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SUMMARY

This paper describes a tool to facilitate analysis of MASCOT systems.
Both topological and behavioural analysis of an AC? network can be performed
using techniques of graph theory and event simulation. The simulation

* environment comprises a number of simulating tasks running under a general
purpose operating system that supports pseudo parallelism between the tasks.

* A database is created to hold the ACP diagram including node attributes. The
topological input is derived from either a set of M4ASCOT construction coimmands
or from a graphics terminal. Node attributes used in the simulation are created
from a set of language statements describing in skeleton form the nature of
MASCOT activities, IDAs and devices. Performan"' data is recorded using a data
monitoring program.

The paper proposes that existing MASCOT machines be instrumented to inter-
* face to the simulation program and the data monitor. For use where this is not

possible (and to make the tool more general purpose) a method of characterising
MASCOT machines from language statements and interpreting these characterisations

* is presented.
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1 GENERAL INTRODUCTION

Since the early days of Phillips diagrams it has been recognised that the
* decomposition of a real-time system into data components and processes is

largely an intuitive matter. The advent of the MASCOT formalism has not changed
matters. Experience with the MASCOT AC? diagram as a design tool has however,
highlighted some pitfalls of its own. For example, it is very tempting for the
new MASCOT convert to become so enthusiastic about the modular approach that
activities and IDA's proliferate unnecessarily. often, perhaps as a reaction
against the monolithic program approach, the function assigned to a MASCOT
activity is too trivial. This in only one of the considerations incumbent
upon the system designer. How much data to put in a single IDA and whether to
use a channel or a pool are others. We might think of these as the topological
design issues (ie how we draw the AC? network). Other issues which here we will
call behavioural issues include data throughput rates, identification of



bottlenecks and deadly embrace situations as well as consideration of processing
power requirements. The latter may involve partitioning an ACP diagram for
implementation on several processors, stores and data highways. Traditionally,
behavioural issues have dominated the design of the software. The notion of
software prototyping implies that consideration of the eventual computing hard-
ware configuration should be decoupled totally from the design phase and the
use of the MASCOT ACP diagram as a design aid makes this possible. The premise
that the software structure should determine the hardware configuration and not
vice versa appears to be valid. However, the fact remains that the ideal
hardware never exists and often (particularly in embedded systems) the problem
of mapping the software structure on to limited hardware is not trivial.

This paper describes an analysis tool to help investigate both topological
and behavioural aspects of an ACP network. The analyser is to be implemented
on a minicomputer running with an operating system.

2 AIMS

The purpose of the analysis tool is to investigate in a controlled manner
the nature of a MASCOT network and the MASCOT machine which supports it. By
this means evidence should be produced that will show the nature of the
performance achieved by the network and separate overheads which are inherent
in the MASCOT technique from those that depend on the topology of the network.
A tool that enables performance measurements to be made on a given application
ACP network design will enhance the current set of software development facili-
ties available to the MASCOT designer and engineer. At least two uses for the
tool are identified. Firstly, the ACP network design team may use it to
demonstrate the feasibility of the initial design ideas by modelling the system,
in a skeleton form and observing the general effects of certain allocations of
functions to software modules. For example, it might be possible to assess
the optimum size for an activity with a given set of data access requirements.
Secondly, and later in the development process, more detailed knowledge of the
hardware to be used and the function of each MASCOT module would become avail-
able. In this case the model would be a useful way of giving confidence that
the ACP network could in fact meet the required performance constraints. A
requirement of the tool is that it is interactive and useable by a software
engineer at a low cost computer terminal with a graphics capability.

3 THE MAIN ELEMENTS OF THE TOOL

The tool comprises five main elements or subsystems as shown in figure 3.1.

3.1 The Topological Analysis Subsystem

Two types of topological analysis are possible with this subsystem.
The first is to check that the MASCOT rules for interconnection of modules
are obeyed. This validation process will be an essential pre-requisite
for any further analysis of the ACP network.

The second type of analysis is to find all data paths through the
ACP network (say, from one particular node to any other selected node).
In this way data loops can be discovered which might not have been planned
and which might give rise to deadly embrace situations, depending on
activity synchronisation protocols (ie access procedure design). Chapter
4 describes further this type of analysis.



3.2 The Behavioural Analysis Subsystem

The purpose of this subsystem is to provide an environment in which
to simulate the ACP network and the underlying MASCOT machine(s). The
overall aim is to assess the ability of the system to cope with the data
flow rates from/to data sources/sinks and if possible to identify bottle-
necks. The data to be calculated for each MASCOT module is as follows:-

1 For each activity:-

a processor time consumed (as a percentage of the total

available processor capacity);

b time spent waiting for data;

c time spent pending (caused by mutual exclusion).

