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Introduction

The theory and application of Adaptive Control Systems have been a
center of discussion in the last few years. Continuous-time [1], [6], [7],
[8], as well as discrete-time [2], [5], [9], [10] schemes have been devised,
and stability has been proved. '

In spite of the continuous-time nature of real systems, from a point of
view of applications, discrete-time algorithms are preferred to continuous-
time, due to recent advances in digital technology. |

However, the discrete approach is not closely coupled to the continuous-

time behavior of real plants, making a "hybrid" approach (partly discrete,
partly continuous) desirable. It is a well known result [1], [6], that, for
a given plant, poles and zeroes can be arbitrarily placed with aphrbpriate
compensators as in Fig. 1. If the plant parameters are known exactly, then
s the control input which gives the desired behavior is on the form
: -u(t) = k* y(t),

y(t) being filtered versions of the plant input and output, and K* an array

of constants. In case of plant unknown, or partially kngwn; the input

assumes the form |

u(t) = K(t) w(t),
where K(t) are adapted in order to have K(t) - K*.
In the hybrid scheme which will be the subject of this paper, the set of
parameters K(t) are updated by a digital computer at discrete intervals of
time (t.}, and the continuous-time nature of u(t) is preserved.

: The overall scheme of the control system is shown in Fig. 2.

Recently, hybrid algorithms for adaptive control [4] as well as seif-

S i tuning regulators [11], have been devised. In [4] the adaptive gains K(t)
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are discretely updated at a fixed rate, in base of samples taken from the
plant in 2 random fashion.

It turns out that the sampling scheme is crucial in order to establish
stability of the closed loop system.

In many practical applications bounds on the parameters of the plant
are known, what enables us to determine a suitable sampling frequency which
guarantees stability.

The problem is stated in Section 1, with the error model given in
Section 2. The adaptive law is as in Section 3, and the varfable and fixed

rate sampling schemes are discussed in Seétions 4, 5, and 6.
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Notation

The following notation will be used:

vectors: as [a]’ azs cosy an]T;

time delay operator: 2z;

differential operator: p ’%i:'

x(t) = 0[y(t)] iff there exists a positive constant M such ‘that

|x(t)] < Mly(t)], for any t;

x(t) = oly(t)] iff [x(t)| < s(t){y(t)]| for some function 8(t) such
that 8(t) + 0;

x(t) = y(t) iff x(t) = O[y(t)] and y(t) = 0[x(t)];

L denotes Laplace Transform operation.

1. Statement of the Problem

A continuous time dynamic system (plant) can be described by the

Tinear 1ine invariant, non-autonomous differential equation
(1.1)  Dplp) x(t) = Dy(p) u(t)
with Op(p) = p" + app™! + ...+ 2y
Dy(P) = bgp™ + byp™1 + ... + by
The following assumptions are made on the plant parameters:
(1) the values of a4, i =1, ..., n and by, i=0, m, are unknown;
(11) m < n-1 is known;
(i§1) the plant is mihinm phase; i.e., the polynomial D,(p) is Hurwitz;
(fv) the sign of by 1s known, as are bounds byy, and bgy, where

. ,.bo‘n.’.bolt.’om'
Without loss of generality, boy > 0 will be assumed.
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Given a model
(1.2) Op(p) xp(t) = Kor(t)
with Dp(n) = p" + am-lm""1 + ... + 2, Hurwitz.
The design objective is to determine an input to the plant u(t) such that,
for some Ey > 0, tp > O
(1.3) le(t)]| < Ey, for every t > tg,
where
(1.3) e(t) & xp(t) - x(t) |
In particular we restrict the input u(t) to be on the form '

n
(1.4) u(t) = L Ki(k)wi(t), for telty,tysr)
where K;(k), i=1,n, is a set of gains updated only at discrete instants {t,},

and yi(t) are continuous time, observable state variables of the system.

2. The Error Model
It has been shown in [1] that constant vectors By and By exist such that
| (2.1) Dp(p)e(t) = Dy(P)[-boue(t) + 8 Te (t) + 8,76 (t) + Ko, (t)]
- where the following definitions pertain:

- o,(p) & p™' + clp"'z + ... + ¢, 7 15 2 Hurwitz polynomial such that

D,(p) is Strictly Positive Real (S.P.R.);

| ERO)

- uf(t) is such that Df(p)uf(t) = u(t) where Df(p) = p""""I +

F]pn-m-z +

ces + Fpp1 s any Hurwitz polynomial of degree n-m-1;
- ‘ui(t). i=0, ..., n-2 are solutions of Dw(p)Df(p)‘ui(t) = pfu(t);
- ¢x}(t), 1 = 0, ..., n-1 are solutions of D, (P)Dg(p)e, T () = pix(t);

’ - ’o(t) is solution of Dw(p)oo(t) = r(t).

