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INTRODUCTION

The mechanical behavior of the musculoskeletal system and
the associated mathematical models have become an important
area of biomedical research. In orthopaedics, developments
in artificial replacements and reconstructive surgery have
demanded greater knowledge of the mechanical functions of the
major joints. In other disciplines such as sports medicine,
crash protection, and Air Force related applications an
increasing interest in the motions and forces in the human
body is noted. This need for a better understanding of the
complicated mechanical behavior of biological structures has
led to the introduction of research methods and mathematical
tools from the fields of life sciences as well as applied and
theoretical mechanics.

In attempting to understand the biodynamic response of
the human body subjected to expected and/or unexpected
external load conditions, properly developed mathematical
models can provide a sound basis for the design of support-
restraint systems and vehicles as well. The most sophisticat-
ed versions of these mathematical models are the articulated
and multisegmented total-human-body models which initially
appeared in the crash victim simulation literature. These
models simulate all the major articulating joints and segments
of the human body. Representative references are McHenry
[1963], Bartz and Butler [1972], Huston, Hessel and Passerelo
[1974], Fleck, Butler and Vogel [1975] and Fleck [1975].

Currently, the Aerospace Medical Research Laboratory
(AMRL) is in possession of an Articulated Total Body (ATB)
model which is maintained and used in Air Force related appli-
cations, in particular, to study the pilot ejection problem.
The ATB model has some special features which allow the
capability of prescribing a) time-dependent forces on the body
segments to simulate aerodynamic forces, b) joint torques
which are functions of both flexure and azimuth angles, and

-11-
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c) a generalized restraint belt subroutine which describes
and simulates a typical Air Force harness system.

The effectiveness of these multisegmented models to
accurately predict in-vivo response depends upon the bio-
mechanical description and simulation of the articulating
joints. This study, therefore, concerns with the analysis of
the mechanical behavior of the major articulating joints and
the development of mathematical models simulating their
dynamic behavior. In general mathematical models are based on
physical principles and consist of a set of mathematical rela-
tions among relevant parameters of the system. Assumptions
and simplifications are introduced, ignoring elements assumed
not to be relevant to the system's behavior. The relevant
parameters of the system are defined and the relations are
specified. This descriptive model is then expressed as a set
of mathematical relations among the chosen parameters. The
values assigned to the system’s parameters are selected from
the literature or determined by measurement. In some cases,
the parameters cannot be measured and their values must be
estimated.

Validation of a model is established when the model
predictions correlate acceptably with data in the literature
and, if available, with results of experiments. Within the
framework of the present study, no validation experiments were
conducted, so that model predictions could be compared only
with experiments reported in the literature. Considering the
conditions of the reported experiments are only partly known
and owing to the variability between specimens, such a
comparison should be viewed as an approximate one.

In this report, a rather extended discussion of the
articulations and anatomical descriptions of the elbow,
shoulder, hip, knee and ankle joints will be first presented,
with special emphasis on the location and functional aspects
of the major ligaments of each joint. This is followed by a

-12-




description of the articulating surfaces and the development
of a measurement technique for the determination of articulat-
ing surface equations for the elbow, hip, knee and ankle
joints. Next, a constitutive equation representing ligament
characteristics and behavior is presented and the attachment
sites of the ligaments of the elbow, hip, knee and ankle joints
are provided.

General two- and three-dimensional mathematical dynamic
models of an articulating joint are then developed to deter-
mine the nature of motions and forces between two body
segments. The governing equations for these models are set
of highly nonlinear equations and their numerical solutions
are discussed in some detail. This is followed by a specific
application to a two-dimensional dynamic model of the human
knee joint. The numerical results from this model are
presented to illustrate the effects of duration and shape of
the dynamically applied loads on the response of the joint.
Special attention has been given to the ligament and contact
forces, the location of contact points, anterior-posterior
displacements and the comparison between the internal and the
external energy of the system. The results are compared with
experimental data from the literature and the validation of
the model is established. The report is concluded with a
discussion of extensions of the model and its possible impli-
cations on future research.

ARTICULATION AND ANATOMICAL DESCRIPTION OF
ELBOW, SHOULDER, HIP, KNEE AND ANKLE JOINTS
Realistic, accurate mathematical modelling of the major

articulating joints of the human body requires a comprehensive
knowledge and understanding of the physical behavior and the
anatomical characteristics of each joint. 1In a previous
report [Engin, 1979a] a survey was provided for various major
human joint models including a single degree of freedom hinge

-13-




or revolute joint, a spherical joint limited to two degrees of
freedom, three degrees of freedom planer joint, three degrees
of freedom ball and socket joint, and a general six degrees of
freedom. Passive and active force and moment response of
major human joints, associated torques about the long-bone
axes of these joints and some aspects of joint modeling were
reported in the literature by the senior author in a series of
articles [Engin, 1979b; Engin et al. 1979c; Engin, 1979d;
Engin and Kaleps, 1980a; Engin, 1980b; Engin and Peindl, 1980c;
Engin, Akkas and Kaleps, 1980d; Engin, 198lag&b; Engin and
Moeinzadeh, 1981c]. The research works presented in these
articles were performed with some obvious limitations on live
subjects by means of specially designed experimental apparatus.
In the following paragraphs, descriptions of the essential
anatomical and functional aspects of the elbow, shoulder, hip,
knee and ankle joints will be presented. For each joint, the
physical structure and the movements of the articulating seg-
ments are described and the ligaments having a significant
contribution to the integrity and function of each joint are
defined. A number of illustrative figures are presented for
each joint with segments appropriately identified by the
commonly accepted medical terminology. The anatomical and
functional descriptions provided below were taken from various
sources such as Gray [1973], Grant [1962], and Wells [1971].

ELBOW JOINT

The elbow joint is a uni-axial (hinge) joint. It is
composed of, proximally, the trochlea and capitulum of the
humerus, and distally, the trochlear notch of the ulna and the
head of the radius. The trochlea of the humerus is convex,
anteroposteriorly, and concave, side to side, fitting into the
trochlear notch of the ulna. The spherical capitulum of the
humerus fits into the concave head of the radius. The cavity
of the elbow joint is continuous with the superior radio-ulnar
joint where the head of the radius fits into the radial notch
of the ulna.
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Movements of the elbow consist of flexion and extension,
determined by the shape of the trochlear surfaces: the medial
portion of the trochlea projects, distally, further than the
lateral portion. Flexion is limited by the soft tissues of
the arm, whereas extension is limited by the olecranon of the
ulna contacting the base of the olecranon fossa (Figure 1).

The capsule of the elbow joint is thin and covered by
muscles, attaching anteriorly to the humerus slightly above
the coronoid process and to the annular ligament around the
head of the radius. Posteriorly, attachment is slightly above
the capitulum of the humerus, to the olecranon fossa, the
olecranon upper margins and to the capsule of the superior
radio-ulnar joint.

Humerus

Coronoid fossa
Articular cartilage

Articular capsule

iy
N \ \\\\\\\m\m\\n\n\uumum.
“ Annular ligament

""m"""||l||ll|llllmu,h " i, N _ Radius

Olecranon fossa

Articular capsule — R~ :

Trochlear notch

Olecranon

Figure 1. Anterior-posterior section of the right elbow joint.
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The fibrous capsule is lined by a synovial membrane which
extends into the coronoid, olerranon and radial fossae and
between the ulna and radius, being continuous with the syno-
vial membrane of the superior radio-ulnar joint. Pads of fat
are present between the fibrous capsule and the synovial
membrane. These fat pads fill the fossae: the olecranon fossa
during flexion, and the coronoid and radial fossa during
extension.

The capsule is strengthened by three ligaments:

1. wulnar collateral ligament (medial ligament);
2. radial collateral ligament (lateral ligament); and
3. annular ligament.

Ulnar Collateral Ligament

The ulnar collateral ligament is a roughly triangular
thick band, composed of a strong anterior band and a weaker
middle and transverse sheet (Figure 2). It extends from the
medial epicondyle of the humerus to an attachment along the
coronoid process and the olecranon of the ulna. The anterior
portion is nearly a cord, being taut in extension. The poste-
rior portion attaches to the distal and posterior of the
medial epicondyle and to the medial margin of the olecranon.
This portion of the ligament is a weaker sheet which is taut
in flexion. An oblique band extends between the olecranon
and the coronoid process, deepening the socket for the
trochlea of the humerus.

Radial Collateral Liggment

This ligament is attached to the lateral epicondyle of
the humerus, to the trochlear notch of the ulna and to the
annular ligament. It does not attach directly to the radius
so that rotation of the radius is permitted in pronation and
supination of the forearm (Figure 3).
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Figure 2. Medial aspect of the right elbow joint.
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Figure 3. Lateral aspect of the right elbow joint.
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Annular Ligament

This strong band encircles the head and neck of the
radius, attaching to the anterior and posterior margins of
the radial notch of the ulna. The radial collateral ligament
blends into the proximal margin of the annular ligament
(Figure 3). With the oblique cord, which extends medially and
upwards from the radial tuberosity to the coronoid process of
the ulna (Figure 3), the annular ligament maintains the radius
head close to the radial notch of the ulna.

SHOULDER COMPLEX

The shoulder complex is composed of four independent
articulations among the bones of the complex: the clavicle,
scapula, humerus and the thorax (Figure 4). The shoulder
girdle is composed of the clavicle and scapula. There are two
clavicular articulations: the sternoclavicular joint, where
the clavicle articulates with the manubrium of the sternum, and
the acromioclavicular joint, where the clavicle articulates
with the acromion process of the scapula. The glenohumeral
joint is a ball and socket joint composed of the humerus and
the glenoid cavity of the scapula. The final articulation is
not, per se, a joint but is the scapulothoracic articulation
of the scapula over the thorax.

Sternoclavicular Joint

This is a saddle-type joint with both concave and convex
curvatures. The proximal end of the clavicle is separated
from the manubrium of the sternum by a constant thickness,
intra-articular meniscus. The fibrous joint capsule is
strengthened by the anterior and posterior sternoclavicular
ligaments. Further, both left and right clavicles are joined
by the interclavicular ligament running over the sternal
notch (Figure 4). The inferior portion of the clavicle con-
nects to the first costal cartilage at the costal tuberosity
by means of the costoclavicular ligament. The sternoclavicular
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Figure 4. Anterior view of the right shoulder complex.
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Figure 5. Posterior aspect of the right shoulder complex.
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joint possesses three degrees of freedom with axes in the
sagittal and frontal planes and the bone-axes of the clavicle.
Elevation of the clavicle is limited by the lower portion of
the joint capsule and the costoclavicular ligament. Depression
is limited by the upper portion of the joint capsule and the
interclavicular ligament.

Acromioclavicular Joint

This articulation between the distal end of the clavicle
and the acromion of the scapula is surrounded by a fibrous
capsule. The articulation provides little stability so that
the ligamentous structures are the primary stabilizers.
Reinforcing the capsule are the superior and inferior acromio-
clavicular ligaments (Figure 4). Additionally, the clavicle
connects to the scapula by the conoid and trapezoid portions
of the coracoclavicular ligament and by the coracoacromial
ligament (Figure 5). The proximity of the coracoid process
of the scapula to the clavicle (and the possible cartilagenous
formation between them), sometimes is referred to as the
coracoclavicular joint with the entire region being called the
claviscapular joint.

Glenohumeral Joint
This ball and socket joint between the head of the
humerus and the glenoid fossa of the scapula is surrounded by

a loose sleeve composed of the joint capsule and its capsular
ligaments. The contact surface is remarkably small with the
head of the humerus possessing a much greater articulating
surface than the glenoid fossa of the scapula. In addition to
the gelnohumeral capsular ligaments, the coracohumeral liga-
ment over the superior aspect of the joint provides reinforce-
ment as the humerus is suspended along side of the torso as
well as checks outward rotation of the humerus (Figure 6).
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Figure 6. Superior aspect of the right shoulder complex.

HIP JOINT

The hip joint is a multi-axial, ball and socket joint,
and therefore possesses three degrees of freedom. For conve-
nience, movements can be considered to be about three mutually
perpendicular axes: transverse, anteroposterior and
longitudinal. Flexion and extension occur about the trans-
verse axis; flexion being forward movement and extension being
backward. Flexion is limited by tension on the hamstrings and
'soft tissues; extension is limited by the iliofemoral and
pubofemoral ligaments. Abduction, movement of the thigh away
from the midline of the body, and adduction, movement toward
the midline, occurs about the anteroposterior axis. Abduction
is limited by tension of the adductor muscles and by contact
of the greater trochanter with the acetabulum (Figure 7).
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Figure 7. Posterior aspect of the medial-lateral section
of the right hip joint.
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Figure 8. Anterior aspect of the right hip joint.
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3 Adduction is limited by the opposing leg and by the iliofemoral
and ischiofemoral ligaments. Lateral and medial rotation,

. movement of the anterior surface of the thigh laterally and
medially, respectively, occurs about the longitudinal axis.
Lateral rotation is limited by the iliofemoral and pubofcmoral
ligaments (Figure 8); medial rotation, by the ischiofemoral
and iliofemoral ligaments (Figure 10).

Analysis of these movements must take into account the
length and angulation of the neck of the femur in relation to
the long axis of the femoral shaft. In flexion or extension,
the femoral head rotates about a transverse axis within the
acetabulum. Medial and lateral rotations occur about a longi-
tudinal axis through the head of the femur and the lateral
condyle, when the foot is weight-bcaring. Thus, the medial
condyle moves posteriorly and the greater trochanter moves
anteriorly in relation to this axis during medial rotation
However, when the foot is free or not weight-bearing, rota.ion
may occur about variable axes through the fearral hond,
Abduction and adduction are produced about .31 anteroposterior
axis through the approximate center of the femcral head.

Because of shifting axes, it is sometimes convenient to
view movements as occurring about mechanical axes through the
femoral neck and the approximate centcr of the femoral head.
Thus, extension and flexion can be viewed as spins, producing
respectively, tauting (spiralizing) and relaxing (straightening)
of the ligaments and the capsule.

The joint itsclf is composed of the hcad of the femur and
the acetabulum of the hip. The femoral head is approximately
two-thirds of a sphere. The acetabulum is shaped like a
horseshoe, closed by a non-articulating pad of fat. The
socket is deepened by the acctabular labrum, a fibrocartilag-
inous rim, and thc transverse ligament, which completes the
encapsulation of the head of the femur. The femoral head
aligns obliquely upwards, medially and slightly forwards.
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The capsule attaches slightly beyond the acetabular
labrum, blending with the labrum and the transverse ligament
anteriorly and inferiorly. Femoral attachments are along the
intertrochanteric line, anteriorly, and to the neck, medially
to the obturator externus. Three ligaments strengthen the
capsule:

iliofemoral ligament;
pubofemoral ligament; and
3. 1ischiofemoral ligament.

Iliofemoral Ligament
Triangular in shape and of great strength, the iliofemoral
ligament covers the anterior portion of the joint. It attaches

to the ilium above the acetabular rim and to the lower portion
of the anterior inferior iliac spine (Figure 9). The ligament
broadens and diverges, inferiorly, to form two bands. The
superior or lateral band attaches to the upper part of the
intertrochanteric line and is sometimes referred to as the
iliotrochanteric ligament. The inferior or medial band
attaches to the lower portion of the intertrochanteric line.
The iliofemoral ligament is referred to as the "Y" ligament
due to its inverted "Y'-shape. This ligament checks extension
of the joint, as well as both lateral and medial rotation.

Pubofemoral Ligament
The pubofemoral ligament attaches medially to the

anterior acetabular rim and the superior pubic ramus, and
crosses to the inferior of the neck of the femur, attaching to
the top of the lesser trochanter (Figure 8). Somewhat trian-
gular in shape, this ligament checks abduction, extension and

medial rotation.

Ischiofemoral Ligament
This ligament is less differentiated than the preceding.

It attaches to the ischium posteriorly and inferiorly to the
acetabulum, passing over the superior and posterior of the
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neck of the femur (Figure 10). The superior portion is
generally horizontal and the posterior or lower portion
spirals. The ischiofemoral ligament 1limits medial rotation

and adduction.

Teres Femoris (Head of Femur) Ligament

Structurally, this ligament is of little importance.
Passing from the deep aspect of the transverse ligament to a
depression in the head of the femur; it functions primarily
as a conduit for blood vessels (Figure 7). In extreme

abduction, this ligament becomes taut, but not before the
iliofemoral ligament has become taut and possibly not until
the iliofemoral ligament fails.

KNEE JOINT

A condyloid, synovial joint, the knee is the articulation
of the distal condylar surfaces of the femur, the proximal
condylar surfaces of the tibia and the posterior surface of
the patella. While the primary movement is hinge-like, some
rotation does occur. Flexion, backward movement of the thigh
or leg, and extension, the opposite movement, occur about a
moving transverse axis. This axis moves backward during
flexion due to the curvatures of the femoral condyles.

At complete flexion, the posterior femoral condylar
surfaces articulate with the posterior tibial condylar sur-
faces and with the posterior portions of the menisci. During
extension with the tibia fixed, the femoral condyles roll
forward while simultaneously sliding backward on the tibial
condylar surfaces. The contact areas between these surfaces
increases as the curvature of the femoral condyles decreases.
Movement on the lateral condyle ends before extension is
complete, while movement on the medial condyle continues since
the lateral articular surface of the lateral condyle is short-
er than the medial. This continued movement of the medial
condyle causes the femur to rotate medially about a
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longitudinal axis through the lateral condyle, causing the
collateral and popliteus cblique ligaments to become taut,
Thus, lateral rotation becomes a precursor to flexion.

During extension, there is a lateral rotation of the
tibia with respect to the femur. Conversely, medial rotation
of the tibia occurs in the beginning of flexion. When
approaching complete extension, the anterior portions of the
menisci are pushed forward by the femur and become less
curved. The opposite occurs in flexion. As the tibial col-
lateral ligament becomes taut during extension, it pulls the
medial meniscus outward. The lateral meniscus is drawn out-
ward, away from the femoral and tibial condyles, by the
popliteus which is attached to the posterior of the lateral
meniscus.

The cruciate ligaments are taut in most positions of the
knee and prevent anteroposterior displacement of the tivia in
relation to the femur. During rotational movements, the
Cruciates twist and untwist around each other. In full
flexion, the anterior cruciate ligament is relaxed and in full
extension the posterior cruciate 1is relaxed. The collateral
ligaments are relaxed when the knee is flexed to a ninety-
degree angle, thus allowing rotation about a vertical axis.

The articular surfaces of the femoral condyles are convex
anteroposteriorly and from side-to-side, being more marked in
the posterior portion of the anteroposterior curvature. The
tibial surfaces arc comparatively flat, being deepened by the
wedge-shaped menisci. The patellar surface of the femur is
also convex from side-to-side, with the lateral condyle
extending further forward and upward.

