < Pr{Y 0 > h(Yi), i=l ... , p},

(c) Pr{h(X 0) < X i=l, ... , p} < Pr{h(Y0 ) < Yi, i=l, ... , p1,

(d) Pr{X0 < h(Xi), i=] ... , p} > Pr{Y 0 < h(Yi), i=l, ... , p},

Proof. We will prove (a). The other inequalities can be established

similarly. Let y= G 1 F. Then

Prfh(X0 ) > Xi, i=l, ..., p}

= Pr{p(h(X0)) > Y (Xi), i=l ... , p}, sinceyis nondecreasing

- Prfh(p(Xo)) > (Xi), i=l, .... p1, since F < G

= Pr{h(Y0 ) > Yi i=l, ..., p}, since y(Xi) is stochastically equal to

Y ' i=O, 1, ..., p. 0

The inequalities (a) through Zd) of the above theorem can be re-

written respectively as

(3.3) fFP(h(x)) dF(x) > fGP(h(x)) dG(x),
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,o-(3.4) f FP(h- (x)) dF(x) fSGP(h' (x)) dG(x)

(3.5) f [1-F(h(x))]PdF(x) ,-G(h(x))]PdG(x),

and

(3.6) f [l-F(h-'(x))] p dF(x) >f[l-G(h-I(x))] p dG(x),

where h-  is assumed to exist and the integrals extend over the supports of

the relevant distributions. Gupta [23] obtained essentially these inequalities

for any p > 0 under a set of hypotheses which amounts to.4-orderina. Also,

in selection and ranking problems, we typically get the probabilities,

Pr{h(X0 ) > Xi, i=O, 1, ..., p} and Pr{X 0 < h(Xi), i=O, 1, ..., p}.

These are same as the left-hand side probabilities in (a) and (d) of Theorem 3.4

if we assume that h(x) > x. This is satisfied for natural choices of h(x)

in the procedures. It should be noted that h(x) > x in the special classes

of A yielding star and tail ordering.

Interesting special inequalities are obtained by considering special

pairs of F and G in Theorem 3.4. We mention here a few of them relevant to

selection rules, thus generally applying inequalities (a) and (d) of Theorem 3.4.
Suppose Xl , ..., Xn are i.i.d. with distribution F and Yl,..., Yn are

i.i.d. with distribution G. Let F < G. Let F[j] and G[j] denote the cdf's

of the jth order statistic of the X and the Y i respectively. Define

B j,n(x) = [n!/(j-l)!(n-j)!] f uJ-l(lu)nJdu0

so that

(3.7) F[j](x) = Bj (F(x)) - B ,nF(x).

Since

(3.8) GjI F (x) = [B G] 1BjF(x) - G-F(x),
[j] [] jn
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we see that order statistics preserve it-ordering. So we qet

(3.9) f FPj](hx)) dF[j](x) _IfG~j](h(x)) dG~j](x)

and

(3.10) f [l-F[ j ](h 1 (x))] p dF[j](x) >f[l-G[j](h-1 (x))] p dG[j](x).

Barlow and Gupta [7] studied subset selection procedures for selecting

the distribution with the largest (smallest)a-quantile from k = p+l distri-

butions that are star ordered w.r.t. G. In their procedures, h(x) = ax, a > 1.

With this choice of h(x), the right-hand sides of (3.9) and (3.10) become

the infimum of PCS in these two cases. Specializing these inequalities

further to the case of IFRA distributions, we get the following corollary.

Corollary 3.5. Let F denote the cdf of the jth order statistic in[j]
a random sample of n observations from an IFRA distribution F. Then

(3.11) f Fj (ax)dF (x) > foGP (ax) dGjW

and

(3.12) f [1-F ('~)]P dF (x) I f [1-G (1)] dG'W
0 [j] a [j] 0 [j) a [j

where
n

(3.13) G (x) I (n) [l-e&x]t e-(ntx=B (-y)

Barlow, Gupta and Panchapakesan £8] have tabulated the values ofa

for which the right-hand sides of (3.11) and (3.12) are equal to P* (the

guaranteed minimum PCS) for selected values of p, n, j and P*. Gupta arnd

Panchapakesan [30] studied a similar quantile selection procedure for selecting

the largest quantile for distributions that are star ordered w.r.t.the standard
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normal distribution folded at the origin. In this case, the inequality (3.11)

holds with G[j](x) = Bj,n (21(x)-l), where P(x) is the standard normal cdf.