If we choose D (p) = (p+a)D,(P), with a > 0, a sequence {t,}, and




|l (2.2) uglt) = KT (kg (t) + KT(K)g, (£) + K (K)o () + wy (),
for te[tk,tk+]),
we can write (2.1) as
T T
(2.3) (pta)e(t) = 8, (K)g () + 8 (k)ix(t) + 85(K)og(t) = bowq(t),
for te[tk’tk+1)
where .G.j(k) A _Kj(k) - b0§-j' j ® U,X,0.
In what follows the sequences gd(k) will be called the Adaptive Gains, and
will be updated at the sampling instants {t¢} only. Furthermore the input

u(t) has to be determined such that (1.3) is satisfied.
If (2.3) is sampled at instaﬁts‘{tk}.Athe samples of the error are

related by the linear, time variant diffe}ence equation

(2.4) e(ty) = Ae(t, ) + guT(k-1)§u(k) + éxT(k-l)Ex(k) +

+ 8, (k=1)8,(K) = by (k)
’ where we define
Ti= t - ey
Ay = exp ~aTy;
(2-5) ij(k) = ij(tk) - Ak_] _E_j(tk_])v j = O,U.X;_
(p*a) s'j(t) . ij(t)’ J = 0,u,x;
k

, ;I](".) » exp -a(tk-t)\ﬂ (t)dz
-1
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Introducing the auxiliary network
(2.6) y(k) = Apy(k-1) + q(k) + w(k)

with n(k) ¢ e(tk) + y(k), equations (2.4) and (2.6) yield‘
(2.7) n(k) = Agn(k=1) + & T(k=-1) 8(Kk) + w(k) - b, (k) + a(k)
where |
sTk) = [g, Tk & T(k)

NORER ()

-

(2.8)

-~

8x(k)
Let us choose

(2.9) w(k) = Ky(k=T)wy(k),
then (2.7) becomes

(2.10) n(k) = A(k=1) + 81 (k1) $(K) + &, (k-1)iy (k) + q(K),

which is the augmented error equation.

3. Adaptive Law

The equations in the previous section hold for any sampling sequence
{t }, on which no hypothesis has been made so far.
If we suppose {ty} be a sequence with an infinite number of elements,
then 1t is a well known result--[2], [3]--that equation (2.10) and the following
adaptive law _
8(k) = (k-1) - F 3(k) n(k)
(3.1) alk) = =y, [[&K)]1? (k)

8, (K) = 8, (k1) + %:ﬁ(k) k)

with F = diag €1, 1= 1.3, v > 172 min (A, Ay Aqs Ay > O, yield (5(K)) be

2 uniformly bounded sequence, and moreover




(3.2) lim n(k) = 0

Koo

(3.3) 1im $(k) n(K) = 0

ke
Let us define the control input as
(3.4)  u(t) = KT(k) 9(t), telty ty,).
where
(3.5) !1;) £ Df(n-mpl) $(t)s
equations (3.4) and (2.2) then yield
(3.6) wy(t) = uglt) - KT(k) o(t), telt,, t,, ),

which, together with (2.5), gives the remaining input to the auxiliary network
(3.7) Wy(k) = Gg(k) - KT(k-1) §(k)

- t
(3.8) dg(k) 4[ X exp -a(ty-t) ug(r) dr.
-1

4. Stability and Sampling Scheme

Y-

A suitable choice of the sampling sequence {t,} is crucial to prove stability
of the closed loop system. It is evident, in fact, from (3.1) that if the
output of the plant grows without bound in an oscillating fashion, we might
choose {ty} such that n(k) = O for every k, and the gains never be updated.

A sufficient requirement on the sampling sequence can be stated as follows:
Theorem 4.1. Let the sampling sequence {ty} have an infinite number of terms, -
and be such that

(4.1) sup | e(s) | < Mg sup | e(ty) | + M
s s ty nsk

for some constants My > 0, and My 2 0. Then the hybrid system described in
the previous sectfons s uniformly stable and o -
(4.2) 1im e(ty) = 0.
| S5




T
.

