Bolt Beranek and Newman Inc. @) bbn/

ool a

o B 7o |

ADA121272

Report No. 5203

1

Development of a Voice Funnel System

Quarterly Technical Report No. 16
1 May 1982 to 31 July 1982

. :

October 1982 L

Prepared for:
Defense Advanced Research Projects Agency

CIE o

82 11 08 12¢

. . ol
q UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entored)

REPORT DOCUMENTATION PAGE BEFOBE COMBLETING PORM
- N NUM 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
AJ-Al12 1273

T 4. TITLE (and Subtitle) 3. TYPE OF REPORT & PERIOD COVERED
’ Quarterly Technical

1 May - 31 July 1982

Development of a Voice Funnel System

Quarterly Technical Report No. 16 ¢ PERFORMING ORG. REPORT NUMBER

5203
7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(®)
- J. Goodhue, Jr. MDA903-78-C~0356
S. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK |
Bolt Beranek and Newman Inc. AREA & WORK UNIT NUMBERS
10 Moulton Street
Cambridge, MA 02238
1). CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DARPA O~tober 1982
1400 Wilson Boulevard 13. NUMBER OF PAGES
Arlington, VA 22209 28
TMONITORING AGENCY NAME & ADDRESS(I/ different from Controlling Office) | '5. SECURITY CLASS. (of this report)
UNCLASSIFIED

T8a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

[o P v YT YTy —
16. DISTRISUTION STATEMENT (of thie Report)

Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the sbetrect entered in Block 20, if dillerent from Repert)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necossary and identify by block number)

Voice Funnel, Digitized Speech, Packet Switching, Butterfly Switch,
Multiprocessor.

20. ABSTRACT (Continue on reverse side If necessary and idontily by dilock mumber)

—~ - | This Quarterly Technical Report covers work performed during the
period noted on the development of a high-speed interface, called
a Voice Funnel, between digitizied speech streams and a packet-
switching communications network. <7

DD ,on", 1473 eoimion oF 1 OV #81s oesOLETE UNCLASSIFIED
SECUMTY CLASRIFICATION OF THIS PAGE (When Dets Entered)

Ve e e mnm m m el

P— — P—— A - A e .%r-—-————ﬁv.__._~ ‘F

Report No. 5203 Bolt Beranek and Newman Inc.

DEVELOPMENT OF A VOICE FUNNEL SYSTEM

QUARTERLY TECHNICAL REPORT NO, 16
1 May 1982 to 31 July 1982

T~

October 1982

X This research was sponsored by the
Defense Advanced Research Projects
. Agency under ARPA Order No.: 3653
2 Contract No.: MDA903-78-C-0356
Monitored by DARPA/IPTO

R Effective date of contract: 1 September 1978
! [‘ Contract expiration date: 31 December 1982
L Principal investigator: R. D. Rettberg

! t Prepared for:

Dr. Robert E. Kahn, Director

Defense Advanced Research Projects Agency
: Information Processing Techniques Office
f 1400 Wilson Boulevard
A Arlington, VA 22209

The views and conclusions contained in this document are those of
b the author and should not be interpreted as necessarily
representing the official policies, either express or implied, of
the Defense Advanced Research Projects Agency or the United
States Government.

b
[
b

Report No. 5203 Bolt Beranek and Newman Irec.

T T v

Table of Contents

1. Introduction...l...‘l......Qll'..0..'.‘.0.....00.'.. 1
- 2. Buffer Management. ® 0 6 & 0 8 8 68 0 60 0 060 ¢ 08 0 00O S0 OB N 0N e 5
3. Buffer Management Utility RoutineS.cceeeeesccscsses 16

i Report No. 5203 Bolt Beranek and Newman Inc.

FIGURES

. BUffel‘ Header.oootcoiocll....ll.l.uon..--co.cco..ClOCOQCOO7
E Buffer Identifier....l....l...0..0".'.l..'...“.."....l 11

P

e - ii -

R e N e B e mm e m me e a e e o m e e o —

a

Report No. 5203

TABLES

Bolt Beranek and Newman Inc.