2 For each IDA:-

a average queue length/contention rate for each mutual
exclusion variable (control queue);

b average buffer occupancy;

C buffer-full time;

d buffer-empty time.

3 For each device:-

Whether crisis times are met.
The simulated environment is provided by an event coordinator and

data is recorded using a program called the AC? monitor. Two types of
simulation entity exist. The first type is an instrumented MASCOT system
in which it is assumed that all activities are under the control of a
single MASCOT machine vhich runs on a single processor. The second type
is a device simulator and represents a single uni-directional device. In
simulating a typical MASCOT network there will be one or several occurrences
of these types of entity according to the topology of the network. The
event coordinator, ACP monitor and the simulation entities are from now on
called tasks, referred to as the event coordinator task, the ACP monitor
task and simulating tasks respectively. All tasks run under the control

6 of a supporting operating system. The simulating tasks run in conjunction
with the event coordinator which controls simulated time. Chapters 5, 6,
7 and 8 give more detail for the event coordinator, the ACP monitor, device
simulators and instrumented MASCOT systems respectively. Chapter 10
describes how device simulators and instrumented MASCOT systems are built
from a set of characterisations (descriptions) of the elements of a MASCOT

4 system and the devices with which it interacts.

3.3 The Database Subsystem

This subsystem comprises the MASCOT system database, a database
updating program and database update records. The MASCOT system database

4 contains a representation of the connectivity of the MASCOT AC? network
together with a description of its node- and interconnection- attributes.

4



The nodes are the MASCOT modules (activities, channels and pools) and all
devices. The interconnections are data paths which might represent
communications media such as buses and data highways. Examples of node
attributes are:-

node types,
node names,
node numbers,
IDA data access times,
a description of the MASCOT machine with which the node is associated

(for an activity: the MASCOT machine that schedules it, for an IDA:
the MASCOT machine on which the access procedures execute),

attributes that describe the hardware onto which a node maps (for an
activity: on what processor it executes, for an IDA: on what
processor its access procedures execute, for a device: a description
of the function of the device).

Interconnection attributes define the speed of data transmission
between nodes characterised by use of a selected communications medium..
The hardware configuration is described by a number of environment attri-
butes which specify the character of the MASCOT machine(s) in terms such
as the length of time to execute MASCOT primitives and scheduling policy
or policies to be used. The hardware attributes define, for example the
speed of processor used and the characteristics of data communication
media used. Chapter 9 describes in more detail the design of the database.

The database updating program (see figure 3.1) reads a set of update
records that specify one of the following actions:-

i Add a new attribute;

ii Delete an existing attribute;

iii Update an existing attribute;

iv List attributes;

v Attach attributes;

vi Detach attributes.

Attributes are related to the ACP nodes held in the MASCOT system
database. They originate from one of two sources:-

I the user at a graphics terminal drawing ACP diagrams;

2 statements in a command language read either from the terminal
of from a filestore.

Chapter 9 describes attribute management more fully.

3.4 The Graphics Subsystem

Software is provided to drive an interactive graphics terminal and
produce a picture of the AC? diagram. This is shown as the graphics
driver in Figure 3.1. The terminal user has the ability to draw and alter
ACP diagrams with the following aids:-

5



i A set of building elements to enable an ACP diagram to be drawn
on the screen. These elements are: activity symobols, IDA sym-
bols. device symbols, straight lines (for node connection) and
characters (for labelling).

ii A command decoder to respond to requests for element-selection,
connection, labelling, picture-layout and picture-selection.

3.5 The Control Subsystem

This subsystem controls the operation of the tool. A command
interpreter processes all terminal and filestore input including graphics
commands. It converts the user input format into database update records
and graphics commands. It converts the user input format into database
update records and graphics control commands.

4 TOPOLOGICAL ANALYSIS METHODS

4.1 Introduction

Topological analysis is performed on a representation of the ACP
network. When a network is created the adjacency matrix is formed which
defines its connectivity. The elements of the matrix are labels that are
strings formed by concatenating the digits of the node numbers of the
connected nodes. For example, the element a(5,11) representing a
connection from node number 5 to node number 11 has the label 05-11.

4.2 MASCOT Rules Validation

The rules governing connection of MASCOT modules (nodes) are:-

i An activity may only be connected to IDAs;

ii An IDA may only be connected to activities or devices.

4.3 Path Finding

The path finding algorithm produces a set of concatenations of the
* elements of the adjacency matrix (ie the arc labels) which define all the
* paths through the network which only pass once through any node (called

elementary paths).

The technique used is described by Carre (reference (1)) it involves
the calculation of the weak closure of the adjacency matrix with respect
to binary operations defined for an algebra called a path algebra. The
closure is calculated as the least solution of a matrix equation using a
method analogous to the Jordan method for matrix inversion used in classi-

4 cal linear algebra..

