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CHAPTER I

INTRODUCTION AND BACKGROUND

A. Introduction

The topic of high-intensity sound propagation has been mostly

limited to sound waves in fluids and solids (see Beyer [10]*). Very

little has been done in the study of high-intensity sound propagation in

bulk porous materials. Studies of intense sound interaction with per-

forated sheets, thin sheets of porous materials, and Helmholtz resona-

tors have been done (for example, see Refs. 37, 48, 55, 86).

Recently the use of porous materials in jet engine inlets has

increased. At high intensities it has been observed that the impedance

of a porous material changes with sound level, i.e., the material be-

haves nonlinearly. An understanding of sound reflection from and propa-

gation in bulk porous materials has therefore become necessary. In this

study many experiments have been performed on air saturated, fibrous, and

expanded plastic porous materials. The materials have porosities in the

range 0.809P:P 0.985, where P is the porosity (the volume of air per

total volume). The emphasis of this study is on the experimental re-

sults and explanation of these results.

In this investigation a theoretical model for intense sound

propagation in very porous, rigid, air saturated, fibrous bulk ma-

References are listed alphabetically by author and referred to by

number at the end of this dissertation.



terials is developed. A separate empirical model is proposed to des-

cribe finite amplitude losses (inexplicable losses in linear theory) in

the porous material. Modeling of the reflection of high intensity

sound waves from the surface of porous materials was also carried out.

The reflection process is very complicated; both resistive and reactive

components can depend upon the particle velocity amplitude of the in-

com;ng wave. Experimental data obtained from measurements on a variety

of bulk porous materials are used to test the validity and limits of the

theoretical models.

After this introductory section, some background theory is

presented in the remainder of this chapter. First, a brief discussion

of the theories on low intensity sound propagation in porous materials

is used to put the theory of Chapter II in perspective. Sect, a brief

summary of high-intensity sound propagation In o-dinarv fluids is pre-

sented. Third, past work on the reflectio.', .- aigh-inteasity sound from

surfaces and thin sheets is described.

In Chapter II a high-inteisity sound theory is presented.

The one-dimensional mass, momentum, and internal energy equations for a

nonlinearly behaving bulk porous material are derived. The resulting

equations are solved by perturbation. A single boundary condition is

used. The input signal is assumed to be a sinusoid which is distorted

by a second harmonic component. A mathematical approximation to model

the high-intensity impedance of semi-infinite materials is also pre-

sented. An empirical model is adapted from the nonlinear acoustics of

fluids to help describe the excess attenuation and approach to

2



saturation* of an intense sine wave in a porous material. The various

theoretical results from Chapter II are compared to data in Chapter IV.

In Chapter III the devices and methods used in the experi-

ments are described. The devices are used to determine the porosity,

material structure, flow resistivity, acoustic impedance, and acoustic

propagation parameters (attenuation and phase speed). Data are pre-

sented in Chapter IV.

In Chapter IV the experimentally determined data are compared

to the theoretical results derived in Chapter II. The results of the

porosity and dc flow resistivity measurements are presented and then

used in the theory to predict the acoustical properties of the various

materials. In the linear region the propagation parameter test results

agreed with theoretical predictions in some cases and disagreed in other

cases. The pprturbation theory was found to be a poor predictor of the

data at high intensities, porosities, and nonlinearities. As the

porosity was reduced the agreement between measurements and predictions

was better at higher intensities. The excess attenuation model predicts

the excess attenuation of the fundamental over a large range of sound

intensities, material nonlinearities, and porosities. Results of small-

signal impedance measurements on finite and effectively semi-infinite

Saturation occurs when the finite amplitude losses become so large that,

no matter how much energy enters a porous material, only a specific

amount of acoustic energy (saturation level) will arrive at some loca-

tion within the material. The saturation level depends upon the dis-

tance the wave travels, nonlinearity, and small-signal attenuation [81].



materials are presented and, in most cases, agree with theoretical pre-

dictions. Results of high-intensity impedance measurements for effec-

tively semi-infinite materials are presented and compared to the

mathematical approximation presented in Chapter II. The advantages

and problems of each model are discussed.

In Chapter V the investigation of acoustic waves in porous

materials is summarized, conclusions are discussed, and proposals for

future work are presented. The appendices include a theoretical analy-

sis of heat transfer in :ibrous porous materials, assembly drawings of

some of the devices discussed in Chapter III, and computer programs.

I.i



B. Linear Theory

A review of the various theories of low-intensity propagation

in and impedance of porous materials is presented in this section.

The following discussion is intended to help orient the reader with

respect to the vast literature on porous materials and the present

study. The intent is not to cover all the literature but to give a

general view. High intensity effects are postponed to Section C of

this chapter. The linear theories are arranged in four categories based

on the model used. After discussion, each theory is related to the pres-

ent analysis. The four categories are the scattering model, the capil-

lary tube-fiber motion models, the rigid frame model, and the lumped

element model.

1. Scattering Model

Sound wave scattering from the fibers of the porous material is

an approach that has been employed with varying success. The approach

has the advantage that no empirical constants have to be determined

from measured data. One minor drawback is that the theory is developed

only for very porous fibrous materials.

In 1910 Sewell [72) applied this method to fibrous materials

containing a viscous gas. At that time there were no experimental re-

sults for comparisons. In 1970 Kozhin [42-44] reworked Sewell's theory,

but made no comparison with available experiments. These theories yield

predicted attenuations that greatly exceed the attenuations measured in

this study.

5
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In 1970 Attenborough and Walker [3] published a scattering

theory for fibrous materials. They show accurate prediction of the ab-

sorption coefficient at frequencies above 500 Hz, accurate prediction of

the phase speed, and predicted attenuation exceeding measured attenua-

tion at all frequencies. The predicted acoustic impedance is high. The

theory includes both rigid and flexible porous materials. A more de-

tailed discussion is given in Ref. 77.

In 1976 Mechel [53,54] derived a long and complicated scat-

tering theory in which he includes the scattering of viscosity, thermal,

and density waves. He concluded that the theory was not as good a pre-

dictor as some of the empirically related theories, such as Delany and

Bazley's [25] analysis of Zwikker and Kosten's model [88] (discussed

later in this section).

Scattering theory cannot be used to predict all the acoustical

properties of a fibrous porous material, but in many cases the theory is

adequate. In the present study, which is of high-intensity sound, this

theory is not applicable because of the assumption that particle dis-

placement is small in the porous material. It would be very difficult

to generalize scattering theory to make it apply to high-intensity waves.

2. Capillary Tube-Fiber Motion Models

Two types of models are discussed in this section. They are,

in most cases, intertwined with each other to such a degree that they

cannot be separated. Most of these models include material motion in

the acoustical analysis. The major difference between the models is

the manner in which the viscous and thermal properties of the material

are determined. In one case, the capillary tube model, the viscous and

6



thermal properties are defined by calculating the acoustical effects of

a large number of adjacent capillary tubes. In the other case, the flow

resistance model, the dc flow resistance of the material is used to de-

termine the viscous properties. In both cases, one or more empirical

factors must be included to match the theory to data. The following

review is presented as historically as possible.

The first attempt at theoretical analysis of the acoustical

properties of bulk porous materials was done by Rayleigh in 1883 [66].

He expanded his work in the second volume of his book [67]. Rayleigh

assumed that the porous material could be modeled as an array of packed

capillary tubes with the sound traveling axially along the tubes.

Porous material structures are actually much different from a simple

model of packed capillary tubes. He based his work on Kirchhoff's [41]

theory of viscosity and heat conduction effects on sound waves traveling

in circular tubes made of perfectly rigid and heat conducting walls.

Many others [6,8,11,25,73,74,88] have used Rayleigh's approach as a

basis for analysis and have used complicated schemes to predict experi-

mental data. Some of these theories are discussed here.

Adaptation of Rayleigh's theory (see, for example, Zwikker and

Kosten [88], Beranek [6,8], and Bies [11]) requires that an empirical

parameter called the structure factor be determined. The definition of

the structure factor depends on the author. The most common definition

of the structure factor is that it is a correction for the tortuosity

the sound wave encounters as it travels in the material [6,8,11,88].

Another definition of the structure factor is that it is a correction

for the effective acoustic air density caused by motion of the frame

7



[11,88]. Although the theories discussed in this section can be tied,

in special cases, to the theory used in the present study, the structure

factor is not used here.

Zwikker and Kosten [88] have presented the most comprehensive

study of the acoustics of porous materials. They used Rayleigh's basic

theory [67] as a starting place and introduced the structure factor

and frame motion. In turn, their theory has become the starting point

for the rest of the theories discussed in this sub-section.

Beranek [8] started with the equations that Zwikker and Kosten

[88] derived in their analysis. Except for the structure factor,

Beranek's analysis reduces to the rigid material model described in the

next sub-section. Beranek measured the propagation parameters and im-

pedance and, through his analysis, presented results illustrating the

volume coefficient of elasticity of air in the porous material (heat

transfer effects) and the effects of having the sample vibrate in its

holder. A theoretical analysis of heat transfer effects is discussed

in Appendix A of this study. Beranek's measured data show a much smaller

transition region between the two heat transfer states than was deter-

mined here or by others [11,34,88]. In determining the sample vibra-

tions in its holder, Beranek addressed a problem important to avoid in

the experiments. If the sample holder holds the sample too tightly, or

too loosely, the sample will tend to resonate at low frequencies and

cause the experimental results to be erroneous relative to results de-

termined from properly held materials. The resonance problem was con-

sidered in the present study and the experimental results indicate that

the problem was avoided. Beranek also discussed coupling of acoustic

8



and solid waves, but concluded that, at higher frequencies, the ma-

terial becomes decoupled from the acoustic waves.

Delany and Bazley [25] carried out an extensive empirical study

of the acoustical properties of fibrous porous materials. They norma-

lized their data to the dimensional parameter f/a, where f is the

frequency in Hertz and a is the flow resistivity in MKS Rayls/meter.

The empirical relations they determined are useful over the specified

range of 0.01<f/a<1.0. The relations are used to calculate the attenua-

tion, phase speed, and impedance. Although not directly applicable to

the present study, the equations are useful in checking measurements

made at low intensities.

Bies [il] reviewed some of the above theories. He also dis-

cussed measurement of flow resistance and porosity. Bies gave an ap-

proximate relation for the structure factor. The discussion was not

limited to fibrous materials. He presented data on cloths, fibrous

materials, and fiberboard materials.

Most of the above theories account for fiber motion (other

than sample resonance). Lambert's [49] analysis of Zwikker and Kosten's

theory [88] indicates that above 130 Hz the air and frame of Kevlar d29

+
aramid (du Pont de Nemours Company) are "decoupled". Because f > 100 Hz

in the present study, we are not concerned with frame motion. Support

All the symbols are listed together at the beginning of this disserta-

tion.

$Kevlar 9 is a plastic fibrous material that is used extensively in the

present study.
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for Lambert's conclusion is given in Chapter IV. Lambert also deter-

mined that the decoupling frequency for Scottfoam (Scott Paper Company)

was at 85 Hz. Scottfoam is a fully reticulated, expanded polyurethane

foam and is similar to the Scottfelt (Scott Paper Company) used in the

present study. Although Lambert used the material density ps =600 kg/m
3

when, in actuality, the density of Scottfoam is p= 1153±32 kg/m 3 [89],

the error leads to an error of only 4 Hz in the decoupling frequency.

We conclude from Lambert's analysis that the rigid frame model is appro-

priate for use in this study.

3. Rigid Frame Model

In this section the low-intensity theory that is used as a

basis and reference for the analysis in Chapter II is presented. This

theory is based on the assumptions that (1) the dc flow resistivity can

be used directly in the momentum equation and (2) the material structure

is rigid. The first to use these assumptions were Kihl and Meyer [45].

By using the flow resistivity a, their paper (1932) represents a simpli-

fication of Rayleigh's more complicated treatment. Other authors [23,

30,32,33,68] have used or rediscovered KUhl and Meyer's approach as a

starting place and expanded on it.

KUhl and Meyer used equations equivalent to the linearized

continuity equation

6p + 0 x 0 (I-I)
t P

In the process of making a foamed plastic, thin plastic membrances form

between the air cells of the foamed plastic. In a fully reticulated

foam the membranes have all been removed.
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the linearized momentum equation

ot (Yu (1-2)
+ p +- 0p x p

P 'X P
2

and the equation of state P=c p to solve for the impedance, attenuation,

and phase speed, where u is the acoustic particle velocity in the x di-

rection, p is the acoustic pressure, 6p is the acoustic density, p is

the ambient density, c is the sound speed, P is the porosity, x is the

distance, t is the time, and the comma denotes differentiation of the

dependent variables with respect to x or t (the independent variables).

In their theoretical analysis K1hl and Meyer assumed the compressibility

of air in a porous material to be variable. They assumed the adia-

batic sound speed co=/yPo/p , where y=C /C is the ratio of specific
0 0 0 PV

heats. They reasoned that the compressibility, and thus the density, of

the air could be determined by experiment. In their calculations they

used the standard compressibility of air p oco. In Appendix A we assume

a constant density po. We show that, because of heat transfer effects,

the speed of sound is a function of both porosity and frequency. Be-

cause the relation derived in Appendix A is frequency dependent, we use

the isothermal sound speed bo= /0o"

The above equations may also be combined to obtain a wave

equation [23]

utt + ,t 0 (1-3)

1,xx b2  b2P
0 0 0

'l 11



The use of p as a divisor of u depends upon whether the reference u is

in the material or in the open air (no material). Here, as P decreases

the particle velocity in the material increases. The importance of

using u/P as the effective particle velocity is discussed in Chapter II.

Note that although Eq. 1-3 seems to be independent of P, the flow re-

sistivity a is actually a function of P.

To solve Eq. 1-3, one can assume that a time harmonic wave

u=eJ (wt-rx)

where r=-ja, w=27rf, and j=vr1, propagates in a porous material. The

wave encounters the attenuation

Wb -1 + (1-4)

0

and the wave number

J =  1+ (1-5)vl2b o~i+r7(O

The phase speed c pH=W/ is

cPH0 (1-6)

1+ +

Plots of attenuation and of phase speed versus frequency for several

commonly found resistivity values are shown in Figs. I-I and 1-2,
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respectively. Both the attenuation and phase speed can change dramati-

cally over a relatively small frequency range. These changes are im-

portant in the propagation of intense sound in porous materials. In

porous materials intense sounds do not behave in the same manner as in

open air, which has a low, uniformly varying attenuation (aaw 2 ) and only

minor (usually negligible) dispersion.

Kdhi and Meyer showed that the specific acoustic impedance in-

ternal to an essentially semi-infinite (aL>>I, where L is the sample

length) porous material is

W = WR + jW1  (1-7)

where the resistive part is

w = (1-8)
R v2P + (I -8)

and the reactive part is

2'

Wb -1+ 0+(___-) (1-9)

We see that Eqs. 1-4 and 1-5 are of equivalent forms to Eqs. 1-9 and

1-8, respectively. We conclude that, for the small signal case,

measuring the impedance when aL>> is equivalent to measuring a and a.

This comparison proves to be a good check on both the theory and data.

The real and imaginary parts of the impedance are plotted

versus frequency for three flow resistivities in Fig. 1-3.
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The general propagation parameter r and impedance W equations

are related to each other by [49,88]

W(L) = (W +jW I ) coth(a+jS)L (I-10)
R I

Equation 1-10 is for finite length (uL< 1) materials mounted on a hard

surface. Equation 1-10 is appropriate for most low-intensity impedance

measurements and is used in the analysis presented in Chapter IV.

When a sound wave traveling in air encounters a porous material

some of the energy of the incident wave is reflected from the material

surface and some is transmitted into the material. The impedance dif-

ference between the air p0 c and the material W(L) causes the separation

of the incident wave into two parts. The ratio of the transmitted (ab-

sorbed) energy to the incident energy is the absorption coefficient.

W(L) - PoC 
a = i00IIi
n W(L)+ P c 0

As the transmitted wave travels in the material it is attenuated (Eq. I-

4) by the action of viscous effects. In the present study the term ab-

sorption is used to describe a reflection/transmission process, whereas,

the term attenuation is used to describe the decay of a traveling sound

wave. Absorption coefficients (aL>>1) are plotted versus frequency for

three flow resistivities in Fig. 1-4.

In Figs. I-I through 1-4 we find that the value of the flow

resistivity affects the acoustical properties of porous materials. Thus,

the importance of determining flow resistivity cannot be overstated. The
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flow resistivity a depends on the material structure. Flow resistivity

may be determined either through acoustical testing or through dc

(steady state) flow resistance testing. Both methods are used in the

present study. At this time, there are no theoretical relations that

can be used to predict a. Several empirical relations [24,33,34,60,78]

have been formulated to predict the flow resistivity of fibrous materials.

Only two relations [33,34] will be discussed in the present study.

By using hydrodynamic analysis, Hersh and Walker [35] deter-

mined a relation between viscosity, porosity, fiber diameter d, and flow

resistivity inside a fibrous porous material with flow perpendicular to

the fibers,

Pi +g ( 171
CF -2 g1 7 3/2(1-12)

dg 4(1-p)

where g is an empirical constant. Equation 1-12 is used in Chapter IV

to calculate the dc flow resistivity for unmeasured values of a.

Hersh and Walker determined g=0.059 for batted Kevlar 29. They cor-

pared data and theory at low frequencies.

For their data-theory comparisons Hersh and Walker derived a

low frequency approximation to Eq. 1-3 by ignoring the u term. For,tt

a sinusoidal wave they found that the attenuation a and wave number a

were equal to

T=a= -' (1-13)
/2
2b 00
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For porosities in the range of 0.9<P<0.97, the low frequency approxi-

mation is valid for f<2 kHz. For a full frequency range prediction the

constant g must be redefined.

Hersh and Walker [33] showed that a is related to d, P, and P

by

a = -v h(P) , (1-14)

where h(P) is a structurally dependent function of P. For their specific

case the relationship is given by Eq. 1-12. In dimensionless quantities

Eq. 1-14 is

0 2 h(P) = h(P)/Re (1-15)

p wd

where Re is an acoustic Reynolds number [5,33]. The value of the acous-

tic Reynolds number is important in our analysis. When Re>> the acous-

tic boundary layer is small relative to the fiber size, viscous effects

are unimportant, and Eq. 1-12 is not valid. When Re<<l the boundary

layer is large, viscous effects are important, and Eq. 1-12 is valid.

For the materials and frequency range used in the present study,

10 -3Re523. Most of the experiments were done such that Re<1.

Flow resistance data for many different porous materials have

been presented in several studies. Nichols [60 dealt solely with the

linear flow resistance of fibrous porous materials. He also determined

an empirical relation for fibrous materials. Brown and Bolt [19] pre-

sented data on both linearly and nonlinearly behaving materials and were

the first to plot flow resistance data versus pa-ticle velocity on a log-

log plot. Plotting the data in this manner illustrates the relative

20
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nonlinearity of the dc flow resistivity (see Chapter IV). Bies and

Hansen [12] present linear flow resistance data for many porous materials.

Only viscous effects are considered in the above theory. The

frequency dependent effects of heat transfer on the compressibility of

the gas in the porous material are ignored. Heat transfer effects

cause the compressibility of the air to be neither adiabatic nor iso-

thermal and, for comparison with data and for simplicity in the calcula-

tions, the limiting values of the adiabatic and isothermal sound speeds

are each used in the low-intensity sound calculations. In the high-

intensity sound calculations, because of increased heat conduction, only

the isothermal sound speed is used. The theory that has been summarized

up to this point will be used as a basis for comparison between the first

order theory developed in Chapter II and the small signal experiment re-

sults presented in Chapter IV.

In 1980 Hersh and Walker [33] extended their 1979 theory [34]

to include heat transfer effects. They used results of experiments on

dc flow through fiber bundles to determine relations to fit equations

for heat transfer and viscosity effects. They obtained a one-dimensional

wave equation that combines both heat transfer and viscosity effects.

There are three empirical constants to fit to the data; one constant

deals with heat transfer and two constants deal with viscosity. The

values of the viscosity constants depend on whether the sound travels

perpendicularly or axially with respect to the fiber orientation. The

wave equation is
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K+
2 pw H

xx C ) +
0o

P0

where K is a heat transfer parameter and aH is a viscous drag parameter;

both parameters are functions of the porosity, fiber size, and their

respective fitted constants. The viscous drag parameter presented by

Hersh and Walker [34] is

41(1-P) [V D + V D ], (1-17)H 2n n p

where

D 16/yI [i + 14.75(1_P) , (I-18a)
n

D 3.94(1 - P)0.413[I + 27(1 - P)3] , (I-18b)
p

where V and V are the empirical constants and the subscripts denoten p

flow parallel (p) to the fibers and flow normal (n) to the fibers. Hersh

and Walker fit Eq. I-18a to dc flow resistance data taken on many dif-

ferent materials by Davies [24]. Davies found very little scatter of

measured data from his own theoretical predictions. Hersh and Walker

fit Eq. I-18b to dc flow resistance data taken on a variety of compact

bundles of parallel fibers by Sullivan [78]. Sullivan also found little

deviation of measured data from his own theoretical predictions. Even

though Davies and Sullivan found little scattering in their data, the

data fitting constants V and V in Eq. 1-17 should be determined forn p

each material to be used. It appears that, since there are two constants,
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the equation may be used for a material made of randomly oriented fibers

[34]. As shown by Hersh and Walker and in Chapter IV, the definition of

a can be used to define the flow resistivity without including heat

transfer effects.

The heat transfer parameter presented by Hersh and Walker is

2 1.6yp(i - P)3 /2 [I + 3.94(1 - P)3]K = 2 (1-19)

Prd PT
n

where Pr=pC p/ K is the Prandtl number, K is the thermal conductivity of

the medium, and T is an empirical constant. The basis for this
n

equation was taken from work done by Masliyah [55] on dc energy and

momentum transfer from cylinders oriented normally to the fluid flow.

The heat transfer effects on the sound speed in Eq. 1-19 are similar to

those determined in Appendix A.

The material Hersh and Walker used in their tests is Kevlar 29.

As noted earlier, this material is used in many of the experiments in

the present study. In addition, other materials are used in the present

study and the test results are discussed in Chapter IV.

4. Lumped Element Model

The last linear theory to be considered here was published by

Zarek in 1978 [82]. He considered sound absorption by flexible poly-

urethane foams. He considered materials with and without an impermeable

membrane facing. He approached the theory from a lumped parameter model

for the gas and material and used the results to determine a Lagrangian

that includes Rayleigh dissipation. He then applied Hamilton's
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principle and determined equations of motion for the coupled

air-material system. He stated that the parameters only include the

small scale effects of the porous medium; all nonlinearities of the air

and material are ignored. His theoretical predictions agree well with

his experimental results. Zarek also compared his theoretical pre-

dictions to some of Beranek's [71 data and found fairly good agreement

between the two. Zarek's theory is not useful in the present study because

he considered material motion and he ignored all nonlinearities.

The theories discussed in this section all pertain to the

acoustical properties of the porous materials at low intensities. Many

of the theories include frame motion of the material, but Lambert's

analysis shows that, for the present study, the frame motion is negli-

gible. Neglecting the frame motion greatly simplifies the analysis.