The values of a-1 for which the right-hand side of (3.11) is equal to P* are

tabulated by Gupta and Panchapakesan [30] for selected values of p, n, j and P*.

It is easy to verify that the folded normal distribution is an IFR and

therefore an IFRA distribution. So we can obtain further inequalities by

taking F[j](x) = B ,n(2D(x)-l) in the above corollary.

We can get similar inequalities for F and G such that F < G. We have
d

to take h(x) = x+b, b > 0, in (3.5) and (3.6). More inequalities can be

obtained by considering F[j] and G[j] with special choices of G. These in-

equalities occur in selection procedures of Barlow and Gupta [7] for selection

in terms of medians for a class of distributions (not defined in this paper)

and the procedures of Gupta and Panchapakesan[29] who have used the logistic

distribution for G.

Remarks 3.6 Suppose we take 9 = fax, a > 11 in Theorem 3.4. Then,

X X X X Yl Y
letting Z1 = Pmax{ X X 2 z min fX- " -} = max 1 Y

0 0'O X0  X 0 00

Yl Y

and W= min P -}, we get

Pr{Z < a) > Pr{W 1 <a,

Pr{Z< }<Pr{W(3.14) r 1 - a -- 1-a

Pr{Z 2 > a} < Pr{W 2  a),

Pr{Z 2 > }> Pr{W 2 1r{2 } r{2 - a }

In other words, we have inequalities for the distribution functions (and

hence for quantiles) of the maximum and the minimum of certain correlated
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ratios of variables with distributions F and G.

In the case of M = {x+b, b > O1,we let Z= max {XI-X 0 1 ... Xp-Xo ,

Z m in {X,-X 0. ..., Xp-X 0), Wi = max [Y1-YO,...,, YP-Yn} and W = min

{yl- Y0 ..... Yp-YoI. Then, we get

Pr{Zi < bi > Pr{W' < b},

(3.15) Pr{Z < -b} < Pr{W < -b},

Pr{Z > b} < Pr{W > b},

Pr{Z 2-b} > PrW > -b}.

We will come back to these inequalities in Section 4.3. 0-

4. INEQUALITIES FOR SPECIFIC DISTRIBUTIONS

We are mainly interested in certain inequalities relating to multi-

variate normal, multinomial and gamma distributions that occur in ranking and

selection problems. Of course, these are of interest otherwise too.

4.1 Inequalities for Multivariate Normal Distribution. A probability

expression that occurs frequently in selection problems is Pr[X1 < al, ...

Xk < ak] where Xl, X2, ..., Xk are identically distributed but correlated.

Most familiar of these and perhaps most often used in practice are the cases

where Xl, ... , Xk have a joint k-variate normal and t distributions. Evalu-

ation of these probability integrals are difficult to accomplish as k gets

large when there is no special pattern of the associated covariance matrix F.

In such cases, inequalities which give good bounds become more attractive.

There are numerous results in the literature in this direction. We will men-

tion here only two results, namely, those of Anderson [6 ] and Slepian [58].

For a detailed account of these and other related inequalities and references,

4l
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the reader is referred to the book of Tong [59] and the recent survey paper

of Eaton [19]. To state Anderson's theorem, let us define a partial

ordering - for covariance matrices of the same order by Y z if x -

is positive semidefinite.

Theorem 4.1 (Anderson [6 ]). Let X = (XI, ..., Xk) and Y = (YI' ... Yk)

be k-variate normally distributed random vectors with common mean vector zero

and covariance matrices z and T respectively and let E be a convex set

symmetric about the origin. Then q-< E implies Pr[YE E] > Pr[XE El.