BUffer Fields.cOu.‘C...00!..0'0000'0.!.'.'.oclllll...l...l 8
BUffer Fields (continued).o..v..ol.ltll.l.'.ol.l'ono.lloco9

- 1ii -

L2 e St Jnh

Report No. 5203 Bolt Beranek and Newman Inc.

1« Introduction

This Quarterly Technical Report, Number 16, describes
aspects of our work performed under Contract No. MDA903-78-C-0356
during the period from 1 May 1982 to 31 July 1982. This 1is the
sixteenth in a series of Quarterly Technical Reports on the

design of a packet speech concentrator, the Voice Funnel.

This report describes the set of wutilities that we have
developed for creating and manipulating buffer space in the Voice
Funnel. In the remainder of this sectiorn, we give the motivation
for the development of special-purpose facilities for Buffer
Management. In Section 2, we give a general description of the
': Buffer Management System. In Section 3, we give detailed

descriptions of the macros and system calls that are available to

users.

In a communications processor such as the Voice Funnel, the
mechanisms which manage buffer space are extremely important.
Performance measurement experiments with the ARPANET IMP, the
* Pluribus Satellite IMP, and other communications processors
developed at BBN have shown that the efficiency of buffer
management operations has a significant impact on overall
performance. As a result, we have devoted considerable attention
in the development of a highly efficient set of buffer management
primitives, Since the buffer management system is heavily used

by the synchronous I/0 software in the Voice Funnel, its features

————

T

T

L SR JNR SRR by

Report No. 5203 Bolt Beranek and Newman Inec.

have also been designed to match the structure of the Butterfly

Synchronous 1/0 system.

A natural alternative would have been to use the Chrysalis
Object Management System as the mechanism for buffer management,
since our original intent was to use the Object Management System
as a general-purpose space allocater, and we would not have
needed to invest the effort in developing and documenting a
second mechanism, There are two aspects of the current Object
Management System that kept us from taking this course. First,
the operation of mapping in an Object 1is relatively time
consuming, as it involves checking the access privileges of the
process, checking the valiéity of the Object Handle, and locating
and setting up a Segment Attribute Register. This amount of
overhead seems excessive for a Buffer Management System where the

mapping in of buffers is a very frequent operation.

The second difficulty with wusing the Object Management
System for Buffer Management stems from the fact that the Object
Management System uses the memory management hardware to enforce
protecticrn between memory objects, limiting the number of legal
object sizes. In particular, the smallest unit of size is 256
bytes. For many purposes, the advantages of hardware protection
easily outweigh any space inefficiency due to breakage. However,
in applications such as the Voice Funnel, performance is
dependent to some extent on the availability of a relatively

large number of Dbuffers whose sizes do not necessarily match

~

Report No. 5203 Bolt Beranek and Newman Inc.

hardware protectior boundaries. As a result, the amount of
memory space lost to due breakage could be significant in some
cases if we were to use the Object Management System directly for

Buffer Management.

We have taken two steps to deal with these problems. For
the short term, we have developed a Buffer Management System that
performs two functions: it uses the Object Management System to
acquire a fixed allocation of memory space, and it supplies a set
of primitive operations for manipulating buffers that are
suballocated from this space. This lets user processes map in an
entire buffer pool once, and use a faster (but less
sophisticated) set of primitives for accessing and manipulating
the buffers in that pool. It also minimizes the amount of space
lost due to breakage. Unfortunately, this approach gives up many
of the protection features and debugging aids offered by the

Object Management System.

For the longer term, we will attempt to remedy the problems
that led us to develop a special-purpose mechanism in the first
place. The major thrust of this effort will be to increase the
speed of the Object mapping and unmapping operations, probably
through additional microcode support. The breakage problem
cannot be remedied so easily, as the 1lower bound on the
granularity of the protection sizes (256 bytes) is built into the
hardware. On the other hand, memory is becoming a less expensive

and more plentiful resource, since the new version of the

D AR

v r—y—~—w

Report No. 5203 Bolt Beranek and Newman Inc.