In Chapter II we use the conservation equations and show which assump-

tions lead to the rigid frame theory.
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C. Nonlinear Theory

This section contains a presentation of two topics. The first

topic is a brief review of how an intense sound propagates in a fluid

and how absorption and dispersion affect shock formation and attenuation.

The second topic is a brief presentation of the theoretical and experi-

mental studies of intense sound reflected from thin porous sheets.

1. Intense Sound in a Fluid

The propagation of an intense sound in a fluid is fairly well

understood. The brief theoretical treatment presented here is based on

extensive work by others and is presented as background to the nonlinear

theory used in Chapter II.

For any point on the waveform the propagation speed will vary

as [i0]
dx =c + u (1-20)
dt u=const

Equation 1-20 adds the effect of convection u to the sound speed

c (1-21)
s

where P is the total pressure, s is the entropy, and p is the total

density. The pressure-density relation is nonlinear, c depends on tem-

perature, and for a simple wave

c = c + l-u . (1-22)
0 2
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The propagation speed becomes

dx
C + Vu ,(1-23)

u=cons t

where '=(y+l)/2 is the nonlinearity parameter of air. In the small

signal case, where u<< co,

dx
dt =c

u=const

In an isothermal situation, such as in a porous material, y=l and B'=1

and the nonlinearity of the air is reduced. In a porous material the

nonlinear effects are more complicated than suggested here.

Since the propagation speed varies with location on the wave-

form the wave peaks will travel the fastest and the wave troughs the

slowest. The thermal and convective effects are cumulative, the wave-

form distorts as it travels, and, when u is large enough, the compres-

sional phases steepen and form shocks. Distortionof the wave is accom-

plished by the generation of higher frequency harmonic components. All

fluids dissipate energy, the high frequency components are attenuated at

a faster rate than the fundamental component, and, thus, dissipation

limits the distortion of the waveform. By shifting energy to the higher

harmonic components, the fundamental loses energy more rapidly than at

low intensities. The increased loss is called excess attenuation and we

find that the excess attenuation increases with source intensity. Above

a certain source level we find that, no matter how much we increase the
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energy input, the excess attenuation limits the measured level to a

constant. We call this constant level the saturation level [4,57,76,81].

The farther a measurement point is from the source the lower the satura-

tion level is at that location. Before the dissipative effects are dis-

cussed, the progressive distortion of the wave is discussed.

In studying shock formation and dissipation in a lossless

fluid, theFubini solution [16]

u 1: Jn (no )sin n(wt-kx) (1-24)
0 n no nO

applies to the region before shocks are formed (o*<1) when the boundary

condition at x=O is

u(O,t) = u sinwt , (1-25)

where u is the initial particle velocity amplitude, J (.) is the nth
o n

order Bessel function, o*=x/x, xI/B'ck is the shock formation distance,

C=uo/Co0 k=w/Co' and n denotes the nth harmonic.

In the region (o*>3) where shocks are well formed and have be-

gun to decay, the Fay solution [16]

u =_ 2/C
u , sin n(wt-kx) (1-26)
Uo sinh[n(l+o )IG]

is applicable, where G=8'ck/, which is sometimes called the Gol'dberg

number [i]. In the limit, as G-*o, Eq. 1-26 represents a sawtooth wave.

In this limit the ordinary dissipation is small relative to the rate at

which energy is pumped into the higher harmonic components and dissi-

patedin the shocks. Blackstock [16] devised a scheme to combine the two
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solutions, Eqs. 1-21 and 1-23 (G=-), into a third solution such that

the whole region from the boundary to infinity may be explored.

Since GO-, a perfect sawtooth wave never forms. The Gol'dberg

number indicates the relative importance between distortion and ordinary

dissipation. For a very strong wave, such that 5'ck>>a, the shock forms

quickly, approximating a sawtooth, and takes some distance to dissipate.

For weak waves or large viscous dissipation, such that 6'ck<<, a shock

wave will not form.

In 1977 Bj~rn6 [14] compared dissipation effects to nonlinear-

ity effects by using both the Gol'dberg number and the Keck and Beyer

[40] perturbation solution of a nonlinear wave equation to study in-

tense sound propagation in a viscous fluid saturated, rigid sediment.

Bj~rn6 experimentally determined the parameter of acoustic nonlinearity

in fluid-saturated sediments by using Beyer's analysis [9]. Bj~rnO

showed in his analysis that the amplitude of the second harmonic com-

ponent could not exceed 1.3% of the fundamental components because the

attenuation effects are much larger than the nonlinearity effects.

Bj~rn indicated that, for most high-amplitude sounds, the sound goes

directly from finite-amplitude distortion into the "old age" (the wave-

form is nearly sinusoidal) propagation region. He noted that a shock

wave propagating in a sediment decays rapidly and he concluded that the

nonlinear effects are negligible in viscous fluid saturated sediments.

Determining the nonlinear behavior of a material is important.

If the material behaves very nonlinearly, relative to attenuation, then

harmonics are generated very rapidly. In the present study the dc flow
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resistivity characteristics are used to define both the viscous dissi-

pation and nonlinear properties of the material. Carman [21] stated

that for dc gas flow through porous materials the transition to non-

linear behavior is related to the onset of turbulence and the modified

Reynolds number

uR -s (1-27)

where v is the kinematic viscosity and S=4(1-P)/d is the surface area/

unit volume. Carman stated that when R Z I the flow resistivity behavesm

nonlinearly, i.e., the flow resistivity depends on the particle velocity.

Later in this study we find that the manner in which the nonlinearity is

caused, i.e., turbulence, may be important to how an intense sinusoid

loses energy. We find that the complexities of excess attenuation of a

sinusoid are not as easily defined in a porous material as in an open

fluid. In addition, how the nonlinearity is defined and used becomes

extremely important to how well the effects of nonlinearity are pre-

dicted.

Blackstock [17] presented a perturbation solution for a

Burgers equation governing the propagation of sound in an absorbing,

dispersive fluid. He showed that the dispersive characteristic affects

the level of the generated second harmonic component. This effect has

importance in a porous material. Equation 1-7 showF that porous ma-

terials are very dispersive. The harmonic components of intense sounds

generated in a porous material may be greatly affected by the dispersion

because energy added to the components will be added out of phase with

the energy already present.
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Zorumski [84] presented conservation equations for thin sheets

of porous materials with nonlinear dc flow resistance. He used these

equations to determine the scattering of sound from porous elliptic

cylinders. He did not attempt to solve the conservation equations for

the propagation of intense sound in a bulk porous material. His re-

sults are described in the next section.

In this section a very brief review on intense sound prop-

agation through lossless and dissipative fluids has been presented.

These ideas are useful in the analysis and comparisons made in Chapter IV.

2. Reflection of Intense Sound

For all practical purposes, a sound propagating in a porous

material must first enter the material from an adjacent medium. A wave

incident on the surface of a bulk material is reflected from as well as

transmitted into the material. In order for us to understand the losses

associated with the transition from one medium to another, we must deter-

mine the impedance of the material. Most materials are acoustically

finite (aL<I) and, as shown in Eq. I-10, the impedance, the propagation

parameters, and the material termination impedance (at x=L) all influence

the measured impedance. At high intensities the analysis becomes dif-

ficult because both the impedance and propagation parameters depend on

intensity. We have just seen that as an intense wave propagates, energy

is transferred to the higher harmonic components. The harmonic components

interact with each other and superposition is no longer valid. When

an intense wave is used to measure reflection (or absorption) properties

of a porous material, the sound level, instead of just frequency, must
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also be specified. Since superposition is not valid, the incident and

reflected waves may influence each other. For short interaction regions

this influence may be small. For large interaction regions, such as in

long pulse trains or standing waves, the mutual influence must be ac-

counted for.

This section contains a review of past studies of the reflec-

tion of intense sound from different surfaces and the determination of

the impedance of sheets of porous materials. Both theoretical and ex-

perimental studies are examined.

In 1960 Blackstock [15] showed that intense sounds reflected

from surfaces do not always follow the commonly used small signal laws.

Blackstock considered a pressure release surface, an infinite impedance

surface (a hard wall), and a thin resistive sheet. Regardless of in-

tensity, reflections from a pressure release surface are accompanied by

a doubling of the particle velocity at the interface. In addition,

Blackstock found that at a hard wall the variational sound speed c is

the variable that doubles throughout the intensity range. The pressure

doubling law for reflection from a hard wall is only an approximation.

However, at a sound pressure level of 174 dB re/20 pPa the deviation

from pressure doubling is only 6%. Above 174 dB pressure amplification

at the wall increases and a more exact relation must be used.

In the case that most interests us here, the thin resistive

sheet, Blackstock found a relation for the pressure reflection coeffi-

cient
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r I+ r W)+ 1 -1 + rW2 EsinwPr Oo0C °0 4y Poo 0 c sin]

Roe 1o ' (1-285)
I1+ r(z) +y+1 + 1 r(z) 2 1

2pc 8y Pj sinl

where Pr is the reflected pressure, Pi is the incident pressure,

4(z)=Re(z)-p c, z is the specific normal acoustic impedance, Im(z)=O,

c=u/c is the acoustic Mach number of the initial wave, and 0 is a

specific location on the wave that is followed through the course of

travel of the wave.

Unfortunately, porous materials do not meet the condition that

Im(z)=O. However, the case of purely resistive porous materials is in-

structive. From the analysis results the acoustical characteristics of

the real material may be inferred. Equation 1-28 may be used to follow

only one point on the waveform at a time. If the first peak of the sine

wave (compression) is followed as it leaves the piston, sinw=1.O. In

terms of the real part of the acoustic impedance, the absorption coeffi-

cient is

2ReWz + I 1_ Re(z) ) 2] 2
____ __ __o c 2y 11 (o~ c )

Sa = R I-R 2 = I- 1- o 0o yI (1-29)

n + Re) + y+ -y (Rez)

P0c0  4y 0oC 0

Equation 1-29 can be used to calculate the absorption coefficient that

the peak of an initially sinusoidal wave encounters.
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If the minimum of the sine wave (rarefaction) is followed as

it leaves the piston, sinwo=-1.0 and the signs of the two E terms in

Eq. 1-29 become negative. This change of sign indicates that the phase

of the wave is important to reflection from purely resistive porous

materials. This statement of phase dependence should hold for any

porous material. For example, when Re(z)/p c =3.0 and c=0.02 (160 dB
0 0

re/20 pPa) a =0.763 for sino=l.0 and a =0.738 for sin =-1.0. The dif-n n

ference increases with increases in Re(z) and c.

In the above analysis Re(z) is arbitrary and may be a function

of the particle velocity. If the impedance is a function of the particle

velocity and Im(z)#O, then a changes more dramatically than indicated
n

by Eq. 1-29, because both Re(z) and Im(z) affect the value of a nn

Zorumski and Parrot [83,86] and Zorumski [84,85] are the only

researchers to present a combined theoretical-experimental analysis of

thin nonlinearly behaving porous materials. The most general presenta-

tion is in Ref. 86. The mathematical and computational details are in

Refs. 84 and 85, respectively. We summarize their general theory, ex-

periments, and results below.

In this theory Zorumski and Parrot present generalized, func-

tional relations for the conservation of mass and momentum. They assume

the material is thin enough that X>> L, where X is the wavelength, and

that the velocity differential across the sample is negligible. They

also assume negligible compressibility in the material. Thus, the con-

servation of mass equation does not enter into their analysis. Their

analysis is based on use of the momentum equation. They assume that the
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particle velocity dependent dc flow resistance can be used to describe

the acoustic flow resistivity R[V(t)], where V(t) is the acoustic

particle velocity. In addition, they assume the acoustic reactance

X[V(t)] is a function of particle velocity. From their version of the

momentum equation they obtain a temporal impedance operator Zt such that

Z V(t) = JR[V(t)] + X[V(t)] 3 v(t) .(T-30)

The temporal impedance operator is evaluated from their experimental

4 data. They claim the theory can be used to evaluate the impedance en-

countered by any distorted waveform. Their analysis is done for dis-

torted sinusoids. As discussed below, if there is no nonlinear inter-

action between the harmonic components nor between the incident and re-

flected waves, then their claim appears to be valid.

We now discuss Zorumski and Parrot's [83,86] experimental in-

vestigation. They used a standing wave tube with a microphone flush

mounted with the surface of the rigid termination of the tube. They

placed the material at one-fourth wavelength from the rigid termination. A

second microphone was placed outside the material surface that was away

from the termination. Tests were done at 0.5, 1.0, 1.25, 2.0, and

4.0 kHz and at sound levels from 120 to 160 dB. They noted, that, be-

cause of the material and second microphone placement, all even harmonic

components of the fundamental were ignored in the experiment and, thus,

in the theory. Ignoring the even harmonic components might lead to

problems because the components may interact with the waves everywhere
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except for in the material. As seen in Eq. 1-24 harmonic component gen-

eration from a sinusoid starts by generating all harmonics, and, mainly,

the second harmonic. If all the even harmonics are ignored, then much

of the energy lost by the fundamental is being ignored and measurement

error is being introduced.

Zorumski and Parrot presented several interesting results.

First, they showed that the acoustic flow resistivity is independent of

frequency and closely approximates the dc flow resistance at all par-

ticle velocities. Second, they showed the acoustic reactance to be a

function of both frequency and particle velocity. The theoretical-

experimental results are found to be consistent and in fairly good

agreement over large frequency and sound level ranges.

The above analyses presented by Blackstock and Zorumski and

Parrot show that the analytical and experimental determination of non-

linear porous material impedance is extremely complex. This complexity

has led any researchers to experimentally determine the impedance and

absorption of various materials. Shock tube experiment results [27,35,

79] will not be discussed.

In 1970 Powell and Van Houten [64] used band-limited tone

bursts at frequencies between 500 Hz and 10 kHz to study the absorption

properties of porous material covered resonators. They measured the in-

cident and reflected peak pressures at a single microphone position and

discussed design considerations for the test procedures. The evaluation

of their results is difficult because the exact length and diameter of

their wave tube, or tubes, was not specified. It appears that the tube
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length could have been greater than the shock formation distance at

high frequencies and sound levels. They discuss design criteria for

the optimum tube lengths and diameters, but do not state how, or if, the

criteria were implemented. They analyze the waveform and spectral con-

tent of what appears to be their input waveform to the acoustic driver.

They never indicate what the incident and reflected acoustic waveforms

look like. They did not indicate whether they saw shock formation or if

the acoustic waveform was distorted by the reflecting surface. The tube

length is important because at high intensity, if the tube length is too

4long, then the measured absorption coefficient would be incorrect.

Measurement of the absorption coefficient depends on the attenuation of

the traveling wave being constant with sound level change. A wave

traveling in a tube longer than the shock formation distance x ex-

periences different attenuations. The attenuation depends on where the

wave is with respect to R. Before the wave reaches R, the shock is

forming and the attenuation of the fundamental component is greater than

tube wall attenuation. After T, the attenuation increases and then,

when x>4R, asymptotically approaches tube wall attenuation [16]. Some

nonlinear attenuation effects can be accounted for in the calibration

measurements, but, as indicated above, the error can grow rapidly and

a short tube is necessary.

In 1973 Melling [55] experimentally and theoretically deter-

mined the impedance of perforated plates and perforated plate resonators

at low and high intensities. He showed how both the real and imaginary

parts of the impedance change with the intensity. He designed a high
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intensity standing wave impedance tube which has a frequency range of

300 to 3250 Hz and upper sound pressure limits of 144 to 159 dB [56].

The system is large and also requires large transducers to generate the

required steady state sound levels. Melling's program is well thought

out and could be useful for evaluating bulk porous absorber character-

istics. Unfortunately, the cost of building a system of this type is

large and this type system was not used in the present study.

In 1980 Nakamura et al. [58] described the absorption of a

small-signal, plane N wave by finite length porous materials. They

* showed that the individual Fourier components of the N wave interact

individually with the porous material. If the material is long enough,

one can determine WR and WI and, if it is short enough (aL<1), one can

determine a and a.

In a later paper Nakamura et al. [59] described the reflec-

tion of a plane N wave from the end of an open pipe. They showed, as in

their earlier paper, that the low level impedance is predicted by low

level N wave tests, but the high intensity N wave reflections are

drastically modified as the amplitude increases. They stated that their

*results show the total reflected energy between zero and 10 kHz to be

approximately invariant with respect to the N wave amplitude. In this

latter paper, they used a much different system in the measurement of

impedance. The large amplitude N wave does not propagate in a linear

fashion and the frequency components interact. They used an algorithm

similar to the algorithm developed by Pestorius [62] to mathematically

6 propagate the measured incident wave to the pipe termination. They
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modified Pestorius' algorithm to mathematically propagate the measured

reflected wave backward from the microphone to the pipe termination.

After they mathematically propagated both waves to the end of the pipe,

they subtracted the Fourier transform of the reflected waveform from

the Fourier transform of the incident waveform. They used the results

of this subtraction to calculate the pressure reflection coefficient and

the energy reflection coefficient of the open pipe. This method works

because the reflected wave is inverted with respect to the incident

wave and much of the high frequency energy of the incident wave is lost

out the end of the pipe so that no shock exists in the reflected wave.

In fact, by the time the reflected wave reaches the microphone, the wave

does not develop a shock.

If a porous material was placed in the system of Nakamura

et al. [59], the reflected wave would (usually) not invert. A shock

could reform in the reflected wave and the above method could not be

used. Once a shock has formed in a wave the process cannot be mathe-

matically reversed to obtain the original waveform because information

has been irretrievably lost in the shock formation process. The method

devised by Nakamura et al. is limited because it may not be useful

above certain sound levels and requires a computer for the calculations.

For these reasons a more useful method was sought.

In 1981 Kuntz et al. [47] described a simple impedance

measurement method. This methou is described in detail in Chapter III

of this study and experimental data is presented in Chapter IV.
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In this section several test methods and theoretical descrip-

tions that show the change of impedance with intensity have been dis-

cussed. The advantages and disadvantages of the different methods have

been discussed and serve as background information for the measurement

methods described in Chapter III.
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D. Summary

Several diverse topics have been considered in this chapter.

In spite of their diversity, the topics are the basis for understanding

the theory and results that follow in the remainder of this study.

Many theories have been developed to explain low-intensity sound prop-

agation in porous materials. In this study, because of the complexity

of the nonlinear acoustics analysis, only the simplest approach is used,

that of using the dc flow resistivity to define the viscous effects in

a rigid porous material [30,32,33,45,68]. The more complicated ap-

proaches that include heat transfer and material motion [8,11,34,49,67,

88] could, conceivably, be used, but the mathematical complications are

prohibitive. In most cases, the simple approach is seen to result in

adequate prediction of the acoustical properties.

From the nonlinear acoustic theory for fluids we have shown

that, because of the high dissipation in a porous material, shock waves

will probably not be formed in an intense sound wave. Perturbation of

the conservation equations is used in Chapter II to describe the prop-

agation of intense waves in bulk porous materials.

Propagation of a wave in the material is not the only aspect of

sound interaction to be considered. The wave must enter the material

and, consequently, a wave incident on the surface of a bulk porous ma-

terial is reflected from as well as transmitted into the material. The

mathematical prediction of the impedance that an incident, high-intensity

sound wave encounters at the surface of a bulk porous material is not a

trivial task. In fact, the task has never been accomplished. In this
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study only a simple mathematical approximation to the impedance will be

made.

Because superposition is invalid for intense sound, the

measurement of the impedance of a bulk porous material exposed to an in-

tense sound is also not trivial. Many measurement methods have been

developed to measure the impedance of both bulk and sheet materials.

These methods all show that the acoustic impedance and absorption co-

efficient of a porous material depend on the amplitude and frequency

content of the incident sound wave. Another measurement method is pre-

sented and used here because it appears to circumvent some of the pro-

lems that the other methods do not address.
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II. THEORY AND MODELING

In Chapter I various theories for sound propagation in

acoustic materials were described. The rationale for modeling porous

materials as rigid materials was presented as a reasonable assumption.

In Sections A through C of this chapter the mass, momentum,

and energy conservation equations are derived for porous materials. The

model is limited to rigid, isotropic, nonlinear, air saturated, bulk

porous materials.

In Section D perturbation is used to determine approximate

solutions to the conservation equations. These solutions are used in an

attempt to predict the manner in which intense sound propagates through

a porous material. Because the measured boundary conditions are not

ideal, an approximate boundary condition is considered. The boundary

radiates both the first and second harmonic components into the

material. The two components can be set to arbitrary amplitudes and

relative phase. A second-order approximation is determined. In

Chapter IV the solution is compared to the data.

In addition to sound propagation in the porous material, the

characteristic impedance of the material is important. In Chapter I we

found this problem to be extremely complicated at high intensities.

In Section E an approximation to the impedance relations is made to

determine a useful intensity dependent impedance relation. The results

only apply to sinusoidal waves normally incident on the surface of a

semi-infinite porous material.
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In Section F the approximation of Section E is extended to

illustrate nonlinear propagation of the fundamental component. In

addition, another model is proposed to illustrate the effects of

saturation and excess attenuation on the fundamental component.

In Section G a short summary of the chapter is presented.

In Chapter IV the various models are compared to the data.
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A. Continuity Equation Derivation

The physical concept of how a fluid flows through a porous

material is necessary for us to understand how the flow is distorted

and impeded by the material. The continuity equation derivation is

presented in simple physical arguments so that we may take certain

assumptions for granted in future derivations.

A simplified cross section drawing of a bulk porous material

control volume is shown in Fig. II-1. The structure is made of many

parallel fibers. The control volume is fixed to the rigid structure.

If no structure is present, the particle velocity is represented by u.

When the fluid enters the porous material the velocity is increased by

a factor of the porosity P. The porosity is the volume of the air in

the control volume relative to the total volume (including fibers) of

the control volume. We assume the material to be homogeneous and the

porosity constant in each derivation.

For the derivations we need to know the relation between po-

rosity and the cross sectional area a fluid encounters in a material.

In Fig. II-I a single "cell" has been drawn such that the four sides

each bisect two fibers. Thus, a quarter of each fiber is enclosed by

the cell. Assume each cell to be of length L along the fibers. The

porosity of the cell is

~ d 2

P =1- (II-1)

4DHL

where Dand H are defined in Fig. II-i.
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FIGURE I1-1
STATIONARY CONTROL VOLUME USED IN THE DETERMINATION OF THE

CONSERVATION OF MASS RELATION FOR POROUS MATERIALS.
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A gas flowing through the material will not have a constant

speed. Thus, the average open area encountered by the gas flow may not

be evaluated at any point in the medium. The open area, as a function

of x, is integrated along the length D of the cell. In doing the in-

tegration we find the same relation for the area as for the porosity,

Eq. II-1. We define the average open area to be

A PA , (11-2)p

where A is the cross sectional area of the control volume.

A physical statement of the continuity equation is that

the mass flux across the the time rate of change of
control volume surface mass in the control volume.