As we have pointed out earlier, inequalities have been used in selec-

tion problems typically to obtain the infimum of the PCS or a lower bound for

it. One result that has been used very often at some staqe of the problem

is the Slepian inequality stated below.

Theorem 4.2 (Slepian Inequality). If X = (X19 ... , Xk) has the k-

variate normal distribution with nonsingular covariance matrix F = Coj), with

aii = 1, i=l,...,k, then for any constants cl,...,c k 9 the probability

Pr{X1 < Cl,...,Xk < Ck } is strictly increasing as a function of each oi for

i~j. In particular, if aij > 0, i, j = 1,...,k, then

k
Pr[X ci s i=l,...,k] > II Pr[X i  ci].

i~l

Motivated by a design problem with a selection and ranking goal, Rinott

and Santner [55] obtained an inequality that combines the aspects of the results

of Anderson and Slepian; namely, for dO

(4.1) ff 4,n(d+x+ty) cm(d+x) de(x) dP(y) < f n +,,,(d+x) dD(x)

where o(x) is the standard normal cdf, m and n are integers such that

m+l > n > 1, and all integrals are from - to . It can also be shown that
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the left-hand side of (2.8) is decreasing in IjI for any d > 0.

4.2 Inequalities for Multinomial Distributions.

Let X= (Xl ... Xk) have the multinomial distribution qiven by

k x.
(4.2) Pr{X = x}= n! ji (eil/xi!)

i=1

k k
where x= (xI, ..., xk), d x. = n and F ei = 1.

i=1 i= 1

Define

(4.3) C(el, ..., em) = Pr{X i  > ci, i=l, .. , m}

m
where E c. < n and m < min(k-l, n). The results of Alam 1l] are summarized

in the following theorem.

Theorem 4.3 C(e1, ... , em) is nondecreasing in ei, i=l, 2, ..., m.

Further, for ci = cj,

(4.4) Cijt(e1 , ... , em) < C(el,..., em) < Cij(ell em)

where Cij(e 1  ..., em) is obtained from C(el, ..., em) by replacing ei and o.

with their average, and Cijt(e l  ..., em) is obtained from C(el, ... , em) by

substituting t for ei and oi+ej-t for e. where 0 < t < min (oi, e.).

Let us assume here and in what follows on multinomial distribu'ion that

e1 < e2 < < ek. From Theorem 4.3, we have

(4.5) Pr{X 1  > c, ..., X k  I c Ie1 ,  .... OI, O*}

< Pr{X1 >C, .. , Xk >cel, ..., eki

<Pr{XI  c, ... Xk L cl",..,

where c < n/k, e* = l-(k-l)e 1 and = £ei/k.

i1
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Using a representation of PrfX 1 > c ...> C Xk  1  .. a I

in terms of the Dirichlet integral, the inequalities in (4.5) can be ob-

tained as a special case of Theorem 1 of Olkin [51] which shows the Dirichlet

integral to be a Schur function. More general results are available in

Marshall and Olkin ([47], p. 306).

Bechhofer, Elmaghrabi and Morse (10] considered a single sample selec-

tion procedure to select the most probable cell with a minimum guaranteed

probability P* that the selected cell will be the one associated with o

whenever ek/0k- l  6> 1. The rule R proposed by Bechhofer, Elmaghrabi

and Morse takes a sample of N observations and selects the cell that yields

the largest number of observations using randomization to break ties. The

PCS is given by

(4.6) PCS = Pr{Xk > X, jk} + 1/2 E Pr{Xk=X i , Xk > Xj, j~i}
i~k

+ ... + l/k Pr{Xk = Xkl = ... XI

= v(el, e29 ... , k), say.

The following result of Kesten and Morse [41] gives the LFC.

Theorem 4.4 With the above assumptions and notations,

(4.7) I(el, ... , 6k 9 k/ek_ 1 0 > 1) >(6 1 .... ek)

where = (6+k-l) 1 and ek = 6(6+k-l).