Butterfly Processor Node holds 256 kilobytes, expandable to four
megabytes. Under these circumstances, the memory loss due to
breakage may not be significant compared to the etfort required

to maintain a special-purpose mechanism.

Report No. 5203 Bolt Beranek and Newman Inc.

2. Buffer Management

Consistent with the philosophy that all significant wo: k on
the Butterfly should be done by processes accessing local memory,
the orientation of this buffer management scheme is not system-
wide, but instead is directed towards individual Processor Nodes.
A buffer pool is created in three steps. First, a block of
memory 1is acquired from the Object Management System in the form
of a Buffer Pool Object. This block is then broken into
individual buffers. Finally, an identifier (buffer ID) is
created for each buffer, and all of the buffer IDs are placed on
a Dual Queue (hereafter referred to as the Free Queue). To
simplify Buffer Pool deletion, ownership of the Buffer Pool
Object 1is transferred from the creating process to the Free
Queue. Any process that knows the Object Handle of the Free
Queue can acquire a buffer by executing the appropriate dequeue,
poll, or wait operation. There is no restriction on what object

the Free Queue belongs to, or where the Free Queue is located.

A buffer pool relies on three kinds of data structure: the
Free Queue, the Buffer Pool Object, and the buffer. The Free
Queue is a Dual Queue as defined by the Chrysalis operating
system, and 1is not described here. The Buffer Pool Object
consists of an Object Attribute Block (OAB), which resides in
Segment F8, and a memory area which resides in user memory. The
type code in the 0OAB is the same as that of a general-purpose

user object, since the treatment of these two kinds of object by

e S G e e £
- .

Report No. 5203 Bolt Beranek and Newman Inc.

the Object Management system is for the most part identical. To
differentiate a Buffer Pool Object from a general-purpose user
object, a flag is set in the flags field of the OAB. The subtype
field of the OAB 1is set to the value of the unique identifier
associated with the Buffer Pool Object.

The memory area has two components, A beginning section
contains the Object Handle of the Free Queue, the number and size
of buffers in the pool, and space for a Dual Queue Lock. The
remainder of the memory area contains the buffers themselves. As
with all Chrysalis objects that incorporate user memory, the size
of the buffer pool must match a hardware protection boundary size
and the entire pool cannot be larger than 64 kilobytes. There is
no hardware-enforced protection between bulfers. If some process
decides to make an access outside of a buffer that it has Jjust
acquired, it will not be prevented from doing so by the memory
ranagement hardware, unless the access is outside the Buffer Pool
Object. This loss of protection is traded for smaller mapping
overhead and the ability to define ©buffers of arbitrary size

without fragmentation problems.

Buffers are not objects. They are simply contiguous blocks
of memory that are suballocated from Buffer Pool Objects. A
buffer consists of a header and a data area. The C structure
definition of a buffer header is shown in Figure 1. A
description of each of the header fields is given in Table 1.

Some of these fields are used in association with Channel Control

T T T Y YT T

v

a4 el el e aase ate 4

{

P PPy

Blocks (CCBs).

Report No. 5203

BUFID
BUFID
short
long
0ID
QH

QH
short
short
short
long
short

CCBs are used by the
are described in QTR 10,

struct buffer

unsigned
unsigned

unsigned
unsigned

unsigned

Figure 1

Bolt Beranek and Newman

synchronous I/0 system,

buf_nxtpkt;
buf_next;
buf_flags;
buf_id;
buf_poolid;
buf_freeQ;
buf_lock;
buf_nbytes;
buf_maxsize;
buf_usecnt;
buf_time;
buf_offset;

. Buffer Header

Inc.

and

———

T -

Report No. 5203

buf_nxtpkt:

buf_next:

buf_flags:

buf_id:

buf_poolid:

buf_freeQ:

buf_lock:

buf_nbytes:

Bolt Beranek and Newman Inc.

This field is used to construct and follow linked
lists of packets.

This field is used to construct and follow linked
lists of buffers.

This field is reserved for status flags. When
the buffer is taken from the synchronous
receiver, the high order byte of the ccb_status
field of the Channel Control Block is copied into
the high order byte of this field by the I/0
driver process. No other flags are defined.