For the one-dimensional system shown in Fig. II-i, the continuity

equation is

P -PAx -u =PA P- PAAx (11-3)
p x P x+Ax at

where p is the total density, x is the position, Ax is the control

volume length, and t is the time. A differential form of Eq. 11-3 is

found by dividing Eq. 11-3 by PAAx and taking the limit as Ax goes to

zero. Since both A and P are constant, the continuity equation becomes

I a(pu) + 0(11-4)
p x at
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Equation 11-4 is used to describe one-dimensional mass flow in a porous

material and is one of the three conservation equations used in

Section D. Except for the porosity term P, Eq. 11-4 is the usual con-

tinuity equation for fluids. In all future derivations u and p are

combined as u/P because a change in porosity only modifies the particle

velocity in Eq. 11-4.
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B. Momentum Equation Derivation

In the following momentum equation derivation a one-

dimensional model is assumed. As discussed in Section II-A, the po-

rosity is included with the particle velocity.

The forces on the control volume fluid are illu..trated in

Fig. 11-2. The conservation of momentum states that

the time rate of change the sum of external x-momentum
of momentum inside the forces in the x- + inflow
control volume direction (pressure through the

and drag) two end sur-
faces

For the one-dimensional system shown in Fig. 11-2, the momentum

equation is

2 2

PAl - PAx - FAAx + p Al -- Ax (11-5)
P at x 'X+Ax X P2 xP 2 x+Ax

where P is the total pressure and F is the drag force/unit volume.

Dividing Eq. 11-5 by A6x and taking the limit as Ax+0 yields

(pu) =- P - 2 - F (11-6)
Sx ,P x

Rewrite Eq. 11-6 as

' I u +Pu t ]x 2 P, - - pu2 + Puu ' + Puu - F (11-7)

where, from Eq. 11-4, the underlined terms equal zero. The x-direction

momentum equation becomes
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49



puu

+ + P - F (11-8)p p2 x

Except for the P and F terms, Eq. 11-8 is the momentum equation for

inviscid flow in an open fluid.

The drag term F in Eq. 11-8 must be evaluated. Fulks

et al. [29] give a derivation of their three-dimensional term which

is equivalent to F. A different approach is used here. By using the

following analysis F can be defined experimentally.

Both the drag and the dc flow resistivity are used to

define dissipation in a porous material. Whereas we have not defined F,

we can measure the flow resistivity and mathematically relate the two

variables. The dc flow resistivity in a porous material is determined

by first forcing a gas through the material at various, known particle

velocities. The pressure drop AP is measured at each particle velocity

u/P. Once these measurements are obtained the dc flow resistivity is

calculated by using [2]

" PRd c PAP

SE(I 1-9)
L uL

where L is the sample length. The dc flow resistance Rdc is a function

of particle velocity and is fit to the first order equation

[12,19,21,55,88]

0R~ + , (11-10)
I, P
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where the coefficients a and r are fit to the dc flow resistivity data.

The drag term F is defined by noting that if the flow is

steady (dc), then the first and second terms of Eq. 11-8 equal zero

[86]. The momentum equation becomes

P = -F (I-il)

Divide Eq. II-il by the particle velocity inside the porous material

u/P to determine the dc flow resistivity inside the material

PRdc P
L p x PF (11-12)LU U '

and

F = +. (11-13)F = + nPIP

Both Hersh and Walker [33,34] and Zorumski and Parrott [86] have shown

the flow resistivity to be independent of the frequency. Thus, the

coefficients a and n are independent of any time derivatives.
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C. Energy Equation Derivation

In this section the internal energy equation for the fluid in

the porous material is derived for use as the third conservation

equation in the perturbation analysis. As discussed in Section II-A,

the porosity is included with the particle velocity.

The energy transfer in the control volume fluid is illus-

trated in Fig. 11-3. The conservation of energy states that

the time rate of net flux of work/unit time heat
change of energy energy across done by sur- added
inside the con- = the control + face forces on + to the
trol volume volume sur- the fluid fluid.

faces

For the one-dimensional system shown in Fig. 11-3 the energy

equation is

-x ap (e+u 2/2P 2 ) = p(e+u 2/2P 2uA - p(e+u 2/2P )uA
A x at P

(11-14)

PuA PuA + qA qA
x x+Ax x x+A x

4 where e is the internal energy/unit mass and q is the heat flux/unit

area. Dividing Eq. II-14 by AAx and taking the limit as Ax+0, yields

,eu2/2 2  [p(e+u 2/2p2) u] (Pu),(I-5
(e+u /22) u - ,x -) q (11-15)

P P

Equation 11-15 is rewritten as

e~([1 De ( I+ Pu+ ie+ + +_ -++ + + q  = 0 (11-16)
(e-'22  [,t x Dt P P Dt x), q x1-6
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FIGURE 11-3
STATIONARY CONTROL VOLUME USED IN THE DETERMINATION OF THE

CONSERVATION OF ENERGY RELATION FOR POROUS MATERIAL.
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where the total derivative is

D a Ua (11-17)

Dt at P ax

The terms in the square brackets of Eq. 11-16 equal Eq. 11-4, the

continuity equation. The terms in the curly brackets of Eq. 11-16

equal-F in Eq. II-8, the momentum equation. The energy equation

becomes

De PuDe+ (11-18)
= - F--P P

The fluid in the porous material is assumed to be an ideal gas,

which has the properties

P = RpT (11-19)

and

de = C dT (11-20)

v

where R=(y-1)C , y /C , T is the temperature, and C and C areVp V

the specific heats. By using Eqs. 11-19 and 11-20, Eq. 11-18 is

rewritten as

(y-1) Pu (Y)
+ = (y-1) uq + (11-21)

[]Dt o P o 'X P

We may rewrite the continuity equation (Eq. 11-4)as

U
I + x 0 (11-22)

p Dt P
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Equation 11-22 is used in Eq. 11-21 to eliminate the density variable

such that

= (Y-l)(-qx~+Fx
D-t +  P ( - + ) . (11-23)

This form of the energy equation is simplified by noting that the

heat flux qx is negligible. There are three reasons for ignoring the

heat flux term qx in Eq. 11-23. First, in open air qx is usually ignored

between 20 Hz and 20 kHz, because the relatively long wavelengths and

short oscillation times are not conducive to heat transfer. Second, in
*1

a porous material the wavelength is much longer than the fiber spacing

and the heat cannot flow along the direction of propagation without en-

countering many fibers in a wavelength. The analysis presented in

Appendix A shows that heat transfer effects are localized around the

fibers of the porous material, thus further reducing qx'x. Finally, in

a porous material it can also be assumed that Fu/P>>qx'x and Eq. 11-23

is rewritten as

DP+ ypu,-- (y-l1) u! 1 -4DP + u,- D-t p = F(11-24)

If the heat transfer rate from the fibers to the air is large enough,

the compressions of the air are almost isothermal, yxl, and

Dp Pu "+0 . (11-25)
Dt p

Equation 11-25 is the internal energy equation used in the

perturbation analysis that is presented in the next section. For
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high intensity sound the rate of heat transfer increases because of

convection and mixing in the air (see Appendix A) and we assume yZI

for calculation of the acoustic terms of the perturbation analysis.

Equation 11-25 leads to the relation bo=Vo/Po.
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D. Perturbation Analysis

In the last three sections the conservation equations were de-

rived. In this section perturbation analysis is used to solve dimension-

less forms of the conservation equations for a single boundary condition.

The boundary condition is a second harmonic di'torted sine wave. Both

components are of arbitrary phase and amplitude. The boundary condition

is used in an attempt to approximate the measured signals which are des-

cribed in Chapter IV.

1. Perturbation of Conservation Equations

In terms of the total derivative, the three conservation

equations derived in Sections A, B, and C are

D___ + tx = 0
p Dt p (11-26)

pD + P =-o- -n = -F (11-27)
pDt ,x P\PJ

and

DP + x (y-l) -F (11-28)
Dt p P

We remind the reader here that, in a porous material, we will assume

isothermal conditions (y = 1). For generality and because y = 1 is not

exactly true, we use y # 1 to compute the perturbed wave equations

and, in solution of these equations, set y = 1.

The measurement results, presented in Chapter IV, show that

the initial waveform is not a pure sinusoid. The microphone is located

some distance from the source (See Chapter III) and the intense sound

distorts as it travels to the microphone. At high intensities, if the
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level of the second harmonic component is large, it can affect the

propagation of the fundamental component [81]. Excess attenuation of

the fundamental component may occur [16,801, but this is a third-order

effect for an initial sinusoid and can be a second order effect for a

second harmonic distorted sinusoid. Because of the mathematical com-

plexities an unsuccessful attempt was made to derive a third-order solu-

tion of an initially sinusoidal wave.

The second harmonic distorted sinusoid boundary condition is

used in an attempt to describe the propagation of intense sound in a
4

porous material. The boundary condition is used to introduce both the

first and second harmonics at the boundary

p(0,t) = p'(sinwt + b sin 2wt) (11-29)

and, since we only consider outward traveling waves, p(-,t)= 0, where p'

is the fundamental component amplitude and b is the harmonic component

relative amplitude. Because of more higher harmonics present at the

boundary, Eq. 11-29 does not accurately describe the conditions at the

first microphone. This inaccurate description appears to be a source

of problems in the Chapter IV data-theory comparisons.

The first step in the analysis is to make the equation

dimensionless. This is done by using the following substitutions:

p ' U 1c , -----

u 
(11-30)

= , =t , and = -

c c
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where we defined the sound speed c as neither adiabatic c nor isother-

mal b . In the solution of the equations we let c-b The dimension-
0 0

less equazions are

UA AU
A + ,X + ,X 0 (11-31),-t p P

AU UAu 0lU i U2

+ 2 2 - -F (11-32)
P P P P

and

SUJ- ylIU

+ + - (y-l) U F (11-33)
,T P P P

where aI 1  /PoW, fl = rjc /p0w, and F1 = F/P0w. The dimensionless

boundary conditions are

11(0,T) = c(sinT + b sin2T) = Elm(ei+ beJ2T) (11-34)

and 1(-,T) = 0.

The solution to these nonlinear equations for a wave traveling

in the material can be found through perturbation. Each of the three

dependent variables are expanded in a power series in c as follows [15]

= o + + L 2 f + C3 R +

0 1 2 3'
(11-35)

U=U + CU + C2U 2 + c
3U+. . .

and

\ = An + aAI + 2A2 + c t3 +
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h = p = 1/y, U = 0, and A = 1. These expansions are sub-

stituted into both the conservation equations and the boundary condi-
n

tions. The terms multiplied by like powers of c are then combined to

th
give the n order equations.

The first-order conservation equations are

S0 (11-36)
I,T p

UlT 11 + 0 , (11-37)

P l,X P

4 and
a + - lX = 0. 

(11-38)
1,T p

These equations are the small signal conservation equations for a rigid

porous material. Combining Eqs. 11-37 and 11-38, to eliminate U1,

yields the wave equation

1I,TT - TI + TiH  = 0 (11-39)

which has been solved by others [23,30,32,33,45,68] and is discussed in

Chapter I. The boundary conditions are

I (0,T) = sinT + b sin2T and T l(-,T) = 0 (Il-LO)

The second-order conservation equations are

A2 T + 2- - 1- (AIUI) (11-41)2T P P 11,× '

U2O IU 2 A 1UT TU2

+H + - U, - I,x 1 U1 9U(11-42)

p 2 ,X p P p2 p2

and
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2 ,T + U2 x - UlI[I X y 1 U U (y-l)
=+_ _ i IX + 2 (11-43)

P P P P

Combination of Eqs. 11-42 and 11-43 to eliminate the U2 terms yields the

second-order wave equation

+ I-2 I ( +a U
2,TT 2,xx 1 2,T P , 1 1,x

+ Y(U H + Y , U T1 + (Ti l (11-44)+ (U1, r T ll,X 1 1U1,T )X1

- 2 + o1U )(Y-1) + (U 1U )  + n
p 2 ( 1 U ,T 1 ,)( n 1 ,

The second-order boundary conditions at x= 0 and - equal zero. The

first order solutions are used in the second order equations and then

the second order solutions are found.

2. First-Order Solution

In small signal, first-order, wave propagation, each harmonic

component travels independently, i.e., superposition holds. As in

Chapter I we can assume a pure sinusoid

j (t-rix)

nl(x,T) = Be , (11-45)

where r= (a j-js I)b o /w. Substitution of Eq. 11-45 into Eq. 11-39 yields

the dispersion relation

1 = - (11-46)

or, in dimensional form,
2 2

(Il j~JQ ---- j+ 2 = 0 , (11-47)
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where we have set c = b . Equation 11-47 can be written in terms of0

the attenuation

Vf2- _ 0 1+ ~ I-8

and the phase

I=~ 1+ . 1-49)
0

As noted in Chapter I, the phase speed clpH = W/1 is

U) 0
~+

which we use to describe how fast a wave travels at each frequency. The

phase speed and attenuation are used in Chapter IV to compare the low-

intensity theory and experiment.

The first-order radiation boundary condition (Eq. 11-40) is

Tl(0,T) = Im(ejT) + b Im(ej(2T+ )) (11-51)

The first order solution of Eq. 11-39 is

j(T-rlx) J[2(T-r 2 X)+ (]
whr 1 -1 l2n(X,'r) = e + b e ,(11-52)

where r 2 l- a/

The first order particle velocity function is determined by

Iusing Eq. 11-52 in Eq. 11-38 to obtain

u1  P J (T-FIX) bP J[2(T-r 2 X) + (15
Ul - e + 7 e (1-53)
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We stated in Section C that when y= 1,the acoustic pressure

2
and density are related by a simple constant b . In the present case weo

find that

T1 =A 1  (11-54)

3. Second-Order Solution

Equations 11-52 through 11-54 are used in Eq. 11-44 (set y= 1)

to obtain

b2 r* ) ln+jr 2 ( r2)] _[T(2r2_r )x+"]

L I I 2 , ' T - I I 2 X + a l 2 ' ,
2,-T 2,xx 1 2,T 2r *

(-T I - j4r2rI) j2(T-rlx)

+ e
r

b(2r 2+r 1)(n l+J3r 2 rl J[3T-(2r2+r 1)X4 ]
2 lr 1e

12

2b 2 (n +j16r r) J[4(T-r 2 x)+20]

2 e

r

22

(r 1 r 1) -n l+r la 1 J r ( -r )x
+ 11 *11 e

b(r2-r2)(-nl+r2al) J2(r2-r2)x
+ 22*121-e 2 (II-55)

The last two terms of Eq. 11-55 are streaming terms and are ignored in

the calculation of an acoustic solution.
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The solution of Eq. 11-55 is obtained by first writing the

left hand side differential operator as

82 72

L = + o (11-56)
3T2  3X2  -a -

and then, by using the theory of differential operators [65], the par-

ticular solution is found to be

J [T-(2r2-r *)x+] j2(T-rlX) j [3T-(2r 2+r l)X+0 ]

112 P Qe + Q2 e + Q3e

(11-57)
.. J[ 4(T-r 2 x)+2 2

+ Q4 e

where

* 2 *

b(2r 2 -r) [2n +jr 2 (r-r 2 )
Q = 21 * *

8r r2 (1-r 1 r 2 )

'- in1- 2r
J. - 4r2r

Q2  1 2o1r 1

b(2r2 +r 1) (n 1+j3r3 r i)

Q3 = - 4r r2(1-r1r2)

and 2b 2 (Jn - 16r r 2
Q4 21r 2- 2 4  (11-58)

12
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Since the sum of the particular and homogeneous solutions must satisfy

the boundary condition

I 2(0,)= 0 , (11-59)

then the homogeneous equation has the form

J(T-r 1 xJ) J(2T-2r 2x) J[3(T-r 3x)+"]
(- R + R2 e +Re

2H 1

J [4 (T-r 4X)+2O]

+ R4 e 9 (11-60)

where the R terms are to be determined by using the boundary condition

Eq. 11-59. The propagation parameters are r = V1- jl/3 and
31

r4 = -jo 1 /4 . The form of the propagation parameters is determined

by substituting the individual exponentials into the operator L of

Eq. 11-56 and solving the dispersion relations.

We add the homogeneous and particular solutions, Eqs. 11-60

and 11-57, and substitute the result into the boundary condition. We

fine that -Ri=Qi and and obtain

" (' ) "Q -J(2r2-rl)x -j-eJ2rl X e - j 2 r  ej2

T(X) Q1 (e 2 1 - er1 X)ej(T") ( 1 -e i2~)

+ Q 3(e -J2 1 )X-e -j~ 3X)ei (3t+") + QJejr2X-e i4r 4 X)e (4T+2 ).

(11-61)
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To check Eq. 11-61 against a similar equation in lossless,

isothermal air we used the substitution P l -6 and took the limit as

6- O. The equations were equal.

Although Eq. 11-61 is only of second order, the equation

yields information on four harmonic components. Two of the components

start at nonzero amplitudes, whereas the other two start at zero ampli-

tude. As we shall see in Chapter IV, this representation of the actual

measurement situation is not correct, but, in order to obtain a more

realistic representation of experimental results the boundary condition

would also have to include the third and higher harmonic components.

Although this latter problem is tractable, the mathematics are prohibi-

tive for the relative information that the solution would yield. The

solution has not been attempted.

Figure 11-4 shows a case of propagation for assumed values of

the material properties in Eq. 11-61. Computer program PERT4PD was

used to generate this plot and is listed in Appendix B. We note several

phenomena illustrated on this plot. We see that the intensities of the

* higher harmonics grow with distance and then decay. The fourth harmonic

is not shown because its level is less than 112 dB. The fundamental

propagates in a linear fashion. The fundamental propagates in a nonlin-

ear fashion at higher sound levels, for both E and b, and for higher
I

K" relative nonlinearities n/a. The nonlinear propagation is exhibited by

extra attenuation of the fundamental and more energy being transferred

to the harmonic components. When the initial amplitudes are high

6
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I

enough, the second harmonic level exceeds the fundamental level and the

model fails. More discussion is presented in Chapter IV, where we find

the measured data is not well predicted by the theory.

6
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E. An Approximation to the Impedance and Absorption Properties of

Semi-Infinite Nonlinear Porous Materials

As discussed in Chapter I, several investigators 123,32,33,

45,68] have determined relations for the impedance and absorption

properties of linear porous materials. Experimentally, the impedance

has been found to change with intensity [47,55,64,86]. In this section

the dimensionless impedance and absorption equations are found for

linearly behaving materials. Because acoustic impedance of porous

materials is frequency dependent, the impedance concept is not

easily applicable to nonlinear systems. Thus, only an estimation

for nonlinear L '-avior is made for the absorption and impedance.

The acoustic impedance of porous materials is found in

the same manner as in Chapter I. For linear behavior the first order

solutions U1 and Hl. expressed in Eqs. 11-53 and 11-51 (b = 0), are

used in calculating the dimensionless impedance

z -- = iju (11-62)
1 U1

The resistive (real) part is

K ~Re(Z)= 1 1
+ V1 + 1 (11-63)

and the reactive (imaginary) part is

Im(Z I 1 + 1i + 2 (11-64)
r2 O
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These functions are the dimensionless counterparts of Eqs. 1-8 and

1-9.

Once the propagation properties of a high-intensity sound

in a fibrous porous material are known, it is advantageous to determine

the impedance that an intense incident wave encounters at the material

surface. The acoustic resistance that an intense sound encounters is

influenced by the material nonlinearity and the amplitude of the sound.

If an attempt is made to solve for the ratios R/U or R 2 /U the

results are complicated functions of the different harmonics and their

relative amplitudes. Although a solution might be obtained by using

the perturbation solutions, it is expected that the result would be

far more complicated than the perturbation analysis and not very useful.

A simpler approximation is presented here.

The following approximation is good only at the air/surface-

interface of a semi-infinite nonlinear porous material. For a sound

traveling in the material the perturbation solutions or one of the

approximations in Section II-F should be used. To avoid the problem of

reflection from the back of the sample, we assume that L>> 1.

We employ a simple substitution in the approximation. In

place of the linear dc flow resistivity a,, we use the first order

relationship for the nonlinear dc flow resisitivty o1 +E n l/Pi . This
a

substitution is similar to that used by Ingard [371 for high-intensity

impedance of Helmholtz resonators. We use the quantity E/V 2 as an

acoustic replacement quantity of the dimensionless dc particle

70

a"



.

velocity u /b We do not want any time or distance dependency
dc 0

and work only with the appropriate magnitudes. The substitution

of this relationship into Eq. 11-62 yields the dimensionless nonlinear

impedance

ZN ='i - E /  , (11-65)

with the resistive and reactive parts becoming

Re(ZN) = 1 VI + V/ + (a +E 1 /P r) 2  (11-66)N Vf

and

Im(Z ) - 1+ i + (o+6/P 2)2 (11-67)

N F 11

For a specific material, the above functions may be plotted

with respect to the parameters of frequency and acoustic Mach number of

the incident sound at the surface. In Fig. 11-5 the normal specific

acoustic impedance encountered by a 1 kHz wave at the surface of a

semi-infinite, fibrous porous material is plotted with respect to

the sound pressure level. The magnitudes of both the resistive and

reactive parts of the impedance increase with amplitude. These re-

sults indicate that both the amplitude and phase change of the

reflected wave vary as the amplitude increases. In the analysis

review presented in Section I-C-2 we found that the reflection process

appears to follow the small signal laws up to about 170 dB. In the

test procedure described in Section III-E-2 we find that the results

are reliable up to a sound level of about 165 dB. The comparison

between the theory and data should be appropriate.
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The effect of the increased resistance and reactance on the

ability of the sound to enter the porous material is examined by

studying the absorption coefficient. We can rewrite Eq. I-11 in the

nonlinear dimensionless form

IZN - 1 2

aN= 1 +1 (11-68)

The nonlinear absorption coefficient at 1 kHz versus sound

*: pressure level is plotted in Fig. 11-6 for the same material properties

as used in Fig. 11-5. The absorption coefficient decreases with

increases in the sound level. When the resistance increases, the

absorption coefficient is expected to decrease. Since the flow resis-

tance increases with sound level, it is harder for the high-intensity

sound to enter the material than for the same frequency low-intensity

sounds.

The increased impedance has two consequences in the absorp-

tion of sound. First, the high-intensity sound cannot enter the

absorbing material as easily as low-intensity sound. Second, once

the high-intensity sound does enter the material it is more rapidly

dissipated than the low-intensity sound. When the level is reduced to

low intensities, the sound asymptotically approaches linear propaga-

tion. The latter effect is noted in the experimental results (Section

IV-B-2) and in the Section II-F approximations.

73



9>

-j

'IA

w n

to0

0 ow 'CO) w
w li cL

-Iz
U.Z

z uz
0 C

04

LL.

0

744



F. Approximations to the Attenuation of an Intense Sinusoid

Propagating in Nonlinear Porous Materials

In this section we present two models for use in approximating

the attenuation of intense sinusoids in porous materials. The linear

impedance Z1 and propagation parameter r1 are intimately related by

Eq. 11-62. Because of this relation, we can use the approximation of

Eq. 11-65 to model how the propagation parameter of an initially

sinuoisdal wave changes with intensity. We may also analyze the

propagation of an initially sinusoidal wave by modeling how energy is

lost from the fundamental component as a function of sound level. The

mathematics of each model is simple and the models are easy to use. The

impedance model is presented first.

1. Impedance Model

We can write the dimensionless propagation parameter as

r B JAI  , (11-69)

where the dimensionless attenuation A1 = bo/w is given by Eq. 11-63

and the dimensionless wave number B1 = 1 b o/w is given by Eq. 11-64.