The algorithm is run in response to a command from the user. The
above technique yields a matrix whose elements give a description of
network paths in terms of the node-connection labels. This information
is relayed to an output device which may be the graphics output.
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5 THE EVENT COORDINATOR

5.1 Introduction

Figure 3.1 shows that the behavioural analysis subsystem contains
an event coordinator and chapter 3.2 introduced the notion of tasks. In
this chapter the aim is to describe how the event coordinator task func-
tions and to detail a set of facilities that it provides. These facilities
enable the MASCOT ACP network to be simulated by a number of simulating
tasks in conjunction with the event coordinator task. Chapters 7 and 8
describe how this set of facilities is used to simulate devices and MASCOT
systems respectively.

5.2 Description

The simulating tasks generate a set of discrete future events. Each
event has an associated simulation time at which we say the event occurs.
At any point in simulated time a finite set of future events exists (one
event per simulating task). The function of the event coordinator is to
sort the times of the events and send a stimulus to each task that
predicted the event in the order of event occurrence in simulated time.
The stimulus informs the simulating task that the event has occurred.
Each simulating task runs by predicting a single future event and awaiting
the stimulus from the event coordinator before generating its next future
event.

The event coordinator and each simulating task that is either a
simulation of a MASCOT system (on a single processor) or of a device, run
under an operating system that supports pseudo parallelism between the
tasks. Simulating tasks communicate with the event coordinator by sending
messages (simulation calls) to it and awaiting a reply. The message
handling function is proirided by the supporting operating system.

The event coordinator contains a clock that ticks in simulated time.
* Time now is the current time indicated by the clock. The simulation runs

so that each simulating task is allowed initially to generate a single
4 future event. Thus a period of simulated clock ticks from time now until

the predicted time of the future event is created during which the task
is simulating either a processor executing instructions or a device in
operation. For a task simulating a MASCOT system this implies that a
MASCOT activity is running uninterruptedly on the processor or that part
of the MASCOT machine is running likewise. For a device simulator the
period might represent the time taken to perform a data transfer with the
outside world. The generation of such a future event is achieved by a
simulation call named PROCESS FOR which takes a parameter specifying the

*time that is to elapse before the event occurs.

Once each simulating task has generated a future event it is await-
4ing a reply (the stimulus) from the event coordinator. Because all the

simulating tasks will be waiting in this manner it is certain that no
other event in simulated time can occur between time now and the time of
the earliest future event which has been predicted. The event coordinator
therefore updates the clock so that simulated time now becomes the time
of the earliest future event. In this way a&list of known future events
is generated which indicates for each event the time of the event and the
task which predicted it. This list is referred to as the event schedule.

8



r

Once simulated time has been updated a reply is sent to the task that
generated the earliest future event and that event is removed from the
event schedule. The event coordinator then waits until the same simulating
task either predicts its next event or terminates itself. The event
schedule is rechecked and the simulation continued in this way until the
simulation time limit is reached.

So far we have assumed that the time at which the reply is sent by
the event coordinator to the PROCESS FOR call is the time when the call
was made plus the duration specified by the parameter of the call. How-
ever, in order to simulate the effect of devices interrupting the Drocessor
on which a MASCOT activity is executing we must allow events (representing
the device interrupts) to occur during the PROCESS FOR period. There are
two aspects to the provision of this facility. The first is how the task
simulating a device generates an interrupt request and the second is how
to inform the task simulating the MASCOT system that the interrupt has
occurred.

A simulation call named ACTIVATE is provided in order to simulate
an interrupt. It specifies the identity of another simulating task and
indicates that the calling task is generating an interrupt of that task.
The event coordinator sends no reply to this message. An event is
generated at time now for the task which is to be ACTIVATEd (interrupted).
The event coordinator awaits another call from the task that called ACTIVATE
in order to predict the next future event for that task.

We now have the possibility that the event schedule contains more
than one future event for a task. The ACTIVATEd task will have an event
at time now and also one that was generated by its last call of PROCESS
FOR. We say that the event at time now has preempted the task's next
event and we have a chain of events for that task.

In order to describe how preemption of evei;.s is controlled we say
that a task can consist of a number of threads. Without the concept of
preemption each simulating task would be a single thread. Because an
interrupt can temporarily suspend the execution of such a thread (called
the base-level thread) and cause another sequence of instructions within
the same task to be obeyed, the task now has two threads, only one of which
can execute at a time. In theory a task can have one base-level thread and
any number of other threads caused by nested preemption. The base-level
thread exists until the task calls END TASK. All other threads are des-
troyed when each uses the simulation call named E.ND PREEMPTION.