This field gives the identifier of the buffer.
It 1s set on initialization and should not be
changed after that.

This field gives the Object Handle of the buffer
pool that the buffer belongs to. It is set on
initialization and should not be changed after
that.

This is the Handle of the Free Queue onto which
the buffer ID should be placed when the buffer is
freed. The value of this field is set on
initialization and should not be changed after
that.

This field holds the handle of a Dual Queue Lock
that 1is used to regulate access to a buffer when
more than one process is manipulating its
contents.

This field gives the number of bytes of valid
data currently in the buffer. When the buffer is
taken from the synchronous receiver, the
ccb_nbytes field of the Channel Control Block is
copied into this field by the 1/0 driver process.
When a buffer is filled from scratch or modified
by an application process, this field must be
updated by that process.

Table 1. Buffer Fields

Report No. 5203

buf_maxsize:

buf_usecnt:

buf_time:

buf_offset:

. e e o e e e

Bolt Beranek and Newman Inc.

This field gives +the total number of bytes
allocated to the buffer. It is made available for
consistency checking. The value of this field is
set on initialization and should not be changed
after that.

This is a wuse count field, available to
applications where there are multiple pointers
into a single buffer. Its function is described
below in greater detail.

Much like the timestamp field of the Channel
Control Blocks wused 1in the synchronous I/0
system, this field serves a dual purpose. When a
buffer 1is taken from the synchronous receiver,
the ccb_time field of the associated Channel
Control Block 1is copied into this field by the
I/0 driver process. When a buffer 1is being
prepared for output, this field holds the time at
which the buffer should be transmitted. In both
cases, the time specified in this field is
relative to the Processor Node real time clock.

This field gives the offset from the beginning of
the buffer header at which the first byte of
useful data resides. Its purpose is to
facilitate the insertion and deletion of header
fields in packet buffers. This is necessary when
the Butterfly must move packets between two
dissimilar networks, as in the Voice Funnel
application. When the buffer is to be processed
by the synchronous receiver, the "ccb_phys" field
of the Channel Control Block is set by the 1/0
driver process to be consistent with this field.
On output, the T'cecb_phys" field is set to be
consistent with this field when the CCB
parameters are set. This field is set to "sizeof
(struct buffer)" on initialization.

Table 2. Buffer Fields (continued)

R |

S maa

Report No. 5203 Bolt Beranek and Newman Inc.

Some care has been taken to ensure that operations on
buffers are as efficient as possible without circumventing the
protectior mechanisms of the hardware and the operating system.
The most important operations are gaining access to the data in a
buffer and moving buffers on and off of Free Queues and other
Dual Queues. Through the use of microcode-supported Dual Queue
primitives, the implementation of "C" language routines that
acquire and free buffers 1in a few tens of microseconds is not

difficult.

The problem of gaining access to a buffer by wusing its
assigned identifier is not quite as straightforward. Ideally,
one would like a buffer idertifier to be 2 logical pointer to the
buffer, However, this 1is not practical in an environment like
the Butterfly, where each process has its own segmented address
space. An alternative is to use the physical address of a buffer
as its identifier and allow processes to construct virtual
pcinters as needed. However, the construction of a virtual
pointer from a physical address is only slightly less time
consuming than mapping in an object; in addition, the use of
physical addresses would mean giving up all the benefits of the

memory protection system.

The solution adopted here is to have each process select the
buffer pools it is interested in, map them in once, and maintain
a table that allows buffer identifiers to be converted to virtual

addresses in a small number of instructions. To accomplish this,

- 10 -

.