The resulting equations are analogous to Eqs. 1-4 and 1-5.

Again, the substitution of a1+ enl/Pv' for a1 is used to

replace the linear equations with

Im(rN) = AN = I- 1 + 2 (11-70)

for the attenuation and

Re( BN (o1 (11-71)
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for the wave number. The dimensionless phase speed C phNb = I/BN is

b y V + v/1 + (a1 +enl/P) 2  (1-72)

We conclude that both the phase speed and attenuation change

with intensity. Because of the interaction of the harmonic components,

measurement of C phN/b is difficult; one cannot differentiate between

actual phase speed reduction and harmonic interaction. Of course,

the effects of the interaction may be to slow as well as attenuate the

fundamental component. In some of the experimental results we measured

an apparent slowing of the fundamental, but, because of the limited

data, we do not present the results in this study.

In Fig. 11-7 the amplitudes of waves propagating in porous

materials are plotted versus distance. The solid line indicates the

effect of linear attenuation. The dashed line indicates the effect

of nonlinear attenuation (Eq. 11-70). We have used exp[fANdX] to

determine the amplitude attenuation. The attenuation is more rapid

where the intensity is highest. The difference in the attenuation is

called the excess attenuation. In Chapter IV the approximation,

Eq. 11-70, is compared to the perturbation solutions and data.

2. Amplitude Attenuation and Saturation Model

Excess attenuation of the fundamental component of an initial-

ly sinusoidal wave may also be modeled by a simple rate equation, which

includes the decay of the fundamental component due to nonlinear effects

as well as the direct decay due to small signal dissipation. We base
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our model on the concept that, at high intensities, the fundamental

loses energy in a consistent manner, regardless of the medium.

In Chapter I we found that the rate of harmonic component

generation depends on the amplitude of the original sinusoid and on the

thermoviscous attenuation of the fluid medium [16]. The harmonics are

generated at the expense of the fundamental. If the rate of harmonic

generation is high enough and the attenuation low enough, a sihock will

form. The presence of the shocks increases dissipation because losses

are large at the shocks. Energy is lost by all the harmonics. Thus,

we find that the greater the amplitude of the original sinusoid, the

quicker the fundamental loses energy.

If we measure the sound level of an intense fundamental

component at some remote distance from the source, we will find a

nonlinear relation between the source level and remote level. Because

the overall decay of the fundamental depends on the source level, the

remote sound level depends on the source level, the small signal attenu-

ation, the nonlinearity of the medium, and the distance from the source.

A-limit in the remote sound level, which is called the saturation level,

is a function of the above variables. The excess attenuation, linear

region, approach to saturation, and saturation level are all illustrated

in the sketch of the amplitude response plot in Fig. 11-8. In Chapter

IV we present data showing the approach to saturation. We model the

saturation effects in the following analysis.

The excess attenuation that the fundamental component of a

sinusoidal wave encounters in a porous material may be modeled by
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considering the two factors causing attenuation of the fundamental

component. Others [4,57,76,80,81] have used this method to explain

saturation effects in plane waves traveling in an air-filled tube.

Ordinary small-signal decay dominates attenuation at low intensities

and is described by

Pl= POe , (11-73)

where p1 is the pressure amplitude of the fundamental component, po

is the initial pressure amplitude of the fundamental component, and

x is the distance from the source. The decay rate equation associated

with Eq. 11-73 is

dP1
d x -cpl (11-74)

Nonlinear effects dominate the attenuation at high intensities

and loss of energy from the fundamental harmonic component depends on

intensity. Webster and Blackstock [81] made measurements and confirmed

that the pressure amplitude of the fundamental component in the sawtooth

region is

- p 20° 
(11-75)Pi =  i1 + ao* '

where a > 3. Their assumed boundary condition is that the wave starts

as a sawtooth. Since o* = x/x and a*> 3 the pressure relation is

approximately pjlI/x and the decay rate equation associated with

Eq. 11-75 is

dpl 2
dx Pl (11-76)
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Our measurement results of intense sound propagating in a

porous material have shown that excess attenuation exists. We also

found that shocks do not form in a porous material. In spite of the

lack of shock formation, the approach to saturation appears to be the

same as that found in air. We propose that the high-intensity decay

rate equation in a porous material is

2
dx = -

(11-77)

where T is an unknown coefficient dependent upon the nonlinearity

of the medium and the fundamental component frequency. The coefficient

T may be defined from either saturation or propagation tests. In

Chapter IV we define T in the saturation tests.

Let us assume that the two rates of decay, Eqs. 11-74 and

11-77, may be added to obtain the overall decay at any pressure po.

We obtain the relationship

2
dpl P 
dx aP - -T (11-78)

whose solution satisfying the boundary condition p,= p at x= 0 is

-ax
P0= (11-79)

+p P(l-e )/aT

Equation 11-79 is used in Chapter IV to describe both saturation and

propagation of intense sinuoidal waves.

Equation 11-79 is generally useful. At low source amplitudes

Po << aT Eq. 11-79 reduces to Eq. 11-73. At high source amplitudes
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p >> T and Eq. 11-79 may be used to calculate the saturation level.

As p0 increases without limit p1 reaches the saturation pressure and

Eq. 11-79 becomes independent of po. The saturation pressure is

aTeax (11-80)
Pls (l-eX)

At low attenuations a- 0 Eq. 11-79 reduces to pl Po.

From the above analysis, we conclude that the three variables

T, a, and p help us define how a sound wave attenuates. In Chapter I

2
we found that the Gol'dberg number G= 'ck/a or Vp k/cp c , is used

to define the relative effects of attenuation and nonliner distortion.

We conclude that, for a porous material, a Gol'dberg type number may be

defined from Eq. 11-79 as

P0
G PO (11-81)

We can use Eq. 11-81 to descrile when nonlinear effects become important

to the propagation of intense sounds in a porous material. As G-

nonlinear effects become dominant and as G 0 attenuation effects

dominate. In Chapter IV we determine T and relate T to the relative

nonlinearity of the material r/ and the frequency f.
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G. Summary

In this chapter the propagation of sound in and the impedance

of porous materials have been modeled. At low intensities the theory

presented here agrees with work done by others. At high intensities

harmonic components of the fundamentalare generated and the attenuation

* of the fundamental component is increased. The increase in flow

resistance at high intensities is found to effectively increase the

impedance of the materials. The impedance increase makes it more

difficult for a sound to enter and propagate in the material.

In the next chapter, Chapter III, the methods for testing

and evaluating porous materials are discussed. In Chapter IV the

results of Chapter II are compared to data obtained from the experi-

ments and conclusions about the theoretical methods are discussed.

8
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CHAPTER III

EXPERIMENTAL METHODS

This chapter contains a description of the experimental methods

and physical apparatus that were used to determine the properties of the

bulk porous materials. The chapter is divided into the following

sections:

A. Porosity

B. Material Structures

C. DC Flow Resistivity

D. Acoustic Propagation Parameters

E. Specific Normal Acoustic Impedance

F. Summary

A. Porosity

The porosities of the various materials were determined by

using the following procedure. The density of each sample was deter-

mined by carefully measuring the sample and weighing it on an analytic

balance. The density of the skeleton material was determined from the

literature or the manufacturer. The porosity was determined from

1 -m

DV

4| where m and V are the measured mass and volume, respectively, of the

sample and D is the density of the solid material. The porosity ranges

of the various materials used in the present study and some densities

for the solids of acoustical materials are listed in Table III-1.

84



I

TABLE III-1

A LIST OF THE POROSITY RANGES FOR THE SAMPLES USED IN THE PRESENT
STUDY AND DENSITIES OF VARIOUS ACOUSTICAL MATERIALS

Material Density Range Porosity Range
D,kg/m3  P

Kevlar 29 aramid [90]

(an aromatic polyamide) 1439 ± 30 0.985-0.809

Polyimides [50] 1439

Scottfelt 900-Z [89] 1153 ± 32 0.942-0.853

Polyurethane Plastic [50] 1107 - 1246 0.971

Glass (minimal binder) [50] 2518 - 2601 0.982

Aluminum [50] 2600 - 2900

Steel [50] 7400 - 7800
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Beranek [6) devised an instrument to measure the porosity di-

rectly. A device of this type was built for the present study. The

device is not as accurate and the measurements are not as repeatable as

the weight method described above.

8
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B. Material Structures

The material structures were determined by photographing the

materials with a camera-bellows combination. Fiber size and material

structure are useful in determining the material properties. Photos

of the Kevlar929 (manufactured by du Pont de Nemours & Co., Wilmington,

DE) and the Johns-Manville 1000 (J-M 1000) fiberglass (supplied by

Johns-Manville) are shown in Fig. III-1, of the Scottfelt 900-Z-2

(supplied by Scott Paper Co., Foam Division, Chester, PA) and the

Blachford Acoustical Foam (BAF) (supplied by H. L. Blachford, Inc.,

Corona, CA) in Fig. 111-2.

We see that the Kevlar 29 fibers are larger (12 pm) than the

glass fibers (10 pm). The structural members of the two foams are

larger than the Kevlar fibers. The Scottfelt has an effective diameter

-40 pm (±15 jm) and the BAF effective diameter ranges between 30 and

140 pm (we use 75 um in later calculations). The BAF has "window

panes," which partially close off some of the cells of the foam. The

BAF is a partially reticulated foam, whereas the Scottfelt is a fully

reticulated foam, i.e., the Scottfelt has no "window panes."
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A. BATTED KEVLAR 29 T
1mm

B. JOHNS-MANVILLE 1000 FIBERGLASS

4 FIGURE Ill-i

PHOTOGRAPHS OF BATTED KEVLAR 29 AND

JOHNS-MANVILLE 1000 FIBERGLASS
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A. SCOTTFELT 900-Z-2T mm

B. BLACHFORD ACOUSTICAL FOAM

FIGURE 111-2

PHOTOGRAPHS OF SCOTTFELT 900-Z-2 AND

BLACHFORD ACOUSTICAL FOAM



C. DC Flow Resistivity

In Chapters I and II the dc flow resistivity a of a porous ma-

terial was shown to be important in determining the acoustical properties

of a porous bulk absorber. In Chapter II, Eqs. 11-9 and II-10, we found

that the flow resistivity can be measured in dc flow tests. The

measurement method is straightforward and follows the ASTM standard [2].

The details of the particular measurement system used here are pre-

sented.

A block diagram of the measurement system is shown in

Fig. 111-3. The porous samples were carefully cut and placed in the tube,

which was made of clear Plexiglas. The clear plastic enables the ex-

perimenter to accurately measure the material length at any flow rate.

The in place length measurement is important because some materials

tend to compress with an increase in flow rate. If the compression

goes unnoticed, an anomolous measure of the flow resistivity is ob-

tained. Most samples were 7.7 cm in length. The sample was held in

place between a fixed screen and a moveable screen. Each screen was

made of standard 3 in. hardware cloth. The sample was located so that

its ends were at least 5 cm from the intake and exhaust ports in the

tube end pieces. There was then a fairly even flow across the surface

of the sample. Great care was taken to avoid flanking, that is, flow

around the outside of the sample. If flanking was noticed, it was

stopped by inserting thin plastic sheets between the tube wall and the

material. Corrections for the presence of the plastic sheets were

then made in calculating the flow resistivity.
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PLEXIGLASS TUBE 0 TO 715Mm H 0

BLOC DIARAM O EATHE FLWXESITVT
MEASUREMET SYSTEM

!- P- AMPLE 11

"-R ING 6

AIR FLOW METERS l_
SOURCE AIR FLOW---e- 0.0001 TO

l [ 2.Om/sec

BLOCK DIAGRAM OF THE DC FLOW RESISTIVITY

MEASUREMENT SYSTEM.

AIR FLOW METERS VOLUME FLOW RATES (SCF/HR)

DWYER RMA-l 0.05 - 0.5

DWYER RMA-3 0.2 - 2.0

DWYER RMB-50 1.0 - 10

GILMONT B312 5 - 70

DWYER RMB-55 40 - 400

MANOMETERS

DWYER 1 INCH GAUGE

WEHLING 3 INCH GAUGE

UTUBE 15 INCH

FIGURE 111-3
BLOCK DIAGRAM OF THE DC FLOW RESISTIVITY MEASUREMENT

SYSTEM AND A LIST OF DEVICES USED.
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Five flow meters were used to measure the velocity of the

flow. The meter types and ranges are listed on Fig. 111-3. The meter

ranges overlapped and the total range of particle velocity measurement

was from 7.10 - 4 m/s to 1.6 m/s. Flow rate measurements at the lower

end of each flowmeter range tended to be in error by up to ±12%. In

the least squares fit of the data this error was minimized because of

the many measurements taken and because of the data overlap.

Three manometers were used to measure the pressure drop

across the sample. The manometer types and ranges are listed in

Fig. 111-3. The range of pressure measurement was from 5 Pa (510-5 atm)

to 7700 Pa (0.076 atm).

9
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D. Propagation Parameters

First, attenuation a (nepers/meter) and phase a (radians!

meter) were measured in a square duct at low sound intensity for the

various porous materials used in this study. From the phase measure-

ments the phase speed was calculated. A simple two microphone method

was used. Several different types of low-intensity sound signals were

used and gave comparable results. The system and measurements are dis-

cussed in subsection 1 below. The high amplitude sound testing was

done with the same experimental system, but only pulsed sinusoids were

used as signals. These measurements are discussed in subsection 2 be-

low.

1. Propagation at Low Intensities

Measurements of the small-signal propagation parameters were

made with the material to be tested in a traveling wave tube. A block

diagram of the propagation parameter measurement system is shown in

Fig. 111-4. See Appendix B for detailed drawings of the system. The

BrTiel and Kjaer type 4136 microphones (N in. diameter) were placed in

holes in the tube wall. The microphones were recessed (z 4 mm) from

the material surface. The remote microphone was vibration isolated

(see Appendix B). Vibration isolation for the source microphone was

found to be unnecessary. Measurements were taken at several microphone

separations d (see Fig. 111-4). Unused microphone holes were plugged

and sealed. The material length was such that reflections from the far

end of the material were unimportant [(L-d)>> 1]. The passband of the

James B. Lansing 375-H (aluminum diaphragm) acoustic driver was
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VARIABLE NOISE
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MICROPHONE HOLE SPACINGS:
d = 1, 2,3,4, 5, 8, 11, 15,20,25,30,35, and 40 cm.

WIRE SCREEN LOCATED 9 cm FROM THE DIAPHRAGM.

FIGURE 111-4
BLOCK DIAGRAM OF THE TRAVELING WAVE TUBE SYSTEM USED

IN THE PROPAGATION PARAMETER AND SATURATION TESTS.
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approximately 0.25-8 kHz. The upper limit of the useful frequency range

of each tube is the first cross mode cut-on frequency in the material.

The cut-on frequency depends on the material and is between 5 and 9 kHz.

The propagation parameters a and a were measured by using

several excitation signals, broadband noise, narrowband noise, sine

sweep, pure tone, and tone bursts (the tone bursts are described in the

next subsection). In each case the fast Fourier transform (FFT) spec-

trum analyzer was used to display the waveforms, spectra, and transfer

function. The different excitation signals gave equivalent results and

the transfer function of the broadband noise signal between the micro-

phones was used to determine most of the small signal propagation

parameters.

2. Propagation and Saturation at High Intensities

The experimental setup in the high-amplitude sound propagation

testing was the same as described in Section B-I. Because of the

limited steady-state power handling capabilities of the driver (Z 25 W),

the high-amplitude sounds could only be achieved by using unfiltered

pulsed sinusoids. The maximum pressure amplitude was limited

by the power output of the amplifier (200 W at 70 Vrms). It was

felt that the drivers would be capable of handling this power as long

as the duty cycle was very short [64]. It turned out that one driver

failed after several thousand pulses and a second started to generate

unwanted harmonics after several thousand pulses. In each case the

voice coil separated from the diaphragm. In the first case the coil

distorted, rubbed the magnet, and shorted out. The sound pressure

levels of the fundamental component obtained were up to 173 dB at 1 kHz,
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170 dB at 2 kHz, and 172 dB at 3 kHz. These values were obtained by

driving the amplifier up to its clipping limit (100 V peak ampli-)

tude). The pulse length was 0.004 to 0.005 seconds, and at least five

pulses were averaged by the Fourier transform analyzer. The second

harmonic distortion of the microphone system is =2.5% at 173 dB SPL,

i.e., the second harmonic component introduced by the microphone system

is 141 dB [20]. Above 170 dB the measured second harmonic distortion of

the waveforms ranged from 7-25% at the source microphone.

Two types of tests were made. The change of the amplitude

of the harmonic components with distance was measured. During the

same tests the distance was fixed and the change of the amplitude of

the harmonic components with increase in the source level was measured.

At each frequency the sound levels were started at 120 dB and increased

in 5 or 10 dB steps until the maximum level was obtained. The latter

study shows the approach to saturation of a wave traveling in the

material. The phase change with amplitude between the components was

also measured. The test results indicate how sounds propagate in

porous materials with respect to distance, frequency, amplitude, and

material attenuation and nonlinearity. An interesting point is made

here about the waveforms: Even at very high intensities very little

distortion of the waveform was seen; most waveforms were sinusoids or
I

slightly distorted sinusoids. This slight distortion may be inferred

from the spectrum measurements presented in Chapter IV.
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E. Specific Normal Acoustic Impedance

Specific normal acoustic impedance was measured by using a

standard standing wave impedance tube for the low-intensity tests Il

and single cycle sine wave tone bursts for the high-intensity tests [47].

The low-intensity tests are discussed first.

1. Impedance at Low Intensities

Specific normal acoustic impedance at low sound amplitudes

was measured with two standing wave tube systems, one for low frequen-

cies and one for high frequencies. The block diagram of the basic

measurement system is shown in Fig. 111-5. The low-frequency (0.1-

1.3 kHz) tube had been constructed years earlier and is described in

Ref. 71. The high-frequency (0.8-3.9 kHz) tube was designed for this

project. Construction drawings for it are included in Appendix B.

The test method follows ANSI/ASTM C384-77[1]. The equipment

was calibrated by using a tight-fitting aluminum plug (5 cm long) in the

high-frequency tube and a thick steel end-cap, sealed around the edges,

at the end of the low-frequency tube. In each case the termination was

assumed to be of infinite impedance and the distance between the micro-

phone and the termination was acoustically measured at each test fre-

quency. The calibration results were used to correct for the environ-

mental effects (such as tube wall attenuation, effective microphone

position, etc.) in calculating the material impedance. In the high-

frequency tube the probe position can be located to within ±0.1 mm and

test results are very repeatable. In the low-frequency tube the micro-

phone location can be determined to within ±4 mm and the error affected

the measurement accuracy.
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CARRIAGE ,,.-RB TUBE MATERIAL 'ALUMINUM,"

5.1cm DIAMETER TUBE TERMINATION
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FIGURE 111-5
BLOCK DIAGRAM OF THE STANDING WAVE IMPEDANCE TUBE

SYSTEM USED IN THE MEASUREMENT OF THE IMPEDANCE
OF FINITE THICKNESS MATERIALS.
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Materials of various types and thicknesses were measured in

each tube, but the most common thickness was approximately 7.7 cm. (For

checking the reliability of the single-cycle pulse measurement method,

described next, a 30.7 cm thick sample was used in the high-frequency

tube.)

2. Impedance at High Intensities

The single cycle tone burst test used here is a simple and,

apparently, unique method for measuring the impedance of bulk acoustic

materials at high intensities. There are several reasons for using a

tone burst to measure the high-intensity impedance. We have already

discussed several reasons in Section I-C-2.

As sound intensity increases in a standing wave tube nonlinear

effects become evident. Distortion and shock formation cause the method

to fail because the waveshape and amplitude change as the wave travels

toward the sample and again after reflection. The properties of intense

standiiig %aves are much harder to predict than those of intense

traveling waves. If the sample behaves nonlinearly, additional wave

distortion is introduced at the material surface and separation of the

nonlinear-,effects becomes extremely difficult.

We can limit the noticeable nonlinear effects on the

traveling wave by using a tone burst. As we shorten the tone burst

less travel distance is necessary to resolve the incident and reflected

waves at the microphone. As the amplitude increases, the shock for-

mation distance is reduced, according to x= 1/'ck, and the waveform

distorts at a faster rate [16]. When -x< x, where x is the travel
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distance, a shock is formed in the calibration signal and the

measurement method is no longer reliable.

The assumption on which the test method is based is that, as

long as a shock is not formed, the attenuation of a wave as it travels

down the tube and is reflected from the termination will proceed in an

almost linear fashion [16]. The calibration tests at the various

amplitudes and frequencies can be used to cancel out any small excess

attenuation encountered by the fundamental in the production of the

higher harmonic components.

A block diagram of the measurement system is shown in

Fig. 111-6. The mirophone was placed to minimize the travel distance

of a I kHz single cycle tone burst. The useful frequency range is

1 kHz (set by tube length) to 4 kHz (set by cross-modes). The sound

level limits are dependent on tube length and frequency. When

x= x96.4 cm, the sound level upper limits are, for I kHz, 167 dB and,

for 4 kHz, 155 dB.

The polarity of the signal is such that a 165 dB, 1 kHz

single cycle sine wave, shown in Fig. III-7.A, is produced. The fre-

quency spectrum of the signal is shown in the right column. In

Fig. III-7.B an ideal single cycle sine wave and its spectrum are shown.

By comparing the waveforms in Figs. III-7.A and III-7.B, we find that

the actual signal is asymmetric and contains an extra "tail." The

"tail" is formed by high frequency cross-modes that are generated in

the tube and travel at different phase speeds than the tone burst.

Both the asymmetry and "tail" affect the frequency spectrum by adding

mcre low-frequency and high-frequency energy. The high-frequency lobes
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BLOCK DIAGRAM OF THE TRAVELING WAVE IMPEDANCE TUBE

SYSTEM USED IN THE LOW- AND HIGH-INTENSITY SOUND
IMPEDANCE TESTS.
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of the actual signal are not as uniform as for the spectrum of the ideal

wave. In addition, the peak frequency is approximately 100 Hz lower

than for the spectrum of the ideal wave. If the analysis is done in

the frequency domain, then this extra energy can cause severe problems

which could lead to erroneous analysis. We restrict our analysis to

measuring the peak-to-peak amplitudes of the waves and the time delay.

The waveform polarity was chosen such that, as the wave

travels, a shock forms at the center. If the wave is symmetric, all

three axis intersection points will travel at the adiabatic sound

speed c and the frequency spectrum peak will not shift. The waveforms
0

are asymmetric and after a shock forms the relative time delay is un-

certain. If the waveform polarity was reversed, shocks would form on

each end of the wave and the frequency spectrum would shift as a

function of amplitude.

In Fig. III-7.C the incident wave of Fig. III-7.A is shown

after it was reflected off an aluminum termination. The waveform has

almost formed a shock. The associated frequency spectrum shows that

energy has been shifted to the higher frequencies. The wave is on its

way to forming a single cycle sawtooth waveform. In Fig. III-7.D an

ideal single cycle sawtooth waveform and spectrum are shown. We see

that the spectrum in Fig. III-7.C shows that the reflected wave is

partway between the ideal waves shown in Figs. III-7.B and III-7.D.