Cacoullos and Sobel [16] used an inverse sampling rule for the same

selection problem. Observations are obtained sequentially until one of the

k cells has a prespecified count N. This particular cell is then identified

as the most probable cell. In this case, the PCS can be written as a Dirichlet
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integral and the LFC is the same as that of the single sample procedure of

Bechhofer, Elmaghrabi and Morse [10]. Alam [ 3] considered a different

stopping rule, namely, the observations are taken sequentially until the

difference between the highest and the next highest cell count is equal to r.

For k=2,

(4.8) PCS = r/(l+,r)

where = 02/01. For k>2, there is no exact result. Alam [3] gives a

lower bound, namely,

k-l r r
(4.9) PCS > 1 A/(I+X.)i=l 11

k

where x. = ei/ak' i=l, ..., k-l. An improved bound, namely, rk / F r is
1 1 k 1

recently given by Levin and Robbins [45].

Going back to the single sample procedure of Bechhofer, Elmaghraby

and Morse [10] for selecting the most probable cell, the LFC is sought subject

to ak/0kl > 6 > 1. If we are interested in selecting the least probable cell,

then the analogous problem will be to get the LFC whenever e2/ 1 > 6>1.

The analogous procedure will select the cell with the least count using random-

ization to break ties. In this case, a minimum P* for the PCS cannot be

guaranteed for all P*. This is shown by Alam and Thompson [5] who proposed

a modified indifference-zone. Their rule is still to select the cell with

the least count. Let T'(0 1, ...9 ek) denote the PCS for this rule. Then their

LFC result can be stated as follows:

(4.8) 0'(OI ... > kIe2-el c) > '( I ..... Ok)

where 0 < c < (k-l) l, o. = [l-(k-l)c]/k, and 02 = ... = = (1+c)/k.
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We get additional probability inequalities via subset selection rules.

Gupta and Nagel [27] discussed single sample subset slection rules for

selecting the most (least) probable cell. If we denote the cell counts by

X9 .... 9Xk, their rules R and R2 for the most and the least probable cell,

respectively, are as follows:

Select the cell with count Xi if and only if

Rl : Xi  > max(X l, .... Xk)- d

R X < min(X l , ... , Xk)+ c

where c and d are nonnegative integers chosen suitably to guarantee the

specified minimum PCS.

The PCS for R is given by

n. I ... k

(4.9) P(CS IR)= F(k,n,d; el, ., ek) =(vl .. Vk) el ... k

where the summation is over all k- tuples (v, . .. k vk) such that the vi

are nonnegative, Evi = n and v i < vk+d, i=l, ... , k-l. In the case of R2 '

P(CSIRj) = G(k,n,c;e l, ..., k) is given by the summation in (4.9) extending

over k- tuples (v l , .... vk) such that the vi are nonnegative, Evi = n and

Vi  > VI  c, i=2, .. .k.

We now summarize the inequality results of Gupta and Nagel [27] in the following

lemmas and theorems.

Lemma 4.5 F(k,n,d; o,, ..., 8k) satisfies the following inequalities:

(1) For 1 < i < j < k, and 0 < E < e i ,

F(k,n,d; e , ... , ek ) > F(k,n,d; o ,  . , e i- E, e , +E, ... ,

(2) For 1 < i < k, and 0 < E < ok ,

F(k,n,d; ol, . , k) > F(k,n,d; el ..... i+ E . k- .
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It should be noted that Lemma 4.5 is true even if the order is

aisturbed in the configurations on the right hand side of the inequalities.

The next theorem on the LFC is a consequence of Lemma 4.5.

Theorem 4.6 Let r be the smallest integer for which 0i > 0 and let

s be the largest integer such that 0 . k ' For a configuration minimizing

F(k,n,d; oI, ... k), we have r > s. Furthermore, if r = k-1, then r > s.

In other words, Theorem 4.6 says that the worst configuration is of

4 the type (0, ... , 0, 0', , ... ,B), .