Report No. 5203 Bolt Beranek and Newman Inc.

every buffer pool is assigned a unique (system-wide) identifier
when it is created. When a process maps in a buffer pool, it
stores the resulting logical pointer in a table at an offset
equal Y the value of the buffer pool identifier. The structure
of a buffer ID is shown in Figure 2. It is the concatenation of
a buffer pool identifier and the sixteen-bit offset from the
buffer pocol pointer at which the buffer resides. To gain access
to a buffer, a process uses the buffer pool identifier to
retrieve a pointer from a table of buffer pool pointers, then
adds it to the offset field of the buffer (each process maintains
its own table). It would be possible to eliminate the addition
by creating a unique identifier for every buffer in the system,
but the cost in time of the extra store and add is outweighed by
the cost in space of maintaining a large table in the address
space of every process in the system. With the scheme used here,
the execution time of the sequence of operation needed to map in
a buffer is approximately 20 microseconds on an 8 MHz MC68000.
The actual time depends on whether the Buffer Identifier and

table pointer are in registers or main memory.

Figure 2 . Buffer Identifier

- 11 -

Report No. 5203 Bolt Beranek and Newman Inc.

For this scheme to operate correctly, there must be a source
of unique buffer pool identifiers. For this purpose, a Dual
Queue is kept in a global memory segment that is shared among
various operating system routines. On system initialization, the
queue is filled with all legal buffer pool identifiers. When a
Buffer Pool Object 1is created, the initialization routine
dequeues the next available identifier from this queue. When a
Buffer Pool Object is deleted, its identifier is placed back on
the queue for reuse. A compile-time operating system constant

sets the maximum number of identifiers.

Buffer pools that span more than one Processor Node can be
creacted by assigning a single Free Queue to more than one buffer
pcol. This mechanism has the same generality as a mechanism that
would allow a single buffer pool to span more than one node, but
avoids the problems of managing a data structure across more than
one node. Processes using such a pool must be careful to map in
all cof the associated Buffer Pool Objects. Packets that span
more than one buffer are chained into linked lists using the
"buf_next" field of the buffer header. By convention, the
identifier of the first buffer in a multi-buffer chain serves to
identify the entire chain. Chains of buffers may be linked

together using the "buf_nxtpkt" field of the the first buffer of

each chain,

A Buffer Pool is deleted by passing the Object Handle of the

Free Queue to the Object deletion routine provided in the

- 12 =

Y

"

S 5 nlE a2 a2)

Report No. 5203 Bolt Beranek and Newman Inc.

Chrysalis Protected Library. This routine deletes the Buffer
Pool 1in three steps: first, it invalidates the Object Handle of
the Free Queue, denying further access to the Buffer Pool. Then,
if there are Event Handles on the queue, they are all posted with
null pointers as data. This wakes up any process that may be
waiting on the Free Queue, and informs it that the buffer pool no
longer exists. Finally, the Object Management System deletes all
of the Buffer Pool Objects that belong to the Free Queue, and
frees their identifiers for reuse. If any buffers are still in
use, the processes that hold them will have the Buffer Pool
Object mapped in, preventing the Object Management System from
reusing the Buffer Pool Object and causing conflicts. Once all
processes have unmapped the object, it will be returned to free

storage by the Object Management System.

It is sometimes useful to give multiple processes access to
a single buffer, For instance, a process that is running a
reliable protocol may want to retain a pointer to an outgoing
buffer which it can queue for retransmission if no acknowledgment
is received. For this purpose, the Buffer Management System
supports a mechanism similar to the "use count" mechanism that
was developed for the Pluribus. When a process first acquires a
free buffer. it sets the use count field in the header of that

buffer to one, indicating that only one process currently has

access to it.

- 13 -

vy ,,,__*‘
P] :

Y

Report No. 5203 Bolt Beranek and Newman Inc.

When the acquiring process is finished with the buffer. it
has three choices. In the simplest case, the buffer is freed.
After observing that the use count is one, the system-supplied
subroutine for freeing buffers decrements the use count and
places the Buffer ID on its Free Queue. Alternatively, the
acquiring process may want to relinquish control over the buffer
and pass its identifier on to another process. In this case, the
use count is left untouched because the number of prccesses with
access to the buffer remains constant. Finally, the acquiring
process may want to pass the buffer on to another process but
retain its own pointer to the buffer as well, In this case, the
acquiriné process increments the use count of the buffer before
passing its identifier on. When the system-supplied subroutine
for freeing buffers encounters a buffer whose wuse count is
greater than one, it decrements the use count but does not put

the buffer identifier on the Free Queue.