For higher frequency tone bursts the spectra are influenced

more and more by the "tail." The resulting frequency spectra tend to

"1smear" and a localized frequency peak is not definable. If the "tail"
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is cut off, the peak is more localized, but other high frequency com-

ponents are introduced by the cutting operation.

In this testing program we measured (1) the time delay be-

tween the incident and reflected wave-center zero crossings and (2) the

change in peak-to-peak amplitude. The ANSI/ASTM C384-77 test method

[1] was modified to deal with traveling waves. The amplitude change was

used to determine the material absorption coefficient and the delay time

was used to determine the phase shift. The impedance was calculated

from a combination of the amplitude change and the phase shift. The

system was calibrated by replacing the material with a tight-fitting

aluminum plug and by assuming that the measurement results indicate an

infinite impedance. In the experiment, shock formation caused excess

attenuation of the traveling wave. Past the shock formation distance

calibration canceled some of the excess attenuation, but not all of it.

In our case, asymmetry of the waveform (the positive pressure magnitude

is greater than the negative pressure magnitude) caused the shock to

propagate faster than the speed of sound and the associated phase shift

could not be computed past R. This waveform asymmetry is caused by

inertia of the driver diaphragm.

The advantages of this measurement method over other measure-

ment methods [59,64] are that the travel distance is short and the tone

4 burst does not lengthen as it travels [16]. In addition, as the shock

forms, the tone burst spectrum changes only a moderate amount. This

spectrum change is illustrated in Fig. 111-7 for both the ideal and

* measured signals [18]. Finally, the material needs only to be long
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enough that a wave reflected from the material termination does not

interfere with the wave reflected from the material surface.

The disadvantages of this measurement method are that it is

amplitude limited and the waveform tends to be asymmetric. In addition,

the spectrum is not that of a pure tone, but narrowband (see Fig. 111-7,

where, ideally, the -3 dB bandwidth is 0.74 f and -6 dB bandwidthP

1.1 f , where f is the nominal frequency peak in the spectrum).
p p
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F. Summary

The various measurement systems and methods for the deter-

mination of porous material properties have been described. The topics

covered have been on determination of porosity, material structures,

dc flow resistivity, propagation parameters, and impedance.

In Chapter IV the measured material properties are compared to

theoretical results from Chapters I and II. The dc flow resistivity

results are found to depend on the porosity and particle velocity in

the expected manner. The material structure has definite effects on
I

the acoustic measurement results. The low-intensity and high-intensity

results are illustrative of the topics discussed in the previous chapters

4

4
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CHAPTER IV

EXPERIMENTAL RESULTS

In this chapter data from experiments are compared to results

of the theory developed in Chapters I and II. The objectives of this

chapter are to illustrate the acoustical properties of porous materials

with changing sound level and to determine how accurately the experi-

mental results can be predicted by using the theoretical models. A

variety of materials was used in the various tests and, where reason-

able, representative results from the tests for each material are

presented. Generalizations are made for various materials and limita-

tions of the theories are discussed.

In Section A we present measured and predicted results and

discuss (1) the linear and nonlinear dc flow resistivity coefficients,

(2) the applicability of the previously derived dependence of flow

resistivity on porosity, and (3) the applicability of the modified

Reynolds number in predicting nonlinearity threshold. The results of

Section A are used in the calculatious of Sections B and C.

In Section B we present measured and predicted results and

discuss (1) the small signal attenuation and phase speed, (2) excess

attenuation and the approach to saturation, and (3) high-intensity

propagation.
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In Section C we present measured and predicted results a.-d

discuss (1) the small signal impedance for finite and semi-infinite

porous materials, and (2) the impedance change of semi-infinite

materials with sound intensity.

In Section D we summarize the results of this chapter.
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A. DC Flow Resistivity

The physical measurement apparatus and method used to

determine the dc flow resistivity of porous materials is described in

Section III-A. After first presenting the flow resistivity data

and determining the nonlinearity, we then discuss how well the empiri-

cal models fit the data.

1. Flow Resistivity Determination

Flow resistivity data were taken in a particle velocity range

of 2.10-4_2 m/s. From a least squares fit of the data the coeffi-

cients a and n were calculated; see Eq. II-10.

In Fig. IV-l the measured dc flow resistivities for five

porosities of Kevlar 29 are plotted versus dc particle velocity.

Each sample was 7.7 cm in length. For the three highest porosities,

at particle velocities above 1 m/s, the data have been corrected for

the small length compression that occurred. The compression had no

measureable effect on the porosity, but noticeably affected the

resistivity because the resistivity is inversely proportional to the

material length. This material exhibits linear flow resistivity for

most of the test velocity range. As discussed in Chapter I, all porous

materials are expected to exhibit nonlinear behavior for particle

velocities above some threshold value. The Kevlar 29 fiber diameter

is 12 Um and we use Eq. 1-27 to calculate the nonlinearity threshold

(Rm = 1) to occur at 0.099 m/s for p
= 0.980 and at 0.40 m/s for

p=0.918. The theoretical thresholds are indicated by the vertical

bars on the figures. In comparing thl redicted threshold particle
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velocities with the points at which the curves actually start to turn

up we see that the nonlinearity threshold is not precisely predicted by

the modified Reynolds number at the lower porosities. The measured

deviation from linear behavior is 2% for p= 0.980 at 0.099 m/s and

7% for P = 0.918 at 0.40 m/s. Though slightly inconsistent, the

predicted and measured thresholds are in general agreement.

In Fig. IV-2 the measured dc flow resistivites for three

different Scottfelt samples are plotted versus dc particle velocity.

Each sample was approximately 7.7 cm in length. These materials did

not compress with increase in particle velocity. Scottfelt exhibits

linear flow resistivity behavior over as wide a particle velocity

region as Kevlar. Even though the Scottfelt is not fibrous, we assume

the effective "fiber" diameter of the foam material to be 40 Pm

(Fig. 111-2). We calculate the nonlinear threshold to occur at 0.086

m/s (3% deviation) for 900-Z-2 Scottfelt (P= 0.942) to 0.218 m/s

(7% deviation) for 900-Z-6 Scottfelt (P= 0.852). As with the Kevlar

the estimate based on R m 1 is reasonably good.m

In Fig. IV-3 the measured flow resistivities for two pieces

of Blachford Acoustical Foam (BAF), Johns-Manville 1000 (J-M 1000)

fiberglass, and Globe-Albany (G-A) needled and felted Kevlar 29 are

plotted versus dc particle velocity. The two fibrous materials,

Kevlar 29 and fiberglass, are linear over most of the particle velocity

range. The BAF exhibits nonlinear behavior at a relatively low

particle velocity. Although the two BAF samples were taken from areas

within a half meter of each other in the same 7.6 cm thick sheet,
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the flow resistivities of the two samples were different by a factor

of 2-4. This result illustrates that, for foams, variations

that are not discernable can drastically influence the flow resistivity

properties. In turn, the acoustical properties may also be expected

to vary drastically. The porosities of each of the many BAF samples

tested were measured to be 0.971 ±0.001. The small porosity range andI
large flow resistivity range indicate that structural factors are

important. The fiberglass fiber diameters are approximately 10 Jim,

the G-A Kevlar 29 fiber diameters are approximately 11 pm, and the

foam "fiber" diameters range from 31 vim through 140 vim, (75 vim was

used in the calculations). The calculated nonlinearity thresholds

based on Rm= 1 are for the J-M 1000 fiberglass 0.11 m/s (0.1% devia-

tion), for the G-A Kevlar 0.32 m/s (5% deviation ), and for the BAF

0.023 m/s (Low 7% and High 12.5% deviations).

In addition to the large "fiber" size, the low threshold of

nonlinearity found in the BAF may also be partially explained by the

material structure. The BAF is a partially reticulated material,

meaning that some of the spaces between the structural members have

thin membrane window panes. The window panes obstruct the flow and

make the flow turbulent at a lower particle velocity than the average

fiber size 75 vim indicates. The measured nonlinearity threshold is

still reasonably close to the predicted value. The windows cover less

than 25% of the foam openings. The threshold is therefore lowered only

a relatively small amount. A material with a higher percentage of

closed windows would be expected to have both a lower nonlinearity
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threshold and a higher flow resistivity. This statement is supported

by the fact that the fully reticulated Scottfelt has a high 
nonlinearity

threshold and is of the same structure as the BAF but without window

panes.

The dc flow resistivity data presented here shows that most

materials behave nonlinearly and illustrates the relative de nonlinear-

ities of the various materials. The least squares data fit is a good

descriptor of both the linear and nonlinear regions of the flow

resistivity. For most of the materials, Carman's analysis of the

location of the threshold of nonlinearity is reasonable in the

porosity region 0.8< P< 1.0. From the previous measurement results,

a general rule of thumb would be that Carman's modified Reynolds number

predicts the nonlinearity threshold of fully reticulated materials to

be in a region of between 2% and 7% of the flow resistivity deviation

from linear. Table IV-I lists a summary of the linear and nonlinear dc

flow resistivity coefficients and the relative nonlinearities of the

materials used in this study.

2. Linear Flow Resistivity Prediction

Hersh and Walker [ 33,34] presented two equations for use in

predicting the linear flow resistivity of fibrous porous materials;

see Eqs. 1-12 and 1-17. One equation can be used for calculating flow

resistivity for flow axially along the fibers (the axial condition

was not realized in our measurements). Both equations can be used

for calculating flow resistivity for flow normal to the fibers. Each

equation has an empirical constant so that different material types
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TABLE IV-1

LINEAR AND NONLINEAR DC FLOW RESISTIVITY COEFFICIENTS

AND RELATIVE NONLINEARITIES OF BULK POROUS MATERIALS

Material, Linear DC Flow Nonlinear DC Flow Relative

Porosity P Resistivity Resistivity Nonlinearity

Coefficient Coefficient n/a

a, MKS Rayls/m nI, MKS Rayls/sec

Batted

Kevlar

0.980 10800. 2370. 0.219

0.971 19100. 3860. 0.202

0.956 33700. 7930. 0.235

0.940 51200. 11400. 0.223

0.918 83G00. 14300. 0.172

Scottfelt

0.942 13400. 5350. 0.399

0.884 49200. 16500. 0.335

0.852 66500. 21500. 0.323

G-A Kevlar

0.940 83000. 12000. 0.145

J-M 1000

Fiberglass

0.982 25500. 220. 0.0086

BAF

0.970 6390. 27000. 4.23

0.971 3900. 12000. 3.08

0.972 8260. 43600. 5.28
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may be dealt with. The two curves have been fit to measured data

for batted Kevlar 29, as shown in Fig. IV-4. The solid curve is for

Eq. 1-12 and the dashed curve for Eq. 1-17. The constants were chosen

for a best Chi-squared fit to the five data points. Both curves fit

the data points very well in the region of interest. For batted

Kevlar 29 Hersh and Walker found that g= 0.059 fit their low frequency

acoustic equation [33]; here we find g=0.061. Hersh and Walker

found V = 0.44 [34]; here, V =0.445. In the first case the small
n n

difference in values arises from the fact that Hersh and Walker's

single data point was fit to an approximate acoustic equation and not

to dc flow resistivity data. In the second case the agreement is

excellent and supports Davies' [24] analysis which was done with a

variety of materials. In Fig. IV-5 the measured dc linear flow

resistivities for several samples of each of the other materials are

plotted versus the porosity. The two curves, generated from Eq. 1-12

(solid line) and Eq. 1-17 ( dashed line), show the best Chi-squared

fits to the Scottfelt data; the fits yield g= 0.0166 and V = 1.39.n

The single data points for the other materials yield g= 0.029, and

V = 0.923 for the J-M fiberglass and g= 0.043, and V = 0.605 for then n

G-A Kevlar.

The values of g and V are not the same for all materialsn

because of the vast differences in the material structures. The foams

are, by no means, fibrous, the fiberglass fibers tend to bunch together

(see Fig. III-1) and the G-A Kevlar does not have long, parallel

strands normal to the Flow. These structural effects all influence
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the way the flow is impeded by the material. Each material type must

therefore be measured separately to determine both g and V .n

In this section it has been shown that, in the region

0.8< P< 1.0, once a dc flow resistivity, fiber diameter, and porosity

have been determined, the change of the dc flow resistivity with

porosity can be correlated to either Eq. 1-12 or 1-17. In the next

section both measured and predicted dc flow resistivity values are

used to calcu]ate the small signal propagation of sound through the

porous materials.

1
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B. Propagation

The results of three sets of measurements, and comparison with

theoretical predictions, are presented in this section. Subsection 1

is about low-intensity propagation, Subsection 2 excess attenuation and

the approach to saturation, and Subsection 3 high-intensity propagation.

Measurements were made on two materials, batted Kevlar 29 and

BAF. The Kevlar is of greatest interest because of its high non-

linearity threshold and the large range of porosities to which it can

be compressed. The BAF is of interest because of its different struc-

ture and low nonlinearity threshold.

1. Propagation at Low Intensities

Measurements of low-intensity propagation were made in a ma-

terial filled plane wave guide, as described in Section III-D. In

general, broadband noise in the range 0.1-10 kHz was used to determine

the propagation parameters a and B. The phase B was then used to cal-

culate the phase speed c.PH* Measurements made with 1, 2, and 3 kHz tone

bursts corroberated the noise measurements.

A highly magnified picture of batted Kevlar 29 is shown in

Fig. 111-2. The fibers are very small (z12 pm) and the material is very

porous. The porosity range used in the propagation tests, 0.985>P>0.809,

was large enough to enable us to test the theory over a wide range.

In Fig. IV-6 the predicted and measured attenuation of sound in

batted Kevlar 29 (P= 0.980, 0.956, 0.916, 0.875, and 0.809) is plotted

versus frequency. The horizontal bars show the range of the measured

data points. Where no horizontal bars are drawn, either the data points
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coincide, or only one data point was measured. The symbols indicate the

average value of up to seven measurements at various microphone separa-

tions. The scatter in the measured values is due to inhomogeneity of the

material. Since several microphone separation distances were used, the

results therefore depended on the material homogeneity between the two

microphones. The results of material inhomogeneity are seen later in

the amplitude versus distance plots.

In the theory we assumed the isothermal sound speed. In

Appendix A this assumption is shown to be inexact. In Fig. IV-6 the

solid line indicates the theoretical attenuation when the adiabatic

sound speed is used in Eq. 1-4. The dashed line indicates the iso-

thermal sound speed case. Since dc flow resistivity measurements were

made for only five porosities (P>0.914), Eq. 1-12 (g=0.061) was used to

calculate the unmeasured resistivities (P=0.916, 0.875, and 0.809).

At each porosity there are frequency ranges where the data

and predictions agree and other ranges where they diverge. The di-

vergence of the data above 2 kHz at porosities 0.980 and 0.916 is of

unknown origin but was confirmed by measurements at several microphone

positions. At the low porosities, P<0.916, there is a leveling off of

the attenuation at low frequencies. We cannot explain this low porosity,

low frequency attenuation. Other researchers [33,34,9] limited their

measurements of batted Kevlar 29 to P>0.9 and did not observe this

phenomena.

From the arguments in Appendix A, the attenuation at the

lowest porosity, P= 0.809 is expected to be very close to the isothermal

(dashed) line. The data in Fig. IV-6.A show otherwise. One possible
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explanation is that the flow resistivity a is overestimated by Eq. 1-12

in this porosity range. We shall return to prediction of the effective

acoustic flow resistivity later in this section.

In Fig. IV-7 the predicted and measured phase speed of sound

in batted Kevlar 29 (P= 0.980, 0.956, 0.916, 0.875, and 0.809) is

plotted versus frequency. The dashed lines were calculated by using

Eq. IV-6. The solid line were calculated by using Eq. 1-6 with the

replacement of b (isothermal sound speed) with c0 (adiabatic sound

speed). The separation between the lines indicates the limitations of

heat transfer effects on the phase speed. Although the range bars

appear to indicate greater error in Fig. IV-6 than in Fig. IV-7, the

largest error, in each case, is approximately ±20%.

We now discuss some of the limitations of these propagation

measurement results. As the porosity is reduced the high frequency

attenuation increases drastically, the coherence between the source and

remote microphone signals is reduced, and the veracity of the data

becomes questionable. The error starts in both the nhase speed and

attenuation data for P= 0.875 and f> 3 kHz. For p=0.809 we have not

included the f> 4 kHz data, because the low coherence and the large

oscillations in the data lead to meaningless results.

As in the low frequency attenuation results, the low frequency

phase speed results deviate from predictions at low porosities. In the

low frequency case, the coherence between the signals is not reduced as

much as at high frequencies. The data deviations in Figs. IV-6 and

IV-7 appear to be contradictory. The attenuation increase indicates
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F

that the phase speed should be slower, not faster than the theory pre-

dicts. The phase speed data cannot be explained by a flanking path,

because then the attenuation would be less than theory predicts. The

low frequency, low porosity deviations from theory may be caused by a

failure in the theory or in the measurement procedure. The deviation in

question has not been resolved here. The propagation test results pre-

sented in Subsections 2 and 3 are at I kHz or above; the low frequency

deviations do not influence other results in this study.

In Fig. IV-8 the relative sound pressure levels of three low

intensity tone bursts of 1, 2, and 3 kHz are plotted versus microphone

separation distance. The material is batted Kevlar 29, of porosities

0.980 and 0.809. The straight lines are computed by the average

measured attenuation values (indicated by the symbols in Fig. IV-6). Up

to a distance of 10 cm the Fig. IV-8 data confirm the data in Fig. IV-6

and show the materials to be homogeneous. At 20 cm the attenuation

appears to be less than implied by Fig. IV-6. This reduced attenuation

could be caused by one or more mechanisms, inaterial inhomogeneity, tube

wall vibrations, or a flanking path between the material and the tube

wall. Although several attempts (microphone vibration isolation and

material repacking) were made to solve this problem, the solutions were

unsuccessful. Nonuniform material packing is the most likely cause to

the deviation.

The other material tested was the Blachford Acoustical Foam

(BAF). The foam was cut into a long strip of square cross section and

pulled into the tube. The predicted and measured attenuations plotted
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in Fig. IV-9 versus frequency show good agreement up to about 4 kHz.

The same high frequency attenuation rise was seen in Fig. IV-6 for the

porosity 0.980. In Fig. IV-9 the data rises to a peak and the intro-

duction of a cross-mode propagating in the material may be causing this

extra attenuation.

The predicted and measured phase speeds plotted in Fig. IV-10

show little agreement. The predicted phase speed is 40-70% too high at

frequencies above I kHz. This material is a partially reticulated foam.

The structure that dc flow encounters is much different than that which

ac flow encounters, and, for partially reticulated foam materials, the

dc flow resistance model is inadequate for calculating $ or CPH'

Zwikker and Kosten [88] discuss some of the effects a partially reticu-

lated foam will have on both dc and acoustic flow. Another theory,

such as Zarek's [82], Beranek's [8], or Zwikker and Kosten's [88],

might predict the propagation properties of a partially reticulated

foam with more accuracy than the present model. Unfortunately, in

each of the cited theories, both the flexibility and the structure

factor of the material must be determined, and these two factors may

have different meaning at high-intensities. Taking these variables

into account would also make the perturbation solution of Chapter II

even more complicated. Thus, a partially reticulated foam is found to

be an inapplicable case for use of the dc flow resistance theory.

Because the relative nonlinearity of this material is so large, the

material is used throughout the rest of this chapter as a comparator

to the relatively linear materials.
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As with the batted Kevlar 29, we want to determine how

homogeneous the BAF is. In Fig. IV-Il the relative sound pressure

levels of 1, 2, and 3 kHz low-intensity tone bursts in BAF are plotted

versus microphone separation distance. In this material there is some

deviation from the average attenuation, but it is not as large as

found in the Kevlar material.

In some frequency regions the measured attenuation and phase

speed values diverge from the predicted values. If the basic model is

valid, that is, if the attenuation is due to the material flow resisti-

vity, agreement between theory and experiment may be obtained by using

an acoustic flow resistivity. We measure the acoustic flow resistivity

by using the attenuat-on data and Eq. 1-4 to compute a. The values of

a are calculated by using the average of the calculations from the

Fig. IV-6 attenuation results at 1, 2, and 3 kHz. The average values

(@) and standard deviations are plotted versus porosity in Fig. IV-12.

Equation 1-12 was used to generate the curve in the figure. The con-

stant, g= 0.079, was chosen for a best Chi-squared fit to the data. For

Kevlar flow resistivity values not measured, Eq. 1-12 was used to cal-

culate a in the remainder of this study.

We made the above calculations for the BAF acoustic flow

resistivity at 1, 2, and 3 kHz and found no change between the average

dc flow resistivity value and the specific BAF samp].e used in the

propagation tests (see Fig. IV-9).
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2. Excess Attenuation and Saturation

In Section I-C-I both excess attenuation and saturation

have been shown to occur in both water [76] and air [80,81] for

initially sinusoidal waves. In Section II-F-2 a model was developed

for use in describing excess attenuation and saturation. In this sec-

tion we present data on saturation and determine values for the nonlin-

earity parameter T. The test method was described in Section III-D-2.

In fitting Eq. 11-77 to the saturation data, we set the value

of a so that Eq. 11-77 predicts a data point in the linear region and
I

then set T so that Eq. 11-77 predicts the highest level data point.

Saturation data was taken at a variety of porosities (0.980, 0.956,

0.916, 0.895, 0.875, and 0.809), frequencies (1, 2, and 3 kHz) and

microphone separation distances (1-20 cm). For P< 0.916 the results

were not useable because of noise levels at the remote microphone. For

P> 0.916 and several microphone separation distances the value of T

was found to be constant with porosity changes. Approximate values of

T at frequencies of 1, 2, and 3 kHz are listed for two materials in

Table IV-2. A 1 kHz value of T for the BAF could not be determined from

the experimental data because, for a 1 kHz wave in BAF, T appears to be

dependent on sound level. This dependence is discussed more in Subsec-

tion 3. Given these values of T, Eq. 11-77 fits almost all the data to

within ±0.5 dB. The excellent fit is illustrated in Fig. IV-13, which

shows the approach to saturation of three separate fundamentals for

batted Kevlar 29 (P=0.980). In each case, deviation from linear

behavior begins to occur in the range of 140-150 dB source level.
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TABLE IV-2

EXPERIMENTALLY DETERMINED VALUES OF THE NONLINEARITY

PARAMETER T FOR BATTED KEVLAR 29 AND BLACHFORD ACOUSTICAL FOAM

MATERIAL T, 1 kHz T, 2 kHz T, 3 kHz

Batted Kevlar 29 388 248 228

Blachford Acoustical X X 83.6 73.2

Foam (BAF)

135



160 15 .
/ /

SATURATION/// /

IS10 LEVELS, DB 150.3 7', "~

13

.0. j 4714 / / -

// //

/ /" l- ...