In fact, equations (1.3), (2.4), (2.7) yield ‘
(8.3) x(ty) = A x(ty_)) * Ko 3, (k) - n(k) + Agn(k-1)

- . T -
* Ky(k=1) W, (k) = v § (k) §(k) a(k)
Since the model is stable, driven by a bounded input, condition (4.1) on {ty}
implies

(4.4) sup |x(s)| < sup |e(s)] + M2 s Mg sup |e(ty)] + M3 <
s sty s sty nsk

for some Mg 2 0.
Combining (4.4) with the results obtained in Appendix A, which yield

Wy (k) = ofsup |x(s)|]
s s ty

[18(k)] = olsup {x{s){1,
s st

we obtain

(4.5) W, (k) = ofsup |x(tp)|]
sk
l18(k) ]| = "0[sup|x(ty) ]
ns<k

If we take equations (3.2), (3.3), (4.5) into account, we can write (4.3)
in the form

- (8.6) .x(tk) = Ax(t, 1) + 8o(k) sup [x(ty)] + 8y(k)
nsk

for some sequence Bg» By Such that 112 Bo(k) = 0 and B1(k) uniformly bounded.

It is easy to see that (4.6) implies uniform boundedness of the sequence
{x(ty)}. Using this result in (4.4) we.conelude that the plant output x(-)
is un1f6rm1y bounded, which proves the first part of the Theorem.

107 g e e .
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In order to prove (4.2) notice that, by equations (4.5), {ijk)} and
{w(k)} are uniformly bounded sequences. This fact together with equations
(3.1), (3.2), (2.6) implies that for the augmenting network

1im y(k) = 0

-
and (4.2) follows from being e(ty) = n(k) - y(k).
QED

The central idea contained in Theorem 4.1 is that stability of the overall

system is guaranteed if the sampled error {e(tk)} grows at the same rate as
the continuous time error itself.
‘ In particular, for a fixed rate sampling scheme we define

(4.7) 1t : kT, for k=0, 1, 2, ...
where T has to be determined in order to guarantee stability of the closed
loop system.

In Section 5 it is shown that a suitable samoling frequency F* can be
computed from the knowledge available on the bounds of the plant parameters,
and the adaptive control system is stable if ty is as in (4.7) with T < %;.

Before going into the details of the two schemes mentioned above, some
preliminary results, which will be used throughout the paper, need to be proved.

From the definition of the problem in Section 2, it turns out that the
(2n-1) order polynomial '

(4.7) by(staq) ... (s +apy ;) 2 D (s)De(s)D,(s)

is Hurwitz. Define A and p to be such that

(4.8) p > fag], for i =1, ..., 2n-1
~ 0<<Re ol
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Then the following can be proved:

Lemma 4.1 For A and p as in (4.8) the following inequalities hold

. i
(4.9) lod(t)] <2 *9)  sup x(x)], for 4 0, ..., n-1.

AZn-m-z
' J
(4.10) ¢3(0)] S.M')- Telan i 1(r + 6)% su :
n Ibol AZH—Z Okl n k|( ) . glx§ﬁ|

for j=0, ..., n?2. |
where a4, 1 = 0, 1, ..., n-1 and bo are coefﬁcie_nts of the plant -transfer
function as in (1.1).

Proof. By the definitions in Section 2 we cin write ¢xf as

(4.11) ¢x1(t) 'ft hxi (t-t) x(t)dr, i = 0, ..., n~1
0

where

PN B L
P ()= 2 | [ D, (s)Dg(s) ]

Application of the results in Appendix B yields (4.9).
To prove (4.10) notfce that Qui can be written as

i i
xP nP u ! P -Fu
Fig 4.1
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4k
(4.12) ¢ T(t) = 1. g a elt), i=0, ..., n2
u b S R

where we define

@ Kot f Tk xle o

k 4 -1 ok

: 1;?;— 0, ()0, (s)0¢(s)

Appendix B, (4.12) and (4.13) yield (4.10).