When more than one process has access to a given buffer, a
locking mechanism is necessary to ensure consistency. In
particular, it is necessary to lock a buffer before incrementing
or decrementing a use count that is greater than one. To meet
this need, every buffer pool object incorporates a Dual Queue
lock, and the system subroutine for freeing buffers always waits
on this lock before attempting to decrement a use count that is
greater than one (note that the lock need not be used when the

use count is equal to one). Since a Dual Queue lock consumes

- 14 =

”

Report No. 5203 Bolt Beranek and Newman Inc.

memory space of its own, this mechanism uses one lock per buffer
pool, rather than one lock per buffer. As a result, there will
be competition for the 1lock between unrelated processes under
some circumstances. Since the lock is not a spin 1loeck and it
should never be held for more than a few instruction times, the
time lost due to wunwarranted waits on the lock should be
outweighed by the amount of space that would be consumed if a
separate lock were to be implemented for every buffer. The
number of processes allowed to wait on the lock at any one time

is set by an operating system constant.

By convention, the use count of the first buffer in a linked
list of buffers 1is taken as the use count of the entire chain.
This reduces the overhead associated with manipulating 1linked

lists of buffers.

It is up to the processes that drive the synchronous 1I/0
channels to take care of the special case where buffers are to be
passed to or from the synchronous I/0 hardware. When the ID of a
buffer that belongs on a synchronous receiver queue is placed on
its Free Queue, the Synchronous I/0 Driver must dequeue the
buffer ID, associate a CCB with the buffer, and splice the CCB
onto the appropriate synchronous receiver queue. Similarly, when
a buffer 1is freed by the Synchronous Transmitter it must be
picked up by the Synchronous I/0 Driver and its ID must be placed

on the appropriate Free Queue,

- 15 -

Report No. 5203 Bolt Beranek and Newman Inc.

3. Buffer Management Utility Routines

This secticn gives detailed specifications for the wutility
routines that have been developed to support the Buffer
Management facilities in the Voice Funnel. For convenience,
"struct buffer" is defined to be equivalent to "BUFFER". 1In
order to minimize execution time, several of the facilities that
manipulate buffers directly are implemented as C macros. The
names and functions of the buffer management utilities are as

follows:

Operations on Buffer pools:
Make_BFpool - Create a buffer pool
BFmap_pool - Map in a buffer pool
BFunmap_pool - Unmap a buffer pool
Operations on buffers:

BFmap_buf - Map in buffer
BFfree_buf Free a buffer

BFfree_chain Free a chain of buffers
BF_LOCK Lock a buffer
BF_UNLOCK Unlock a buffer

BFinc_use
BFmod_offset

Indivisibly increment a use count
Modify the "buf_offset" field

Data Transfer:

BFcopy - Copy data from orne buffer to another

- 16 =

-

—vev-vrTy ¥

CAACRER Sdh el

Report No. 5203 Bolt Beranek and Newman Inc.

Title: Make_BFpool

Function: Create a Buffer Pool Object

Arguments:

1
2
3
y
5

* e o o

short number of buffers in the pool

QH Object Handle of Free Queue

short size of each buffer

int Processor Node on which to create object (-1 => local)
bits Desired protection code, (0 => use default)

Return Value: OID -- Cbject Handle of the buffer pool

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.c68

Description:

Bugs:

This routine first creates a Buffer Pool Object on the
specified Processor Node and acquires an identifier for it.
It then initializes the buffers in the Object, places the
identifier of each buffer on the Free Queue, and transfers
ownership of the Object to the Free Queue. If -1 is
supplied as the Processor Node number, the buffer pool
object will be created on the same node as the creating
process. The buffer pool identifier 1is stored in the
subtype field of the Object Attribute Block, and the Buffer
Pool Object flag (BO hex) in the flags field of the Object
Attribute Block is set in ordér to differentiate this object
from an ordinary object with memory.

no known bugs

Example:

short nbuf;

QH freeQ;
short bufsize;
short ncde;
bits prot;

0ID pool;

pool = Make_BFpool (nbuf, freeQ, bufsize, node, prot);

- 17 -

L

—— e

—y r‘v—rvv'

Report No. 5203 Bolt Beranek and Newman Inec.