The medial and lateral menisci are two crescent-shaped
fibrocartilaginous structures attached - to the upper surface
of the tibia by the coronary ligaments. The inferior surface
is flattcned while the superior surface is concave, thus
deepening the sockets for the femoral condyles. The outside
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edges are firmly attached to the tibia through the capsule to
the tibial condyles. The inner edges are thin and free. The
anterior ends are attached by the transverse ligament. The
posterior portion of the lateral meniscus (Figure 11) is con-
tinuous with the posterior cruciate ligament and attaches to
the popliteous tendon. The medial meniscus attaches to the

tibial collateral ligament (Figure 14). The lateral is broader

and its ends closer than the medial meniscus. The lateral is
more nearly circular while the medial meniscus is more
elliptical.
Four major ligaments lend stability to the knee joint.

1. tibial collateral (medial) ligament;

2. fibular collateral (lateral) ligament;
3. anterior cruciate ligament; and
4,

posterior cruciate ligament.

Tibial Collateral (Medial) Ligament
This is a broad, flat band in the medial portion of the

capsule. It is attached proximately to the medial epicondyle
of the femur below the adductor tubercle, and it broadens to
an attachment at the medial condyle and upper body of the
tibia (Figure 11). Its deep fibers attach to the medial
meniscus periphery.

Fibular Collateral (Lateral) Ligament
Unlike the tibial collateral ligament, the fibular

collateral ligament is distinctly separate from the fibrous
capsule (Figure 11). It is a strong, rounded cord, attached
to the lateral epicondyle above the groove for the popliteous
tendon and passes to the lateral side of the head of the
fibula. The popliteous tendon lies below it, separating it
from the lateral meniscus.

Anterior Cruciate Ligament

The anterior cruciate ligament attaches to the tibia
anterior to the intercondylar eminence, between the menisci,
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Figure 12. Anterior aspect of the right knee joint.
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partly blending with the anterior end of the lateral meniscus
(Figure 12). It crosses upward, backward and laterally,
twisting on itself, fanning out to attach to the medial aspect
of the femoral lateral condyle. It is anterolateral to the
posterior cruciate ligament. It holds the femur from sliding
backward, prevents hyperextension of the knee and checks
medial rotation of the femur when the leg is weight-bearing.

Posterior Cruciate Ligament

The posterior cruciate ligament attaches to the posterior
intercondylar arca of the tibia and the lateral meniscus,
crossing upward, forward and medially to attach to the lateral
portion of the femoral medial condyle (Figure 13). It is
stronger, shorter and less oblique in direction than the

Femur
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tendon (medial head)

Figure 13. Posterior aspect of the right knee joint.
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anterior cruciate ligament. It holds the femur from sliding
forward. The two cruciates are slightly twisted around each
other except when the knee is fully extended. At this

position, the tibia is laterally rotated in relation to the

femur.

ANKLE JOINT

The ankle or talocrural joint is a uni-axial hinge joint
formed by the articulation of the talus with a three-sided
socket composed of the distal surface of the tibia and the
articular surfaces of the tibial and fibular malleoli with the
inferior transverse tibiofibular ligament, posteriorly. The
tibia and fibula are firmly united at the inferior tibio-
fibular joint.

The hinge-like movement of the ankle occur about an axis
through the body of the talus (Figure 14), which is slightly
oblique, passing forward, medial to lateral. Dorsiflexion
(extension) is raising the forepart of the foot while plantar
flexion (flexion) is the lowering of the foot. There is
maximal congruence of the joint surfaces and maximal
ligamentous tension in dorsiflexion.

The joint capsule is thin anteriorly and posteriorly with
lateral ligaments. There are deep fatty pads in the anterior
and posterior portions of the joint. The joint cavity extends
upward between the tibia fibula for a few millimeters. The
anterior portion of the capsule is attached to the tibia near
the articular surface and to the neck of the talus near its
head.

The integrity of the ankle is determined in part by the
bony structure and in part by two ligaments:

1. medial ligament and
2. 1lateral ligament.

Medial Ligament

The medial ligament (deltoid ligament) is a strong, thick
triangular band connecting the medial malleolus of the tibia
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Figure 14. Medial aspect of the right ankle joint.
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to several tarsal bones (Figure 14). The deep portion passes
from the malleolus to the medial surface of the talus. It is
also known as the anterior tibiotalar ligament. The superfi-
cial portion consists of three parts: (1) the anterior or
tibionavicular portion passes to the tuberosity of the navic-
ular bone, blending with the medial margin of the plantar
calcaneonavicular ligament; (2) the middle or tibiocalcanean
portion crosses to the sustentaculum cali of the calcaneous;
and (3) the posterior or posterior tibiotalar portion attaches
to the medial tubercle of the talus,

Lateral Ligament

The lateral ligament consists of three parts. (1) The
anterior talofibular ligament attaches to the anterior margin
of the lateral malleolus of the fibula, and to the anterior
of the talus between its neck and articular surface (fibular
articulation) (Figure 15). (2) The calcaneofibular ligament
passes down and back from the tip of the lateral malleolus to
the lateral aspect of the calcaneous, posterior to the
peroneal tubercle. (3) The posterior talofibular ligament

passes from the malleolar fossa to the lateral tubercle of the
talus. )

GEOMETRY OF THE ARTICULATING SURFACES

Articulating surfaces play a major role in the physical
motion of a joint. It is assumed that the deformations in
the articular surfaces do not affect relative motions and
forces in the joint. This assumption is based on the consid-
eration that the deformations of the cartilage layer caused by
the contact between the articulating bones is relatively
slight compared to the range of motions in the joint (Wismans
[1980]). Therefore, the articular surfaces are represented
by rigid surfaces and the contact areas between the articulat-
ing surfaces are reduced to contact points.
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No accurate quantitative data for the geometry of the
articulating surfaces of the human joints are available in
the literature. The knee joint is relatively the most studied
joint and some techniques have been developed for measurements
of its articular surfaces. Seedham, et al., [1972a] studied
the femoral and tibial condyles by making a plastic mold of
the condyles. These mouldings were cut in the sagittal
planes, resulting in a number of contours of the articular
surface. In the work of Wismans, et al., [1980], using dial
gages, three-dimensional coordinates of 50-200 points on each
condyle of the knee were determined and the surfaces were
approximated by mathematical functions representing the col-
lected data points. Most other studies in this field are
restricted to the determination of a number of rough dimen-
sions from roetgen photographs (Erkman and Walker [1974],
Seedham, et al. [1972b]). Several other measuring techniques
are also given in a survey by Wismans and Struben [1977] and
in Devens [1979], where special attention is paid to optical
methods.

In this study, coordinates of a large number of points
on each of the articular surfaces of the elbow, hip, knee and
ankle joints are determined using a sonic digitizing
technique. This technique, its measuring apparatus and pro-
cedures will be presented below. A procedure for approximat-
ing the articular surfaces by mathematical functions will then
be discussed and a brief description of the articulating
surfaces, the location and orientation of coordinate systems
and the mathematical functions representing the elbow, hip,
knee and ankle joint surfaces will be presented.

MEASURING TECHNIQUE

Coordinates of a large number of points on the
articulating surfaces are determined using a Graf/Pen Sonic
Digitizer. Sonic digitizing is the process of converting
information on location or position in one, two or three
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dimensions, to digital values suitable for data processing,
storage or transmission. The system used to accomplish this
conversion consists of a stylus, two or three microphone/
sensor assemblies (for two- and three-dimensional data
conversion, respectively), an electronic control unit and a
generator/multiplexer unit which is used to select and power
sonic impulse emitters. As an example of the digitizer's
operation, let us first consider the two-dimensional mode of
operation.

The two-dimensional sensor assembly consists of two
perpendicular, linear microphones as shown in Figure 16.
These sensors define a planar effective working area of ap-
proximately 35 cm x 35 cm. The Graf/Pen uses impulses gener-
ated at the tip of the emitter to calculate its position in

X SENSOR

=

<—— SOUND IMPULSES

Y SENSOR

((: &«——— SONIC EMITTER
(Stylus)

Figure 16. The two-dimensional microphone/sensor assembly of
the Graf/Pen sonic digitizer.
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the working area. The times required for the sound waves to
reach the two microphone/sensors are converted into distance
measurements (the x and y coordinates). The measurements are
then transmitted to the computer in binary coded decimal
(BCD) Cartesian form. The two-dimensional mode 1is primarily
used to digitize joint surface curves which are obtained from
x-ray projections (see Figure 32) or physical cross-sections
of the joint. Additionally, the two-dimensional microphone/
sensor assembly provides a menu capability of alphanumeric
data entry to the computer.

An obvious advantage of using sound as a ranging device
is that digitization need not be confined to a plane. The
three-dimensional microphone/sensor unit utilized for the
digitization of the articulating surfaces consists of four
linear microphones arranged in a planar, rectangular manner.
These microphones define a three-dimensional effective work-
ing volume of approximately 150 cm x 75 cm x 180 cm, along
the x, y and z directions, respectively. The three-dimensional
mode of operation is similar to that of the two-dimensional
mode. In the three-dimensional set-up, however, the dis-
tances measured are slant ranges to each of the coplanar
sensors. Thus, the information generated by each sensor
represents the radius of a circular arc which includes the
impulse source {the tip of the sonic emitter) and is in a
plane perpendicular to the sensor. Four sensors are used
merely for the purposes of accuracy. The digitizer examines
the signals from all four sensors, selects the three smallest
signals and disregards the fourth. The location of the sonic
emitter is then calculated as being at the intersection of
the three smallest arcs. The three slant ranges are easily
converted into Cartesian x, y and z coordinates by a micro-
processor in the control unit and converted for transmission.

Using the joints of a full-size human skeleton, each
articulating joint segment was placed on the apparatus shown
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in Figure 17, with its articular surface facing the
microphone/sensor unit. Digitizing each surface, the coordi-
nates of a large number of points (50-200) on the surfaces
were measured with respect to the microphone/sensor unit's
coordinate system. The output was recorded on an LA120
terminal, manufactured by Digital Equipment Corporation.
Applying simple mathematics, these coordinates were then
transformed into the local coordinate system of the particular
joint segment under study.

Generator/Multiplexer Unit

Electronic Control Unit

Microphone/Sensor

Joint Segment LA120 Terminal

Figure 17. Experimental set-up for measuring the three-
dimensional geometry of the articulating surfaces.
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MATHEMATICAL DESCRIPTION OF THE ARTICULATING SURFACES

Based on the above procedure, coordinates(xQ, yQ, zQ) of
a suffici' 1t number of points on each of the articulating
surfaces are determined in their respective, local coordinate
systems. The aim is to find a realistic and simple represen-
tation in the form of a mathematical approximation for the
geometry of these surfaces. In this study, a polynomial of
degree n (n>1) is used and expressed as:

n-p

n
y = f(x,2) = )} 1}

) P,q (1)
p=0 q=0

a5q%
The coefficients a q of equation (1) have to be determined in
such a way that for each point Q, the coordinate y, is
approximated as accurately as possible by y(iQ,EQ). In the
present work, the coefficients apq are obtained by means of
statistical operations using the 79.3A version of the GLM
procedure of the Statistical Analysis System (SAS) subroutines
(SAS [1979]). The GLM procedure uses the principle of least
squares (Goodnight and Harvey [1978], Draper and Smith [1966],
Graybill [1961]) to fit linear models and provides an output
data set containing (a) predicted and residual values from the
analysis, (b) standard deviation and (c) percentage accuracy
of the fit. Summarized values for the degree of the
polynomial, n, the standard deviation, o, and the percentage
accuracy, R, of the models obtained for the articulating sur-
faces of the elbow, hip, knee and ankle joints are presented
in Table 1.

ARTICULATING SURFACES OF THE ELBOW JOINT
Anatomical Description

The two main articulating surfaces of the elbow joint
are the trochlea and the trochlear notch. The trochlea
(Figure 18a) is a grooved surface much like the circumference

of a pully, which covers the anterior, inferior and posterior
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Table 1

DEGREE OF POLYNOMIAL (n), STANDARD DEVIATION (o)
AND PERCENTAGE ACCURACY (%R) OF THE FIT FOR
THE ARTICULATING SURFACES OF ELBOW, HIP,
KNEE AND ANKLE JOINTS.

ARTICULATING °

JOINT SURFACE n o (cm) %R

Trochlea 4 0.09 94.4
ELBOW :

Trochlear notch 4 0.07 94.5

Head of femur 4 0.08 98.2
HIP

Acetabulum 4 0.15 99.1

Tibia lateral 4 0.03 93.8

Tibia medial 4 0.05 94.06
KNEE

Femur lateral 4 0.04 99.3

Femur medial 4 0.07 98.7

Talus (trochlear) 4 0.03 98.5
ANKLE

Medial malleolus 4 0.04 95.7

surfaces of the condyle of the humerus. It is separated from
the capitulum on its lateral side by a faint groove, but its
medial margin is salient and projects downward beyond the

rest of the bone. The trochlea articulates with the trochlear
notch of the ulna.

The trochlear notch (Figure 18b) is formed by the anterior
surface of the olecranon and the superior surface of the
coronoid process. The base is constricted at the junction
between these two areas and they may be separated completely
by a narrow, roughened strip. A smooth ridge which corresponds
to the groove of the trochlea, divides the notch into a larger,
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Figure 18. Anterior and medial aspects of the humerus

and ulna.
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medial portion and a smaller, lateral part. The medial part
conforms to the large flange of the trochlea of the humerus.

Coordinate System
The origin of the (x,y,z) coordinate system is placed at

the approximate geometric center of the humerus, with the
Xx-axis directed along the posterior-anterior direction and
the y-axis coinciding with the humerus longitudinal axis
(Figure 18a). The origin of the coordinate system (x',y',z')
coincides approximately with the geometric center of trochlear
notch, with the x'-axis directed along the anterior-posterior
direction and the y'-axis being directed along the longitudi-
nal axis of the ulna (Figure 18b). The locations of the
origins of these coordinate systems are 15.5 cm and -0.8 cm
from the intersection points of the y and x' axes with the
articular surfaces, respectively.

The articulating surfaces are digitized in their
respective coordinate systems following the technique described
above. The coefficients a q of equation (1) are summarized in
Table 2. Note that to avoid multi-value function difficulties,
the surface equation for the trochlear notch is presented as:

n n-p

x' = f(y',2") = } I
p=0 q=0

apqy'pz'q (2)

Proper consideration of this variable change must be made in
future analysis and modeling of the elbow joint.

ARTICULATING SURFACES OF THE HIP JOINT
Anatomical Description

The two articulating surfaces of the hip joint are the
head of the femur and the acetabulum of the pelvis. The head
of the femur is rather more than half of a sphere (Figure 19a).
It is directed upward, medially and slightly forward to
articulate with the acetabulum. Its surface is smooth with a
small fovea or roughened pit slightly below and behind its

center.
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Table 2

COEFFICIENTS OF THE EQUATIONS OF THE
ELBOW JOINT ARTICULATING SURFACES.

COEFEICIENTS ARTICULATING SURFACE
Pq
(cm) Trochlea Trochlear Notch
200 15.5619 -0.8296
a %*

01 0.5426 0.1613
202 0.9899 0.0410
203 -0.3204 -0.2188
204 -0.3807 0.1936
a *

10 0.5668 0.4230
11 -0.3387 -0.2996
a12 0.1875 -0.1772
a3 0.2360 0.3742
220 -0.4083 -0.5579
a2 -0.0320 -0.0439
222 ~0.2297 -0.7558
439 -0.0243 -0.2487
a3 0.1307 -0.0776
a

40 -0.0891 0.1855

*unitless
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Figure 19.
and pelvis.

Anterior and front aspects of the femur
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The acetabulum is an approximately hemispherical cavity
on the lateral asvect of the inominate bone, about its center,
and is directed laterally, downward and forward. It is
surrounded by an irregular projecting margin which is defined
inferiorly; this gap is the acetabular notch. The floor of
the cavity is roughened and non-articular. The sides of the
cup present an articular lunate surface which is widest
superiorly. In this situation, the weight of the trunk is
transmitted to the femur in the erect attitude. This horse-
shoe shaped strip is covered with articular cartilage (Gray
[1973]) and provides the surface on which the head of the
femur rides within the hip joint.

Coordinate System

The origin of the (x,y,z) coordinate system is placed at
the geometric center of the acetabulum floor (acetabular
fossa), with the x-axis directed along the posterior-anterior
direction and the y-axis directed along the superior-inferior
direction (Figure 19b). The origin of the (x',y’,z')
coordinate system coincides with the approximate center of
mass of the femur, with the x'-axis directed along the
posterior-anterior direction and the y'-axis being directed
along the longitudinal axis of the femur (Figure 19a). The
location of the origins of these coordinate systems, as shown
in Figure 19, are -1.5 cm and 19.5 cm from the intersection
points of the y and y' axes with the articular surfaces,
respectively.

The articulating surfaces of the hip joint are digitized
in their respective coordinate systems as described previously
and the results for the coefficients apq of equation (1) are
summarized in Table 3.

ARTICULATING SURFACES OF THE KNEE JOINT
Anatomical Description

The tibial and femoral condyles are the major articulating
surfaces of the knee joint (Figure 20). The upper end of the
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F‘ Table 3

COEFFICIENTS OF THE EQUATIONS OF THE
HIP JOINT ARTICULATING SURFACES.

COEFFICIENTS ARTICULATING SURFACE
(cgg Head of Femur Acetabulum
200 -19.5628 -1.5131
391" -3.9686 -1.2324
402 1.7498 -0.0416
203 -0.3864 o.sogz
204 0.0352 0.1025
270" 0.2045 4.5526
211 0.2260 10.5723
312 -0.1281 4.9788
213 0.0174 0.6813
220 0.9641 -0.0956
an -0.4715 -0.4650
222 0.0800 0.0034
a30 -0.0382 1.5829
331 0.0146 0.5512
340 0.0235 -0.1303 |
*unitless i
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Figure 20. Posterior aspect of the femur and anterior
view of the tibia.
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tibia is expanded, especially in its transverse axis, providing
an adequate bearing surface for the body weight transmitted
through the lower end of the femur. It comprises of two prom-
inent masses, the medial and lateral condyles, and a smaller
projection, the tuberosity of the tibia. The condyles project
backwards a little, so as to overhang the upper part of the
posterior surface of the shaft. Superiorly, each is covered
with an articular surface, the two being separated by an
irregularly roughened intercondylar area. They form visible
and palpable landmarks at the side of the ligamentum patella,
the lateral condyle being the more prominent.