QED

Lenma 4.2 For the Hybrid Control System discussed in Sections 2 and 3,
constants F* > 0 and M; > 0 exist such that, for some g(-) with g(t) + 0,

(4.18)  Je(t)] < [F* + B(t)]sup le(x)] + M
1<

where e is the output error between the model and the plant.
Proof. Equation (2.3), lemma 4.1 and Appendix A imply that
(4.15)  |e(t)] < ale(t)] + My |]8(K)]| sup Ix(z)] +

t <t

+ B(t) sup |X(T)Is te [tko tk+])
=<t

for some M, > 0, and 8(‘) such that 1im 8(t) = 0.
t-’.

Boundedness of the sequence {&(k)}, as seen in Section 3, and of the model
output, make (4.14) to follow from (4.15).
QED
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5. Existence and Determination of a Minimum_Sampling Frequency

: . A
Throughout this section, bounds on the values of the constants g = [g.u, -B-x 1.

introduced in equation (2.1) are supposed to be available. In particular, we

i e - ———— e A—— -+ t—n ce— —o -

- __. know constants. Bjm. Bj" such that

(5.1) B < By < BM forg=0,1,... 202
&

-

- B e T _— e ecm—— P R —— - — -

" This enables us ‘t-a‘de.?e;mine"ai{"updatihg law which takes (5.1) into
account, and to compute a minimum sampling frequency F* which makes uniformly
stable the Hybrid Adaptive Control System defined in Sections 2 and 3.

Lemma 5.1. Let {t)} be an infinite sequen.ce. Then equation (2.10) and the
adaptive law given by

By 1 Ky(e) + ag(K) 2 B
am am
(5.2) Kj(k) = B3 s if Kj,(k']) + Aj(k) <8y

Kj(k-l) + Aj(k) .:otherwise
_ j=0,1, ..., 2n-2,
atk) = v, L1017 + 1, () 23n(k)

8, (k) = & (k1) + -}7 wy (K)n(K),

with

A -
4400 # L3y (kin00

806) = [g(K)s +evs By K]

yields (3.2) and (3.3).




!ﬂ:ﬁﬂi'ﬁ By (5.2) we can express Kj(k) as ) 14
(5.3) Kj(k) = Kj(k-T) + Aj(k) + Fj(k),

for some F (k) such that

(5.4) 6 (k) F(k) >0 for every k,

Tioy 2 F
ET(K) 2 [Fy(K)s <oos Fp (K],
Let us choose as a candidate Lyapunov function

(5.5)  V(k) = Msan” + x',,lesw(k)l2 + (k).

Then (5.3), (2.10), and §(k) & 8. b.K(K) yteld

(5.6) V() - V(k-1) = -(2y] - J-)Il}_(k)llznz(k)
- (o - LI, CIRY0
- [n (k) - Akn(k)n(k-1) + 1 (k-l)]
- by A HER) 2 - 2b A[8(k-1) - 1 a(k)n(k)
~ - boF(K)TTE(K)

The last term in square brackets is 8(k); then from (5.4) we conclude that
v(k) - v(k-1) < O for every k. This yields V(») < =, and the lemma is proved.
QED

C e e we— .. — -

. —— -

| fhé existence of a minimum samp11ng rate F* which guarantees stabi11ty of
the closed loop system for the Hybrid MRAC discussed in the previous sections,
is stated by the following:

Lemma 5.2. Let the sampling sequence be on the form'
" (5.7) t,=kT, k=0, 1, ...
for some constant T > 0. '
. Then a value T* exists such that the Hybrid MRAC described in Sections
2 and 3 is uniformly stable for T < T*, and |
(5.8) 1im e(ty) = 0
, ke
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- Proof. Suppose that the continuous time error e(-) grows without bounds.
Then an infinite sequence of time {Ej} exists such that
(5.9)  le(gz)} = sup Je(r)]
Tr<k

0 < le(gg)] < lelggedls 3 =0,1, ...
Let us define a sequence'{kj} of integer values such that

(5'10) (kj-])T f_Ej < ijs j = 0: 19 coe
First we can prove that positive constants Mg and Mg exist such that

(5.11)  Je(gg)] < Mg le(k;T)] + Mg, 3 =0, 1,2, ...

when T < 1, with F* as in Lemma 4.4.