The chain of events for a given task then consists of a number of
records each corresponding to a single thread with the base-level thread
record at the back end of the chain. Each record requires to hold the time
of the next event for the task as predicted by the thread and the time at
which the thread was preempted (if it was). It is now clear that the
END PEEMPflTION simulation call needs to modify (delay) the predicted event
time for the thread at the head of the chain, using time now and the time
at which the thread was preempted to calculate the delay.

Figure 5.1 illustrates the operation of a two-level preemption.
There is a base-level thread (1) and two preemption threads (2 and 3).
The threads have predicted durations of p1, p2 and p3 respectively. Time
is shown to progress along the page from left to right. The execution of



each thread is shown by horizontal lines and distinct threads are separated
vertically. The vertical lines directed upwards indicate preemption of
the thread below in favour of the thread above. Return to the preempted
thread is indicated by the vertical lines directed downwards. Where a
thread execution is shown by dotted lines this indicates the predicted
point in time for the end of thread (marked by the word "predicted") and
means that the thread was suspended during the period. The actual point
in time at which the thread completes is marked by the word "actual".

The event coordinator on scanning the event schedule will find the
task with the earliest event which might well be the task just ACTIVATEd.
A reply is sent to that task which indicates that a preemption has occurred.
It is then the responsibility of the preempted thread to deal with the
situation. The preempted thread's end of PROCESS FOR event time will now
require to be delayed until the preemption is complete. End of event
preemption is indicated by the preempting thread using the simulation call
END PREEMPTION. On receipt of this message the event coordinator delays
the event time for the event at the head of the event chain for that task

* by the duration of the preemption and continues to scan the event schedule.
No further reply is sent to the task until the event time is reached
(unless another preemption occurs).

In addition to predicting a future event by means of the PROCESS FOR
call a simulating task can specify that its next event will occur at the
time when a given condition becomes true (or set) or after a length of
time referred to as the timeout. In order to specify this a simulation
call named AWAIT is provided which takes a condition number and timeout
value as parameters. The event coordinator monitors the states of a
number of condition flags each of which is set by the simulation call
named SET CONDITION. As soon as the condition becomes set a reply is sent
to any simulating tasks which have called AWAIT and have not timed out.

6 THE ACP MONITOR

6.1 Introduction

4 Paragraph 3.2 describes the calculations to be performed in order
to measure performance of an AC? network design. To record the information
required to complete these calculations requires that data be transmitted

* from instrumented MASCOT systems and device simulators to a data-gathering
task. This is achieved by placing functions in the simulating tasks
representing the system which send messages/data to the data gathering

4 task called the AC? monitor.

6.2 Functional Description

The function of the ACP monitor is to act on data sent from a task
that is either simulating a MASCOT machine or a device. Data is received

4 in coded form and is converted by the monitor to a form suitable for human
presentation. The monitor accesses the MASCOT system database (see
chapter 9) to convert ACP node numbers into system element names as given
on the ACP diagram. The monitor executes in a cyclic fashion reading
messages from a FIFO queue and processing them in the order read. The
necessary processing is as follows:-

10
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1 Read a message

2 Decode the message

3 Perform computations

4 Output results

6.3 Input Message Examples

Figures 6.1, 6.2 and 6.3 give an indication of the content of input
messages received by the ACP monitor. They show message types for nodes
of type activity, IDA and device respectively.

6.4 Data Computations

An initial set of computations is proposed:-

a amount of processor time used by each activity

b amount of processor time used by all activities on a given
processor

c total waiting time by each activity on each control queue

d total waiting time by each activity on any control queue

e total time spent by system waiting on control queues

f total pending time f or each activity on each control queue

g total pending time for each activity on any control queue

h total time spent by system pending on control queues

i total time for which an IDA buffer is full

j total time for which an IDA buffer is empty

k ogs otnospro we nIAbfe sfl

1 longest continuous period when an IDA buffer is fully

1 longes montinudaous perio w eah iAu bufeviscemt

m total amount of data lost fom each intput device

0 totae amoun y dat losth tac outadfomchiput device

o average frequency at which data is riead fro each input device.

6.5 Delivery of Results

When the event coordinator is started a simulation time limit is
specified. During the time that the simulation is running the AC? monitor
continuously records data and performs computations. When the simulation
time limit is reached the performance results are available for output.



Type Message Content

1 The amount of processor time consumed so far or
since last message and the current value of
simulation time now.

2 The amount of time spent by the activity waiting
on a particular control queue so far or since last
message. The simulation time at the start and end
of the waiting period together with the control queue
reference number.

3 The amount of time spent by the activity pending
access to a particular control queue so far or since
last message. The simulation time at the start and
end of the pending period together with the control
queue reference number.