The medial condyle (Figure 20b) is the larger but does
not overhang so much as the lateral condyle. Its upper
articular surface, oval in outline, is concave in all
diameters, and its lateral border projects upwards, deepening
the concavity and covering an elevation, the medial intercon-
dylar tubercle. The posterior surface of the condyle is
marked, immediately below the articular margin, by a
horizontal, roughened groove. Its medial and anterior
surfaces form a rough strip, separated from the medial sur-
face of the shaft by an inconspicuous ridge.

The lateral condyle (Figure 20b) overhangs the shaft,
especially at its posterolateral part, which bears on its
inferior surface a small circular facet for articulation with
the upper end of the fibula. The upper surface is covered
with an articular surface for the lateral condyle of the
femur. Nearly circular in outline, it is slightly hollowed
in its central part, and its medial border extends upwards to
cover an elevation, termed the lateral intercondylar tubercle.
The posterior, lateral and anterior surfaces of the condyle
are rough.

The lower end of the femur is widely expanded and thus
provides a good bearing surface for the transmission of the
weight of the body to the top of the tibia. It consists of
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two prominent masses of bone, the condyles (Figure 20a),
which are partially covered by a large articular surface.
Anteriorly, the two condyles are united and are continuous
with the front of the shaft; posteriorly, they are separated
by a deep gap, the intercondylar fossa (intercondylar notch),
and they project backwards considerably beyond the plane of
the popliteal surface.

The lateral condyle is flattened on its lateral surface
and is not so prominent as the medial condyle, but it is
stouter and stronger, for it is placed more directly in line
with the shaft and prcbably takes a greater share in the
transmission of the weight to the tibia. The most prominent
point on its lateral aspect is termed the lateral epicondyle
(Figure 20a), and the whole of this surface can be felt
through the skin.

The medial condyle possesses a bulging, convex medial
aspect, which can be palpated without difficulty. Its upper-
most part is marked by a small projection, termed adductor
tubercle because it gives insertion to the tendon of the
adductor magnus. The most prominent point on the medial sur-
face of the condyle is below and a little in front of the
adductor tubercle and is termed the medial epicondyle (Figure
20a). The lateral surface of the condyle is the roughened
medial wall of the intercondylar fossa.

Coordinate Systems

The origin of the (x,y,z) coordinate system is placed at
the approximate geometric center of the femur with the x-axis
directed along the posterior-anterior direction and the y-axis
coinciding with the femural longitudinal axis (Figure 20a).
The origin of the coordinate system (x',y',z') coincides with
the approximate center of mass of the tibia, with the x'-axis
directed along the anterior-posterior direction and the
y'-axis being directed along the longitudinal axis of the
tibia (Figure 20b). The location of the origins of these
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S coordinate systems, shown in Figure 20, are 19.5 and -20.6 cm
3 from the intersection points of y and y' axes with the lateral

articular surfaces.
The articulating surfaces of the knee joint are digitized

in their respective coordinate systems according to the
technique described previously and the coefficients, apq, of
equation (1) for the tibial and femoral articulating surfaces
of the knee joint are summarized in Tables 4 and 5,

respectively.

ARTICULATING SURFACES OF THE ANKLE JOINT
Anatomical Description

The major articulating surfaces of the ankle joint are
the trochlear surface of the talus and the medial malleolus
(Figure 21).

The body of the talus is cuboidal in shape. Its dorsal
surface is covered by the trochlear articular surface, which
articulates with the lower end of the tibia at the ankle
joint. It is convex from back to front and gently concave
from side to side, and it is widest anteriorly (Figure 21a).
The medial surface of the talus is covered in its upper part
by a comma-shaped articular facet which is deeper in front
than behind and articulates with the medial malleolus.

The medial malleolus is a short but stout process. Its
lateral surface is smooth and occupied by a comma-shaped
articular facet, which articulates with the medial side of

the talus (Figure 21b). 1Its anterior surface is rough, and
its posterior surface bears the lower end of the groove that 3
marks the posterior surface of the lower end of the bone. 1
The lower border of the malleolus is pointed anteriorly and A
depressed posteriorly. 1

Coordinate Systems

The origin of (x,y,z) coordinate system is placed at the ;
approximate geometric center of the tibia, with the x-axis 4
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COEFFICIENTS OF THE EQUATIONS OF THE TIBIAL

Table 4

ARTICULATING SURFACES OF THE KNEE JOINT.

COEFEICIENTS ARTICULATING SURFACE
Pq

(cm) Tibia Lateral Tibia Medial
200 -20.6964 -18.7135
a *

01 -1.6128 -1.6587
202 -0.3786 1.9298
203 0.0215 -0.7677
404 0.0117 0.1001
a *

10 0.7539 -0.7837
411 1.0017 0.9363
412 0.3751 -0.4480
213 0.0421 0.0677
220 0.2212 -0.3921
421 0.1889 0.1772
422 0.0335 -0.0123
439 0.0885 -0.2331
231 0.0367 0.0670
a0 0.0373 -0.0369

*unitless
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Table 5

COEFFICIENTS OF THE EQUATIONS OF THE FEMORAL
ARTICULATING SURFACES OF THE KNEE JOINT.

COEFEICIENTS ARTICULATING SURFACE
Pq

(cm) Femur Lateral Femur Medial
400 19.5520 18.5270
a *

01 -1.9895 8.9256
202 0.6298 -7.2093
493 0.8031 2.4873
204 -0.0055 -0.3193
a *

10 -1.4614 0.1211
411 -2.5323 -0.5608
412 -1.3528 0.1310
a13 0.2354 -0.0500
220 -0.1912 -0.5928
a1 0.0620 -0.0411
222 -0.4573 -0.0557
430 -0.1305 -0.2447
a3 0.2058 -0.0332
440 -0.0544 -0.0376

)
*unitless
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Figure 21. Medial and posterior aspects of the talus

and malleolus.
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directed along the posterior-anterior direction and the y-axis
coinciding with the longitudinal axis of tibia (Figure 21b).
The origin of the coordinate system (x',y',z') coincides with
the approximate center of mass of the talus, with the x'-axis
directed along the posterior-anterior direction and the y'-
axis being directed along the inferior-superior direction of
the talus (Figure 21a). The location of the origins of these
coordinate systems, shown in Figure 21, are 20.2 cm and 1.3 cm
from the intersection points of the y and y' axes with the
articular surfaces, respectively.

The articulating surfaces of the ankle joint are
digitized in their respective coordinate systems according to
the technique described previously and the coefficients, a

PqQ’
of equation (1) are summarized in Table 6.

MATHEMATICAL REPRESENTATION OF LIGAMENTS

Structural integrity of the articulating joints is
maintained by capsular ligaments and both extra- and intra-
articular ligaments. Capsular ligaments are formed by thick-
ening of the capsule walls where functional demands are
greatest. As the names imply, extra- and intra-articular
ligaments at the joints reside external to and internal to the
joint capsule, respectively. Extra-articular ligaments have
several shapes, e.g. cord-like or flat depending on their
locations and functions. These types of ligaments appear
abundantly at the articulating joints. However, only the
shoulder, hip and knee joints contain intra-articular
ligaments. For example, the cruciate ligaments at the knee
joint are probably the most well known intra-articular
ligaments. Further information about the structure and
mechanics of the joint can be found in Barnett, Davies, and
Mac Conaill [1949].

Ligament configurations are‘largely dependent on
arrangement of the joint and its articulation, the direction
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COEFFICIENTS OF THE EQUATIONS OF THE ARTICULATING
SURFACES OF THE ANKLE JOINT.

I S Py

COEFFICIENTS ARTICULATING SURFACE
(cg? Talus (Trochlear) Medial Malleolus
200 -1.4684 20.2305
291" 0.3722 -0.0445
302 -0.1347 -0.1872
203 -0.0227 0.0010
304 0.0549 0.0601
310" 0.1428 -0.0689
a1 0.0018 0.1748
312 -0.1114 -0.0195
413 -0.0454 -0.0725
220 0.3446 0.1118
an -0.0123 0.0319
422 -0.0115 0.0757
430 0.0516 0.0369
431 0.0154 -0.0232
440 -0.0072 0.0316

*unitless
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of tendons, and the location of the organs. Thus, in
different joints, according to their structure, ligaments may
be more or less lax, or tight, or capable of more or less
movement. Because of the difference in the direction of the
tendons or the placement of the membranes and their site and
magnitude, ligaments vary in their configurations, circumvolu-
tion and extension. On account of all these factors, some
ligaments are twisted like cords, some are united in fibrous
bonds and others flattened into membranous forms. This
variation in form is indicated in their corresponding names
according to size: major, minor, maximus; according to
external form: large, thick, thin; according to configuration:
long, wide, round, triangular, quadrate, circular; according
to their positions: straight, transverse, oblique, horizontal,
perpendicular, superficial, sublime, deep, lateral, right,
left, anterior, posterior, superior and inferior; according

to their insertion: interclavicular, brachioradial, etc.

(Gray [1973]).

In this section, general aspects and material
characteristics of soft tissues, in general, and ligaments in
particular, are studied. Ligaments are modeled as non-linear
elastic springs and their constitutive equation and stiffness
values are presented. Attachment sites of the elbow, hip,
knee and ankle joint ligaments are determined and summarized.

GENERAL CHARACTERISTICS

Ligaments, capsule and other conncctive tissues such as
tendons, skin and blood vessels, consist mainly of collagen
and elastin fibers embedded in a mucopolysaccharide intercel-
lular ground substance (Wismans [1980])). Gecometrical arrange-
ments and the relative amount of cach of the components of
the fibers vary from tissue to tissue. Usually, in ligaments
and tendons, collagen fibers are oriented in the direction of
the transmitted force while the elastin fibers form a dis-
ordered network. Crisp [1972] reported that under no external
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loading of the tissue, the collagen bundles are coiled. Due
to the difficulties involved in the dissection of the compo-

nents of biological structures, the mechanical properties of
the collagen and elastin fibers are usually determined for a
tissue in which one of the components is predominent.
Material properties of collagen are often determined by the

use of tendons. Elliot [1965] reported that in tendons of

TP

the human body, about 75% of the dry weight is collagen and
- just 2% is elastin.

“ Physical behavior and the stress in a biological tissue
not only depends on strain but also on strain history. This
behavior is evident in phenomena such as stress relaxation,
creep, hysteresis and dependence of the elastic moduli on the

A pman
-

strain rate and temperature. A number of mathematical

descripiions characterizing this behavior are proposed in the

literature. T':2se descriptions may be divided into two groups.
In the first group, the measured microscopic response of

the tissue is characterized by a continuous, nonlinear
equation, as in the quasi-linear visco-elastic law of Fung
[1972]. The most noticeable feature of the mechanical
behavior of biological tissues is that measurable stresses

develop only after the specimen has been stretched consider-
ably from its original or relaxed length. In such an
extension, the stress-strain law becomes highly nonlinear and
classical theory of elasticity, which is restricted to linear
stress-strain relations and small strains, is not applicable.
The nonlinear stress-strain relations developed in the
analysis of finite homogeneous deformations of elastomers
have been studied by Mooney [1940], Rivlin [1948] and on the
basis of strain energy function by Green and Adkins [1960].

" V.m"v*v‘v —y

Fung [1967] has shown that the elastic properties of mesentery
are completely different from those of vulcanized rubber. He
has concluded that the stress-strain relation in the one-
dimensional case should be exponential in the stretch mode.
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A generalization of Fung's result to three-dimensional
problems was given by Gou [1970], who introduced a strain
energy density which is an exponential function of the strain
invariant. Various potential functions describing the large
deformation of biological tissue and its response to various
forces are presented in the literature. These include the
works by Blatz, Chu and Wayland [1969], Lee, Frasher and Fung
[1967], Hildebrandt, Fukaya and Martin [1969]}, Veronda and
Westman [1970], Simon, et al., [1970], and Demiray [1972].

In general, however, these functions have been developed for
a specific loading pattern and assumed material isotropy. A
more general function permitting the study of a number of
types of loads and interaction between combined loads is given
by Snyder [1972].

In this first group, there are also represented models
in which the tissue response is described by a mechanical
analogy, consisting of a number of spring, dashpot and dry
frictional elements. For example, nonlinear visco-elastic
behavior of collagenous tissue has been simulated by Frisen,
et al., [1969], using a Kelvin model and a number of nonlinear
springs.

In the second group the mathematical description is based
on an idealization of the microstructures and on the meckani-
cal properties of the constituent materials. Based on the
knowledge that the connective tissues are composed of fibrous
and amorphous materials they may be treated as fiber-reinforced
materials. The initial part of the loading phase is a geomet-
rical rearrangement of the microstructural network due to
uncoiling of the coiled fibers of collagen. Linear constitu-
tive equations are assumed for the second part of the loading
in which the collagen fibers are elongated. The models by
Comninou and Yannas [1976], and Drouin [1980] on the one-
dimensional stress field studies of elastic behavior of
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collagenous tissues and -two material composite prosthesis,
respectively, fall in this group.

In this study simulation of joint ligaments is
accomplished by a mathematical description based on an
approximation of experimental data reported in the literature.
Ligaments will be represented by nonlinear elastic springs as
the experiments were limited to a one-dimensional stress
field and information is available only on the elastic
behavior. Due to the microstructure and the orientation of
the collagen fibers, representation of ligaments by sp.ings
would seem to be a realistic approach. The general form of
the constitutive equation and the values of the parameters
characterizing the constitutive equations of the different

springs are discussed below.

CONSTITUTIVE EQUATION

A constitutive equation representing ligamentous behavior
is based on available data in the literature. Data concerned
with the knee joint ligaments is considered since the general
theoretical analysis developed later in this report will be
applied to the knee joint. )

Brantigan and Voshell [1941] presented a review of the
conflicting theories on the function of knee ligaments prior
to 1940 and reported the results of study on approximately 100
knees. Since that time many investigators have discussed the
function of various ligamentous structures (Hallen and Lindhal
[{1965] and [1966]; Hughston and Eilers [1973]; Kennedy and
Grainger [1967]; Kennedy and Fowler [1971]; Kennedy, Weinberg
and Wilson [1974]; Robinson and Romero [1968]; Slocum and
Larson [1968]; Warren, Marshall and Girgis [1974]; Girgis, et
al., [1975]; Trent and Walker, [1975]; Piziali, Rastegar and

ﬁ‘ Nagel [1977]); Piziali, et al., [1980]; and Seering, et al.,
[1980)), and the length of primary structures as a function
¢ of knee flexion (Edwards, Lafferty and Lange [1969]; Wang,
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Walker and Wolf [1973]; and Crowninshield, Pope and Johnson
[1976]. 1In addition, pure torsional rotation with and without
contact pressure has been measured by Wang and Walker [1974].

Force-deflexion characteristics of several types of
ligaments under uniaxial ten.ion has been reported by Trent,
Walker and Wolf [1976], Kennedy, et al., [1976], Noyes and
Grood [1976] and Dorlot, et al., [1980]. Usually four
characteristic regions of the force-deflexion curve of collag-
enous tissue are identified. The location of these regions
(Figure 22) can be explained in terms of microarchitecture
(Crisp [1972]; Wismans [1980]). The stiffness of the tissue,
defined by the slope of the load-deflexion curve, is rather
slight in region 1. This initial region is considered mainly
to correspond to the geometrical rearrangement of the micro-
structural network (uncoiling of the coiled collagen fibers).
Therefore, the stiffness is determined mainly by the stiffness
of the elastin network. The stiffness increases in region 2
as some of the fibers become aligned. All collagenous fibers
are assumed to be fully uncoiled at the end of this region.

As the force on the tissue steadily increases, the collagen
fibers themselves elongate. 1In region 3, the stiffness is
reported to correspond mainly to the stiffness of the collagen
fibers and is found to be almost constant. Finally in region
4, disruption of some collagen fibers is observed, followed

by a complete failure of the tissue itself.

Th: force-elongation curve of Figure 22 can be
represented by a quadratic equation. Haut and Little [1972]
carried out a number of tension tests on rat-tail collagen
bundles and reported that at low strains, the elastic bchavior
of this tissue could be described by a quadratic stress-strain
equation. Crowninshield, Pope and Johnson [1976] tested human
medial collateral ligaments and indicated that a quadratic
stress-strain function is a good approximation for the elastic
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Figure 22. Force-elongation curve for collagenous tissues.

behavior of such tissue. In this study the following force-
elongation relationship is assumed for each ligament:

B0 = k1 - 2% for L. > 1. (3)

j' b ) J

in which kj is the spring constant, Lj and zj are, respectively
the current and initial lengths of the ligament, j. It is
assumed that the ligaments cannot carry any compressive force;

accordingly:

IFjI =0 for 1y < g, (4)

The direction of the force, Fj’ exerted by a spring on the
articulating body segment coincides with the direction of the
line segment through the origin and insertion points of that

- spring. The length, lj’ of spring j is equal to the distance
X between its insertion and origin points.
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LIGAMENT STIFFNESS

Several studies concerned with the tension tests of human
knee joint ligaments have been reported in the literature.
Among these studies, the work of Noyes and Grood [1976],
Trent, Walker and Wolf [1976], and Kennedy, et al., [1976]
will be considered in this section.

Twenty-one anterior cruciate ligaments have been tested
by Noyes and Grood [1976]. The intact knee joints were kept
in a frozen condition for about four weeks. They were thawed
at room temperature a day before testing. The specimens were
then mounted in the testing machine at 45° of flexion and, at
an elongation rate of 25 mm/sec., they were tested to failure.
The stiffness, k, the strain €gs and the corresponding force,
Fe, were determined. The mean values of these quantities are
summarized in Table 7. Large deviations between the specimens
are evident and the younger ligaments are much stiffer than
older ones.

The cruciates and the collateral ligaments of six fresh
specimens together with a piece of their bony attachments were
tested by Trent, Walker and Wolf [1976]. The specimens were
loaded to failure in a normal saline solution at 37°C and at
an elongation rate of 0.8 mm/sec. Table 7 shows the mean-
values for the stiffness, k. The values for the anterior
cruciate is close to the mean values reported by Noyes and
Grood [1976] for the older specimens.