Lemma 4.7 G(k,n,c; oI' ... Ok) satisfies the following inequalities:

()For 1 < i <j <k and 0 < E<

G(k,n,c; 61~ 6 k) >G(k,n,c;o1 , ... , ei- E, + E, k)

(2) For I < j < k and 0 < E < oj,

~~~G(k,n,c; el, .. .Ok > G(k,n,c; e + , E , -E,. . .e )

As in the case of Lemma 4.5, here also the statements are true even if

the order is disturbed in the configuration. The followina tieorem is a

consequence of Lemma 4.7.

Theorem 4.8 G(k,n,c; el, .... Ok) is minimized at a configuration of

the type oI = ... = k-l < ok.

Now, let us consider . independent multinomial distributions each with

cells. Let oi = (eil ... Iik ) be the vector of the cell probabilities of

iii, the ith distribution,, i=l, ..., m. We also assume that, for each i,

0 i l < <. 0 e i k -

Definition 4.9. We say that 0i majorizes YO(oi a.) if

k k
.: o. > ): e. for r 1,..., k with equality holding for r =1.

i=r a =r
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Definition 4.10 If a function p satisfies the property that

y(x) y(y) (y(x) - y(y)) whenever x m y, then y is called a Schur-concave

tSchur-convex) function.
k

If o -i n . , it implies that H(i) .- H(o.), where H(O)i - i . log oi.

is the Shannon entropy function associated with Ri.

Suppose we take n independent observations from each multinomial distri-

bution. Let xi denote the number of outcomes in the cell with probability

. in i = , ... I k; i=l, . Define

(4.10) Q)(nkt;

Pr > j max 9o ( -01)- d) : , i 1

wherefis a Schur-concave function and d > .

Gupta and Wong [341 investigated a subset selection rule for selecting

the population whose cell probability vector majorizes that of any other,

assuming that one such e:Jists. The special case of k = 2 multinomial distri-

butions with the Shannon entropy function as a particular choice of tP was

earlier considered by Gupta and Huang [24. The following theorem relates

to the properties of the procedure of Gupta and Wona [34].

Theorem 4.11. if > e., then Q.(n,k,z; < Q (n,k,z; e

e 9). Further, if ei tj for all j=l, ... z, , then Qi(n,k,; _lz)

Qi(n,k, e =. .. 6_)
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4.3 Inequalities for the Gamma Distribution

'Let x -

(4.11) y(m,x) = f t-le dt
0

and

(4.12) r(m,x) = F(m) - y(m,x), m>O.

Of course,
-t m-1

(4.13) f(x;m) e t: T X~m > x 0, m > O,

is the gamma density where m is the shape parameter. For 0 < m < 1, con-

tinued fraction expansions can be obtained (see, for example, Khovanskii [42])

for xm ex y(mx) and x-m ex r(m,x). Let P n(m,x)/Qn(m,x) and P'(mx)/Q'(mx)

be the nth convergents of these two expansions respectively.

In the case of y(m,x), Gupta and Waknis [33] obtained the system of

inequalities:

(4.14) n (mx) ex m Y(m'x) <n (m,x) + xn (n+l+m)1 2Q<(mx) Qn(mx) (n+m)+1 n+l+m-x), n , ,

where x < n +m+l is a necessary restriction only on the inequalities on the

right-hand side of (4.14) and where (n)r = n(n-l) ...(n-r+l), r > 1, and

P (m,x) 2 n-I
(4.15) n _ [ I + 1+ x + + xnnm,--) rn +m ( + +m) (2+m) + "" Tm--j-].2-n-7-jmj ]

In the case of r(a,x), the even order convergents form a monotonic

increasing sequence and the odd order convergents form a monotonic decreasing

sequence, both converging to e x-m r(m,x). So a system of inequalities can

be generated by bounding ex x-m r(m,x) by successive convergents. These

bounds are discussed in Gupta and Waknis [33]. These bounds in turn can be

used to get bounds on the inteqrals
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(4.16) f FP(cx;m) f(x;m)dx
0

and

(4.17) f [l-F(bx;m)]p f(x;m)dx
0

where F(x;m) is the cdf of the gamma distribution. The integrals (4.16) and

(4.17) with c > 1 and O<b< I are the infima of the PCS for the subset

selection rules of Gupta [21] and Gupta and Sobel [32).

Now, let X0, X1, ..., X be independent identically distributed each

having a gamma distribution with density f(x;m) given by (4.13). Let