33
In fact, suppose (5.11) does not hold; then a sequence 8(j), such that
Tim 8(j) = 0, exists for which ’
Joe

(5.12)  le(kyT)] < 8(3) le(gy)]-

Since the error e(.) is a continuous function of time--the plant and the
model being strictly proper and the adaptive gains uniformly bounded--by
Lagrange theorem instants Ty € (zj. kJT) exist such that

(5.13)  |e(qy)] =
15 - k)

’J.O"l’ ss e

Substituting (5.12) into (5.13) we obtain

(5.14) Jé(r)] 2 L= 80N ) o))
T ) - -

By the fact that 8(j) - 0 and -%— > F*, an index N exists such that,

for J > N,

|ex;)] > Frle(e)| = F* sup le(x)].
ff_'rj
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But this contradicts Lemma 4.2, and then proves that (5.11) is true.
Finally, equation (5.11) and Theorem 4.1 prove the Lemma.

QED

The knowledge available on the plant parameter enables us to determine
; suitable value for the sampling frequency F*, as shown in the'fo1lou1ng
Theorem 5.1. Under the conditions of Lemma 5.2, the overall system is uniformly
stable and (5.8) holds, if T < ] with

— § R DL

* = ||6 l‘- ) -2
(5.15) F max{_i_ e $lanklC+ 0 zj (+ o,
0

“ ”- '1
.__ﬁ*__..ogj()"!' p)J ,u}
AZn-m—Z ]

A
where ||§|l, = max |&;], and A, p as 1o (4.8). "

ggggj;f'Using the result of the previous lemma, we have to show that F* given
by (5.15) satisfies inequality (4.14) of Lemma 4.2.

From equation (2.3) and Appendix A we can write

(5.16)  [e(t)] < ale(t)] + {18, lali#y(t)]la

+ |18, ol lax(t)la + [8g1leg(t)] + 8(t) sup [,

where 1im g(t) = 0.
t-’.

Application of the results in lemma 4.1 to inequality (5.16), ytelds
(5.17)  Je(t)] < [F* + 8(t)] sup [x(x)] + |55 sup leg(x)]

t<t t<e

+ v(t)

with 1im vw(t) = 0.

t 4o
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Finally, being |x(t)] < |e(t)] + Xy, where Xy = sup [Xp(c)[, (5.17) yields

T <™

(5.18) |ekt)| < [F* + g(t)] sup le(r)l +F* Xy + (8] sup fe ()]
t<

T < ®»

+ v(t);

which implies that F* as in (5.15) satisfies inequality (4.14). "
' QED
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Conclusions

An algorithm for hybrid adaptive control of single-input single-output
systems has been presented. The parameters of the controlIer.are updated
periodically by a digital computer, and the continuous time nature of the

. closed loop system is preserved.

A bound F* on the sampling frequency F has been computed in base of

the information available on the plant, and uniform stability is shown

for F > F*,

18
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Appendix A

Lema. Wy(k) = O[e'*Tk sup |x(s)]|]
Sitk

with A as in (4.8).
In fact, equations (;.4), (3.6) yield

fyT

(A1) De(pIwy(8) = K(KID(n-m-1)g(£)-Dp(n-n-1KT(K)g(E), £ € [ty )

Using the identity, [1],
(A.2) D(p) KT(K) a(t) = KT(K) Dglp) o(t) +

: :z;'"'z D401 (KT (k) (™21 (1))
where we define
(A.3)  Dglo) = 1; Dg(1) = p + Fys5 ...
ees bf(n-h~2) = p" P24 "™y L+ F
and considering that, for t ¢ [tk. tk+1)
(A.4)  pK(k) = [K(k) - K(k-1)] &(t-t,)

with §(t) the Dyrac function, equation (A.1) can be written as

n=m-2
(A.5) De(p)g () = I De(1)[aKT ()8 (t-t, ) 1Tp™ "2 To(t)]

The polynomial Dy(n-m-1) being arbitrary, it is not restrictive to choose

with real zeroes, 1.e.

(A6) - Dplp) = (p+ §) v (P + Bropy)-




‘ R OV g ) . [

‘ ..;,as:‘,ﬁa
by

Partial fraction expansion yfelds

(A.7) Df(i)i"‘“‘“i
Df(n-m-'l) 13 P8y

and (A.5) becomes
. n-m-1 i
(A.B) Vl-'(t) = z:\j W'l (t):

-i~2
(R.9)  (ptag) wyd(e) -asT(k)cE;"' ByTo™m2-1y(1)15(t-t,)
0

for t ¢ [tk. tkﬂ).