/ / 7' //
/// ' '..1

0, ,

W 120 IXlAS.. , //'/

lf '7. BATTED KEVLAR 29

4P 4 ZO. 980, EQ.T- 77

11 CM SEPARATION
1000 HZ 15.0 388

/ di 4( 2000 HZ 19.3 248

100 - A ... o-9oo 3000 HZ 122.6 228

120 130 140 150 160 ITO so

SOURCE LEVELl DO

FIGURE IV-13
AMPLITUDE RESPONSE CURVES FOR THREE INDIVIDUALLY

PROPAGATING SOUNDS (1, 2, and 3 kHz FUNDAMENTAL
COMPONENTS) IN BATTED KEVLAR (P = 0.980).

136

-- - /-l ll "l~lllllllil 'aml m -| - - O EQ.' H -i



Ii

The corresponding particle velocity amplitude range 0.7-2.0 m/s is

the same range at which the dc flow resistivity begins to deviate from

linear behavior.

In the dc flow resistivity tests the BAF had the lowest

nonlinearity threshold. On the basis of the results for batted Kevlar,

one would expect BAF to have a correspondingly low threshold for extra

attenuation. The expectation is fulfilled as Fig. IV-14, which gives

data for two fundamental frequency components, shows. The deviation

from linear behavior is much larger than for the Kevlar. The deviation

starts at about 120 dB, or about 0.07 m/s in particle velocity ampli-

tude. This amplitude also marks the onset of nonlinearity in the dc

flow resistivity tests.

These experiments demonstrate that the value of T depends on

two factors, the dc nonlinearity of the material and the frequency of

the propagating sound. In Subsection 3 we will find that, up to 172 dB,

shocks do not form in initially sinusoidal waves propagating in bulk

porous materials. Although shocks do not form, the equation governing

the furdamental component amplitude attenuation is of the same form as

for when shocks form in air. In both cases the attenuation is governed

by an equation of the form of Eq. 11-78.

The plot in Fig. IV-15 indicates that the apparent functional

relation for T is inversely proportional to (f)0.5 and (/CT) 04 We

find that an approximate relation is

T= 6400(f)-05 0 "4
. (IV-I)
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An exact relation would be ill defined by these few tests and more

extensive tests are called for before a good empirical relationship

can be defined.

Equation 11-77 and the values of T are used in the next part

of this section to predict propagation of the fundamental component at

high intensities.

3. Propagation at High Intensities

In this section we present comparisons of measured and

predicted propagation for intense sound in porous materials. The

propagation explored in this section is in both BAF and batted Kevlar

29. Tone bursts of 1, 2, and 3 kHz were used to determine the material

properties. The test method was described in Section III-D-2.

Although propagation measurements were made onmanv porosities of batted

Kevlar, only two representative data sets are presented here and com-

pared to the theories. We find that when the perturbation solution is

compared to the data, the solution does not adequately describe the

propagation of intense waves in a porous material and reasons for this

discrepancy are discussed. In addition, the impedance and saturation

models are compared to the data. These models show the excess attenua-

tion of the fundamental, but do not address the problem of harmonic

component generation.

Propagation measurements were made with batted Kevlar 29 at

a variety of porosities (0.980, 0.956, 0.916, 0.895, 0.875, and 0.809).

The results show general trends, which we illustrate here by presenting

1 kHz results at only two porosities (0.980 and 0.809). The extra
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attenuation showed that the Kevlar 29 behaves linearly for sounds

below 140 dB. The predicted and measured sound levels of an intense

(162.4 dB)l kHz tone burst propagating through Kevlar 29 (P= 0.980) are

shown in Fig. IV-16. The predictions are made from a combination of

Eqs. 11-52 and 11-61 in Eq. II-35a (Program PERT4PD). Although the

first four harmonics are accounted for in this solution, only three

appear in the figure. The 4 kHz component level is less than 112 dB.

The prediction does not show the excess attenuation that is found in

the measured data; the computed fundamental component behaves as a

small signal. The first two harmonic components are accounted for

at the source microphone (0 cm). The presence of the third harmonic

component is not accounted for at the source microphone. The data

points have been corrected for inhomogeneous material effects. The

corrections are given by the differences found between data points and

theory in Fig. IV-7.

The data for the measured harmonic components do not follow

the theoretical curves. The 1 kHz component attenuates in a nonlinear

fashion. The initial attenuation is larger than linear. The attenua-

tion approaches the linear value as the sound level decreases. The

2 and 3 kHz components are also attenuated in a nonlinear fashion.

The 2 kHz component has a rapid initial attenuation which is reduced

with distance. The 3 kHz component increases in level at the 2 and

5 cm positions, but is suddenly attenuated between 5 and 11 cm. These

results indicate interaction between the components which is unex-

plained by the theory. The discrepancies may be caused by one or more
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factors. First, the presence and relative phases of the higher fre-

quency harmonic components may influence the lower frequency components

more than expected. Second, the perturbation may have to be performed to

higher orders to show enough excess attenuation. Third, the definition

of nonlinear behavior may be ill defined by simply using the dc flow

resistivity test results; a better definition may be needed. Finally,

perturbation may be inappropriate for determining the propagation of

very intense sound in a porous material. We found in Section IV-B-i

that for small signals the perturbation theory and measurement results

were in agreement. Until harmonic generation by and excess attenuation

of the fundamental is encountered, the perturbation theory works well in

predicting the attenuation (below about 140 dB).

We now consider how well the perturbation theory predicts the

attenuation of sound for materials of low porosities. In Table IV-i we

found that the relative nonlinearity of the material r/a is independent

of the porosity. The resistivity and attenuation are dependent on the

porosity. At low porosities G- 0 (Eq. 11-81) and the nonlinearity is

overshadowed by the large attenuation. In Fig. IV-17 the nerturbation

solution and data are presented for batted Kevlar 29 P = 0.809. Here

there is very little excess attenuation; theory and experiment agree.

The 2 kHz component shows linear attenuation between the two data

points. A small rise is found in the predicted 2 kHz level. The dis-

crepancy between data and theory here may be caused by lack of initial

phase information. Changing the phase in the computer program changed

the generation and attenuation of the 2 kHz component. The phase in
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Fig. IV-17 was set to zero. For porosities between the two examples,

we found a transition from some excess attenuation at high porosities

to little excess attenuation at low porosities.

We now use test results to verify the two attenuation models

presented in Section II-F. We use the values of the nonlinearity param-

eter T from Section IV-B-2 and the values of the relative nonlinearity

n/a from Section IV-A-1. The acoustically determined flow resistivity

values are taken from Section IV-B-l. We first consider the I kHz

Kevlar data and then the 1 kHz BAF data. We find that the measure-

ments and predictions agree for the Kevlar, but there are some discre-

pancies for the BAF.

In Fig. IV-18 the measured and predicted attenuations of a

1 kHz, 162.4 dB, wave are plotted versus distance. This is the

same data as used in Fig. IV-16. The solid line indicates the small-

signal attenuation. The dashed line is a plot of Eq. 11-77, the

excess attenuation model and the dotted line is a plot of the result

of using Eq. 11-70, the impedance model. The excess attenuation model

fits the data the best. The impedance model predicts too much excess

attenuation, a fact that indicates that, for the impedance approxima-

tion the values of n/a derived in Section IV-A-1 are too large for the

approximation. The need to reduce the values of n/a is confirmed by the

other comparisons of data with theory, including those of impedance.

Since the predictions based on Eq. 11-79 show good agreement with the
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data, Eq. 11-79 will be used in the remainder of this section.

Estimates for the reduction of n/o are ma. in Section IV-C.

In Fig. IV-19 we continue with the very porous batted Kevlar

29 (P=0.980) and increase the sound level at the source microphone

to 172.3 dB, again for a fundamental freuqency of 1 kHz. The conclu-

sions are the same: predictions based on the use of Eq. II-79 are

in excellent agreement with the data over the region measured.

A similar measurement in low porosity (P= 0.809) batted

Kevlar 29 is shown in Fig. IV-20. In this case the material nonlin-

earity is not as important as the linear attenuation. Even so, the

agreement between data and predictions based on Eq. 11-79 continues

to be excellent. Moreover, the earlier conclusion that T for a given

material is independent of porosity is now seen to hold for porosities

as low as P- 0.809.

The same sort of tests were done with BAF. It will be

recalled that a 1 kHz value for T could not be determined from the

saturation measurements, even though the 2 and 3 kHz values could be

determined. From Eq. 1-79 we estimate = 15. In the BAF tests

for 162.1 dB presented in Fig. IV-21, we find T= 115 to be a good

estimate. In Fig. IV-22 the initial sound level is 173.1 dB. We

find that the model and data do not agree as well. The estimate for

the BAF value T= 115 appears to be low. If T is increased to fit the

two cases shown here, the results are T= 143 for Fig. IV-21 and T= 200

for Fig. IV-22. In other words, T seems to have an amplitude dependence

that was not seen for Kevlar 29. The dependence on amplitude may be
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caused by the complicated material structure which influences the

acoustic flow in a different manner as the intensity increases. For

the 2 and 3 kHz tests amplitude dependence of T was not encountered.

We have seen here that, although the second-order perturba-

tion solution does not work for intense sound propagation in a porous

material, we have two empirical models that do work. Future work in

theoretically defining the parameters T and n/a would be an important

step in being able to predict the propagation of intense sound in

porous materials.

In Section IV-C the acoustic impedance theory and data are

compared. Acoustic values for n/a are found for use in the impedance

relations.
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C. Specific Normal Acoustic Impedance

The acoustic impedance measurement systems used in this

section are described in Section III-E. The measurement systems con-

sist of two low-intensity sound standing wave tubes and one high-

intensity sound traveling wave tube. Measurements were done in these

tubes for a wide range of frequencies, materials, and sound levels.

All the results cannot reasonably be reported here. Tabel IV-3 lists

the range of measurements made on the various malerials. Low-frequency

standing wave tube measurements were not made on the batted Kevlar 29

because of our inability to hold the material in place at various

porosities and keep the material flush with the tube walls. The

low-intensity measurements are presented and discussed first, then the

high-intensity measurements.

1. Impedance at Low Intensities

Most porous materials are of finite length and the measured

impedance is affected by the material impedance and the sample length.

The impedance data presented here were obtained from both the standing

and traveling wave tubes. In the standing wave tube the sample lengths

were of the order of 7.6 cm. In the traveling wave tube the sample

was long enough to qualify as semi-infinite (cL>> 1). We use the

traveling wave tube to measure the characteristic impedance of the

material. The test results from the traveling wave tube are presented

first. The flow resistivity values used in the calculations are taken

from both the dc flow resistivities, described in Section A of this

chapter, and the acoustically determined flow resistivities, described
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TABLE IV-3

TABULATION OF MEASUREMENTS MADE IN THE THREE
IMPEDANCE TUBES ON THE VARIOUS MATERIALS

MATERIAL BATTFZ KFVLAR 29

POROSITY 0.985 0.980 O.91 o.970 's.t 0.9%6 o. .0 0.4, 9 .i8 91.. 0.895 '.8S

TRAVELING 1-4 I-. 1-4 1-.
WAVE IMPEDANCE 1-4
TUBE 119-164 121-167 123-It? ll-I " 121-166 121-Io, >2lS
-(FREQUENCY. kil)

-(SOUND LEVEL, dB)

LOW FREQUENCY
STANDING WAVE
IMPEDANCE
TUBE
-(FREQUENCY, kHz)

HIGH FREQUENCY

STANDING WAVE
IMP EDANCE TUBE 0.8-3.5 0.8-3.5 0.8-3,5 -.8-3.5 -8-3.-
-(FREQUENCY, kHz)

MATERIAL JONS-MANVILLE GLOBE-ALBANY SCOTTFELT BLACHFORD
1000 FIBERGLASS KEVLAR ACOUSTICAL

900-7-2 900-Z-4 900-Z- FOAM

POROS I TY 0.982 0.940 0.94 0.88 0.85. 0.971

TRAVELING 1-4 1-4 1-4 1-4
WAVE IMPD ANCE -
TUB 120-16' 120-165 120-165 120-lAS
-IFREQUENCY. kHz)

OUND LEVEL., dB)

.OW-FREQUENCY
STANDING WAVE
IMPEDAN(E TUBE

-(FREQUENCY, kWz)

HIGH-FREQUENCY
STANDING. WAVE
INFANCF T'RE 0.8-3.5 0.8-1. g0.8-1. 0.8-1.s ' 8-V. 0.8-3.5

- (FR tEEH(Y. kiNt)
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in Section B of this chapter. The characteristic impedance data il-

lustrate how well the low-intensity sound model predicts the impedance

for a semi-infinite material. The measurements are combined with the

theory of Chapters I and II to yield a prediction for the impedance of

the finite materials.

For a finite length porous material backed by an infinite im-

q pedance a simple relation [88] was found. This relation, given by

Eq. I-10, links the propagation parameters a and B, the semi-infinite

material impedance, and the finite length material impedance W(L)

together. Equation 1-10 can be rewritten in terms of the dimensionless

variable F1 as

z I (L) r I coth ( (IV-2)

We note that, when aL>> 1, Z r As noted in Chapter I, the measure-

ment of the small signal impedance of a semi-infinite material is

equivalent to measuring the propagation parameters.

In Fig. IV-23 the predicted (Eq. 11-62) and measured (travel-

inF wave impedance tube) impedance of batted Kevlar 29 (P= 0.985, 0.956,

0.914, and 0.875) are plotted versus frequency. For the higher poros-

ities the data and theory are in good agreement. At P= 0.875, however,

as in the attenuation and phase speed tests, the predicted values are

larger than the measured values. The acoustically measured resistivity

values are used in the calculations. If the dc flow resistivity values

are used, the predicted curves for the impedance are higher than the curves

in Fig. IV-23. At the higher porosities (P > 0.875) the small discrepancies
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between the measured and predicted values can be accounted for by the small

inaccuracy in measuring the phase (time delay) in the tests.

Samples of 7.7 cm thick batted Kevlar 29 were measured in

the standing wave tube. The data are compared with predictions

based on Eq. IV-2 (acoustic resistivity values) in Fig. IV-24 for

porosities 0.980 and 0.918. Except for the P = 0.918 resistance data,

the agreement is seen to be good. When the dc flow resistivity values

are used in the predictions, the differences are barely discernable

from the curves in Fig. IV-24. It would appear that for aL< 1, that

the differences between how the flow resistivites are determined

becomes unimportant and either flow resistivity may be used in the

calculations.

We stated that when aL> 1, the standing and traveling wave

impedance tube measurements should yield similar results. A comparison

of Figs. IV-23 and IV-24 indicates that the test results should be

similar for P=0.918, 0.914, where ctL> 1 and dissimilar for P=0.980,

0.985, where cL< 1. The theoretical curves indicate the above state-

ment to be fairly reliable. The data for P=0.985, 0.980 disagree in

the manner indicated by the theory. The reactance data for P=0.918,

0.914 agree, but the resistance data disagree. The resistances

(P= 0.918, 0.914) measured in the standing wave tube are between 15 and 357

higher than both the theory and the resistances measured in the traveling

wave tube. As we shall see, the disagreement in the measured resistances

for P= 0.918 and 0.914 appears to be more in this specific data than in

the procedure, i.e., we find more consistant agreement in other results.
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In Fig. IV-25 the predicted and measured impedances of

needled and felted Kevlar 29 (P= 0.940) for semi-infinite and 6.2 cm

sample3 are plotted versus frequency. No propagation tests were made

on this material; the dc flow resistivity was used in the predictions.

The two sets of high-frequency data are in good agreement. The agree-

ment between theory and data is good at high frequencies but not at low

frequencies. The discrepancy at low frequency is attributed to un-

certainty in locating the impedance tube microphone, a problem discussed

in Chapter III.

In Fig. IV-26 the impedance of a 6.2 cm thick sample of

Johns-Manville 1000 fiberglass (P=0.982) is plotted versus frequency.

The agreement between theory (dc flow resistivity) and data is excel-

lent, significant deviation occurs at only the lowest frequencies.

The next material is Scottfelt 900-Z-2 (P 0.942). The

predicted (dc flow resistivity) and measured impedances of the Scott-

felt for semi-infinite and 7.5 cm samples are plotted versus frequency

in Fig. IV-27. The measured resistances are between 0 and 50% higher

than predicted. The measured reactances are in good agreement with

the predictions. In both cases the measured results are in excellent

agreement. The agreement between theory and experiment for other

Scottfelt samples is similar. The dc flow resistivity was used in

the theoretical predictions. Although agreement between theory and

data is not quite as good as for the fibrous materials, it is still

fairly good. We therefore conclude that the behavior of the fully

reticulated foam is similar to that of a fibrous material. One reason
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this material was not used in the propagation parameter tests is that

many pieces were not uniform in porosity throughout their thickness.

The pieces were, in many cases, less porous at the surface than in the

center. Although the samples chosen for this test were apparently

uniform, invisible nonuniformity may have been one of the causes of

the higher measured than predicted acoustic resistance.

In Fig. IV-28 the predicted and measured impedances of BAF

(P=0.971) for semi-infinite and 7.6 cm samples are plotted versus fre-

quency. As expected from the propagation test results, the agreement

between the theory and data is not good. The disagreement is much

greater than for Scottfelt, but the trends are similar: The resistive

part is much higher than predicted, whereas the reactive part is close

to the predicted curve.

By comparing the data and theoretical results in Figs. IV-23

through IV-28, we find that fibrous and fully reticulated foam ma-

terials have similar acoustical properties and may be treated as rigid

materials in the small signal case. On the other hand, the partially

reticulated foam (BAF) has a measured acoustic resistanc. that is in-

explicably high. As noted in Section IV-E above, one of the more

general theories (see Chapter I) may provide a better explanation of

the behavior of a partially reticulated foam.

2. Impedance at High Intensities

Proceeding with the ongoing quest for the definition of a

useful nonlinearity parameter for bulk porous materials leads to the

ad hoc nonlinear impedance model presented in Section II-E. The

model consf-ts of substituting the nonlinear dc flow resistivity
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+ Enl/P for the linear flow resistivity aI in the definition of

r . High-intensity measurements were not made in the standing wave

tubes and only the test results for semi-infinite materials are

presented. The materials are the same as those reported in part 1.

In making many comparisons between the measured and pre-

dicted nonlinear impedance behavior, we find that use of the dc flow

resistivity in the theoretical calculations leads to an incorrect

prediction of the material nonlinearity. (In the cases where acoustic

resistivity values were used in the predictions, the same ratio of

r/c as found in Table IV-1 was employed to calculate n.) For the

following comparisons the values of n are fit to the data.

In Fig. IV-29 the impedance at 1 kHz of several porosities

(P=0.985, 0.958, and 0.895) is plotted versus sound pressure level.

The relative noni.,-arities used in this figure are n/c = 0.24, 0.12,

and 0.06, whereas in Table IV-1 we found n/o 0.2. As with the ex-

cess attenuation parameter T and its relationship to the attenuation

a, we find that the importance of the nonlinearity apparently de-

creases with increased attenuation.

Neither the resistive nor reactive parts of the impedance

vary in magnitude to any great extent. In each of the three cases the

measured reactive part appears to be slightly more linear in behavior

than the resistive part. This behavior is found to exist at all

porosities and frequencies in this material. The asymmetric behavior

is illustrated in Fig. IV-30 where the frequency dependence of the

165



0

a >

0 / 0

*0 / 0*LU

> / *

*Z
0* * 0

* Z.
> 2

>IU LU

0 / 0 CL -

0 0C CL

m 0 0

0 I I* 0,0

U 0< 0
1 I. <1 - i ui

W U

w u LL

> >
ow o

* LU 0

0-

166



0
)

I I) Co C

o 0 in 0 c

_j ' C) > (a
>J~ N -IA V

0 N

0~ ow
00_wa >~

0/ 0u
/x

u.

w Cw W

U)U

WZ W
NL

p~~ I I II

0r I w"

30NVOUNI oI.SAoov 1lVWI&JON

167



7~-R1i 450 HIGH-INTENSITY SOUND IN AIR SATURATED FIBROUS BULK /
POROUS MATERIALS(U) TEXAS UNIV AT AUSTIN APPLIED
RESEARCH LABS H L KUNTZ 83 SEP 82 ARL-TR-82-54

UNCLASSIFIED N88814-75-C-0847 F/G 11/6, N

smhhhhhhhhhi

* flf flf flfl lfl END



11111 1 0 1133

11 221111

NATIONAL BURLAU OF STAVDA*D3-e963-A



batted Kevlar (P =0.936, n/a= 0.12) impedance is plotted at two sound

levels. The resistive part of the impedance is accurately predicted

for all frequencies at both low and high intensities. On the other

hand, the reactive part is well predicted at low intensity, but not

at high intensity. Constancy in the reactive part of the impedance

might be caused by fiber motion or by near independence of the

reactance on particle velocity.

In Fig. IV-31 the predicted and measured 1 kHz impedances

of the needled and felted (G-A) Kevlar 29 (P=0.940) and the Scottfelt

(P=0.942) are plotted versus sound pressure level. The porosities of

the materials in this figure are similar to the material in Fig. IV-30,

but the material structures are quite different. The relative non-

linearities fit to the data are n/a = 0.08 for the G-A Kevlar and

n/a= 0.44 for the Scottfelt.

The last material considered is the BAF. The dc flow

resistivity tests indicated that this material has very nonlinear

behavior. This fact is supported in the plot of the 1 kHz impedance

versus sound level in Fig. IV-32. The relative nonlinearity n/a= 1.2

has been fit to the data. The relative nonlinearity is much less than

that listed in Table IV-1 (W/aO4). As opposed to the predictions for

the other materials, the trends of both the resistive and reactive

parts of the impedance are predicted by the nonlinear impedance

equations. Except for the last data point, the resistive part is

slightly more nonlinear than the reactive. A conclusion we draw from

this figure is that the impedance model predicts changing reactance

for all materials. In the cases of fibrous or fully reticulated

168

L



1L

/0 /
/w

0 0

0/0 0

0'0/ 0 I

0~ 0
I 00 0

w S U

Ij0N w

Iu >

0 0 o - CL Z

01 0 to
0 00

4t 0 0mJ Zcu U.

W WI LU

IF I I 

gfl 0

3:)NV03dWi :)iisfloW 1YWbON

169



44

0

S0? >0
(0 w C

aC z

0 -J
0 0 OWm COwm 0 U-CCc

0 4 >
*n 03 0(

U-

0 <

w C

IL
-) p. 4

L) O

W0 -

170



foam materials the threshold of nonlinear reactive behavior may be

higher than anticipated by this model.

In Fig. IV-33 the frequency dependence of BAF at two sound

levels is shown. We again see that the behavior is quite different

from the batted Kevlar (Fig. IV-30) and that while the reactive part

is accurately predicted at both sound levels, the resistive part is

not.

In this ad hoc model, as opposed to the other high intensity

sound models presented, the nonlinear effects are apparently dependent

on the porosity (and, in turn, the attenuation). The nonlinearity de-

creases in importance as the porosity decreases, but this has not been

accounted for in the model. A specific relationship between porosity

and relative nonlinearity has not been drawn because the relationship

appears to differ with the material.
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D. Summary

In this chapter the theoretical predictions have been com-

pared with data from experiments for flow resistivity, propagation

parameters, saturation effects, and specific normal acoustic impedance.

Where possible, analysis has been presented with respect to frequency,

sound pressure level, porosity, and material type. The agreement and

disagreement between the data and theory have been discussed. The

major points of the analysis are summarized in this section.