Title: BFmap_pool

Function: map in a buffer pool

Arguments:

1.

0ID Buffer Pool Object Handle

Return Value: pointer to the buffer pool

Possible Exceptions:

CONSISTENCY already mapped in

Files: /usr/butterfly/lib/csrc/buffer.c68

Description:

Bugs:

This routine is for processes that wish to gain access to
buffers in a given Buffer Pool Object. It first uses the
Object Management System to map in the specified Buffer Pool
Object. Then a pointer to the buffer pool is entered into a
table of buffer pool pointers at an offset corresponding to
the value of the Buffer Pool identifier. The table is
automatically declared in the header file "buffer.h", '

no known bugs

Example:

OID bufpool;

BFmap_pool (bufpool);

- 18 -

Asnan o o ra e ol SA R

Ty

Mt - JEEmas o

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFunmap_pool

Function: wunmap a buffer pool

Arguments:

1.

0ID Buffer Pool Object Handle

Return Value: none

Possible Exceptions:

CONSISTENCY Not mapped in

Files: /usr/butterfly/lib/csrc/buffer.c68

Description:

Bugs:

This routine is for processes that no longer need access to
the buffers in a given Buffer Pool Object. It uses the
Object Management System to unmap the specified Buffer Pocl
Object, and removes the pointer to the buffer pool object

from the global table of buffer pool pointers associated
with the process.

nc known bugs

Example:

0ID bufpool

BFunmap_pool (bufpool);

- 19 -

———

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFmap_buf

Functior: map in a buffer

Arguments:

1. BUFID Buffer Identifier

Return Value: Buffer Pointer

Possible Exceptions: none

Files: /usr/butterfly/lib/csrc/buffer.h

Description:
This macro converts a Buffer Identifier into the logical
address of a buffer. To construct the pointer, it uses the
global table of Buffer Pool pointers associated with the
process to find a pointer to the appropriate buffer pool. It
then adds in the offset specified in the 1low half of the
buffer identifier, and returns the result. In the interest

of speed, no error checking is done.

Bugs: no known bugs

Example:

BUFFER ¥*bufp;
BUFID bufid;

bufp = BFmap_buf (bufid);

- 20 -

e v—w v -

T3

.va_,
|)

s

"

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFfree_buf

Function: free a buffer

Arguments:

1.

BUFFER¥* pointer to a buffer

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.c68

Description:

Bugs:

This routine first tests the use count field of the
specified buffer. If the count equals one, it decrements
the count and enqueues the identifier of the buffer to the
Free GQueue whose handle 3is stored in the buffer header.
Otherwise, it waits on the lock whose handle 1is stored in
the buffer header, decrements the use count, and rechecks
the count. If the count is greater than or equal to one,
the routine returns. Otherwise, some other process has
decremented the use count while this one was wait.ag on the
lock. In that case, the buffer identifier is placed on its
Free Queue.

no known bugs

Example:

BUFFER #*bufp;
BFfree_buf (bufp);

- 21 =

g -

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFfree_chain
Function: free a chain of buffers
Arguments:

1. BUFFER¥* pointer to a buffer
Return Value: none
Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.c68

Description:

This routine uses an algorithm similar to that of BFfree_buf
to free all of the buffers in the the chain of buffers
headed by the specified buffer. In order to reduce
processing overhead, the buffer management system uses the
convention that the first buffer in the chain holds status
information pertinent to the entire chain. Thus, it is the
use count in the first buffer of a chain that determines how
many processes currently hold the chain. The use count in
all but the first buffer in a chain should always be one.