Solution of (A.9) leads to

K
(A.10) w1j(t) = I A_Is_r(h)[Qj(n-m—Z)g(t)]a -t e~B5(t-t,)
) - A

where t ¢ E.tk. tkﬂ)’ amt :

S
(A1) qj(n-.,..z,e'g'"- i n-m-2-i

Bs P
Oi J
Definition (2.5) and equation (A:8) imply that -
A12 r Rl
(A.12)  wy(k) %:J w,J (k)

"

where
(A13) il & J 7 et (o) dte)
ti-1

i R
f ol e B g ra-tigd
t-1 ° . o=ty
. o8y (tk-1-ty)




The following facts hold:

a) aK(k) -0,

b) the elements of the vector Q (n-m-2) ¢ are strictly proper, 1inear
transformation of x, and u,

¢) the plant is minimum phase then, as shown in [7];
ju(t)] = 0 [sup |x(z)|].
t<t

Facts a), b), c) imply that

-8;Tk
e Pj o(B3=a)Tk 8(k) sup {x(t)| =
|8y=s] R

W3 (k)| <

= ‘3[e'nk sup lx(r)l],%Vj
'r__<_tk

with  as in (4.8).
QED




Appendix B

Let D(s) ¢ (s + ay)(s + ap) ... (s + ap) be a Hurwitz polynomial, and
let A, p ¢ R be such that
(1) Refaj]1>2r>0,fori=1,2,...,n
P > lagl s -
the following can be proved:

Lemma. For every pair of functions x,y: R + R

related by the linear transformation

t K
(2) y(t) =f h(t-7) x(t)dr
o

where )
keyd M= <k <
(3) me(-) 4 g [D(s)],o_k_n.

the inéqual ity

k
@)yt re) sup x(o)]
kn ‘l’f_t

holds for every t > 0.

Proof. Let us define

(5)  23(-) 41:"[ !
(s+ay) ... (stay)

Zi(-) 4 ! ] ‘
(s + )

for i=1,2, ..., nand 0 <J « 1.

24




First notice that

6 1220 < Lty = L et

|

(1 - 1)
i 'q' _ - 1 ;’1.. i}'i-t 1 gt
1 S+ A 15 [ S+ i
1 th .- 1 ‘#I. ~ ?i-c ‘1 %i
> - s SRS | « .
S +d4 S +-dz ,S + d‘-

This can be seen from figure B.1 according to the foi'lowing cons{derations.
Let _YO: R + R+ be any non-negative valued function. Proceeding by induction
we can show that .
(1) Yy(t) > |Y4(t)], for every t e m *.
In fact ‘

8) |%y(t) < f © oty (e < f ¢ TN (2)de = 1 ()
° o
which proves (7) for § = 1. Suppose (7) is true for { < J - 1; then if ay

is real we obtain

- ¢ o
Yy (e de < f A (e < Fyie)
Q

At

 J ¢ ) A

M 1A PR S, o - et ||
e T Y A e T e g e 13 £ 1 g e
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*

%51 is complex we obtain

and if uj.=

.
O T O R s PO B AT

L)

which proves (7). Finally, using definitions (5), inequality (7) implfes

t t. ‘
(10) f |Zi°(t-1‘)|Yo(t) dr < / Zy(t-1) Yo(t) dr

0 ()
'for'every non-negative valued function Yo' and then (6) follows directly.

In order to prove (4) notice that the following recursion
k o oKk+1 k
)z Zi+1 * a4 Lig s 0<k<i

holds from the fact that

(S+a1)...($+a-i) (S*‘a]) cee (S+°'1)(S+°'i+1)

This enables us to write

3+ h|

J
(12) 1z, Zil *eollin

<

where o is as in (1).

Using definitions (2), (3) and (5) we can write

(13)  (¥(t)] < sup px()|
1<

where we define

(14) qg ef lZ:(‘t)'d‘t » foro<j <i, |
o

i=1,2, cc.s N.

In particular, by inequalities (6) and (12) the following recursion holds
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I+ J J
(08) ey, =< 9y *eapy,

(16) 0<a; < f"z,(r) dr = _]
o | 11

By induction Qe can prove that inequalities (15) and (16) yield

(17) q'{ <+ p)‘j

i
A

In fact, for j = 0 and every i = 1, 2, ..., n (17) is proved by (16).
Furthermore, by (15) and (17) we obtain

J+

Ua = (>A+°)j St o{a +a)j = (a +p)j+]

S —————

Al RE RE

which proves (17).
Finally by (14), (13) and (17) the Lemma is proved.

Qe
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