Two conclusions from the dc flow resistivity measurements

(Section A) are drawn. First, each material exhibits nonlinear be-

havior at some threshold particle velocity. The onset of nonlinearity

appears to be related to the material structure. For most fibrous

materials and fully reticulated foams the modified Reynolds number can

be used to estimate the nonlinearity threshold. Second, the dc linear

flow resistivity was found to be a function of the porosity and the

material structure. The exact relationship is unknown, but two pre-

viously derived functions [33,34] Eqs. 1-12 and 1-17 fit the data for

two materials very well. Although only single porosities of some

materials were measured, the functions should be good descriptors of

the porosity-flow resistivity relationship.

The propagation measurements (Section B) yield important in-

formation about the definition of acoustic material nonlinearity.

Analysis of the small-signal measurements (Part 1) showed that use of

the dc flow resistivity data leads to a small, systematic error in the

prediction of the acoustic propagation parameters of the porous ma-

terials. In the case of the batted Kevlar 29 material, the empirical

173



hconstant g in Eq. 1-12 was changed to reflect a more realistic value

for the material properties. No changes were made in the empirical

constants of the other materials.

In Part 2 saturation effects in bulk porous materials were

studied. It was determined that, although shocks never form, at high

intensities the energy loss by the fundamental and the approach to

saturation are governed by the same mathematical relationship in

Eq. 11-76 as when shocks do form in waves propagating in fluids. A

Gol'dberg-type number is found in Eq. 11-79. From comparison with data

we define values for a porous material nonlinearit parameter T which

is part of the Gol'dberg-type number. The nonlinearity parameter was

found to depend on frequency and relative nonlinearity (material type),

but, at least for batted Kevlar 29, not on porosity. High-intensity

propagation measurements were reported in Part 3 and compared with the

results of the perturbation solution of the conservation equations. At

low intensities the propagation of the sinusoidal waves was found to be

affected by material inhomogeneities. At high intensities the in-

homogeneities affected the results and could be corrected for. At the

higher porosities of Kevlar 29 the second-order perturbation solution

results were found to diverge from the measured data. The theory

predicted too much harmonic generation and not enough excess attenua-

tion of the fundamental. As the porosity was decreased the theory was

found to agree with the data at higher sound levels. The energy lost

by the fundamental to excess attenuation was, apparently, not all

shifted to the higher harmonics, as it is in fluids. It appears that
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shocks do not form in the porous material because the nonlinearity is

a turbulence related phenomena and the transference of energy out of

the fundamental may be done on a broadband as well as a pure tone basis.

There is no experimental basis for this statement, but it is offered as

a possible explanation to where the energy goes.

Section C (impedance measurements) contains important infor-

mation for the definition of the material impedance and support in-

formation on the propagation parameters. In Part 1 the low intensity

theoretical and measured impedance for semi-infinite and finite ma-

terials were found to agree. Since the propagation parameters and the

impedance of semi-infinite materials are directly related to each

other, the agreement between data and theory supports the calculations

and measurements for the propagation parameters.

In Part 2 the ad hoc impedance model was compared to the im-

pedances of several materials at different frequencies and sound levels.

The definition of the material nonlinearity through the use of this

model acts in opposition to the dc flow resistivity model as well as

the saturation model. The nonlinearity defined by the nonlinear impe-

dance model is independent of frequency, but depends upon the porosity

(attenuation) of the material. This result is not surprising because

there is no actual theoretical basis for combining second order effects

in a first order impedance equation. As a rough approximation, the

approach works.
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CHAPTER V

SUMMARY AND CONCLUSIONS

The propagation of intense sound in bulk porous materials

has been studied both theoretically and experimentally. In the theo-

retical analysis, rigid material structure has been assumed and the

viscous loss has been defined by the measured dc flow resistivity. In

the linear analysis region these analytical assumptions have beer

successfully used by others [23,32,33,34,45] to explain their data.

We have also experimentally verified the theory here.

A brief, small signal analysis of oscillatory heat transfer

effects in fibrous porous materials is presented in Appendix A. Heat

transfer effects modify the compressibility of the gas and, thus, the

reference sound speed. The resultant reference sound speed is a

function of fiber size, porosity, and frequency. Because the heat con-

ductivity and heat capacity of porous materials are much larger than

that of the air, the type of material used does not affect the analy-

sis. The heat transfer analysis results are not used directly in the

"4 analysis presented in the main body of this study because the effects

are small relative to the viscous effects. The heat transfer effect

limits (isothermal and adiabatic sound speeds) are used to indicate

the range of modifications to the viscous theory.

Standard nonlinear acoustic theory has been used as a basis

[for understanding the nonlinear effects on intense sound propagating in
porous materials. Unfortunately, nonlinear acoustic theory of fluids
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1is not directly applicable to intense sound propagation in a porous

material because of the high attenuation and severe dispersion fou.d

in these materials. For sounds propagating in fluids, viscous attenua-

tion and dispersion effects are usually ignored in the pre-shock re-

gion. In bulk porous materials the attenuation and dispersion are so

large that shocks never form. Despite the lack of shock formation,

some of the effects of shock formation on the fundamental component,

excess attenuation and saturation, are found to occur as if shocks had

actually formed.

The experimentally determined approach to saturation is

useful in describing how much of the acoustic energy of intense sound

is propagated, or not propagated, in the porous material. The modeling

of saturation effects was based on knowledge of how the energy is lost

from the fundamental in the sawtooth region of an intense wave in a

fluid [76,80,81]. For the high intensity energy loss an empirical

parameter T has been defined and found to depend upon frequency f and

the relative nonlinearity n/a of the material. Because of the limited

data, the exact relationship T(f,n/a) is unknown, but we defined an

approximation. It is possible that T is a function of porosity. The

excess attenuation and saturation experiments might be used to define

the acoustical nonlinearity of the material. Possibly, a relation-

ship between the saturation defined acoustic nonlinearity and the dc

flow resistivity nonlinearity could be determined. There is probably

a definable function between the two nonlinearities for fibrous mate-

rials or fully reticulated foams, but it may not be reasonable to
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expect such a function for partially reticulated foams. In most

cases we find that the fit of the excess attenuation model to the

data to be excellent.

The perturbation solution of the conservation equations was

derived in an attempt to explain excess attenuation of the fundamental

and harmonic component generation in the measurement results. The

model does not work well at high intensities, porosities, and

nonlinearities. As the porosity is lowered the agreement between

prediction and measurement results is improved.

Success of the excess attenuation model and failure of the

perturbation theory have led us to re-examine how the excess attenua-

tion energy is lost from the fundamental component. It appears

that the fundamental component energy is lost not only to the harmo-

nic components, but, because the nonlinearity is a turbulence process,

to broadband random noise. This broadband noise level can be as

much as 60-70 dB down from the fundamental component level, thus

making it difficult to measure and not noticeable.

Impedance measurements and predictions for many materials

have been presented to illustrate that the theory is applicable to

most finite and semi-infinite materials at low intensities. These

results are also presented in support of the propagation parameter

measurements, since when L>> 1, Z1 +r I and the same results are

obtained for each measurement.

A new experimental technique was developed for use in measur-

ing the impedance of semi-infinite porous materials at high intensities.
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The technique has some advantages over techniques developed by others.

The system is simple to make and use and measurements may be made up to

sound levels of 167 dB. As with some other measurement techniques,

shock formation limits the sound level to which this method is appli-

cable.

High-intensity sound measurements were done to evaluate how

well an ad hoc model predicts the effect of sound level on impedance

of a semi-infinite material. For the ad hoc model to be useful, the

relative nonlinearity of the material has to be reduced with reduced

porosity in order to predict the measured values. Because of the

simplicity of the saturation and impedance models, relationships be-

tween the three experimentally determined nonlinearities would be

useful in acoustical analysis. The determination of these relation-

ships appears to be a fruitful area for future research.

The nonlinear effects described in this study are only

applicable to materials exposed to very intense sound fields; even

the most nonlinearly behaving materials do not exhibit nonlinear

behavior below 120 dB. The most important area for use of these re-

sults is to bulk material use in the sound reduction of jet engine

noise. Materials such as Kevlar 29 have recently been used inside the

Helmholtz resonators that act to absorb sound before it is radiated

out the engine intake. The additional treatment is, apparently,

successful in reducing the radiated noise [92]. There may be a com-

bination of effects caused by the porous material that offsets the
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nonlinear behavior of th. resonators and increases their effectiveness

relative to resonators without porous materials. For example, the

porous material impedance changes may offset the resonator impedance

changes with sound level. Or, saturation effects may increase the

sound absorption of a sound once it has entered the resonator, not

letting as much sound out as without the porous material.

This study has been successful in describing how sinusoidal

(or almost sinusoidal) waves interact with a bulk porous material.

The results of the study should also be useful in laying the ground-

work for future studies in this area. Important topics for future

research would be (1) an investigation of the relationships between the

acoustic nonlinearities as defined in the various theories and experi-

ments in this study and (2) an investigation of the interaction of the

acoustic field and a resonator filled with a fibrous material.

-.
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APPENDIX A

A Theoretical Description of Oscillatory Heat Transfer Effects

on the Propagation of Sound in a Fibrous Porous Material

In this appendix a mathematical model of heat transfer effects

on sound propagation in air saturated fibrous material is derived. The

resulting model is good for low-intensity sounds propagating in the air

of the porous material. The conductive heat transfer properties of both

the air and the fibers are accounted for. In the final analysis, the

specific heat transfer properties of the fibers are found to have a

minimal effect on the sound propagation and may be neglected. The heat

transfer primarily affects the sound speed. Its influence on the atten-

uation is small relative to that of viscosity and is ignored.

The derivation that follows is for cylindrical fibers, and

cylindrical coordinates are used. The heat transfer is assumed to be

due to conduction only, i.e., convective heat transfer and acoustic

streaming (mixing) at high intensities are not accounted for. A primary

effect of convection and streaming would be to raise the heat transfer

rate and thus increase the tendency of the propagation to be isothermal.

Two steps are used in determining the oscillatory heat trans-

fer in fibrous porous materials. First, the general problem of oscilla-

tory heat transfer between the medium and the cylindrical fiber is

determined. Two different boundary conditions at the fiber surface are

considered, and the effects of each on the sound propagation are dis-

cussed. Second, the relation describing the effect of the heat transfer
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on the phase speed is derived. This relation is used in Eq. 1-6 for

comparison to the phase speed of Kevlar 29 (P= 0.980).

I. Oscillatory Heat Transfer in Cylindrical Coordinates

In this section the oscillatory heat transfer between a single

fiber and the infinite material in which it is immersed is considered.

The general heat transfer equation is presented and solved for two sets

of boundary conditions. The two solutions are compared.

A. Equation and General Solution

The governing equation for radial heat conduction in cylin-

drical coordinates is [22]

/T2T T 1 T =A A (A-i)

\ 2 r3r) aT at

where a = K/pC is the thermal diffusivity, p is the density, C is the

specific heat, K is the thermal conductivity, r is the radial distance

from the fiber center, T is the temperature, t is the time, and A is an

arbitrary driving function. The driving function A may be a function of

the coordinate system and time. The relation KA is the rate of heat

production per unit volume [22].

If the driving function A is sinusoidal in time, i.e.,

A = A ej Wt  (A-2)
0

then the steady state solution of Eq. A-i is [22,52,61]

A
T(r,t) = [BJo(rj3/2) + DKo(Erjl/ 2 ) -  e jt + T (A-3)
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where J is the Bessel function of the first kind of order zero, K is
0 0

the modified Bessel function of the second kind of order zero, T is0

the reference (ambient) temperature, and E = w/- . In this presenta-!T
tion we assume that A is constant in the region of interest, either

0

internal or external to the fiber. Bessel functions with imaginary

arguments can be written in terms of Kelvin functions with real argu-

ments. The relations are [22,52,61]

J= (zj ber z + j bei z (A-4)

and

K 1/ 2) = jv(kerz + j keigz) (A-5)