Figure 6.1

Type Message Content

1 The time that the IDA buffer becomes full

2 The time that the IDA buffer ceases to be full.

3 The time that the IDA buffer becomes empty.

4 The time that the IDA buffer ceases to be empty.

Figure 6.2

1) LeMessage Content

1 Indicates data lost on input

2 Indicates data lost on output

3 Indicates data read from an input device

4 Indicates data written to an output device.

Figure 6.3



7 DEVICE SIMULATING TASKS

7.1 Introduction

Device simulating tasks (also called device simulators) simulate
data flow to/from hardware devices. Simulating tasks can model two types
of device:-

i those which generate an interrupt to indicate either that data
is ready for input or that an output data transfer has completed
(or is requested); this type would also include interrupts from
clock devices.

ii those which set a status register to indicate both that input
data is available and that the device is free for the next
output transfer.

Node attributes indicate whether the device is an input or output
device and specify the rate at which input data is generated and output
data transferred. The type of device (as given above, ie i or ii) is
defined by the basic functional cycle.

7.2 The Basic Functional Cycle

Each device simulating task runs in an endless loop performing a
series of calls on the event coordinator using the facilities described
in chapter 5. As an example figure 7.1 illustrates the basic cycle for
the two types of input device: non-interrupting and interrupting.

* -1 Non-interrupting Device

PROCESS FOR (device start up time)
reply :- SET CONDITION ( c, time between inputs)
(c is the condition number)
if reply indicates "condition ignored" then report to the ACP
monitor.

2 Interrupting Device

PROCESS FOR( device start up time)
ACTIVATE( interrupt responding task number)
reply :u AWAIT( data read condition, time before next interrupt)
IF reply indicates condition not set THEN report to ACP monitor
that input data is lost.

Figure 7.1

*8 INSTRUMENTED MASCOT SYSTEMS

48.1 Introduction

Both the MASCOT machine and the ACP network that it supports are
instrumented by calls to the event coordinator and the ACP monitor. These
calls are planted in the code of the MASCOT machine and within activities,
access procedures and interrupt handlers of the application AC? network.
The following paragraphs illustrate by example how this might be done for
a given MASCOT system.

14



8.2 The MASCOT Machine

The time taken to execute the various parts of the MASCOT machine
will be gauged by planting calls to the ACP monitor in the code as the
example in figure 8.1 for execution of the JOIN primitive shows.

It is clear from this figure that access to the source code of the
MASCOT machine is needed. This may not always be possible and is one
reason for considering MASCOT machine characterisation and interpretation
as described in chapter 10.

8.3 MASCOT Modules

MASCOT modules are instrumented in a similar manner to the MASCOT
machine. Note that preemption by interrupt must be explicitly checked
for after a PROCESS FOR call. Figures 8.2, 8.3 and 8.4 illustrate
instrumentation of activities, access procedures and interrupt handlers
respectively.

send to AC? monitor(time now)
enter JOIN code
PROCESS FOR (join entry period)
check control queue
PROCESS FOR (check time)
alter control queue fields
PROCESS FOR (...)
send to ACP monitor (time now)
return to caller (PROCESS FOR ..

or reschedule (PROCESS FOR ..

Figure 8.1

send to ACP monitor (time now)
reply :- PROCESS FOR (period 1)
check reply and interrupt
send to ACP monitor (time now)
call access procedure
send to ACP monitor (time now)
reply :- PROCESS FOR (period 2)
check reply and interrupt
etc...

Figure 8.2 - activities



send to ACP monitor (time now)
send to ACF monitor (JOIN called)
JOIN control queue
send to ACP monitor (time now)
send to ACP monitor (at head of queue)
check IDA state
reply :- PROCESS FOR (check time)
check reply and interrupt
send to ACP monitor (time now)
WAIT control queue
send to ACP monitor (time now)
STIM control queue
LEAVE control queue
send to ACP monitor (LEAVE called)
etc....

Figure 8.3 - access procedures

send to ACP monitor (time now)
read device data
SET CONDITION (data read)
STIMINT control queue
send to ACP monitor (time now)
END IANDLER (END PREEMPTION)

Figure 8.4 - interrupt handlers

9 THE MASCOT SYSTEM DATABASE DESIGN

9.1 The ACP Representation

For representation in the computer the ACP network is considered to
be a directed graph (in the formal graph-theoretic sense). The nodes of

* the directed graph correspond to the ACP nodes. The arcs of the directed
graph match the oriented connections between nodes. For the purpose of
analysis we constrain the structure of the ACP network such that it maps
onto a connected directed graph. This means that starting from any node
in the network and ignoring the direction of data flow indicated by node
connections, it is possible to trace a path to all other nodes in the
network.