Kennedy, et al., [1976] tested twenty anterior, posterior
and collateral ligaments at two different strain rates of 2
and 8 mm/second. The specimens were tested some fourteen
hours after death and were kept in isotonic saline. The
ligaments were tested without their bony attachments. Each
ligament was fixed in an upper clamp initially and allowed to
hang freely, seeking its own orientation. A lower clamp was
then applied. Special care was made to avoid twisting the
ligaments. The mean values of the strain, N and

-61-

L
y
4
L

T

Al




-- LT 255 0°'8 -- 01 Apauuay
j ) . TVIILVTT0D
- 02 vSy 0°2 01 Apsuuay TYIdsn
00TS -- -- 8°0 $5-62 b Juaa]
- .. . _ TVYILVTIO0D
000¢ 8°0 $S-67 S Juax] VALY
-- 61 808 0°8 -- 01 Apauusy
.. . . FLVIDNYD
12 86L 0°2 0T Apauuay ¥OT¥31S0d
00S¥ -- -- 8°0 $5-62 9 UL}
0067 97 0LTT 0°SZ 9Z-91 9 sakoN
00S¢€ 22 Z29 0°S? 98-8V 07 sakoN
. . - ILVIDINYD
82 20§ 0°8 01 Apauuay NOTHILNY
-- €z v6¢€ 0°2 -- 01 Apauuay
000¢ -- -- 8°0 $6-62 9 jusa]
(3/N) (%) (N) (o9s /uu) (S¥vVAR) SNAWIDAdS
b I3 3 ERRA 49V 410 IINTYI4 Y INTWVOI1
NOILVONOTH YIIWNNAN

*([086T] SNVWSIM WOdd qI2naodddy)
*TY 19 ‘AQANNTIY ‘[9/6T1] JATOM ANV YINTVYM

ANV STAON ANV “[9/.671]

*[9.61] aooyo

‘INFYL A€ QILYOdTY SOILSIYILIVIVHD INIWVOIT FOVIFAV AWOS 40 NOSIYVIWOD

L ®1qel

-62-




corresponding force, Fe, are given in Table 7. No stiffness
data or age of specimens were reported in this study. The
variation in the results reported by Kennedy, et al., [1976]
and those of Noyes and Grood [1976] may be explained partly
by possible slipping of the specimens between the clamps and
differences in elongation rates.

In this study, the values of the stiffness, kj’ for
different springs is based on the mean data reported by Trent,
Walker and Wolf [1976]. For the stiffness of the medial
collateral ligament a correction reported by Wisman [1980] is
used in order to account for the oblique and the deep medial
collateral ligament, since these parts were not included in
the specimens tested by Trent, Walker and Wolf [1976]. This
correction is based on data presented by crowninshield, Pope
and Johnson [1976]. Stiffness values used in this study for
the lateral collateral (LC), the medial collateral (MC), the
anterior cruciate (AC), and the posterior cruciate (PC)
ligaments are summarized in Table 8.

Table 8

LIGAMENT STIFFNESS FOR THE LATERAL
COLLATERAL (LC), MEDIAL COLLATERAL
(MC), ANTERIOR CRUCIATE (AC) AND

POSTERIOR CRUCIATE (PC) LIGAMENTS.

Ligament Km(N/mmz)
LC 15
MC 15
AC 30
PC 35
-63-
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INSERTIONS AND ORIGINS

Accurate determination of attachment sites or the so-
called insertions and origins, of ligaments are of considerable
importance in the mathematical modeling of the articulating
joint. Very little quantitative information is available on
this subject. Attachment sites and the lengths of the knee
joint ligaments have been measured in vivo and in vitro and
reported by Crowninshield, Pupe, and Johnson [1976].

In this study, by close physical and anatomical study of
the elbow, hip, knee, and ankie joints (Grant [1962]; Gray
[1973]), the attachment sites of their respective ligaments
have been measured and summarized in Table 9. For each joint,
insertion points are measured with respect to its (x',y',z')
coordinate system and origins with respect to its (x,y,z)
coordinate system. Note that attachment sites of only those
ligaments which significantly contribute to the integrity and
functional aspects of the joints have been measured, and due
to the expanded shape of some of the ligaments, slight varia-
tion may be inherent in these measurements.

TWO-DIMENSIONAL DYNAMIC FORMULATION
OF A TWO-BODY SEGMENTED JOINT

The mathematical descriptions of the articular surfaces,
ligaments and capsule thus far presented can now be integrated
into a two-dimensional mathematical formulation of a general
two-body, segmented articulating joint.

For the purpose of studying the joint motion, one segment
is assumed to be fixed while the other segment is executing a
relative motion. The coordinate systems (x,y) and (x',y') are
attached to the fixed and the moving body segments,
respectively, and their relative position and angular orienta-
tion will be discussed. Next the contact conditions between
the two articulating surfaces are presented, and the descrip-

tion of ligaments, contact and applied external forces and
.
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h are presented.

—p— ’v.v—-rvv,

Figure 23,

moments, along with the governing dynamic equations of motion

A numerical procedure employing thc Newmark

will be represented as shown in Figure 23.

method of differential approximction and Newton-Raphson itera-
tion process is suggested for the solution of these coupled,
nonlinear algebraic and differential equations.

CHARACTERIZATION OF THE RELATIVE POSITIONS
A joint connects two segments of a body which are
designated as segments 1 and 2 and, for illustrative purposes,

The position of

moving body segment 1 relative to the fixed body segment 2 is
described by two independent coordinate systems shown in
An inertial coordinate system (x,y) with unit

SEGMENT 1

SEGMENT 2

77 Pl L & 7 cad

Figure 23,

A two-body segmented joint is illustrated showing

the position of a point, Q, attached to the moving coordinate

! system (x',y').
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vectors i and 3 is connected to the fixed body segment, while
the coordinate system (x',y') with unit vectors i' and 3' is
attached to the center of mass of the moving body segment 1.

The motion of the moving (x',y') system relative to the
fixed (x,y) system may be characterized by three quantities:
the translational movement of the origin of the (x',y"')
system in the x and y-directions, and its rotation, o, with
respect to the x and y-axis.

Let the position vector of the origin of the (x',y')
system, in terms of the fixed system, be given by:

ry = xoi *t Yod (5)
Let the vector 56 be the position vector of an arbitrary point,
Q, on the moving body segment in the base (i',j'). Let fQ be

the position vector of the same point in the base (i,j).
That is,

-
|

= xhit + ygi’ (6)

rq = in + YQE (7)

Referring to Figure 23, for vectors p' and r, the following
relationship can be written:

[rql = [rg) + [T1leg] (8)

where [T] is a 2x2 orthogonal transformation matrix. The
angular orientation of the (x',y') system with respect to the
(x,y) system is specified by the four components of [T] matrix.
Assuming o to be the angle between the positive direction of
x-axis and the positive direction of x'-axis (Figure 23), then
the transformation matrix [T] is written as:

Cos a  -sin « ' .
[T] = (9)

sin «o Cos a
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Therefore, the position in the (x,y) system of any given
point in (x',y') system can be determined knowing [T] and fo.

CONTACT CONDITIONS

Assuming rigid body contact between the two body segments
at point C as shown in Figure 24, let us represent the contact
surfaces by smooth mathematical functions of the following

form:

Yy = fl(x) (10)
; y' = £,0x") (1)

As implied, equations (10) and (11) represent the fixed and

moving surfaces, respectively.

SEGMENT 1
y=fix)
y

SEGMENT 2
q
!
4 m—m” rrrrrrrtr
o
b Figure 24. A two-body segmented joint is illustrated showing
¢ contact point, C, location and relevant vectors.
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The position vectors of the contact point, C, in the
base (i,j), is denoted by:

T. o= x.i+ fy(x)] (12)

and the corresponding one in the base (i',ﬁ'), is given by
it o+ fz(xé)j' (13)

Then at the contact point, C, the following relationship must
hold:
[r.] = [r ] + [T1lel] (14)

This is a part of the geometric compatibility condition for
the two contacting surfaces. In addition, the unit normals
to the surfaces of the moving and fixed body segments must be
colinear.

Let ﬁl and El be, respectively, the unit normal and unit
tangential vectors to the fixed surface, y = fl(x), at the
contact point, C, (Figure 25) and represented by:

n; =ny i+ Ny (15)

t] = tied * tyyd (16)
or for Elz

- dic

ty = 35 (17)

By definition, a unit normal vector directed toward the center
of curvature is given by:

. d%l
n, =R g5~ (18)

where R is the radius of curvature and is defined as
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el

~

Figure 25. Unit normal, n;, and tangential, t;, vectors at

the contact point, C.

(1 + (df,/d0)1%/?

|a%£ /ax?|

R =

(19)

The distance, ds, along the surface, y = fl(x), is defined as:

ds = \[(dx)2 + (dy)?
or
df, 2
ds = 1 "’('a;-) dx

Substituting equation (20) in equation (17) gives:

(20)




~ dr
t 1 c

17 = I (21)
‘[1 + (df/dx)

Consequently, equation (18) can be written as:

dt
- R 1
o dx (22)
Jl + (df,/dx)*
But from equation (21):
ai a%r (df,/dx) (d%f,/dx%) df
1 _ 1 c 1 1 C
Ix ) 7372 dx
‘[1 - e /a0l X [1 + (df;/dx)?]
or
- 2- 2 2, .-
dt1 1 d r. (dfl/dx)(d fl/dx ) drC
= - (23)
e @ea01M? a1 @@gzan? &

Combining equations (22) and (23):

A [1 + (dfl/dx)z]l/z dzfc (dfl/dx)(dzfl/dxz) dF

n, = - , (24)
1 |a%e /dx?| dx? (1 + (df;/d)?] O

But:

drc N df1 "

x TPt la /) (25)

and
2- 2

d r. ) d fl .

ol \dx2 ) (26)

Substituting equations (25) and (26) into equation (24):

A S U € T2 P L R L N dr,/dx (k df; . ‘
n, = j - i+ - j)
1 a2, /dx? dx 2 (1 + (df;/dx)°] dx
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|a“f,/dx?|

[1+ (afy/dx)?)

o>

[1 . (dfl/dx)z] 1/2

(df,/dx)* .

+ 1 - 5
[1+ (df;/dx)°)

Simplifying the above equation yields:

. (a%e/ax?) ( af, )2 "1/2 [ <‘if1) . A] .
n, = ——————— |1 + - i+ j 2
b Ja%e /ax? Ix ax x

Xe

where X is the x-coordinate of the contact point, C, in the

base (1,3). From equations (15) and (27) it can be shown that

2 2 _
Mx * My =1 (28)

1x gnd nly

the x and y components of unit vector n. Similarly, following
the same procedure as was outlined for n;, at the point of

which is an expected result since n are respectively

contact, C, the unit normal vector, né, to the surface,
y' = fz(x'), directed toward its center of curvature, can be
written as:

(d2f2>/ a’e,

pr o= NIX] dx (82 5, s, 29

"2 77172 -l A A D (29)
1+ a:*)

where xé is the x'-coordinate of the contact point, C, in the

base (i',j'). From the transformation matrix [T], given in
equation (9), the coordinate base (i',j') is related to
coordinate base (i,j) by:

~

i' = cosa i + sina j (30)
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j' = -sine i + cosa j (31)

Substituting equations (30) and (31) into equation (29),
yields:

. @yax'h ag, \ 2] "1/2 af, .
n, = 3 3 1+ —-—r> - (cosa -— * sina>1
|d“f,/dx “| dx dx
(32)
df
+ ( cosa - sina ——1-)3
dx
The colinearity of the normals at the point of contact, C,
requires that:
ﬁl X 52 =0 at X=X. , x'=x'C (33)
that is:
2 2 2
(d fl)/ d*f, a’f,
[)
dx? dx? ) i + 3 dx 2
4 \27172 J dfz 172
1
[“(37‘_)] )] (34)
df, R df,
- ( cosa >+ sina) i+ ( cosa - Sina —-7-)3 =0
dx dx
or:
df1 df df1 df,
sina I ———T - COSa g3~ + cosa 3 + + sina = 0 (35)
X

Finally, the contact condition takes the following form:

( df1 ) df2
sina 1 + a—— (—r)
X X=X dx x'=x'C

- COSa - b =0
X X=X dx x’=x'c

(o

(36)
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DYNAMIC EQUATIONS OF THE MOVING BODY SEGMENT

The total load acting on the moving body segment 1is
divided into forces exerted by nonlinear springs which are
simulating the ligament and capsule forces, contact forces
between the moving and fixed body segments and applied exter-
nal forces and moments (Figure 26). In the following sections,
each of these forces will be mathematically formulated and
final equations of motion for the moving body segment will be
presented.

Ligament Forces

Representation of ligaments and capsules as nonlinear
elastic springs along with their governing constitutive equa-
tions were discussed previously. The force, Fj' in nonlinear
spring, j, is a function of its length, zj’ that is:

SEGMENT 1

SEGMENT 2

Figure 26. Forces acting on the moving body segment of a two-
body segmented joint.
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Fj = f(lj) (37)

Let (5§)m be the position vector in the base (i',j') of
the insertion point of the ligament, j, in the moving body
segment. The position vector of the origin point of the same
ligament, j, }nAthe fixed body segment is denoted by (i‘zj)f
in the base (i,j). Here the subscripts m and f outside the
parenthesis imply "moving" and "fixed", respectively. The
current length of the ligament is given by:

Lj = \[[(ij)f - T - T(53)m] . [(izj)f - T,y - T(éi)m] (38)

The unit vector, Aj, along the ligament, j, directed from the

moving to the fixed body segment is:
~ - 1 - _ - _ - '
Aj = I; [(ij)f rO T(pj)m] (39)

Thus, the axial force in the ligament, j, in its vectorial
form, becomes:

F. = F.1.
j i%] (40)

where Fj is given by equation (3).

Contact Forces

Since the friction force between the moving and fixed
body segment is neglected, the contact force will be in the
direction of the normal to the surface at the point of
contact. The contact force, N, acting on the moving body
segment is given by:

N =+yN ﬁl at  x=x_ (41)

where N is the magnitude of the contact force and
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;g ) (dzfl/dxz)

Y = —5—————— at X=X (42)
|a%€,/ax?]

vy is either +1 or -1 and it ensures the correct direction of
the contact force acting on the moving body segment.

Applied External Forces and Moments
In order to achieve the desired joint motion, an external

force, F,, and a moment, M_, of known magnitude and direction

e’
are applied to the center of mass of the moving body segment.
The force, Fe’ and moment, Me’ are applied in the base (i,j)

and their resultants are given as:

h
0

e = (F)e i+ (Fyj (43)

.= M K (44)

=
n

where Me is the magnitude of the applied moment vector, Mg -

Equations of Motion

The dynamic equations of motion of the moving body
relative to the fixed body segment are as follows:

P .
(Fg)y *+ YN(ny), + jzl Fj(Aj)x Mx (45)

L]

p .
(Fe)y + YN(nl)y + jzl Fj(lj)y MYO (46)

8 Me + (Tol) x (YNAp) + j§1 (Te}) x (F3&;) = T,a  (47)
where p is the number of ligaments and the subscripts, x and

y, denote the components of the related quantities in the x

and y-directions. The mass of the moving body segment is
denoted by M and the dots denote derivatives with respect to

b time, t. The mass moment of inertia of the moving body segment
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about the z-axis is I, and o designates its angular

acceleration. The problem description is completed by assign-
ing the initial conditions, which are:

Xg = ¥g = o =0 (48)
along with the specified values for x,, Yo and a at t = 0.
Three nonlinear second order differential equations,
(45), (46) and (47), along with the geometric compatibility
and contact conditions of equations (14) and (36), provide
the necessary relationships in order to determine the
following unknowns:

a) x_. and Yo! the components of vector fo;

o
b) X and xé: the x and x'-coordinates of the
contact point, C, in the base (i,j) and (i',j'),
respectively;

c) «a: the orientation angle of the moving (x',y')
system relative to the fixed (x,y) system; and
d) N: the magnitude of the contact force.
The numerical procedure employed in the solution of the
governing equations is described in the following section.

NUMERICAL METHOD OF SOLUTION
Newmark Method of Differential Approximation 1

The first step in arriving at a numerical solution of
these equations is the replacement of the time derivatives
with a temporal operator; in the present work, the Newmark
operators (Bathe and Wilson [1976]) are chosen for this 1
purpose. For instance, X

is expressed in the following form:

(o]
- _4 (xt - xt-aty | 4_ ft-at | Ct-at (49)
“0 .2 0 o At o} ’ '
(at) )
et _ st-At , At Tt-At . At Tt '
X, = X * 5 X4 M b SR (50)

in which At is the time increment and the superscripts refer
to the time stations. Similar expressions are used for yoand 1
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«. In the application of equations (49) and (50), the
conditions at the previous time station (t-aAt) are, of course,

assumed to be known.

Numerical Procedure
After the time derivatives in equations (45), (46) and
(47) are replaced with the temporal operators defined in the

previous section, the governing equations take the form of a
set of nonlinear algebraic equations. The solution of these
equations is accomplished by an iteration method. 1In this
work, the Newton-Raphson (Kao [1974]) iteration process is
used for the solution. To linearize thc resulting set of
simultaneous algebraic equations, we assumc:

kxé - k'lxg + ax (51)
and similar expressions for the other variables are written.
Here, the right subscripts denote the time station under
consideration and the left subscripts denote the iteration
number. At each iteration, k, the values of the variables at
the previous (k-1) iteration are assumed to be known. The
delta quantities denote incremental values. Equation (51) and
the corresponding ones for the other variables are substituted
into the governing nonlinear algebraic equations and the
higher order terms in the delta quantities are dropped. The
set of n simultaneous algebraic (now linearized) equations can
be put into matrix form:

[K] {a} = {D} (52)

where [K] is an nxn cocfficient matrix, {A} is a vector of
incremental quantities and {D} is a vector of known values.
The iteration process at a fixed time station continues
until the delta quantitics of all the variables become
negligibly small. A solution is accepted and the iteration
process is terminated when the delta quantities become less
than or equal to a prescribed percentage of the previous
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values of the corresponding variables. The converged solutions
of each variable is then used as the initial value for the

next time step and the process is repeated for consecutive

time steps.

The only problem that the Newton-Raphson process may
present in the solution of dynamic problems is due to the fact
that the period of the forced motion of the system may turn
out to be quite short. In this case it becomes necessary to
use very small time steps; otherwise a significantly large
number of iterations is required for convergence. This matter
will be further dis:cussed in later sections.

Any joint can be modeled with this general formulation.
The knece joint will be modeled accordingly and results will

be presented in the remaining sections of this report.

MATHEMATICAL DESCRIPTION OF A
THREE-DIMENSIONAL DYNAMIC MOwtL

In the previous section, a mathematical description for
the dynamic motion of a two-dimensional articulating joint
was presented. Using the knowledge and the insight from the
discussion along with the mathematical descriptions of the
articular surfaces, ligaments and capsule discussed in prior
sections, a general formulation for a three-dimensional mathe-
matical model of an articulating joint will be presented in
this section.