( x
(418 max( , .. ,R)

1 X1 0 x

1 2 X0 X0

Let G (y) and H (y) denote the cdf's of Z and Z2, respectively. We notem m 1 2
that the integrals in (4.16) and (4.17) are Gm(c) and 1-Hm(b), respectively.

Alam [2] proved that, for m > 1, H m(Y) is increasing in m for y > 1 and is

decreasing in m for y < 1. Alam's proof involves a fair amount of analytical

details. Further, Alam has no comment on the behavior of Gm(y). The following

theorem provides validity of Alam's result for m > 0 and establishes the

monotonicity behavior of Gm and H for a larger class of distributions.
m

Theorem 4.12. Let X0, X1, ... , Xp be i.i.d. nonnegative random variables

each having the distribution F , where {F } is a star-preceding family in XEA

[i.e., F 2  < F for A1 <A 2 . Let GA and H be the cdf's of Z and Z defined

in (4.18). Then GA (y) and H (y) are both increasing in X for y > 1 and

decreasing in A for y < 1.

1
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Proof. Since 2  F for 1 < X2, the conclusions of the theorem

follow immediately from the inequalities (3.14) of Remarks 3.6. 0j

Remarks 4.13. In the case of the gamma family Fm }, it is known

that Fm convex precedes in m > 0; see van Zwet [60], p. 60. Since the con-

vex ordering implies the star ordering, Alam's result readily follows from

Theorem 4.12. As we pointed out earlier, in subset selection procedures, we

typically encounter Gm(Y) for y < I and Hm (y) for y > 1. That the monotonicity

properties of G (y) and H (y) in these cases can be established by the star-m m
ordering property of the gamma distribution was known though not formally

demonstrated; see McDonald [48] and Panchapakesan [53] who have given different

alternative proofs in the case of integral m for p = 1 and p > I respectively.

Finally, the monotonicity property of H (y) is applied to evaluate the infimum
m

of the PCS for the inverse sampling procedure of Cacoullos and Sobel [16]

for selecting the most probable multinomial cell. El

For the Gamma distribution with density in (4.13), let &m (a) and r M()

denote the ath and the 8th quantiles, where 0 < < 1. For m1 < m2, as

pointed out earlier, F F . This is equivalent to
m2 , 1

F" I (8) F- I (8)

(4.19) ml m2

Fm (m 2) m 2 (a)

in other words, m(B) / &m (a) decreases in m, a result obtained by Saunders

and Moran [56] using a fairly long direct method. They have also shown that,

for m1 < m2, Fm2 is more dispersed than F ml; in other words, rm(i) - .(,1)

increases in m. Also, we can now apply the inequalities in (3.15) to obtain
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new inequalities for the distribution functions of the maximum and the minimum

of certain correlated differences.

4.4 Inequalities Arising From A Two Stage Selection Procedure.

Gupta and Miescke [26] studied sequential selection procedures with

elimination which are based on vector-at-a-time sampling. They showed that

the 'natural' terminal decisions are optimum in a fairly decision-theoretic

sense. To decribe the inequalities that are obtained, let nI , .... nk be k

q independent populations with densities f8 i, e. E o, with respect to the

Lebesgue measure on the real line IR or any counting measure on a lattice in

IR, where 3={f }, e E Q, is a one-parameter exponential family. Let

Xil, Xi2, ... be independent observations from ni, i=l, .... k. For fixed

n < m, let Ui = Xil + ... + Xin, Vi = X i,n+ + ... + X.i*m and Wi = Ui + Vi,

1, ..... k. Further, for fixed sc {f, ... , k), permutation symmetric

Borel set A c- IRk and i C s, define

q.i P {V. = max Vj},
(4.20) 1 - jEs ,

ri Pe {Wi max W i(U l  Uk) EA }.• - . E s

Theorem 4.13 For s = fi 1, ... $ i M}

(1) o. < e< implies that r < r. and qij < qi jz = 1, .... , m; j # , and

(2) the vector r = (r. , .. , r. ) majorizes the vector g = (qi ... , q.m).
11 m
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