The connectivity of the graph is given by the adjacency matrix.
This is a square matrix of order n, the total number of nodes in the graph.
The elements [ aij] of the adjacency matrix A are given by:-

S~ aij] - label on arc from node i to node j, if the arc exists
and

zero otherwise.

9.2 Node Attributes

4 Three categories of node attribute are identified:-

16



i Topological or pictorial. These are placement details derived
via the graphics input medium (ie from the user).

ii MASCOT module. These will include node type, node name,
execution profiles (see chapter 10), IDA structure etc.. The
information is derived from user input.

III Environment. These include details of the hardware with which
each node is associated, eg for activities details of the
processor on which they execute and the MASCOT machine with
which the node is associated.

9.3 Attribute Management

Attributes need to be created, deleted, modified, listed and
attached to and detached from nodes. To support this requirement the
MASCOT System Database contains two attribute tables. The first table is
called the Attribute-Indexed Table which, as its name implies, is indexed
by attribute serial number. Each attribute has an entry in the table that
points to the data structure for that attribute. The table supports the
functions of attribute creation, deletion, modification and listing.

The second table is called the Node-Indexed Attribute Table and is
used to attach attributes to nodes. This table supports the functions of
attaching and detaching node attributes.

It is assumed that any attempt to access the details of an attribute
is accompanied by knowledge of the data structure for that attribute. It
is quite possible that two nodes will require to have the same attribute,
eg IDAs may have identical structures. In this case there is no need to
duplicate the attribute data structure, but simply to arrange that the
table pointers refer to the appropriate data structure.

9.4 The Database Updating Program

This program performs the functions of attribute management described
in paragraph 9.3. It reads a set of records from a file produced by the
control subsystem called database update records and writes to the MASCOT
System Database accordingly. For update records specifying a listing
request, the requested data is sent to the coummand interpreter.

10 CHARACTERISATION OF SIMULATING TASKS

10.1 Introduction

In order to model the behaviour of the system represented by the
AC? network and its associated devices a number of simulating tasks are
created for the system.

In chapters 7 and 8 it is assumed that the simulating tasks exist
as programs within which it is possible to plant calls both to the event
coordinator and the ACP monitor. In theory then, any MASCOT machine that
has been designed can be instrumented in this way. However, in practice
it might be that access to the source code of a particular MASCOT machine
is denied or that a cho3en MASCOT machine cannot readily interface to the
simulated environment. To overcame this problem simulating tasks are
created from a set of descriptions written in a non-implementation-
deedn saet



A task simulating a MASCOT machine is built from a generalised
MASCOT machine description, a MASCOT machine profile and a MASCOT
interpreter that executes according to these descriptions. The
generalised MASCOT machine description is an attempt to provide the
essential functional features needed to represent the operation of a
MASCOT machine. This description remains static. For each different
design of MASCOT machine a MASCOT machine profile exists detailing
MASCOT primitive time overheads and scheduling policy.

The MASCOT interpreter simulates a MASCOT machine and controls
activities using a set of instances. Instances for each activity and IDA
are created by means of an instance creation program. This program reads
ACP node attributes from the MASCOT system database and generates instances.

The ACP node attributes are generated from a set of profiles written
in a description language.

A task simulating a-device is built using information held in a
device profile contained in the MASCOT system database and the task is

* created by the instance creation program. These tasks are called device
simulators.

Figure 10.1 illustrates the above and shows where the MASCOT inter-
preter appears in the behavioural subsystem. Note that in a typical

* system there will be more than one MASCOT interpreter and several device
simulators.

10.2 The Generalised MASCOT Machine

The generalised MASCOT machine constitutes the set of functions
necessary to operate the MASCOT primitives. These functions are realised
by a set of procedures that are instrumiented with calls to the ACP monitor
and the event coordinator. There are nine procedures that support the
basic primitives JOIN, WAIT, LEAVE, STIM, SUSPEND and DELAY and control
the scheduling of activities. Figure 10.2 shows how these procedures
interrelate.

4 To illustrate how the MASCOT machine functions are supported figures
10.3 and 10.4 show the procedures for ENDSLICE and SCHEDULER respectively.

10.3 MASCOT Machine Profiles

A MASCOT machine is characterised by its primitive procedures, its
scheduling policy and its interrupt strategy. All the information required
to describe these features is held in a MASCOT machine profile. The pro-
file is used by the generalised MASCOT machine to determine the operation
of scheduling and interrupt handling and in deciding the PROCESS FOR

* periods to be set up in conjunction with the event coordinator. Figure 10.5
shows the information that the profile contains.

* 10.4 AC? Node Profiles

10.4.1 Activities

Activities are described by a sequence of execution periods
which will be so=e combination of:



a access procedure calls

and

b local processing statements.