Once again for the purpose of studying the joint section,
one segment is assumed to be fixed while the other segment is
executing a relative motion. Coordinate systems (x,y,z) and
(x',y',z") arec attached to the fixed and moving body segments,
respectively, and their relative position is discussed below.
This relative position is determined by six variables: three
components of a vector specifying the origin of the (x',yv',z'
system, and three rotations which determine the orientation of
the (x',y',z') system. Contact conditions and dynamic equations

of motion are then presented.
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CHARACTERIZATION OF RELATIVE POSITIONS

A joint connects two body members which are here
designated as segment 1 and segment 2. The position of the
moving body segment 1 relative to fixed body segment Z is
described by two coordinate systems as shown in Flgure 27
Inertial coordinate system (Xx,y,z) with unit vectors i J and
k is connected to the fixed body segment and coordinate system
(x',y',z') with unit vectors i’ ,J and k' is attached to the
center of mass of the moving body segment. The (x',y',z')
coordinate system is also taken to be the principal axis

system of the moving body segment.

The motion of the moving (x',y',z') system relative to
the fixed (x,y,z) system may be characterized by six
quantities: the translational movement of the origin of the

SEGMENT 1 yl=q(xl'zl)

y=f{x,2z

SEGMENT 2

Figure 27. A two-body segmented joint is illustrated in
three dimensions, showing the position of a point, Q, attached
to the moving coordinate system (x',y’',z').
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(x',y',2z') system in the x, y and z-directions, and 6, ¢ and y
rotations with respect to the x, y, and z-axes.

Let the position vector of the origin of the (x',y',z')
system in the fixed system be given by (Figure 27):

~ A

r, = xoi + yoj + zok (53)

Let the vector, 5&, be the position vector of an arbltrary
point, Q, on the moving body segment in the base (1 »J! k ).
Let rQ be the position vector of the same point in the base
(1,J k). That is,

A

xgi' yéﬁ' + zéi' (54)

-

in + yQ5 + 2k (55)

el
o
]

Referring to Figure 27, vectors 56 and fQ have the relation-
ship:

{rq} = {ry} + [THey} (56)

where [T] is a 3x3 orthogonal transformation matrix. The
angular orientation of the (x',y',z') system with respect to
the (x,y,z) system is specified by the nine components of the
[T] matrix and can be written as a function of the three
variables, 6, ¢ and y:

T =T(6,¢,¥) (57)

There are several systems of variables such as 6, ¢ and
¢y which can be used to specify T. In this study the Euler
angles will be utilized.

The orientation of the moving coordinate system
(1 k ) is obtained from the fixed coordinate system
(1,3,k) by applying succe551ve rotation angles, ¢, 6 and ¢
(Figure 28). First the (1,J,k) system is rotated through an
angle ¢ about the z-axis (Flgure 28a), which results in the
intermediary system (11,Jl,k ), where:
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A N A
a) ¢ along k b) 6 aiong i, C) y along k,

Figure 28. Successive rotations of ¢, 6 and y, of the (x,y,z)
coordinate system.

~ ~ ~

i; = cosg i + sin¢ j (58a)
jp = - sing i + cose j (58b)
k, = k (58¢)

The second rotation through an angle 6 about the 11-ax1s
(Figure 28b), produces the intermediary system (12,32,k ),

where:
1, = 1y (59a)
32 = Ccos®H 51 + sineg il (59b)
EZ = - sin®d 31 + Ccosé il (59¢)
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) The third rotation through an angle y about the ﬁ -axis

1 (Flgure 28c), gives the final orientation of the mOV1ng

gf (1 k ) system relative to the fixed (1 I k) system, where:
i' = 13 = cosy i2 + siny j2 (60a)
J' =iz = - siny i, + cosy j, (60Db)
k' = ky = k, (60c)

Substituting equations (58) and (59) into equation (60), the
flnal orientation of the (1 k') system relative to the
(1,J,k) system may be written as:

-~

i' = [(cosy cos¢ - siny cose sin¢)i + (cosy sing
- R (61a)
+ siny cos® cos¢)j + (siny sine)k]
3' = [(-siny cos¢ - cosy cos®H sin¢)i + (- siny sing
R R (61b)
+ cosy cos¢ cosH)j + (cosy sin6)k]
i' = [(sin® sin¢)i - (sins cos¢)3 + Ccos®H i] (61c)
or, in matrix notation:
it i
it o= (T (62)
k' k .
where: :
r Cos¢ COSy cosy sing siné siny i j
-siny cos6é sing +siny cos® cos¢ -
- -siny cosé¢ -siny sing COsy sin®
[T] -COosy co0sH® sing +COSYy COS8® COos¢ (63) ]
)
sin¢ sine -siné cosé¢ cosé E
-83-
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CONTACT CONDITIONS

Assuming rigid body contacts between the two body
segments at points Ci (i=1,2) as shown in Figure 27, let us
represent the contaci surfaces by smooth mathematical func-
tions of the form:

y = £(x,2) (64)
y' = gx',z") (65)

As implied, equations (64) and (65) represent the fixed and
the moving surfaces, respectively.

The p9s§t}on vectors of the contact points ¢y (i=1,2) in
the base (i,j,k) is denoted by

-~

)j + 2. k | (66)
1

T =x_. i+ f(x. ,z
cy cy c;’hey

~
.

and the corresponding ones in the base (1',3',&') are given
by:

Pc. c

' = x! i' + g(x| ,Z' )31 + 2! ]21 (67)
i Ci Ci ¢4 i

Then, at each contact point Cy the following relationship must
hold:
(r_} = {r_} + [T] {po! } | (68)
o C.

€ i

This is a part of the geometric compatibility condition for
the two contacting surfaces. Furthermore, the unit normals
to the surfaces of the moving and fixed body segments at the
points of contacts must be colinear.

Let ﬁc- (i=1,2) be the unit normals to the fixed surface,
y = f(x,z),lat the contact points, Ci (i=1,2), then:

A= 1 i) x| 3 i=1,2 (69)

i ‘/DET[G] e, 2c.

where fci is given in equation (66) and the components of the
matrix [G] are determined by:

-84-




c; ci
G = . i=1,2
kg ax K axt ’
with
1 2 3
XT =X , X =12 x~ = F(x z_ )
ci ci 4 ci’ ci

(70}

Therefore the components of matrix [le] may be written as:

2 2 2
BXC. Byc‘ BZC_
6 = i R i . i
XX 3X_ X _ 3X
i i i
b -
[ aX_ 2 Y. 2 2z, 2
G,z = 3z - Y\ 3z - *\ 3z :
3% X, . 3y 3y,
G =G = 1 1)+ 1
X2z ZX axc azc axc azC
i i i
BZCi azc
T Ax T
4 c;

Since (azci/axci) = 0 and (axci/azci) = 0, then the components

of matrix [sz] reduce to:

2
_ of
Gxx 1+ <axc )
i
2
_ af
Gzz =1+ (az )
€i

-8§5-
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(71b)

(71¢)

(72a)

(72b)

(72¢)




From equations (72), the DET[G] can be written as:

2 2
DET[G] = 1 + <§§ ) + (g—§—> (73)
Ci Ci

and therefore, the unit outward normals expressed in equation
(69) will have the following form:

n. = Y o i-ge (X )k] 0w
C; 2 2 xc. zc.
1 / (af > (af ) i i
1+ [ + [ =—
9X azC

Ci i

where the parameter, y, is chosen such that ﬁc. represents the

outward normal. !
Similarly, following the same procedure as outlined above

ﬁéi (i=1,2), the unit outward normal to the moving surface,

y' =Ag(§’,z'), at contact points, C; (i=1,2), and expressed in

(i',j3',k') system, can be written as:

S = B 9 Sy _ Ty + 39 "
nCi = 12 : <8xc.) i j <3zé.>k (75)
)Gy

az!
€i
where parameter, B8, is chosen such that ﬁé_ represents the
outward normal. L
Colinarity of unit normals at each contact point C,
(i=1,2), requires that:
- T,
{n_} = -[T} {n] } (76)

¢ i

Note that colinearity condition can also be satisfied by

requiring that the cross product (n¢; x TTnéi) be zero.

DYNAMIC EQUATIONS OF THE MOVING BODY SEGMENT

The total load acting on the moving body segment is
divided into forces exerted by nonlinear springs which
simulate the ligaments and capsule forces, contact forces
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between the moving and the fixed body segments and applied
external forces and moments (Figure 29). Ligament and
capsule forces were discussed and formulated previously. The
coefficient of friction between the articulating surfaces,
owing to the presence of the synovial fluid in the joints, is
known to be very low (Radin and Paul [1972]). Accordingly,
the friction force between the two body segments will be
neglected. Therefore, the contact forces, Ni’ acting on the
moving body segment are given by:

Ny = N T )i+ (e )5+ (ng ) oK) (77)

where [N;|'s are the unknown magnitudes of the contact forces
and (nci)x’ (nci)y and ("Ci)z are the components of the unit
normal, Nc;, in the x, y and z-directions. respectively.

i
2 »y=?(x,z)%
i

SEGMENT 2

]

Figure 29. Forces acting on the moving body scgment of a two-
body segmented joint in threc dimensions.
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The desired dynamic motion is aci.ieved by applying an
external force and moment to the center of mass of the moving
body segment whose resultants are given as:

Fe

(Fo)yd + (Fo)yj + (FQ)k (78)

Me

(M) i + (M)y3 + (M) k (79)
Equations of motion will be presented next.

Equations of Motion
The equations governing the forced motion of the moving

body segment are:

q p .
(F), + '21 |Ni|(nci)x + jZl Fj(xj)x = Mx (80a)
q P .
(F), *+ 1 [N ), + } FE.(a;), =My (80b)
ey ysp Loy oy iy 0
q p .
(Fe), + I INgl(n_ D, + } F.(2j), = Mz (80c¢)
i=1 i j=1
LMy = Togrter * (gagn = T dup ey, (81a)
Z M}"}" = IY')"(LY' + (IX'X' Iz'z')wz"‘..' (81b)
Z Mz|zv = Izvzvézv + (vayv - Ix'x')“x'“y' (81c)

where p and q represent the number of ligaments and the
co?ta?t point, respectively. Ix'x" Iy'y' and Iz'z'
principal moments of inertia of the moving body segment about

are the

its centroidal principal axis system (x',y',z'), and w vy Wy

X y
and w,y, are the components of the angular velocity vector

which are given below in terms of the Euler angles:

wer = 6 cosy + $ sine siny (82a)

-88-




w., = -6 siny + ¢ siné cosy (82b)

Wy = $ cose + y (82c)

The angular acceleration components, Wys Wy and w, are

directly obtained from equation (82):

&x' = 6 cosy - $(8 siny - ¢ cosy sine)
(83a)
+ ¢ siné siny + ¢8 cose siny
@, = - 6 siny - $(® cosy + ¢ siny sine)
4 (83b)
+ ¢ sind cosy + $6 cose cosy
&z' = ; cos® - ¢6 sine + i (83c)
Note that the moments components shown on the left-hand side
of equation 81 are obtained from:
M=M, + g (r1TGr ) x (INj[R. ) + § (T1ITGY) x (Fii.)  (84)
e Tk T, A - ° 373

where Me is applied external moment, and p and q represent
the number of ligaments and contact points, respectively.
The equations (80) and (81) form a set of six nonlinear
second order differential equations which, together with the
contact conditions (68) and (76), form a set of 16 nonlinear
equations (assuming two contact points, i.e. i=1,2) with 16
unknowns:
a) o, ¢ and ¢y, which determine the components of
transformation matrix [T];
b) Xgr Yoo and z
T,
c) Xcir Zeyo xéi and zéi (i=1,2): the coordinates of
contact points;

o the components of position vector

d) |Ni| (i=1,2): the magnitudes of the contact forces.
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Numerical procedure outlined previously can be utilized
for the solution of the three-dimensional joint model
equations presented in this section. However, becuase of the
extreme complexity of these equations, in this report we will
present in some detail only the numerical solution of a two-
dimensional joint model applied to the human knee joint.

TWO-DIMENSIONAL DYNAMIC MODEL
OF THE KNEE JOINT

Thus far, mathematical descriptions of the articular
surfaces, the ligaments and capsule have been developed as
well as general formulations for two- and three-dimensional
dynamic model of an articulating joint. These formulations
can now be applied to a mathematical description for the
dynamic motion of the knee joint. The most general and
realistic model of the knee should be three-dimensional.
However, a simpler two-dimensional model can be helpful and
rewarding in understanding the esscuntials of the problem and
serve as the groundwork for the sound development of a three-
dimensional model. Before we prescnt our two-dimensional
dynamic model of the knee joint we will briefly discuss the
previously developed models of the knee.

PREVIOUSLY DEVELOPED KNEE JOINT MODELS

The models of the knec joint can be subdivided into purc
kinematical models and models describing the force action in
the joint. Kinematical models try to describe the motions
between femur and tibia without considering the forces and
moments in the joint. A model of this type, developed by
Strasser [1917] is a four-bar mechanism (Figure 30). Two
bars represent the cruciates, while the other bars represent
femur and tibia, respectively. Menschik [1974a,1974b)]
extended this planar model by two curves representing the
tibial and femoral articular surfaces and also studied
location of the insertion areas of the collateral ligaments
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Extension Flexion
3 2 3
2 4 2 4 2 4

Figure 30. Four-bar mechanism according to Strasser [1917]
is shown. Components are identified as 1 = tibia, 2 =
anterior cruciate ligament, 3 = femur and 4 = posterior
cruciate ligament.

in this model. Similarly, the model of Huson [1974,1976] is
based on the idea of a four-bar mechanism, but it is also
able to simulate internal-external free range of motion by
means of a certain inclination of the plane representing the
lateral tibial articular surface.

Several planar mechanisms simulating the motion of the
human knee joint in the sagittal plane have been proposed by
Freudenstein and Woo [1969]. The aim of this study was to
serve as a guideline in the kinematical design of joint
prostheses. Investigations aimed at accurate in-vivo measure-
ments of three-dimensional relative motions in a human knce
joint so far have not been fully described in the literature.
A study by Levens, Inman and Blosser [1948] was limited to
relative rotations in a transverse plane. In this study,
stainless steel pins of 2.5 mm diamcter were drilled firmly
into the femur aud the tibia, sterility precautions and local
anesthesiz beiny used. No further attempts using this method
are described in the literature.

The mechanical analysis of the human knee joint has in
the past been carricd out mostly with human knee joint
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specimens which can be considered as the best available
representation of the living human joint. The shortcomings
of the knee specimens are the lack of muscle forces and the
difference in material properties from those of the living
joint. Moreover, the availability of the knee specimens for
research purposes is limited. Living and dead animals have
often been used as surrogates for human material in the study
of special problems. For example, the mechanical behavior of
the menisci in canines and pigs have been studied by Krause
et al. [1976] and Jaspers et al. [1978], respectively.

In general, kinematical models offer valuable
possibilities of gaining a better insight into some aspects
of joint bhehavior. However, their application is restricted
to phenomena in which force actions are of no interest.

A number of knee models, described in literature, were
not concerned with relative joint motions but were developed
to determine the forces in ligaments, muscles or between
articular surfaces. In these models the joint structures are
simplified in such a way that a so-called statically determi-
nant system is achieved. Consequently, the constitutive
equations of the ligaments are not necessary and the condi-
tions of equilibrium are sufficient to determine the relevant
forces. Two-dimensional models of this type are reported by
Kettelkamp and Chao [1972], Smidt [1973], Perry, Antonelli and
Ford [1975], Seedhom and Terayama [1976], Rens and Huiskes
[1976], while Morrison [1967,1970] presented a three-
dimensional model.

Although the studies on the biomechanics of the knee
joint have a long history, those studies which are essentially
a mathematical modeling of this largest and, apparently, most
complicated joint in the body are few. Crowninshield, Pope
and Johnson [1976] felt justified in stating that there were,
at that time, no analytical models of the knee available
which permit the prediction of the response of the joint to
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either external forces or displacements. In their analytical
model, on the other hand, only the quasi-static response of
the joint was studied and the overall joint stiffness was
obtained as a function of the flexion angle. The method used
by Crowninshield, Pope and Johnson [1976] is the so-called
inverse method in which the ligament forces caused by a
specified set of translations and rotations in specified
directions are determined by comparing the geometries of the
initial and displaced configurations of the knee joint. 1In
this method the externally applied displacements do not need
to be continuous; however, the discrete values used are to be
realistic. In Crowninshield, Pope and Johnson {1976] these
values were based on experimental data available in the
literature. The purpose of the work was to obtain the stiff-
ness of the joint which, in turn, required the calculation of
the ligament lengths at various knee configurations. Thus,
it was not necessary to consider the contribution of the
curved joint surfaces to the overall mechanical behavior of
the knee. Moreover, the external forces required for
equilibrium were not determined either.

Improvements to the quasi-static model discussed above
have been provided recently by Wismans et al. [1980], in
which a three-dimensional analytical model of the femoro-
tibial joint is presented. The study considers not only the
geometry but also the static equilibrium of the system. The
three-dimensional curved geometry of the joint surfaces are
included in the model. Ligaments are modeled as non-linear
elastic springs. The solution method employed by Wismans
et al. [1980] is also a quasi-static, inverse method. The
flexion-extension motion is simulated by prescribing several
flexion-extension angles. The dependent variables of the
problem, including the ligament forces, are determined from
the equilibrium equations and the geometric compatibility
conditions. However, for nonlinear problems of this kind it
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is known that there can exist more than one equilibrium
configuration for a given flexion-extension angle unless an
external force is also specified. Accordingly, in the

inverse method utilized by Wismans et al. [1980] it is
necessary to specify the external force required for the
preferred equilibrium configuration. Such an approach is
applicable only in quasi-static analysis. In dynamic analysis,
the equilibrium configuration preferred by the system is the
unknown and the mathematical analysis itself is to provide

that equilibrium configuration.

Biomechanics of the knee joint has also been investigated
by Andriacchi et al. [1977,1978]. They reported a statically
indeterminate model for the analysis of motion and forces in
the knee joint. Like Crowninshield, Pope and Johnson [1976],
they represent ligaments and capsule by a number of springs,
while the articular surfaces and menisci are also represented
in the model. Numerical predictions are consistent with
experimental observations. The models of Andriacchi et al.
{1977,1978] and Wismans et al. [1980], are essentially the
same in the sense that both deal with the quasi-static
response of the knee joint. Detailed discussions of various
anatomical ard functional aspects of the human knee joint can
also be found in Gray [1973], Engin and Korde [1974],
Blacharski, Somerset and Murray [1975}, Jacobsen [1976], Pope,
et al. [1976], and Engin [1978].

As seen from the preceding discussion, mathematical
modeling of the knee joint has not yet reached a definitive
stage of development. It is interesting to note that a
biodynamic model of the knee joint is, to the best of the
authors' knowledge, not yet available in the literature. It
is more appropriate to study via a dynamic model the response
of the joint to dynamically applied loads. The artificial
restrictions of the quasi-static inverse method, such as the
necessity to specify the preferred configuration, can be
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eliminated if the dynamics of the problem are incorporated
into the model.