Alternately, the Kelvin functions can be written in polar form as

M O (z)e = ber z +beiz ( cosOezW + J sine W) (A-6a)
~~~M(z)e = e~

VV

and[ ej42(z) 2ker ~z+kei z (os (z) + j sin49(z)) (A-6b)

where

bei z
e (z) = arctan z (A-7a)

V
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and

kei z
(z) = arctan ker (A-7b)

The equations above are valid in most regions of the coor-

dinate system. The K (zj ) term becomes infinite at z=O and the

J (zj/2 I) term becomes infinite at z=-. In what follows, the subscript

I denotes the region internal to the fiber and the subscript E the

surrounding material. The constants B and D are determined by the

boundary conditions, which are discussed next.

Table A-I is a listing of the thermal properties of various

materials. Several of these values are used in following examples.

B. Boundary Conditions

Two sets of boundary conditions at the fiber surface are con-

sidered here. In one case the fiber surface is assumed to be isothermal,

in the other case non-isothermal. But first, general boundary con-

ditions, that is, conditions at r=O and - must be stated.

1. General

The boundary condition at the fiber center is that the tem-

perature is finite, or

T E(r,t)0

a r = (A-8)
9 r0

The boundary condition at an infinite distance from the fiber is
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TABLE A-I

THERMAL PROPERTIES OF SEVERAL MATERIALS

K p C T Ca
MATERIAL THERMAL DENSITY SPECIFIC THERMAL f=1000 Hz

CONDUCTIVITY kg/m3  HEAT DIFFUSIVITY a=6- 10-6 m
W/m°K J/kgoK m2/s

COPPER [50] 390 8900 385 1.110-  0.045

STEEL [50] 45 7700 450 1.3'10 - 5  0.13

AIR (3000 K) 0.026 1.2 1006 7.5"10 - 9  0.10
[28]

GLASS [50] 2.5 2600 775 1.210-6 0.42
k7

KEVLAR [50] 0.7 1445 1200 4.0-10-  0.75

NYLON [50] 0.2 1100 1700 1.1.10- 7  1.5

TEFLON [50] 0.24 2200 1050 1.0"10 - 7  1.5

POLYURETHANE 0.3 1150 1000 2.6"10 -  0.93

[(501
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DT (r,t)
E
r= . (A-9)

2. Isothermal Surface

The mathematical analysis is simplest if the surface tempera-

ture is constant, i.e., isothermal,

T(a,t) = T , (A-10)

0

where a is the fiber radius and T is the reference (ambient) tempera-
0

ture. In this case the external and internal temperature fields are

decoupled. As will be seen, this condition closely approximates the

actual surface boundary condition of the fiber in air. The isothermal

boundary condition is justified when the fiber has a much greater heat

capacity and thermal diffusivity than the surrounding medium.

3. Oscillating Surface Temperature

The mathermatical analysis is still simple in this case; we

have just shifted the heat source from a volume to a surface. We set

A 0 (A-11)
0

and

T(r,t)l = A e (A-12)
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where A is defined only at the fiber surface. The internal and ex-
a

ternal temperature fields are decoupled. This case closely approximates

the temperature oscillations of a fiber in a medium. For more general

conditions the exact boundary conditions must be used. They are dis-

cussed next.

4. Non-Isothermal Surface

In the situation where both the fiber and surrounding medium

specific heats and thermal diffusivities are similar, the isothermal

surface condition cannot be assumed. The heat flux and the temperature

at the fiber surface must be equal at all times. The mathematical de-

finition as to what occurs at the fiber surface is defined by [22,38]

aT I(r,t) K T~ r (A)13
KI r =E 3r (-3

r=a r=a

and

Tl(at) = TE(at) " (A-14)

With these two sets of boundary conditions any simple heat

conduction problem with a cylinder in a different infinite medium can

be solved. Next the above solution and boundary conditions are applied

to the problem at hand.

C. Internal Heat Transfer

Heat transfer within the fiber with an oscillating surface

temperature, Eq. A-12, is described first. In this case only the
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boundary conditions at the center and surface are needed to solve

Eq. A-3 (Ao=O). The exact solution is

AJo(E1 rj3/2) jwt
Ta(r,t) = e + T (A-15)

Grbber [31] derived relations similar to Eq. A-15 for convective heat

transfer to a cylinder. The paper has many theoretical examples and is

quite complete.

We set T =0 and plot the normalized magnitude of Eq. A-150

(TI-To)/Aa versus distance for various values of ra in Fig. A-i. If we

define the thermal boundary layer thickness as 6=i2cT/w, we find that

E =/ . The internal thermal boundary layer is illustrated by the

region near the surface which changes its temperature, and, as a

becomes larger, the relative boundary layer thickness becomes smaller,

indicating that heat transfer is less important when la> 10. The in-

ternal thermal boundary layer of the fiber is significant only when

the frequency is low, the fiber diameter is small, and/or the thermal

diffusivity is large (C a< 10).

D. External Heat Transfer

Heat transfer outside the fiber with an isothermal surface,

Eq. A-12, is described next. In this case only the boundary conditions

at the fiber surface and infinity are needed to solve Eq. (A-3). The

exact solution is
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T (r, t) - eJt + T (A-16)
E jI K(EEaj2

We set T =0 and plot the normalized magnitude of Eq. A-16
0

(TE-T)/KA versus distance, for various values of a, in Fig. A-2.

The external thermal boundary layer is illustrated here. As shown in

part C, when CEa increases the relative boundary layer thickness de-

creases. The boundary layer thickness is important oi.ly when CEa< 1.0.

E. Coupled Heat Transfer

This case is not so simple because the internal and external

fields are coupled. The result is two coupled equations which define

the total thermal field.

Inside the fiber the solution is

jA°0EKEK°( Eaj1/2)J°(EIrj
3/2) et

TIr(rt) = E + T (A-17)

(0

and outside the fiber the solution is

TE(r,t) = j + e + T (A-18)E W E 0

where

E EKEKO@Eai/)(EI )+ JEIKiIJ( aj3/2)Ko(Eaj1/2) (A-19)
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and the primes denote derivatives with respect to the function argument.

A plot of these equations versus distance, for several values

of Ia and C Ea, is shown in Fig. A-3. This plot shows that the iso-

thermal surface boundary conditions are adequate for our purposes. The

dotted curve is for a Kevlar fiber in air and a 0.1 kHz temperature

oscillation. As the frequency increases, the boundary layer becomes

smaller and the fiber-air system becomes more isothermal, as shown by

the solid curve. The dashed curve indicates what the temperature oscil-

lations would be for two materials of similar properties (a Teflon fiber

in nylon).

In this section the oscillatory heat transfer in and around a

cylinder has been studied. For the purposes of our study it has been

shown that the fiber material is inconsequential to the formation of

the thermal boundary layer in air and the isothermal surface boundary

condition can be used in the analysis in part II of this appendix.

1
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II. Oscillatory Heat Transfer Effects in an Air Saturated,

Fibrous Porous Material

In the previous analysis the only consideration was the heat

transfer to and from a single fiber in an infinite medium. In this

section the conservation of energy equation, which turns out to have

the form of Eq. A-l, is used to study the heat transfer to and from
a single fiber when the temperature oscillation is caused by an acoustic

wave for which X>> a. The results are used to determine the heat

transfer effects on the phase speed and attenuation in a porous mate-

rial. The approach in this section is modeled after an analysis by

Pfreim [63] and restated by Devin [26] on heat transfer effects in

oscillating gas bubbles in water.

In the following, the energy equation is derived ar-i solved,

the sound speed is determined, and then the effects of -' *cLsit- 7nd

heat transfer are simply added and a complete small s1Sn&l solution

obtained.

A. Energy Equation

The process to be described must obey the first law of

thermodynamics, the conservation of energy

dE (A-20)
dt dt dt

where dE/dt is the rate of increase in the internal energy of the gas

per unit volume, dQ/dt is the rate of heat transferred to the gas per

unit volume, and dW/dt is the rate of work done on the gas per unit

volume. Since the fluid considered here is a perfect gas, the rate of

increase of energy per unit volume is
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1

dE dT

d-t = PCv (A-21)

where C is the specific heat at constant volume. Our analysis is forV

small signals and we can set p po, where p is the ambient density,

and use partial derivatives in Eq. A-21 and the following. The rate

of heat transferred to the gas per unit volume (in cylindrical coordi-

nates) is

_ r [2T 1 Ir
" -T +Ik Ir (A-22)

at [a2 r ar

The rate of work done on the jas per unit volume is

aW P app a: (A-23)at P at

where P is the total pressure. The only overt differences between the

above equations and the equations in Devin's analysis [26] are that

Devin w~s concerned with spherical coordinates and viewed everything on

a per unit mass basis. Equations A-21, A-22, and A-23 are used in Eq.

A-20 to yield the energy equation

C 2 = _L aT T I T Pap (-4
La3r

v+t + p t(A-24)

We need to replace the density term with a pressure. The

gas is assumed to be ideal and

P = (Cp- C v)T , (A-25)

where C is the specific heat at constant pressure. If a time
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derivative of Eq. A-25 is taken and Eq. A-25 substituted into the

derivative, the result is

-d dT

P_ = P (C -c )A-6
p dt dt p-v d (A-26)

Substitute Eq. A-26 into Eq. A-24, eliminate like terms, and write the

equation as

2
a T 1 DT 1 T 1 DPK - + - - - - --- (A-27)
ar2 r Dr aT at K at

Equation A-27 is a general equation applicable to a small

signal acoustic wave in the gas whenever X >> a. Equation A-27 is

equivalent to Eq. A-l, with

A = -(aP/3t)/K (A-28)

The analysis can probably be performed for waves other than sinusoids,

but, for the analysis here, sinusoids are the only waves considered.

B. General Solution

The solution of Eq. A-27 is accomplished by assuming that the

acoustic wave is a sinusoid such that

P = P + pejt , (A-29)

where P is the ambient pressure, p is the magnitude of the acoustic

pressure, and X>> a. Since X>> a and this is a boundary layer problem,

there is no pressure gradient in the vicinity of the fiber; in other

words the acoustic pressure p is assumed to have no dependence on the

radial distance r. Equation A-27 becomes

196



2a- + laT 1 T e jWt (A-30)
2 r r aT at K

ar T

If we assume that the fiber temperature remains constant, then Eq. A-16

is used to obtain the solution of Eq. A-30. The solution is

2 r Ko rj) 1
T(r,t) - T + ( 2p2 e (A-31)o poC!p - Ko(aj ) j

This solution is used in the next section to calculate the heat

transfer effects on the sound speed in a fibrous porous material.

C. Heat Transfer Effects on the Phase Speed

Now that the radial dependence of the temperature is known,

the small signal phase speed may be calculated. Since we have losses

caused by heat transfer effects, the phase speed is neither adiabatic

nor isothermal. The phase speed is written as

2 d2 (A-32)CT dp

The limitation that the compressions be isentropic has been removed

because the compressions are no longer lossless. From Eq. A-32 the

phase speed can only be calculated if a relation between the pressure

and density can be found. In order to do this the heat transfer

effects are integrated from the fiber surface out to some reference

distance. The specific reference distance is determined later in this

appendix. The volume integration is performed in cylindrical coordi-

nates.

In cylindrical coordinates the specific volume per unit mass

and per unit length of any shell is cylindrical
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1
-= 2rrdr (A-33)
p0

and infinitesimal changes in pressure and temperature are written,

respectively, as

dP = pe
jWt

(A-34)

and

dT 0(r)ejWt (A-35)

The relation of the thermodynamic states between any two shells is

P Po
- T (A-36)

0 0

The above equations are now combined to determine a differen-

tial form of Eq. A-31. Differentiate Eq. A-36 and substitute Eqs. A-33

through A-35 and Eq. A-31 into the differential of Eq. A-36 to obtain

1 _2iffrpe jWt [ K~j)1
d(-) 1 + (y-1) 1 : dr (A-37)

- YPo K (Eaj d

Integration of Eq. A-37 is accomplished by noting that [5?]

X xK (xj )dx = - +K(x)

so

=-xj (kei 1x + j kei 1x)01.11

(A-38)
=x(kei'x + j kei'x)

The upper limit of integration in r is taken as arbitrary and the exact

value is determined later. After integrating over the volume around
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the fiber and some algebra the resulting equation is

p - p 2(y-1)j- r~(Erj )-aKl(&aj )

pP -pEr
0 0 1 K(a ]' -- = I- '(A-39)

P YP 0 (r2 _ a ) Ko (aj )

The last step is to take the derivative of this equation and solve for

dP/dp. This result yields

2 yPo[ 2(y-l)j [rKl(&rj ) - aKl(Eaj)] -
CT 1- .(A-40)

T PO C(r - a 2)Ko (aj ) J

Although desirable, the transform to the time domain could not be
K

accomplished. Thus, this equation, in its present form, is only good

for single frequencies.

It is important to determine whether the function has the

proper values in the limits of fiber packing. If the fibers are spaced

infinitely far apart, then r-- and

2 YPo
CT = p (A-41)

which is the square of the adiabatic sound speed.

In the limit in which the fibers are packed as close together

as possible, r- a, and the equation becomes

2 P
2T  0 (A-42)
T PO

which is the square of the isothermal sound speed.

In a porous material the fibers are packed in a spacing well

between these two extremes. The relative fiber packing is used to
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determine the upper limit of integration. Assume that the fibers are

evenly spaced and parallel, as shown in Fig. A-4. The dotted lines

indicate the radius at which the thermal boundary layers intersect.

The small spaces labeled M indicate the area missed by the integration

(19%), but this area has little effect on the calculated phase speed as

Eq. A-45 is a slowly varying function.

For two cases, P= 0.918, the magnitude of the sound speed is

plotted versus frequency in Fig. A-5. Since the largest phase angle of

Eq. A-45 is less than 20, the phase angle is ignored in further cal-

culations. The magnitude change of the sound speed is found to be a

very slowly varying function of both porosity and frequency. Increase

of the thermal diffusivity will cause the phase speed to approach iso-

thermal. This effect is the same as lowering the frequency, since

= rwlTc For a constant porosity, reduction of the fiber size causes

the fibers to be more tightly packed, as shown in Fig. A-4 (r-a).

Increased packing density causes a lower phase speed.

It is now important to compare the heat transfer effects to

the viscous effects in the same porous material. This is the topic of

the next section.

D. Thermoviscous Effects on the Phase Speed

In this section the heat transfer and viscosity effects in a

porous material are combined. Since only low-intensity sound is being

considered in this appendix, a simple replacement of b by Eq. A-40 in
0
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Eq. 1-16 is assumed to be valid. The result of the above substitution

plotted versus frequency in Fig. A-6.

In Fig. A-6 the thermoviscous phase speed predictions and 4

data for Kevlar 29 (P = 0.980) are plotted versus frequency. This

combination works fairly well for the full frequency range.
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III. Summary and Conclusions

In this appendix the oscillatory heat transfer effects in fi-

brous porous materials have been determined. The results have been com-

bined with viscous effects and used to predict phase speed in a fibrous

porous material. In the analysis, the fiber type was found to have

minimal effect on the heat transfer boundary layer in air surrounding

the fibers and an isothermal boundary condition is used in predicting

the soundspeed.

As anticipated, the heat transfer effects on the sound speed

are bounded by the isothermal and the adiabatic sound speeds. These

limits encompass a change of about 18% from the adiabatic sound speed.

Because of the complication of using Eq. A-45 in the body of

this dissertation, the limiting cases of the isothermal and adiabatic

sound speeds are used in the low-intensity sound predictions. When

intense sounds propagate through a porous material the acoustic particle

velocity and displacement become large. The large particle displace-

ment causes the heat transfer to be convective, rather than conductive,

and causes acoustic streaming which mixes the fluid. Both of these

effects shift the curves in Fig. A-5 so that, for a given frequency W,

Kthe fluid compressions are more isothermal and the sound speed is
slower. In addition, the isothermal sound speed is used in the high-

intensity sound predictions because of the increased heat transfer and

gas mixing caused by the high particle .Jlocities.
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APPENDIX B

DRAWINGS

Construction drawings of two devices built for the experiments

in this study are presented in this appendix. Figures B-i through B-3

show the construction drawings for the standing wave tube. Figure B-4

shows the construction drawing for the traveling wave tube.

In Fig. B-i-A the impedance tube, the sample holder, and the

aluminum plug are drawn. In Fig. B-i-B the driver/probe tube adaptor

for the impedance tube is drawn. In Fig. B-2 the impedance tube

support/carriage track is drawn. In Fig. B-3 the microphone carriage

and microphone holder are drawn.

In Fig. B-4 the traveling wave tube and its accessories are

drawn.

I
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FIT TO 2.5"O.O., PLASTIC TUBE DRILL 1.315 OE
FIT TO 2.0'1.D. PLASTIC TUBE 1.375-18 THREADS

+

-3.25"

ALUMINUM ADAPTOR, DRIVER AND PROBE TUBE FOR IMPEDANCE TUBE

ALUMINUM PLUG
TO FIT CUT TO FIT SAMPLE HOLDER
SAMPLE HOLDER2.0

1.0'-'4.5--
I1.0"

WIRE% SCRE EN, PLEXIGLASS,2.Od'lp., VPLEXIGLASS, 2.00:1.D.,
0.008 DIA. 2.12 5 0.D. 2.25 O.D.
PIANO WIRE SAMPLE HOLDER IMPEDANCE TUBE

FIGURE B-1
DRAWINGS OF THE ACOUSTIC DRIVER AND PROBE TUBE ADAPTOR, IMPEDANCE

TUBE, AND ALUMINUM TERMINATION FOR THE STANDING WAVE TUBE.
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APPENDIX C

COMPUTER PROGRAMS

Two of the programs used in this study are listed here. A

short description is given for each program.

PERT4PD

This interactive program is used to calculate the propagation

of an initial wave consisting of a fundamental and a second harmonic

component of arbitrary amplitudes and relative phase in a porous

material. The program calculates and plots the sound levels of the

four harmonic components with distance (0-25 cm). The information

needed to use the program is the frequency f, linear flow resistivity

a/415, nonlinear flow resistivity n/415, fundamental component sound

level, porosity P, second harmonic component sound level, and relative

phase 4.

PHSPED

This interactive program is used to calculate the heat

transfer effects on the phase speed of sound in a porous material. The

program calculates and plots the magnitude and phase angle of the phase

speed versus frequency. The information needed to use the program is

the thermal conductivity, density, and specific heat of the fibrous

material, the fiber radius, and the half spacing between the fibers.
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PROGRAM PERT4PD(INPUTOUTPLiTDATPTSPLOT.TAPE5UPLOT)
C
C HLK (PAD) 6-1-82
C THIS PROGRAM IS USED TO CALrULATE THE AMPLITUDES OF THE FIRST
C FOIIN HARMONIC COMPONENTS9 WTT' RESPECT To DISTANCE, FOR AN
C ACOU1STIC WAVE TRAVELING IN A BULK POROUJS MATERIAL.
C THE BOUNDARY CONDITION CONbTSTS OF AN ARBITRARY COMBINATION
C OF THF FIRST AND SECOND HAwmONTCS. DATA FOR THE FIRST FO(IR HARMONIC
C COMP~ONENTS ARE PLOTTED. ]HE IMAGINARY PART OF THE PROPAGATED WAVE
C AMPLITUDES ARF PLOTTEC.
C

INTEGFR LABXCT),LARY1(1),LARY2(1),MAI (2)
REAL PIPO(16013,X(I601),P2Pl(I601)
REAL PIP02c16o1),P3P0(l6Ol~.P4P0(1601)
REAL xn(21),FND(2I),SND(21).TRD(21),FRTH(?1)
COM.'LFX O1,Q2,03,04,U21,U2e.U13,U24,V1,V2
COMIPLFX GAMMAT ,GAMMA2,JGAMAICGAMA2CGAMMA3,GAMMA4

C SPECIFICATION OF CONSTANTS FOR PROGRAM.
C

A XL EN= B *5
AYLENE5. 0

4 JzCMPLX(0f,1.)
C=292.
RHOOzI .21
P12000
LDATz6LDATPTS

C
5 OTIU

C
C DATA ENTRY
C

PRTNT.,$INPUT NO. POINTS/INCH TO PLOT 1180 MAX.), IOPT 09
REAU.,NPINCH, IOPT

C
C PRGA INPUT TERMINATION.
C

IF(NPTNCH.EQ.0) STOP
C
C DlATA v-v OF DATA LINES, PLOT OTITLE*tPOPOSITY: DECIMAL* SIGMA: LINEAR
c COEFFTCIENT OF RESISTIVITY PEP RHOO#C, ETA: NONLINEAR COEFFICIENT OF
C RESISTIVITY PFR RHOO'C, FRL.OUENCY: HERT?, B: RELATIVE
C AMPLTUIDE OF THE SECOND HAHMONIC COMPONENT WITH RFSPECT
C To VHF FIUNDAMENTAL. PSI* RLg ATTVE PHASE RETWEEN THE

4C FUNDAMENTAL AND SECONC HARMONIC COMPONENTS,
C

REAO(LDAT,.)N),MAT(1) ,MAT(?) .P.F
IF(NO.O GO To 500

OMEGA*.*283 18%*F
C

4 PRTNTO,$SIGMA, ETA, PsI*s,
REAU..SIGMA ,ETAPSI

C
DO 150 JDu1,Nl
READ(LDAT9*) XD(JD),FND(JD)Skn'(JD),l~l(jfl),FRTH(jD)
IF(JD.GT.1) Go To 17

7ER0.FNOUl
17 FNn Lin)z-ZEPO*FND(JD)
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SNO (Jn)=-ZEAO*SND(JD)
TRD,(Jn)=-ZERO*TRO (Jo)
FRTM (JO)meZERO*FRTH (JC)
IF(SNn(JD),LT.-50.0) SND(JDlaloOO
IF(TRn(JO).LT.-S50O) TRD(JD)10.0O
IFIPRTH(J0).LT.-50.o) FRTH(JD)ulO.0

150 CONTINUE
C

SIGMAl =4I5.*SIGMA/ (RHC0*OMtRA)
ETAl=415.'ETAoC/ (RHO0o4MEGA)
GAMMAl =CSORT (I.-J*SIGR'A1)
GAMMA?=CSQRT (I.-J*SIGPI/2.)
GAMAICzCSQRT (i*.#J*SIGPAI)
GAMA2C=CSORT (1 .J.SIGP'A1/2.)
GAMMA3=CS0RT (1.-J*SIGPI~A/3s1
GAMMA4UCSQRT (I.-JOSIGP'A1/4e)
NPsNPTNCHOAXLEN
DELTAx=25.oOOmEGA/ INP*I00o.C
SVALu..1 .*AYLEN
PSIUO.01745*PSI

C COMPIUTATION OF THE FIFRST MIuR HARMONIC COMPONENT AMPITUDES,
C WITH RESPECT TO DISTANCE, FnR AN ACOUSTIC WAVE TRAVELlING
C IN A RULK PORflUS MATERIAL.
C

DO 10 JL=19NP
K (JL) =DELTAX*JL
IF (ImPT.EO.1) GO To 15
IF (IflPToEO.O) PIPo(JL)320&*AL0G1O(CABS(CEXP-J*GAMMAIX(JL))))
IF (InPT*EQ*O *AND* PIPO(JL)*LTeSVAL) PIPO(JL)BSVAL

15 VlmBO12.*GAPhMA2-GAMAIC)
V2=2..ETA1-J* (GAMMA1**2)* (GAMPiA2.GAMAIC)

V1sVI*V2I
V220..GAMAICOGAMMA2. (1.-GAmA1CeGAMMA2)
OluVi /V2
OVli (2.IGM*2(SGAI*J24A1)MA
02Vl/OFA2.*(SIGMA J2.MAMMA
VluFTA1 .J*GAMMAI*(3.-44*SIGm*1)
V2a..GAMMA2*GAMMA1O (1 .-GAMMAAOGAMMA2)
Q3z8* 2**GAMMA2*GAMMA1) *V1/V2
VI. (8e02) 3(2. ( GAMMA2**2) 61G1'A1)

V2uJOFTAI-J*4.*GAMMA2* (SIGMA 1.J*4.
Q4=VI*V2I
VI=CEXP(J*(-GAMMAI*XO.L) .PSJ)l
V2uCEXP(J*(-(2.OGAMMA2-GAMAlC)*X(JL)*PSI))

VinCEXP J*2.0(-GAMMA2*X(JL))
V2=CEIP(J*2.*(-GAMMA1'X(JLf)
U22u(V2-V1)

V1uCEXP(J*13.*(-GAMMA3*X(JLI)PS I))

V22CEXP(J(-(2.OGAMMA2.GAMMAl)*X(JL) *PSI))I

V2.CEXP(J*(4.0(-GAMMA4*X(JL) ).2.*PST))

U24m(v2-Vl)

VIuCEXP (-J0GA4MAI*X (JL))

V2WO*CEXP(-J*2.OGAMMA2*X(J ).PSI))
PIPOZ(JL)220.OALOGIO(CASS( (vi)))
P2PO (JL)220.*ALOGIO (CABS( (vp.IPS*020u22)))
P3P0(JL)s3O.*ALOGIO(CDUS((EPSoO30U23)))
PPpO(J)L)z20.*ALOGIO(CA9S((EPSOOAOU24)))
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IF (P1PO2(JL).LT*SVAL) P1PUP(JL)=SVAL
IF (PPO(JL)-LT.SVAL) P2POIJ)L)=SVAL
IF (PIPO(JL).LT.SVAL) P3POI,,L)=SVAL
IF (P4PO(JLI-LT.SVAL) P4POIJL)=SVAL

10 CONIINJE
C

DO 30 JN=1,.KP
X (JN)=X (JN) .100@*C/OMEGA

30 CONIINJE
C
CO** PLOT THE VALUES.
C

LAfRX(I)=*Xg CM*
LARY (1) =$LOGW1l/UO)*
LARY2 (1)=*LOG(UI/UO)*
XOprn .0

YOPG=7.0
DX~e.O /A XLEN

C BRANCHING FOR PLOTTINC CHOIcEF.
C PLOI 'iI/UO

C

CALL PLTLFN(4LPLOT)
CALL 0LTDIm(I1.0#8.5,1,4@O)
CALL PLTORG (XORGYORG)

CALL DLTAXIS(0.0,0.0,AXLEN.oOO.O,25.091 .OLABX,-6.5,-.1,-.1)

CALL PLTAXlSfO.O.0OOAYLENQO.,-50..G.09?.5,LABYI1 .1O5,-.1,-.1)
CALL PLTAXIS (O.0,AYLEr.AXLLN.0,O.0925.0,1.0,LABX,-6,99.1)
CALL PLTAXIS(AXLEN.0.0,AYLEN,90.O,.5U.,0.O,2.5,LARY1,1090..19.1)

C
C PLOT THE DATA.
C

CALL PLTOATA(xPlPoNF.O00o.,Dx,50.0,oDy,.08,2)
CALL PLTLINE(4.25,-I.2v,0o14)
WRITE(59100) PFSIGMA
CALL PLTEND(II.0,R.S)

20 CONTINUE
C
C
C PLOT MUOm

CALL PLTLFN(4LPLOT)
CALL PLTDIM(11.0,8.5,1,4.0)
CALL PLTORG(XORG,YORG)

C DRAW AXES
CALL DLTAXIS(O.0,0.0,AXLENO.0,0.0.2b.091 .OLABX.-6,5,.1,.1s)
CALL PLTAXIS(o.0,0.0,AYLENQ0..50. ,0.097.5,LABY2,10,5,-.1 ,-.1)
CALL PLTAXIS(0AYLENAXLtJ,0.0,O.O,25.fl1OLABX,-6,0Ie1 .1)
CALL PLTAXIS (AXLENQo,AYLt.J,9o.O.-50..0.092.SPLARY2.1090.1 ,1)
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C
CALL PLTDATAtP1PO2,oNPOu,Ooflx,-5O.0,Dy,.08,2)
CALL DLTDATA(XP2P0,NPO0.O,0OX,-50,DY,.08.9)
CALL PLTDATA (XP3P0,NPOO9nOX,-5O.ODY, .0O84)
CALL PLTDATA (X,P4P0,NPOOOO9Dx,-5O.ODy,.O8,8)
CALL PLTDATA(xOFNDNC,-I1,o.OX,-so.onyOo16,3)
CALL PLTOATA(XD.SN~ONC,-l.bo.0.D*-50.otflY.O.16.3)
IF(TRfl).GT.j0.0) G(' TO 6b,
CALL PLTOATA (XDTRDNC,-1,',.O.Dx.-5o.oglyo.16,3)

6r, IF(FRT#4(1~.GT*O.O) GO TO 7b
CALL PLTOATA(XOFRTI4,NO,-1 .1i0. O*X,5SO.0 DYO.16.3)

7S CALL PLTLINE(4s25,-O&9v'OoI4)
WRTTE(59200) PqFqZERO
CALL PLTLINE(4-2S,-Io3,-0.14)
WRTTE(S0300) SIGMAETA
CALL PLTLINE(4.2S9,1.8o0.l4)
WRTTE(S9400) R9PSI
CALL PLTENO(11.Oo.S)

C
C PLOT LA8ELIFG FOR INALT PANAMETERS.
C

100 FOpi4AT(*P = *,F9o3t* F z *OF9*3,* SIGMA z *9F9.3)
200 FORI4AT(*P = *,F9o3g* P a soF9.3,* SPL z *9F9.3)
300 FORMAT(*SIGMA z *,F9&39* ETA = **F93)
400 FOPMAT(*B = *,F9.39* PSI a *,F903)

GOTO 1;
C

SOO PRIT.,MAT(1)*MAT(2)9* SAVE PLOTS*

EN()
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PROUjRAM PMSPEn (INPUTOUTPUTPLOTOUITAPE2SOUTTAPES=PLOT)

C04PLEX C25,C2SlC2SCViVl9V2tV3

INTLGFR LABX(?)9LA8Y(2)tLAbY2(2)

REAL r2SM(1701),LOGFC1YO1),PHASE(1701),F.RERALPoLFKERAKEIA,
* KEROAKETDAKEROP ,KEIuRKI .PICII

C
C INITIAL17E VARIARLES

GAMMA=1.402
ALPnAF=2.216E.5
REPizSGRT (2.*3. 141592?/ALPIAE)
AEPI=REPI

C
5 PRTNT.,$ENTER K19 Plt CPI$9
REAUOKI ,PI .CPI
IF (T.EG.0.0) STOP
PRTNT*9*ENTER FIRER RADIUS, RAOIUS, NO PLOTTER STEPS*,
PEAV#.AgR#N

C
REPpqP lo
AEP=AF PI*A
DLF:2./N
ALPHAT=KI/Pl/CP!

* Alp=SfRT g2.03.1415927/ALPHAT)OA
VSRzSnRT(31.071I/(KI*P!*CPlI)
M=N* 1

C
C COMPUTE PHASE SPEED*

DO 10 J219M
LOGO-(J)z2.*(J-1)*DLF
F=lu.**(LOGF(jI))
REmkEP*SQRT (F)
AE2AEP*SQRT (F)
AI=AIP*SGRT (F)
CALL MMKELO(AERERBEIKERA.KETAIER)
CALL MMKELD(A,98ER9REIKERUAKElDAILR)
CALL MMKELD(RP.F3ERBEIKERuRICETOH,!ER)
CALL MMKELO(A!.RERA.BETAXKFR.XKEI,!LR)
CALL mmKELD(ATRERDA,5EIDAxKERXKE!,IER)
X1ZHE*KEIOR-AE*KEIDA
X2xAE*KER0A-RE*KERDR
C2SsCMPLX (xl x2)
C2SU=CMPLX (KEPAsKEIA)
VI=LMPLX (KERDAKEIDA)
V2=LMPLX (PERA9BE IA)
V3zCMPLX (BERDARE IDA)
V=VbROVIOV2/V3-C2SD
C2S3343./CSORT(l.-2*( CAMMA-l. .C2S51,URE.RE-AE@AE)OV))
C2SM (J) =CABS (C2S)
PHASE J) 3ATAN;)(A IMAG (C2S) ,NFAL (C2S3)) 180./ 3. 1435927

10 COrNeIUE
C
C PRINT OUT VALUES.

WRIIE i2'150)
DO 20 J:1 9 Mh
FzlU.ooLOGF CJ)
WRTTE(29f)F9C2Smq(J) ,PIASE(ji

20 CONIINUE
150 FORMAT(010)
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C PLOT MAGNITUDE AND PHASE vs. fREQijENCY,
DATA LABX/*FREQUENCYts,* Ht.RTZ*/qLABY/*IlORM PHASE*,* SPEED*/l~
DATA LABY2/*PHASE ANGL*9*Eo/

YORG=7.O
AXLtN*S.5
AYLENa5.0
DX=e,./AXLEN
DY400 ./AYLEN
Dy2z20./AYLEN

c
F CALL PLTLFN (4LPLOT)

CALL PLTD!M(11I.OS9,l4aO,
CALL PLTORG(XORG9YORG)

C DRAW AXES.
CALL LOGAXIS In.O0.O,0AXLEN9090.10O.,I000n.sLARX'-16.-.1'
CALL PLTAXIS(0.0,00*YLEN.QO.00O0*0O.,50oLABY*l6,29-I 9-.1)
CALL LOGAXIS(0AYLE~.AXLtN.0100solIOO0.,LABX9O9-.1)
CALL PLTAXIS(AXLENO.0,AYLtN,9O.OOU,1.o,.1,LASYOOqel '.1)

CALL PLTDATA(LOGFC2S91'M.Oo,2.,OX.O.DYO.I
CALL PLTLINE(2o0,-le2,.14)

CALL PLTEND(119OB.5)
C

CALPLTLFN(4LPLOT)

DRA L TOG(XOG R LOGAXIS(0.O,OOAXLEN,0.0.10.910000.,LABX'-169-.l)

CALL PLTAXIS(O.OOo0,hYLEN,9O.O,-10O.,1Oo.1.LABY2,1192,.919-1I

CALL LOGAXIS(O.OAYLENAXLLNU.O,10O.lOOOsLAHX,09-.I
CALL PLTAXIS IAXLEN.Oo0,AYLtN,9Oo0,-lU.,1fi.91.,LASY2oO.O9ol '.1)
CALL PLTDATA(LOGFPHAS8,MU.0,I.,OX.10.,0DY2.O.O)
CALL DLTENO(11.0qB.5)

C

l0o FOpMAy(*A-*9E9.39l0X9*R,4.t9o3)
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