Bugs: nc known bugs

Example:
BUFFER *bufp;

BFfree_chain (bufp);

- 22 =~

e

B

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BF_LOCK

Function: 1lock a buffer

Arguments:

1. BUFFER* pointer to a buffer

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/lib/csrc/buffer.c68

Description:
This macro locks a buffer by dequeueing from a Dual Queue
lock associated with its pool. The possible time overhead
due to lock contention is traded for the space reduction
gained by having per pool, rather than per buffer. locks. A
buffer must be 1locked when: (1) a process wants to

increment its use count to a value greater than one; (2) the
buffer is being freed and its use count is greater than one,

Bugs: no known bugs

Example:
BUFFER *bufp;
BF_LOCK (bufp);

- 23 -

>

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BF_UNLOCK

Function: unlock a buffer

Arguments:

1. BUFFER¥* pointer to a buffer

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.h

Description:
This is the companion macro to "BF_LOCKY, It unlocks a
buffer by enqueuing the handle of the calling process to a

Dual Queue lock associated with a buffer pool.

Bugs: no known bugs

Example:
BUFFER #*bufp;
BF_UNLOCK (bufp);

- 24 -

[o

v

P————
3

Report No. 5203 Bolt Beranek and Newman Inc,

Title: BFinc_use

Function: Indivisibly increment a use count

Arguments:

1.

BUFFER* pointer to a buffer

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.h

Description:

Bugs:

This macro locks the specified buffer and increments its use
count. It is only needed when a process wishes to increment
a non-zero use count. Note the absence of a similar macro
for decrementing a use count. That is because a2 process
should never decrement a use count unless it intends to free
the associated buffer.

no known bugs

Example:

BUFFER ¥bufp;
BFinc_use (bufp);

- 25 -

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFmod_offset
Function: modify the buf_offset field of a buffer
Arguments:

1. BUFFER* pointer to the buffer
2., short increment

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.h

Description:
This macro adds the specified increment to the "buf_offset™®
field of a buffer and subtracts it from the "buf_nbytes"
field. This is intended merely as a convenient shorthand

for a common pair of operations.

Bugs: nc¢ known bugs
Example:

BUFFER *bufp;
short increment;

BFmod_offset (bufp, increment);

- 26 -

P
2

e

e ———
]

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFcopy

Function: Block transfer data of one buffer to another

Arguments:

1.
2.

BUFFER* pointer to the source buffer
BUFFER* pointer to the destination buffer

Return Value: none

Possible Exceptions:

CONSISTENCY destination buffer too small

Files: /usr/butterfly/chrys/prot/buffer.c68

Description:

Bugs:

This routine block transfers data in the source buffer to
the destination buffer. Data is copied into the destination
buffer starting at the offset specified in the "buf_offset"
field of the destination buffer. No copying will take place
if sufficient destination buffer space is not available. On
completion of the transfer, the "buf_nbytes" field of the
source buffer is copied into the corresponding field of the
destination buffer. Data is copied using the block transfer
operation provided by the Processor Node Controller, even if
the two buffers are on the same node.

nc known bugs

Example:

BUFFER #%*srcp;
BUFFER #*destp
unsigned short nbytes;

BFcopy (srcp, destp, nbytes);

- 27 -

Y v
. |

™

S Gan Ade

Report No. 5203 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defense Advanced Research Projects Agency
Dr. Robert E. Kahn (2)
Dr. Vinton Cerf (1)

Defense Supply -- Washington
Jane D. Hensley (1)

Defense Documentation Center (12)
UscsIsi

Danny Cohen
Steve Casner

MIT/Lincoln Labs
Dr. Clifford J. Weinstein (3)

SRI International
Earl Craighill (1)

Rome Air Deyelopment
Neil Marples - RBES (1)
Julian Gitlin - DCLD (1)

Bolt Beranek and Newman Inc.
Library
Library, Cancga Park Office (2)
S. Blumenthal
R. Bressler
R. Brooks

P. Carvey

P. Castleman
W. Edmond

G. Falk

J. Goodhue

S. Groff

E. Harriman
F. Heart

M. Hoffman

M. Kraley

A. Lake

W. Mann

W. Milliken
M. Nodine

R. Rettberg
P. Santos

G. Simpson

E. Starr

E., Wolf

- 28 -

[S D S P S