TWO-DIMENSIONAL GEOMETRY OF THE KNEE JOINT
Coordinate Systems

Previous sections have discussed the relative positions
and coordinate systems for.a general, two-body segmented
joint. Uniquely specifying the locations of these coordinate
systems is virtually impossible because of the lack of well-
defined anatomical landmarks in the human body. However, the
relative motions in a joint are not affected by the choice of
coordinate systems and only some parameters describing the
relative displacements have different values for different
coordinate systems.

The position of the tibia, defined as the moving segment,

relative to the femur, defined as the fixed segment, is shown
in Figure 31. The origin of the moving coordinate system
(x',y') coincides with the center of mass of the tibia, with
the y'-axis being directed along the longitudinal axis of the
tibia. The inertial coordinate system (x,y) is attached to
the fixed femur with the x-axis directed along the posterior-
anterior direction and the y-axis coinciding with the femoral
longitudinal axis. The locations of the origins of these
coordinate systems, shown in Figure 31, are 4.01 cm and

21.34 cm from the intersection points of the y and y' axes
with the articulating surfaces. The rotation of the moving
(x',y') coordinate system with respect to the fixed (x,y)
system is denoted by a.

Mathematical Descriptions of the Articulating Surfaces

The two dimensional profiles in the plane of motion of
the femoral and tibial articulating surfaces are obtained
from X-ray of a human knee joint. The coordinates (xk,yk)
of a number of points on these profiles are measured using a
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Figure 31. Coordinate systems locations and relative positions
of the tibia and femur are shown for the two-dimensional
dynamic model of the knee joint.

two-dimensional sonic digitizing technique described previously
(Figure 32).

A polynomial equation of degree n(n>1) is used as an
approximate mathematical representation of the profile under
consideration. This polynomial has the form

n .

y(x) = ] Agxt (85)

1
where A.'s are the polynomial coefficients. These coefficients
are determined by the use of the subroutine program CHEPLS
(Appendix A). This subroutine is capable of determining, by
means of statistical tests, where the set of given data points
are linear or nonlinear. If the data are nonlinear at the
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Figure 32. Two-dimensional microphone/sensor with menu
capability, and sonic emitter/stylus for the Graf/Pen sonic
digitizer is shown with x-ray of the knee joint in place for
obtaining the profiles of the articulating surfaces.

95% confidence level, then the routine finds the lowest
degree polynomial which adequately represents the data. The
calculation procedure is to compare the standard deviation of
the model of degree n with that of (n+1)th degree model. If
there is no significant difference at the 95% confidence
level, then the polynomial of degree n is accepted as the
lowest degree polynomial which adequately represents the data.
In the present study, this method yields the following
equations for the femoral and tibial profiles, respectively:

fl(x) = 0.04014 - 0.247621 x - 6.889185 x2 - 270.4456 x3

4 (86)
-8589.942 x
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£,(x') = 0.213373 - 0.0456051 x' + 1.073446 x'? (87)

with the aid of the Versatec plotter, the tibial and femoral
articulating surfaces predicted by equations (86) and (87)

are shown in Figure 33.
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DESCRIPTION OF THE LIGAMENT MODEL

Selection of the Springs and Corresponding Parameters

5 Only four major ligaments of the knee joint will be

E considered in the present work although consideration of any
other ligament presents no difficulty. These ligaments are
the lateral collateral (LC), the medial collateral (MC), the
anterior cruciate (AC), and the posterior cruciate (PC). The
ligaments are modeled as nonlinear elastic springs having a
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ARTICULRTING SURFRACES AND LIGAMENTS OF
A KNEE JOINT MODEL
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Figure 33. Versatec plot of the two-dimensional representa-
tions of the tibial and femoral articulating surfaces.
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constitutive relation given by equation (3). The stiffness
values for these ligaments are summarized in Table 8. Initial
strains in the ligaments are taken as zero since, at present,
there is no accurate data available on strains as a function
or flexion angle. Zero strain condition for the ligaments

can be partially justified if an appropriate starting flexion
angle under no external load is chosen.

Insertions and Origins

The coordinates of the insertion points of the ligaments
in both the tibia and the femur are determined from the
available information in the literature (Wang, Walker and
Wolf, [1973}, Crowninshield, Pope and Johnson [1976]) and close
anatomical study of the knee joint. These coordinates on the
tibia are denoted by xj and y}, and those on the femur are
denoted by xj and Yj The values used in the present work
are summarized in Table 10. Obviously, these values are
determined with respect to coordinate systems shown in Figure
31, and for the specific specimen used in our study.

Table 10

COORDINATE VALUES FOR THE INSERTIONS AND ORIGINS
OF THE KNEE JOINT LIGAMENTS, IN METERS.

TIBIA FEMUR
LIGAMENT
] |
xj )'j xj yj
Medial Collateral 0.008 0.163 -0.023 0.014
(MC)
Lateral Collateral 0.025 0.178 -0.025 0.019
(LC)
Anterior Cruciate -0.005 0.213% -0.023 0.019
(AC)
Posterl?;cgru°1ate 0.025 | 0.208 -0.032 | 0.022

-99-

P PR

B T TR LT it

c e R e




‘b‘E-r‘AT':'I

R

¢ TV EVY

TV
A N

[TTT7'37757“777

MATHEMATICAL DESCRIPTION OF THE DYNAMIC
MOTION OF THE KNEE JOINT

The total external forces acting on the tibia are shown
in Figure 34. These forces are: ligament forces, Fj
(j=1,--4); normal contact force N; and the applied external
force, Fe’ and moment, Me' Frictional forces between the
femoral and tibial surfaces will be neglected since the
coefficient of friction between the articulating surfaces,
owing to the presence of the synovial fluid, is known to be
very low (Radin and Paul [1972]; Dowson [1976]). Therefore,
the contact force, N, will be in the direction of the normal
to the surface at the point of contact.

The equations governing the forced motion of the tibia
are:

F,=MEDIAL COLLATERAL
F,= LATERAL COLLATERAL
Fy= ANTERIOR CRUCIATE

F,=POSTERIOR CRUCIATE FEMUR

Figure 34. Forces acting on the moving tibia are shown for
the two-dimensional model of the knee joint.
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4 .
(Fg) + YN(np), + jzl Fj(;\j)x = Mx, (88)
4 .
(Fe)y + YN(nl)y + jzl Pj(xj)y = My, (89)
- - 4 - - .
Mg + (Tel) x (yNn) + jzl (Tpé) X (ijj) = 1,0 (90)

where all the parameters in the above governing equations have
been defined in previous discussion on the two-dimensional
general formulation for dynamic motion.

NUMERICAL ANALYSIS AND DERIVATIONS

The differential variables, ;o’ ;0, and o are substituted
by their corresponding Newmark approximations given in equa-
tions (49) and (50). Subsequently, these simultaneous non-
linear algebraic equations along with geometric compatibility
and contact conditions of equations (8) and (36) are
linearized by applying the Newton-Raphson iteration process.
After considerable amount of mathematical operations and
eliminations of the second order variational terms (see
Appendix B for complete derivations), the following final form
of the linearized governing equations of motion are obtained:

4
(yn?x)SN * (YNk)sn B (—i%)sx =- 1 Fix = (Fely
1x At 0 j=1 3
(91)
ok K 4 k _ _t-Aty, _ 4.:t-At _ “t-at
YN nix * M {ZZT[XO Xo ] 2t %o X }
(vnk )8 + (YNK) s - My - % F._ - (F))
ly’°N nly At2 Yo j=1 Jy e’y
(92)
ok k 4 . k t-at, _ 4 .+ t-At _ " t-At
YN My * M {Atzlyo " Yo 1 - 5 Y " Yo
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. - ..+ yN é - . 8.
! jzl FJYSXj [jzl Fiy * ¥ nly] xg 5k Fix®ys
4
k_k kK ki k kK _ky.k
+ Fix * YN n1x]6y0 v Llxg - xg)nyy - (e - Yodmyddy

'i -
k k k_k
N OE - 18, DNSGRE - X1y + [N 16,

g 1x
. (93)
g 41 4 4
5 k_k 2 kK _ .k kK _ _k
- (yN™n5_)é - —_— 8§ = - (x: - x)F.+ J (y; - y.)F
q! 1x’y.  a¢l o jzl j o’ T3y T LY o’ jx
3 ik _ t-at
: SRR TCHEIE L SR GRS LR P Pov ICHRICRNS

st-at _ ot-aAt }_ M

=g
>

Similarly, the linearized geometric constraint equations are:

k o k k
- ' -
Gx ax + (xc Sina + yc cosa )aa cosa &,

C (o] C

kd é = xg - xg + xék COSak - yék sinak

k 'k

(94)

. + sina

!_ 8 -8 - (Xc':kCOSak - y(':ksinmk)csOl - sinaksxé
(95)
k k

- €cOsa &6, = yg - y§ + xéksina + yé cos::k

.
L

Y
Y

k k

- [Pk sina  + c05ak]6Q + [Qk sina™ - COSak]GP

+ [cosak (1 + PXQX) + sina® (P¥ - Q¥)1s (96)

= - [sinaX (1 + P*Q¥) - cosoa¥ (PK - 0y

Other variational relationships which must be solved simulta-
E neously with equations (91) through (96) (See Appendix B) are:
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(a) Variation of ligament insertion coordinates, (xj,y.):

(b)

(c)

J
Gx. - éxo + (xj sinak + y3 COSak)6a
] (97)
= - x? + xg + xé COSak - ys sinak (j=1,..,4)
Gy. - Gyo - (x3 COSak - yj sinak)éa
! (98)
= - y? + yg + x3 sinaX + y3 cosaX (7=1,..,4)
Variation of articulating surfaces, y_. = fl(xc) and
Yé = fz(xé):
k ky2 k\3 -
Gyc - [A2 + 2Azx_ + 3A4(xc) + 4A5(xc) ]éxc Aq
(99)
+ Azxg + As(xlé)2 + A4(xlé)3 + As(x]é)4 - yg
' k k2
Sy = (A3 2Ap96,, = A ¢ AR e AR - R o0

Variation of first derivatives, P and Q of the articulating

surfaces, y = fl(x) and y' = fz(x'), respectively:

5o - (2A. + 6A,xX + 12A KOs = AL+ 2axK « 3,7
12 3 4%c 5%c 7°x, 2 3%X¢ 4Xc

(101)
v aacx® - pK
5%¢

GQ - ZAé Gx& = Aé + ZAé xé - Q (102)
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(d) Variation of the components of unit normals, n, and né:

8 + X §y = P - n¥ (103)
[ n 2 P - 2 1x
g 1x @+ Pk )3/2- (1 + Pk )1/2
5.+ - v 5, = Y - nK (104)
n 2 P~ 2 ly
y | s p)¥2 1+ pky1/2
I ] k
s+ 6 8 “EQ, - nk_, (105)
L
2x (14 Qk)3/2] (1 + Qky1/2
- k T
s+ BQ - 8q = Bz - n]z(y' (106)
|
a’e, [ d%s, ate, [y d%s,
where B = , and y = —
dx 2 dx'z' dx dx 2

Equations (91) through (106) form a set of 22 simultaneous
algebraic equations defined by equation (52). The vector, a4,
of equation (52) has the following elements: Gxo, 670’ 8a, SN,

GXC’ GXé’ 6Xj (j=19--,4)’ 6'yj (j=1:'°,4)’ 5n1x, Gnly, 5n2x|,

6n2y" 6yc, Gyé, é§p and 8qQ, where

Gxo = x-coordinate variation of the center of mass of the
tibia.

Gyo = y-coordinate variation of the center of mass of the
tibia.

8, = variation of the orientation angle, o, of the tibia
with respect to the femur.

GN = variation of the normal force, N.

Gx = Xx-coordinate variation of the contact point, C, in the

¢ (x,y) system.
L = X-coordinate variation of the contact point, C, in the

(x',y') system.
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6. = x-coordinate variation of the ligament insertion
J points, (j=1,..4).
Gy. = y-coordinate variation of the ligament insertion
J points, (j=1,..4).
6n1x = x-component variation of the unit normal vector to
the articulating surface of the femur.
6“1 = y-component variation of the unit normal vector to
y the articulating surface of the femur.
anx' = x-component variation of the unit normal vector to
the articulating surface of the tibia.
an o= y-component variation of the unit normal vector to
Y the articulating surface of the tibia.
Gyc = y-coordinate variation of the contact point, C, in
the fixed (x,y) system.
Gyé = y-coordinate variation of the contact point, C, in
the moving (x',y') system.
§p = variation of the first derivative of the femoral
articulating surface equation.
GQ = variation of the first derivative of the tibial

articulating surface equation.
After applying an external force and moment to the center
of mass of the tibia, the above system of 22 equations are
solved for the 22 variables by the computer program JNTMDL.

SOME ASPECTS OF THE COMPUTER PROGRAM, JNTMDL

Following the numerical procedure described previously,
the system of 22x22 equations defined by equation (52) are
solved using the JNTMDL program given in Appendix C.
Prescribed constant parameters used in the program are:

(a) the coordinates (xj,yj) and (xj,yi) of,
respectively, the insertions and origins of the
ligaments.

(b) stiffness values of the ligaments, kj.

(c) mass, M, and mass moment of inertia, Iz, of the
moving tibia.
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(d) initial linear (io, &0, ;0, ;0) and angular (a,
o) velocities and accelerations of the center of
mass of the moving tibia.

(e) coefficients, Ai and Ai, of the articulating
surface equations, y = fl(x) and y' = fz(x'),
respectively.

(f) applied external force, F_, and moment, Me‘

’
(g) time increment, At. °
(h) convergence criterion, omega.

By specifying the initial contact points, X and xé, the
JNTMDL program first determines the starting configuration of
the moving tibia relative to the fixed femur. This is done by
satisfying the geometric compatibility equations (14) and
contact conditions (36). After applying the prescribed
external force and moment, by the use of iteration process,
the JNTMDL program calculates the 22 delta variations at each
iteration. The iteration process at a fixed time station
continues until the delta quantities of all variables become
negligibly small. In the present work, a solution is accepted
and the iteration process is terminated when the delta
quantities become less than or equal 0.01% of the previous
values of the corresponding variables. The converged solution
of each variable is then used as the initial value for the
next time step and the process is repeated for consecutive
time steps. In.our application of the method, only 5-6 itera-
tions were necessary for convergence most of the time. But
there were also cases where more iterations were required for
convergence. This was especially true at instants at which
there was a sudden, sharp change in the response of the tibia.
Such behavior manifested itself usually when the tibia started
mqving in the opposite direction due to the fact that the
pulling force of a ligament(s) became the governing force of
the problem. Shorter time steps required fewer iterations,
as expected, even at the situation described. The time

increment used in the present work is At = 0.0001 second.
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At each converged solution, the following quantities are
determined by JNTMDL program:
(a) The orientation angle, o (flexion angle), of the
moving tibia relative to the fixed femur.

(b) The position (x ) of the center of mass of

0'Yo
tibia.

(c) The 1linear (%0,;0) and angular accelerations of
the center of mass of the moving tibia.

(d) The location of contact points, X and xé, on the
fixed femur and moving tibia, respectively.

(e) The magnitude of the contact force, N, exerted on
the moving tibia.

(f) The magnitude of ligament forces, F..

(g) The external energy supplied to and internal energy

generated by the moving tibia, for comparison
purposes.
The final section of this report will present results
from this program for several loading conditions applied
through the center of mass of the tibia.

NUMERICAL RESULTS

The numerical results to be presented are only for an
external force acting on the tibia without the presence of an
external moment. It is assumed that the force is always
perpendicular to the longitudinal axis of the tibia (y'-axis)
and passes through its center of mass. Let this force be
denoted by P(t). A parametric study of the effect of various
combinations of moment and force acting simultaneously on the
response of the knee joint may prove to be rewarding.
However, for the present work we will only consider an exter-
nal force and believe that this will be sufficient to
illustrate the capabilities of the model. The effect of the
shape of the forcing function on the knee joint response will
be studied by considering the following two functions for P(t):
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P(t) = A[H(t) - H(t-to)] (107)
which is a rectangular pulse of duration ty» and amplitude A;
and

2
-4.73(t/t0) ¢
P(t) = Ae sin <’£—) (108)
0

which is an exponentially decaying sinusoidal pulse of
duration ty, and amplitude A. A dynamic loading in the form
of equation (107) is extremely difficult to simulate
experimentally; however, the study of these two functions will
hopefully be helpful in understanding the effect of rise time
of the dynamic load on the joint response. Equation (108) is
a more realistic forcing function and it has been previously
used as a typical representation of the dynamic load in head
impact analysis (Engin and Akkas, [1978]).

The following are obtained as a function of time from
the computer program, JNTMDL; the coordinates XY, of the
center of mass of tibia; the flexion angle a; the coordinates
X, and xé of the contact point in (x,y) and (x',y') coordinate
systems respectively; the magnitude, N, of the contact force;
the elongations of the ligaments and the ligament forces, Fj;
and the internal and external energies of the system.

The initial values for x and o are obtained by

0’ yO .
specifying the location of the starting contact point. Here,
the following values are used for the coordinates of the

contact point at t = 0:

X, = -4.2 ¢cm , xé = 2.5 cm

which yields

X, = -20.16 cm , Yo = 17.49 cm , and o = 234.79°

This angle of rotation a, corresponds to a flexion angle of
54.79° for which the ligaments of the knee joint are in a
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relatively relaxed condition. It was reported as early as
1907 by Pringle that the position of maximum relaxation of the
knee joint ligaments was approximately halfway between full
flexion and full extension of the knee joint.

The effect of pulse duration on the response of the knee
joint motion is studied by taking t, = 0.05S, 0.10S, and 0.15S
for both rectangular and exponentially decaying sinusoidal
pulses. The effect of pulse amplitude, is also examined by
taking A = 20N, 60N, 100N, 140N and 180N for both types of
pulses.

Ligament forces as functions of flexion angle of the knee
joint for the two previously described forcing functions are
presented in Figures 35 through 40. Results indicate that
when the knee joint is extended, by a dynamic application of
a pulse on the tibia, lateral collateral, medial collateral
and anterior cruciate ligaments are elongated while the
posterior cruciate ligament is shortened. The load carried by
the anterior cruciate ligament is substantially higher than
those of the lateral collateral and medial collateral
ligaments.