In addition, a reference to the processor on which the activity
runs is given.

An activity execution profile contains:

- name

- processing sequence - ordered list of processing steps.

The possible steps are:

Type 1 local processing - a figure specifying the number
of instructions

Type 2 access call - reference to an IDA and an
access profile within it

- number of times sequence is to be obeyed

10.4.2 IDAs

Channels are described by:

a data buffer size

b access protocol (eg wait or poll if buffer empty/full)

Pools are described by an access protocol which defines a

period of mutual exclusion and access procedure times.

An IDA profile contains:

- name

- data buffer size (in words)

- message length (channels only). A message is defined as
that entity which is passed into/out of a channel by a
single call of the access procedure.

- array of references to access profiles.

Each profile contains the following:

- access identifier (name or number)

- access call entry overhead (number of instructions)

- access call exit overhead (number of instructions)

- buffer-check overhead (number of instructions)



- data transfer overhead (number of instructions)

- buffer state-change overhead (number of instructions)

-access type *reader, writer or readwriter

-access execution profile - ordered list of accessing steps.
The possible step types are shown below:

Type 1 JOIN

Type 2 check buffer state;
IF full/empty THEN WAIT;
transfer data, amend buffer state

Type 3 check buffer state;
IF full/empty THEN no action
ELSE transfer data, amend buffer state

4Type 4 STIM

Type 5 LEAVE

Type 6 transfer pool data

Type 7 SUSPEND

Type 8 DELAY

10.4.3 Devices

A device profile contains:

- name

- unit of data transfer (in bytes)

4 - operating sequence - ordered list of operating steps

The possible steps are:

Type 1 WAIT FOR COMM(AND

Type 2 SET STATUS(n)
n1l device free
n-2 device busy
nw4 data available
n-8 data not available

*Type 3 TRANSFER DATA

Type 4 INTERRUPT

Type 5 PAUSE - time delay

* -number of times sequence is to be obeyed
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10.5 Language Description of Profiles

In order to generate the profiles that are to be held in the MASCOT
system database as node attributes, a language is defined by the syntax
shown in Figure 10.6.

10.6 Instance Creation

10.6.1 Introduction

Instances are of three types: activity, IDA and device and are
created using an instance creation program. The program creates and
initialises instances from profiles and connectivity information
held in the MASCOT system database. A profile is an example of a
node attribute as described in chapter 9.

10.6.2 Instance Initialisation

Instances are initialised using attribute data from the MASCOT
system database.

10.7 The MASCOT Interpretet-

The MASCOT interpreter interprets the generalised description of a
MASCOT machine in conjunction with its MASCOT machine profile and a set
of activity and IDA instances in order to produce an instrumented MASCOT
system that runs in the behavioural analysis subsystem. It runs as a
sequential program, assuming that only a single processor is available on
which to run its activities.

The program executes by interpreting the content of activity instances
in conjunction with IDA instances, the generalised MASCOT machine descrip-
tion and a MASCOT machine profile.



therefore updates the clock so that simulated time now becomes Lfle L&L
of the earliest future event. In this way alist of known future events
is generated which indicates for each event the time of the event and the
task which predicted it. This list is referred to as the event schedule.

8
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4 ENDLSLIC
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SCHEDULER

This procedure is called by END SLICE.

Inputs: a list of runnable activities. An entry in the list contains:-

- activity identity

- priority of activity

Function: Read MASCOT machine profile to determine scheduling
algorithm and make scheduling decision.
PROCESS FOR (scheduling decision time).
Send slice-start time to ACP monitor.
Enter the scheduled activity.

Figure 10.4

- JOIN overhead if queue free

- JOIN overhead if queue not free (does not include pending time)

- WAIT overhead if queue already stimmed

- WAIT overhead if no stim received (does not include waiting time)

- STIM overhead

- LEAVE overhead

- SUSPEND overhead - time taken to add the activity to the scheduler list

- SCHEDFRONT overhead - time taken to transfer to the scheduler
list an activity released by a call
of LEAVE

- DELAY overhead - time taken to add an activity to and remove it

from a delay list

- ENDSLICE overhead - time taken to add an activity to a pending list

- STIM reschedule policy - does a reschedule take place?

- LEAVE reschedule policy - does a reschedule take place?

- scheduling rule for selecting an activity to run from a list
of runnable activities

Figure 10.5
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ACTIVITY <activity type name> =
(<list of IDA types>):

(sequence of calls of
PROCESSFOR : <integer number of instructions>

and ACCESS : <ida type> : <access name>

) * <replicator>

2 DEVICE <device type name>
(<IDA type>) : ... then as for ACTIVITY

3 IDA <IDA type name> =
(calls of :-
BUFFSIZE : <integer units>

and

MESSLENGTH : <integer units> ):
(calls of :- ACCESS <access name>

(<READERWRITER or READWRITER>) =
(<,equence of the following calls>:-

ENTRY : <integer number of instructions>
EXIT : <integer number of instructions>
CHECK : <integer number of instructions>
XFER : <integer number of instructions>

CHANGESTATE : <integer number of instructions>
(<sequence of the following
JOIN
WAITCHECK or POLLCHECK

STIM
LEAVE
POOL
SUSPEND
DELAY >);

4 PROCESSOR <integer type> -

(SPEED: <integer basic units>,
MASCOT MACHINE: <name>)

5 MASCOT MACHINE <type name>
(JOIN(FREE) : <integer basic units>,
JOIN(NOTFREE) : <integer basic units>,
WAIT(STIMMXD): <integer basic units>,

WAIT(NOTSTIMMED): <integer basic units>,

STIM: <integer basic units>,

LEAVE: <integer basic units>,
SUSPEND: <integer basic units>,
DELAY: <integer basic units,,
SCHEDFRO T: <integer basic units>,
ENDSLICE: <integer basic units>,
SCHEDULING: STIM POLICY a <abstract description>,
LEAVE POLICY a <abstract description>,
SELECTION RULE w <abstract description> )

Figure 10.6

m.,,.,..na m mia N il23i



11 THE CONTROL SUBSYSTEM DESIGN

11.1 Introduction

The command interpreter reads input mainly from a keyboard but can,
on keyborad command, switch its input source to a filestore. It generates
input to the graphics subsystem, produces database update records and can
output database information to the terminal.

11.2 Graphics Commands

All keyboard input is checked for commands that relate to mani-
pulation of the graphics terminal output. These commands are sent to the
graphics subsystem without alteration.

11.3 Analysis Control Commands

These commands specify that analysis of the ACP network is to start
and what type of analysis is to be done (topological or behavioural). The
command interpreter responds by activating the relevant programs.

11.4 Database Update Records

The database update records are created as input to the database
* program. There are three types of database update record that the command

interpreter produces. Each is produced by the input of one of the
following types of command:-

1 Construction Commands/

By means of a command syntax the structure of the ACP network ~
can be described. The update records contain the node connectivity
data.

2 Attribute Commands

The attribute commands and their function are shown in figure
11.1. Command iv expects the database updating program to return

* data from the MASCOT system database which the command interpreter
can print on the terminal or send to the filestore.

3 Profile Description Statements

These statements describe the profiles for activities, devices,

* IDAs, processors and MASCOT machines.
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Command Function

i ADD ATTRIBUTE Creation of new attributes

ii REMOVE ATTRIBUTE Deletion of attributes

iii UPDATE ATTRIBUTE Modification of attribute data

structures

iv LIST ATTRIBUTES Listing of attributes

v ATTACH ATTRIBUTE Attaching of attributes to
nodes

vi DETACH ATTRIBUTE Detaching of attributes from
nodes

Figure 11.1

12 SUMMARY

This paper describes a tool to facilitate analysis of MASCOT systems.
Both topological and behavioural analysis of an ACP network can be performed
using techniques of graph theory and event simulation. The simulation environ-
ment comprises a number of simulating tasks running under a general purpose
operating system that supports pseudo parallelism between the tasks. A database
is created to hold the AC? diagram including node attributes. The topological
input is derived from either a set of MASCOT construction commnands or fron. a
graphics terminal. Node attributes used in the simulation are created from a
set of language statements describing in skeleton form the nature of MASCOT
activities, IDAs and devices. Performance data is recorded using a data
monitoring program.

The paper proposes that existing MASCOT machines be instrumented to interface
to the simulation program and the data monitor. For use where this is not
possible (and to make the tool more general purpose) a method of characterising
MASCOT machines from language statements and interpreting these characterisations
is presented.

13 DEVELOPMENT STATUS OF THE TOOL

The tool has been designed to the pre-implementation stage, with the excep-
tion of the graphics subsystem and the generalised characterisation technique
described in chapter 10. Implementation of an experimental tool on the Ferranti
Argus 700, running under the OSC56 operating system has begun. This tool
comprises the event coordinator and AC? monitor programs. The facilities offered
by these programs will be used to instrument the Argus Hosted Frozen MASCOT
System (reference [2]). Following the successful conclusion to this work the
MASCOT System Database and the associated utilities will be implemented and
integrated with the tool. Subsequently the topological analysis and graphics
subsystems will be implemented.

Detailed design and implementation of the generalised characterisation
technique is considered to involve a significant effort and is likely to follow
the first production of the tool as a separate development.
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