The variation of the lengths of ligaments and the forces
carried by them during normal knee motion has been the subject
of various studies reported in the literature and in these
studies several different opinions and conclusions have been
expressed in regard to the biomechanical role and function of
various ligaments of the knee joint. The function of the
anterior cruciate as depicted in the dynamic knee-model
developed in this research program is to resist anterior dis-
placement of the tibia. This function is in general agreement
with the experimental and clinical studies of Kennedy and
Fowler [1971]; Girgis, Marshall and Monajem [1975]; Van Dijk,
Huiskes and Selvik {[1979]; and quasi-static model analyses of
Crowninshield, Pope and Johnson [1976]; and Wismans [1980].
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Figure 35.
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(d)

Ligament forces as functions of flexion angle,

for an externally applied rectangular pulse of 0.05 second
duration and amplitude of (a) 60 N, (b) 100 N, (c) 140 N

and (d) 180 N.
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Figure 36. Ligament forces as functions of flexion angle,
for an externally applied rectangular pulse of 0.10 second
duration and amplitude of (a) 60 N, (b) 100 N, (c) 140 N
and (d) 180 N,
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Figure 37.
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(d)

Ligament forces as functions of flexion angle,

for an externally applied rectangular pulse of 0.15 second

duration and amplitude of (a) 60 N, (b) 100 N, (c) 140 N

and (d) 180 N.

-112-

e O O A BB R el S 8 e ‘e e e

PRSI W VRS RPN




e e

YT vvv-n-—"?“ B

Y

180
w%
80| ! 160
'()()NT
oF s mo} {
- O~ ANTERIOR CRUCIATE -
Z sof 9= POSTERIOR CRUCIATE Z 120
o O~ LATERAL COLLATERAL - 0053
ul &~ MEDIAL COLLATERAL @
[8) 50 S
S % 100
: w O— ANTERIOR CRUCIATE
Z 40 = 8o 0— POSTERIOR CRUCIATE
< O— LATERAL COLLATERAL
§ g &— MEDIAL COLLATERAL
g3 Q2 60
20 40
10 20
OJ 3‘0 2‘0 é) L Y. ool e 1 I
. o -0 S0 40 30 20 10 0 -0
FLEXION ANGLE, a° FLEXION ANGLE, a°
(a) (b)
270 450
'
240 r won} 400 +
{
210} 350
0.0%s eoN

- ] s i

£ 100 O ANTERIOR CRUCIATE < %00

o v=POSTERIOR CRUCIATE ]

) L o~ LATERAL COLLATERAL » L

g 150 &- MEDIAL COLLATERAL § 50 003y

w w

- -

Z 120} Z 200} O- ANTERIOR CRUCIATE
9= POSTERIOR CRUCIATE
0= LATERAL COLLATERAL

90 @ 150 &= MEDIAL COLLATERAL
> ]
60 100
0| 50
ot > g —1 i L o¢
0 40 30 20 b o -10 SO 40 30 20 © 0 -0
FLEXION ANGLE, a° FLEXION ANGLE, a°
(c) (d)

Figure 38. Ligament forces as functions of flexion angle,
for an externally applied, exponentially decaying sinusoidal
pulse of 0.05 second duration and amplitude of (a) 60 N,

(b) 100 N, (c) 140 N and (d) 180 N.
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Figure 39, Ligament forces as functions of flexion angle,
for an externally applied, exponentially decaying sinusoidal
pulse of 0.10 second duration and amplitude of (a) 60 N,
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Figure 40. Ligament forces as functions of flexion angle,
fé% an externa%ly applied, exponentially decaying sinusoidal
pulse of 0.15 second duratlon and amplitude of (a) 60 N,

(b) 100 N, (c) 140 N and (d) 180 N.
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The role of the posterior cruciate as predicted by the
model is to resist posterior displacement of the tibia. This
function of the posterior cruciate ligament is in agreement
with the experimental studies of Kennedy and Grainger [1967];
Edwards, Lafferty and Lange [1970]; Girgis, Marshall and
Monajem [1975]; Crowninshield, Pope and Johnson [1976] and
Wismans [1980].

The present dynamic model also predicts that the medial
and lateral collateral ligaments offer very little resistance
in the flexion-extension motion of the knee joint. The major
role of these ligaments is to offer varus-valgus and partial
internal-external rotational stability. The model shows that
as the knee joint is extended under influence of a dynamic
load the lateral collateral and medial collateral ligaments
elongate at different magnitudes. This prediction is in
general agreement with the experimental results of Smillie
[1970]; Edwards, Lafferty and Lange [1970); and Wang, Walker
and Wolf [1973].

The model shows good agreement with the quasi-static
experimental investigations reported in the literature. It
is important to note that the dynamic model presented in this
report is an idealized representation of a very complex
anatomical structure; thus, static experimental studies may
not support some of the predictions of the model. Additional
disagreements may also be due to approximate locations of the
attachment sites of the ligaments in particular, and two-
dimensional nature of the model in general.

In Figures 41 and 42, a few representative plots of
forces in the anterior cruciate and lateral collateral liga-
ments are plotted as a function of time for two different
forcing functions with varying pulse durations. Although not
presented here, similar curves may be obtained for other pulse
durations and pulse magnitudes. Generally, the shorter the
pulse duration, for a fixed amplitude, the sooner the tibia
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Figure 41. Anterior cruciate ligament force as a function
of time for externally applied (a) rectangular and (b) ex-
ponentially decaying sinusoidal pulses, of 60 N amplitude
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reaches its turning point (i.e., direction of motion reverses)
and for a given pulse duration, the smaller the amplitude, the
sooner the turning point is reached. In Figures 44-47 the
values in parentheses indicate the flexion angles at the
corresponding times. Note that, for illustrative purposes up
to 6° of hyperextension was allowed. Generally, one expects
only 1 to 3° of hyperextension to be anatomically tolcrable
beyond which joint failure becomes unavoidable.

In Figures 43 and 44, contact forces as a function of
time are plotted. These forces are in response to the
different forcing functions with varying amplitudes and pulse
durations. Note that the magnitudes of the ligament and the
corresponding contact forces in response to a particular
forcing function are comparable.

Femoral and tibial contact point ‘locations as a function
of flexion angle are plotted in Figures 45 through 50. In
these figures the values in the parentheses indicate the total
elapsed time of the motion since its initiation. As the
flexion angle decreases, it can be seen that, the curves
representing femoral contact points have a steadily increasing
positive slope, while the curves of tibial contact points
change slope from positive to negative or vice-versa at
various flexion positions. This phenomenon may be explained
by the combined rolling and sliding motion of the tibia on
the femur; that is, positive and zero slopes of the curves
representing the tibial contact points can be interpreted as
corresponding to the sliding motion, while negative slopes
indicating the rolling motion of tibia on femur. Generally,
the curves of tibial contact points have predominately
negative slopes toward the end of the extension motion
indicating that in this part of the motion rolling is the
‘essential component. These results are in general agreement
with the work of Walker and Hajek [1972]; Kettelkamp and
Jacobs [1972]; and Wismans, et al. [1980].
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In Figures 51 and 52, total internal energy of the moving
tibia as a function of flexion angle are plotted. This total
internal energy is defined as the summation of potential
energies of the nonlinear elastic springs, simulating the
ligament forces, and the kinetic energy of the tibia. As it
can be seen from these curves, for a given pulse shape of
fixed duration, as the pulse magnitude increases, the knee
joint further extended and the entire motion has a shorter
response time period. External energy of the system is also
calculated based on the applied external forces. Continuous
plots of total internal and external energy of the system for
two different pulse shapes of specified magnitude and duration
are presented in Figures 53 and 54. These figures show that
the total internal and external energies of the system remain
the same except for the latter part of the motion, which is
due to the accumulation of numerical round-off errors.
Finally, for illustrative purposes, with the aid of Versatec

plotter, continuous plots of x (coordinates of the center

O’YO

of mass of the tibia); x_. and xé (femoral and tibial contact

C
points, respectively) and flexion angle, &, as a function of

time are plotted in figures 55 and 56.

SUMMARY AND CONCLUDING REMARKS

The research work discussed and presented in this report
can be summarized in the following paragraphs:

1. Detailed anatomical description and articulation of
the elbow, shoulder, hip, knee and ankle joints with suffi-
cient illustrative figures for each joint were presented and
major anatomical parts have been identified using the
generally applied medical terminology.

2, Mathematical descriptions of the articulating
surfaces of elbow, hip, knee and ankle joints have been
determined by means of a sonic digitizing technique. The
attachment sites of the major ligaments of each joint were
also determined ‘and tabulated.
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Figure 54. Continuous total internal and external energies
of the joint system as a function of time for an externally
applied, exponentially decaying sinusoidal pulse of 100 N
amplitude and of 0.15 second duration,
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Continuous plots of tibial center of mass co-
ordinates (X0,Y0), femoral (XC) and tibial (XPC) contact
points and the flexion angle (ALFA) as functions of time
for an externally applied rectangular pulse of 20 N am-
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Figure 56. Continuous plots of tibial center of mass co-
ordinates (X0,Y0), femoral (XC) and tibial (XPC) contact
points and the flexion angle (ALFA) as functions of time

for an externally applied, exponentially decaying sinusoidal
pulse of 100 N amplitude and of 0.15 second duration.
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3. A review of the available literature on the
biomechanical behavior of soft tissues in general and liga-
ments in particular was presented. An appropriate constitu-
tive equation for the elastic behavior of the ligaments was
established.

4. Two- and three-dimensional mathematical dynamic
models of a general two-body-segmented articulating joint
have been formulated in order to describe the relative motions
between the segments and the various forces produced at the
joint. The governing equations for these models are set of
highly nonlinear equations and numerical solutions were
discussed in some detail.

5. The two-dimensional model was applied to the knee
joint and the numerical results from this model were presented
to illustrate the effects of duration and shape of the
dynamically applied loads on the response of the joint.
Special attention has been given to the ligament and contact
forces, the location of contact points, anterior-posterior
displacements and the comparison between the internal and the
external energy of the system. The results were compared
with the available experimental data from the literature to
establish the validity of the model.

It is appropriate to make several remarks on the
numerical techniques tried in the course of obtaining the
solution for the governing equations of the two-dimensional
dynamic model (equations (45), (46) and (47), coupled with
constraint equations (14) and (36)). In the first method, the
second-order differential equations were transformed to a set
of nonlinear algebraic equations by substituting for the
differential elements, their equivalent backward difference
approximations. In this case, it was impossible to obtain a
converging solution due to the highly nonlinear nature of
these equations.

-132-




In the second method, the flexion angle, o, of the moving
tibia and contact point coordinates, X, and xé were obtained
from the simultaneous solution of the three nonlinear con-
straint equations. Knowing a, « was obtained via backward
difference method and then the normal force, N, was determined
from the third equation of motion. The other two second-
order nonlinear differential equations which were in terms of
X, and Y, were written as a set of four first order
differential equations by direct substitutions. Runge-Kutta
method was applied to these equations and solutions for Xy
Yo and their time derivatives were obtained. Using the new
values of X, and Yo» @ New value of o and contact point
coordinates were obtained and the entire procedure was repeated
for the next time step. Although mathematically all the
geometric constraints and governing equations of motion were
satisfied, the results obtained using this second method were
not in agr 'ment with the actual physical geometry and the
anatomy of the joint. This was concluded to be due to the
solution technique which was not solving all the equations
simultaneously, and during the solution process it was forcing
some of the variables to accept values which were mathemati-
cally correct but physically unacceptable. Finally, the
Newton-Raphson iteration process along with Newmark method of
differential approximation was chosen as the method of
solution which yielded accurate and stable solutions for the
model. The entire numerical procedure has been explained in
detail in previous sections.

The extensions of the research work presented in this
report can be in several areas. One can investigate the
influence of the variations of initial strain of the ligaments
and their attachment sites (i.e. insertions and origins) on
the response of the model. A parametric study addressing to
these points may reveal the sensitivity of the model to the
variations of the coordinates of the insertions and origins of

the ligaments.
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In a similar way the mathematical models of the other
major articulating joints can be developed. However, a
special attention should be given in modeling of the ligaments.
Some ligaments, particularly the thick band or large cord-like
ligaments, have complex behavior, with various portions
behaving differently under given conditions or configurations.
These are described in the literature as, in the case of the
broad ligaments of the hip joint, having anterior and
posterior fibers, or medial and lateral components. The
mathematical model should include additional elastic elements
to reflect the contributions of various fibers of the ligaments.
Unfortunately proper experimental data to determine the
constitutive behavior of these thick band or broad ligaments
do not exist.

Finally, the numerical procedure utilized in the solution
of the two-dimensional dynamic joint model equations should
be applied to the three-dimensional dynamic model formulation
presented in this report. Considering importance and rele-
vance of a three-dimensional dynamic joint model to the Air
Force related applications, a very serious effort should be
expended in the direction of obtaining numerical solutions
for this complex joint model.
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APPENDIX A

COMPUTER SUBROUTINE CHEPLS:
A LEAST SQUARES CURVE-FITTING ROUTINE

The calculation most commonly performed on experimen-
tal data is to fit the data with a polynomial of the form:
F(X) = A + BX + CX? + DX> + ... MXY, which is best in the
least squares sense. CHEPLS routinely performs this cal-
culation. Data input is simple enough so that no prior com-
puter experience is required for its use.

The routine determines by means of statistical tests
whether the set of data is linear or non-linear. If the
data are non-linear at the 95 percent confidence level, the
routine finds the lowest degree polynomial which adequately
represents the data. The calculation procedure is to com-
pare the standard deviation of the model of degree n, with
the standard deviation of the (n+1)th degree model. If
there is no significant difference at the 95 percent con-
fidence level, then it can be said that in 19 out of 20
such sets of data, the polynomial of degree n is the low-
est degree polynomial which adequately represents the data.

CHEPLS prints out the least squares coefficients for
all polynomials, from the first degree through the highest
degree calculated. For each polynomial, the standard de-
viation and the confidence bands about each coefficient at
the 95 percent level are printed. Values of Y are calcu-
lated from the model for every value of X, and are compared
with the observed (ie, experimental or input) values of Y.
The least squares matrix is printed for reference in the
event additional statistical calculations are needed. The
Y values are coded by subtracting a constant to reduce
round-off error. As many as 1000 data points may be sub-
mitted in each data set. CHEPLS will produce polynomials
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(/ up to degree ten. Data sets may be stacked, one behind the
. other for additional data sets.

. RESTRICTIONS

(a) The number of data points must be less than or equal to
1000.

(b) The maximum degree polynomial is 10. Even in double-
precision, round-off error may accumulate sufficiently

to invalidate results for even as low as a 5th

degree
polynomial.

(c) All numeric data must be right-justified in the field.

INPUT DATA

Each data set consists of a data header, a label and
one or more data cards and a termination card. For stacked
data sets, only the final data set may contain a termination
card. All fixed point variables or integers are entered
without a decimal. Floating point variables require a deci-
mal in the field.
(a) Data Header

Columns 4-5 Enter the number of data points
in this set.
Columns 9-10 Blank for normal use. For ob-

taining all polynomials up to the
nth degree (maximum of 10), enter
n. All least squares polynomials
will then be calculated for degrees
1 through n.
(b) Label

Columns 1-80 Enter any alphanumeric identifica-

tion to be included on the print-

out for descriptive purposes.
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(c) Data Cards
Columns 1-80 Enter two data pairs per card, as
X, Y, X, Y. Format may be either
4E18.8 or 4F18.8. Note that for
an odd number of data sets, columns
37-80 of the final data card will
be blaak.
(d) Termination Card
Columns 23-25 Enter END to signify the end of da-
ta entry: no further data sets.

The job control language for running this subroutine is as
follows:

// TIME=(0»25) sREGION=192K
/3JOBPARM LINES=1000,CARDS=100,DISK10=1300
/7%
/7% EXECUTE THE CHEM ENG LIBRARY PROGRAM CHEPLS
//%
*//STEPB EXEC PGM=IEWL »PARM='XREFLIST+MAP’»TINE=(0,30)
//% STEPB IS LINK EDIT STEP (LOAD MODULE ASSEMBLED)
//SYSLIB DD DSNAME=SYS1.FORTLIBsDISP=SHR
7/ DD DSNAME=FEA&80.CHEMENGR»DISP=SHR
/7/ DD DSNAME=SYS2.FORTSSPsDISP=SHR
//0LDLIB DD DSNAME=FEAS80.CHEMENGRs DISP=SHR
//SYSLMOD DD DSNAME=33GO(MAIN) »UNIT=SYSDAsSPACE=(CYLy(1s101))» L4
// DISP=(NEW»PASS) » DCB=(RECFN=U»BLKSIZE=3072)
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA+SPACE=(CYL»(2+1))
//8YSLIN DD %
INCLUDE OULDLIB(CHEPLS)
/8
//STEPC EXEC PGH=8.STEPB.SYSLMODsREGION=126K: TINE=(1+00)
//% STEPC IS EXECUTION STEP
//3TSUDUNP DD SYSOUT=A
/7/FTOSF00L Db DDNAME=SYSIN
//¢T06F001 DD SYSOUT=A
//FT07F001 DD SYSOUT=D
//SYSIN DD 8
/7/8 REMOVE TH1S CARD AND REPLACE WITH DATA DECK (BLANK CARD IF NO DATE)
/9
7/

-137-




APPENDIX B

APPLICATION OF NEWTON-RAPHSON METHOD
IN THE DERIVATION OF THE LINEARIZED GOVERNING
DYNAMIC EQUATIONS OF MOTION FOR THE KNEE JOINT

EQUATIONS OF MOTION
a) From equation (45):

4
J_Zl ij + vy Nnj o+ (F), = Mxg
in (B1l) 1let
N = Nk + GN
_ .k
Mx T Pix * Snix
k
X =Xx_.+8
o o X,
Then
)
j=1 FJX *y(NT o+ sy)(ngy nix) ¥ (Fedy = Mxg
g k_k k K
.2 ij * v [N Mx * N Snix * nlde] (Fe)x B Mxo
J=
Let
it _ ) 4 k t-at; 4 ‘t-at | ct-at
o {Z:Y[(xo MUV e S e X }
Then
(¥ ey v (W8 - (s - - }F - (F)
1x’°N Ny o até %o j=1 JX e’x
t-At 4 't-at t-At
-yN "lx + M'{“‘Z[x - Xg ] - it %o X }

(B1)

(B2)
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b) From equation (46):
4 .
F. + yN + (F =M
jzl jy F N mg o+ (Rl Yo

in (B3) 1let:

N = Nk + Sy
nly B n1y * dnly
.k
Yo = Yo * Oy
Then
§ F + Nk + 8 ko $ )1 + (F =
P OE. e gk 4k + X 5] + (E
.Zl jy ¥ vINTRgy Saly * M1y SNl * (Fely
J=
Let
t _§ 4 k Ly toaty 4 . t-At
Yo _{F [(Yo + 5),0) Yo ] it Yo
Then
(¥ ey e (s, - (e - E -
y YAttt Yoo jE1 IY
k k 4 k t-at, _ 4 = t-at
N My + M {Atz [yo -7 ] 3t Yo
c¢) From equation (47):
4 4
j=]_(xj - XO)ij -le(yJ - yO)FjX + YN[(XC - xO
“(ye - YgIng,d * Mg = Lo
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in (BS) let:

»
[}
b

=
[

i

=]

Then

4 4
k _k ) ) k _ _k
le[(XJ KO) + (GXj éxo)]ij Zl[(yJ yo) + (GYJ-

k k k k
+ y(N© + GN){[(XC - xo) + (ch - Gxo)][nly + 61

_[(YE - yﬁ) + (Gyc - Gyo)][n]{x + Gnlx]} + Me =1asa

or

4
-ZF
j=1
k
nly

4
k k
i Yo Fiy * Y F. &

JXx j=1 Jy xj

+ y(NK eN){[(xﬁ - xKy

j=1
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Dow o vy
D
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Pl

_ .k k _k kK _ _k, k
* (xg xo)énly Ny Sx Ny 6x0] - [l yo)nlx
k k .k -
+ (yc yo)snlx n . Gyc n. Gyo] } + Me =1 a
or
4 4 4
k k k k
X. - F. - . - F. + F. §
jzl( J Xo) JY jZI(yJ Yo) Jx jzl Yy X3
4
4 4
-} F. s k. k ky _k
. . $ - .. 6 -
j=1 3% Y; +j§ ix%y jleJY x, * N (Xe - x5) myy
k, k k k k k k
+ YN (xC x0)6n1y+ (YN nly)axc— (YN nly)éxo
ook Kk kK k. k _ _k k_k
YN (yC - yo)nlx - YN (yC - yo)anlx - yN nlx Gyc
k_k k .k, k ok ke Kk
+ yN ny. Gyo *(x. - xo)nly Sy (yC = Yoy SN
+ Me = I a
Let:
k - -t o ot -
at={ 4 [k + s ) - ot-At f% Gt-at ot At]}
At
Then
4 4 4
k_k
F. § - F. + yN™n 8 - F. 6 .
jZI iy°x; [jZI jy * YN Ryl X, jZI ix"yj
4
k_k k _ . kyk _ .k __k_k
¥ [jzlpjx * vN nlxlsyo * [(xc xo)nly (yc yo)nlx]GN
Cronk ok K k. k _ _k k_k
(vN"(y. }'o)lénlx ML CONRIE PP LICIR B A2 nlylﬁxc
41 4 4
k_k z k k k k
- N 8 - § = - X. - X )F. + . - F.
(v nlx) Ye Z;z' o jzl( j o) jy jZI(yJ YO) jx
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CONSTRAINT EQUATIONS
From equation (

k, k
1y

8)

(S

k k, k
) (yc ) yo)nlx] 1, {

Xo = X+ X Cosa - Ye Sina
in (B7) let
k
x_ = + 6
C C X,
k
X = + 6
o o X,
x, = x_ + 6
c C X
yl = ) + 6 '
C C Ye
o = a + 9§
¢
Then
k k k
(x. +8_ ) =(x_+68_ )+ (x
C X o X, c
k
]
(re
assuming
Cos(ak + sa) = Cos<xk - GaSinak
Sin(ak + 8 ) = Sinuk -8 Cosak
a a
then
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k 'k .
(xg + 6, ) = (xg * 8, ) + (xU"+ 6,,)(Cosa - 5 sina¥)
o 0 c
k .
-(yé + éy(,:)(Slnak + GaCOSak)
or
(xc + Gx ) = (xg + Gx_) + XékCOSak - xékSinakca + COSakﬁx'
C 0 c
ke k k k .k
-y -~ -
Ve Sina Ye Cosa 6a Sina GYé
or
6xc ) 6xo + (x! Sinak + yék Cosak)ca - COSakGXé
.k -k _k 'k k  _/k ..k
+ Sina Gyé = X, Xo * X Cosa Ye Sina (B8)
Similarly from equations (8):
Yo = Yo * X, Sina + Y. Cosa (B9)
the variation equation is:
k k ke:o k .k
Gyc - ayo - (xé Cosa = - yé Sina )Ga - Sina éx.
) k - Jk _ _k koo Kk 3 k
Cosa Gyé =Y, Yo ¥ XL Sina + Ye Cosa (B10)
From equation (36)
. df1 df2 df1 df2
Sina (1 + Ix —a—x—r) - Cosa <aY— - aTr>= 0 (Bll)
From eqs. (85), (86) and (87), equation (Bll) can be written as
. 2 o Sy (At '
Sina[l + (A2 + 2A3xc + 3A4xC + 4A5xc )(A2 + A3xé)]
2 3 _
- COSa[(A2 + 2A3xc+3A4xC + 4A5xc )-(Aé + ZAé xé)] =0 (B12)
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in (B12) 1let:

B AR

2 3
xC + 4A5xc

o~
[}

A, + ZA,x_ + 3A
c

2 3 4

Q = A} + 2A%x!

therefore, the normal constraint equation (B12) becomes:

? Sina[l + PQ] - Cosa[P-Q] = 0 (B13)

in (B13) let:

|

:o Q"Qk*GQ

: a = uk + &
a

Then
Sin(aX + 6 )[1 + (P¥ + 6,)(Q¥ * §.)]-Cos(aX + 6 JPK +
a P Q b
K
GP = Q - GQ] = 0
or
(sina® + 5 Cosa¥)[1 + PXQK « PkGQ + Q%] - (Cosa® -
. ky ok K )
5, Sina ) [PT - Q™ + Sp - GQ] =0
or
[Sina® +P Xg¥sindX + p¥ SinakGQ + QX sina® s, + Cosa® &_
+ Rka COSaksa] + [-COSakPk + K Sinakca + Qk COSak
K o: k K K, 1 .
- Q" Sina §, - Cosa™6p + Cosa GQ] = 0
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or
PX sind¥ + Cosak]GQ + [Q¥ sinaX - COSuk]GP
+ [COSak + Pka COSGk + Pk Sinak - Qk Sinak]éa
+ [Sina® + PXQX sinak - PK Cosak + QK CosaX] = 0
finally:
[pk Sinak + COSak]GQ + [Qk Sinak - COSak]GP
+ [Cosa® (1 - pXQ¥) + Sina¥ ex - Qk)]Ga
= - [sina® (1 + PXQX) - CosakX (K - QKy] (B14)
For
P=A, + 2A,x_ + 3A,x % + 4A x 3 (B15)
2 3%c 4% 5%
in (B15) let
K
P=pP+s,
K
X, =XxX_. + 6
C C XC
Then
k . K K, . 12 K 3
P+ 6y = Ay + 2A5(xK + 8 ) * BAgxg 0 )P e aagxE <6, )
or
5, - (2A; + 6A,xX + 12A kz)s = A, + 2aK & 3a K
p - (245 4*c s¥c J0x_ T A2 3X¢ PR
3
+ 4axt” - pk (B16)

Similarly for:

Q = A} + 2Aix!
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Let
k
= + §
Q=Q + 35,
k

x|=x|+6'

c c X
Then we have

6q = 2A3 axé = AL + 2A} xék - Q¥ (B17)

COMPONENTS OF UNIT NORMALS
Equation (27) may be written as:

~

he X [ - Pie )

1 [1+P2]1/2
or:
ny, = P (B18)
X >
1 +p~

= 1 (B19)

k
n = n + 8
1x 1x nlx
- k
P p + 6P
then:
k
Y PE+ ) Y (PK + 5
fx snlx i K 2 i 2
)
ﬁ+(P+P] ‘[1+pk+2Pkap
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or
-y (PT + 8p)
n,_ +38 =
1x nlx . kz n
1 + P ZP (SP
1 + —'—‘—]:2'
1 + P
using the approximation
1 X
=1 - X
1 + x 2
then
-y (PX + 5p) P Ksp
Mix * 6nlx - ) 2
J K2 1 + pK
1 + p P
3 2 2
‘Y(Pk + Pk - Pk 6p + §p +P ‘SP)
= 2
k
oy Sp YPk
) K2 3/2 k4. 1/2
(1 +pP" ) (1L +p )
finally
k
8 + Y §_ = “YP - n
n 2 2 1x
1x | (g 4+ pk%y3/2 (1 + pKy1/2

similarly in equation (B19) let

k

n = n + 6
ly ly nly
p = Pk + &p
then
k - Y
"y ' Gnly i K 2
v& + (P + ﬁ,)

(B20)
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gt auh ot st AN on

ey

or
+ =
1y
1)’
1 + Pk
1+Pk
= Y 1 - E_EEL_Y
k
1+ Pk 1 +P
and finally
k
8 yP s _ Y . .k
M1y * kZ.3/2 "1y
(1 +P7 ) 1+ Pk
Equation (29) may be written as:
nj =—B; [-Qi' + j']
1+Q
or
= __-BQ
n =
2x' 172
S P
B
n =
2y! 1/2
o f1
in equation (B22) 1let
k
n =n + 6
2x' 2x' Nyt
k
= + &
Q=2Q Q
then
k
nk . ='B(Q*6Q)
2x!

2
Vi+ @ + 6
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or k

1
k k
-8 (Q° + 5p) Qs
_ Q [, . 1%

2
Lo 3 2
-8(Q° + Q7 - Q¥ 8y + 5o + ¥ s
kz)s/z

(1 +Q

2
1O RN ol R I
1+ k)32 @4 k)32

and finally

k
B - -BQ
8 + 6§, =
Ny Z Q 2
2x [(1 . Qk )3/2] (1 + Qk )1/2

Similarly, in equation (B23) let

k

n = n + 8

2y! 2y' nzy.

k

= + §

Q= Q"+ &,
then

nk o+ - B

2y" " hgyr 1+ (QF ¢ sQ)ZJU2

8
2 X
‘[1+QkJ1+2Q6g

1+ Qk
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or k
K R _Q
2yt * o, T /= |! ~

y' 2 1 + o
: 1+ QX Q

B+ Q¥ - eraQ

Z
1+ Q)32
and finally
k
R L — 5. = £ - ngy, (B25)
1
2y 1+ qk)3/2 (1 + qk)1/2

LIGAMENT ATTACHEMENT COORDINATES
From equation (8), the ligaments insertion coordinates are:

X. = X _ + xj Cosa - yj Sina (B26)
= ' s '
yj Yo * xj Sina + yj Cosa (B27)

in equation (B26) let

_ .k
Xj - Xj + ij
k
X =X_+ 8§
o] o X,
a = ak + §
. a
then
k - k k ) . k
(xj + sxj) = (xo + Gxo) + xj Cos(a + GQ) yj Sin(a™ + Gu)

k k .k
(xo + Gxo) + xj(COSa - 6a51nu )

+ yJ!(Sinak + GGCOSak)
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or
) -6 + (x! Sinak + y! COSak)G
X. X j ] a
j o
= - x? + xg + xj COSak - yj Sinak (3=1,..,4)

similarly, in equation (B27) let:

k
. = Y. )
yJ yJ ¥ )'J'
k
Yo =Y, + 8
o ) Yo
a = ak + 6
a

which, after simplification, results:

k -k
Gyj - Gyo - (xj Cosa - yj Sina )Ga
R 4 k v ocin K ) k < _
= yj * Yo * xj Sina™ + yj Cosa (3=1,..,4)

ARTICULATING CONSTRAINT SURFACES
From equations (85) and (86)

= 2 3 4
Yo = Ap * ApXe + AgX ¥ Agx T Agxe

in equation (B30) 1let:

then
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y. + & = A, + A (xk + 8 ) + A (x. + & )2 + A, (x. + 8§ )3 ;
c y 1 2 "¢ X 3*7c 4 *"c b
c c c :
k 4
* AS(XC * Gx )
c
« or
k . K k.2 K k3
fz Ye * Gyc = A1 + AzxC + AZGXC + As(xc) + 2A3xc6xc + A4(xc)
! k,2 k.4 k,3
[ + 3A4(xc) 6, * As(xc) + 4A5(xc) Sy
.": C C
o
S or
ﬁ
g 3 k k2 ky3 -
g Gyc [A2 + 2A3xC + 3A4(xc) + 4A5(xc) ]ch Al
- k K+ 2 3 K k
F + AxE ¢ AL (xH% A x5S e A B - yE (B31)
3 Similarly, from equations (85) and (87)
i 2
! y(': = Ai + Aéxé + A:',)xé (B32)
in equation (B32) let:
2
. k
o X, = XU+ 8,
L-: k
Ye = Yo * 8ye
g which, after simplification, results:
; §y! - (A} + ZA'x'k)c = A! + A'x'k+ A'x'kz - yrk (B33)
Ye 2 3%c xé 1 2%¢ 3%¢ Ve
.
#.
4
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APPENDIX C

COMPUTER PROGRAM, JNTMDL

‘ The following pages contain a listing of the computer
n program, JNTMDL, which follows the numerical procedures dis-

raacs A h o

T

—ana

cussed in this report. JNTMDL was developed for the two-dimensional

dynamic model of the knee joint and produced the results

presented in its discussion.

[or B ov B o |

OO0 0O00O00 O

CREE PO NNPO00 P00 RRRRORR00PRCRRERIRNRRNIRIRRRINPIRRAIRNRRISOIRRIOIRIROIOOITCRDYDOYS

PROGRAM JNTMDL

PURPOSE:
Dunamic analysis of a two-bodu-sedmented model of the knee
Jointy in two dimensionss in resronse to various dunamic
loading functions.

USAGE ¢
forcing function aarlitude and pulse duration sust be specified.
Time incremaents delta T» mau also be varied.
Initial contact roints between the tibis and femur must
be srecified.

DESCRIPTION!
See DYNAMIC SIMULATION OF THE ARTICULATING JOINTS

REMARKS ¢
None.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
SING - solve a set of simultaneous linear eauations
Various standard FORTRAN library functions.

METHOD:

Newton-Rarhson iteration using Newsark differential
arrroxinstions,
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AUTHOR ¢
Mannsour H. Moeinzadeh

DATE?
October 1980

CO P OB 0L 0000200008ttt 000ttt ottt ettt ettt ittt tttssrersr

OO0 0

INFLICIT REALXB(A-2)

INTEGER IsJsKsNUMy»ITMAX»ITsKS
DIMENSION AK(22722)+D(22)sDELTA(22)
KS=0

TIME INCREMENT (SEC)

Law I o B or |

- 1=0,0D0
i DELT=0,0001D0

FULSE DURATION (SEC) AND AMPLITUDE (N)

Lar I o B o]

X TPULSE=0,050D0
AMP=20.0B0
FI=3,1413927D0
FEXTY=0,0D0
FEXTX=0.0D0
SAVE=0.0D0
ALFSAV=300.0D0

| I ]

MAXIMUM SPECIFIED ITERATION NUMBER

I1THAX=100

COORDINATES OF LIGAMENT INSERTIONS (M)

o000

5 XP1=0,8D~2

g YP1=16,3D-2

- XP2=2,5D-2

5 YP2=17,8D-2

a XP3=2,50D-2
b YP3=20,8D-2
' XP4=-0,5D-2

YP4=21,30D-2

L]
o0

COORDINATES OF LIGAMENT ORIGINS (M)
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KG=-2.3D-2
Y5=1.4D-2
X6=-2,30-2
Y4=1,90D-2
X7=-3.,20D-2
17-2,4L-2
»8--2,30-2
Y8=1.9D~2

LIGAMENT SPRING CONSTANTS (N/Mk%2)

o

Ki=15.0D6
K2=15.0D6
13=35.0l6
74=30,006

GEGMENT MASS(KG)» MOMENTS OF INERTIA (N-M-SECX%2)

Lyp BLAREE o]

SEGMAS=3.1479D0
MOMINR=4.93719D-2

SURFACE EQUATIONS COEFFICIENTS

[qr I 4 B o

A1=4,0140180D-2
B1=-0,247562106D0
C1=-0.048691856D2
Di=-0.02704456D4
E1=~0,0085899421D6
A2=21,337303D-2
B2=-0,045605137D0
€2=0.0109734459D2

INITIAL CONTACT POINT

OO0

XC=~5.0420D0

XpPC=0.0250D0
YC=A1+B1XXCHCIBXCAR24DIXXCRRI+ELXNCEEA
YPC=A2+B28XPC+C28XPCE%2
F=B1428C1AXC+38D1SXCRR2+4%E1XXCREI
Q=B2+2%C2xXPC
FPRIM=2%C1+6XD1XXC+12%E1SXCE%2
QPRIM=2XC2

GAMA=PPRIM/DABS (PPRIN)

BETA=QPRIM/DABS (GPRIM)
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o0

oGO

N1X=-GAHAXP/DSORT (14FP%P)
N1Y=0ANA/DSORT (14F¥P)
N2XF=~BETAXQ/DSART (1+0%Q)
N2YF=BETA/DSGRT(1+Q%Q)

INITIAL FLEXION ANGLE

ALFA=DATANC(FP-0)/(14PXQ))
ALFA=ALFAtFI
SN=DSIN(ALFA)
CN=DCCS{ALFA)

TIBIAL CENTER OF MASS

K0=XC-XPCXCN+YPCXSN
Yi=1C-XPCAXSN-YPCXCN
FN=G. OO

COEFTICIENT OF FRICTION

HEU=0.0D0

INITIAL LINEAR AND ANGULAR VELOCITY AND ACCELERATION OF
TIBIAL CENTER OF MASS

X0M1=X0
X0DM1=0,0D0
X0DDM1=0.0D0
YOM1=Y0
YOIiN1=0,0D0
YODDM1=0.0D0

ALFMI=ALFA
ALFDM1=0.,0DO
ALFDD1=0,0D0

X1=X0+XP1XCN-YP1¥SN
X2=X0+XP24CN-YP2&SN
X3=X0+XP3SCN-YP3&SN
£4=X0+XPAXCN-YP4RSN

Y1=YO+XP1XSN+YF1XCN
Y2=Y0+XF2RSN+YP2XCN
Y3=YO+XP3XSN+YP3XCN

Y4=YO+XPAXSN+YPAXCN
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101 CONTINUE
PPRIM=2XC1+6%D1EXC+12%E18XCEE2
OFRIM=2%C2
GaMA=FFRIM/DABS (PPRIM)
EETA=QPRIM/DABS (QPRIN)

INITIAL LENGTHS OF LIGAMENTS

G e

L1=DSART ((X5-X1)%¥24(Y5-Y1)%%2)
L2=DSART( (X6-X2)kk2+(Y6-Y2)%82)
L3=DSART ((X7-X3)¥42+(Y7-Y3)%%2)
L4=DSORT ((X8-X4)X%24(YB-Y4)%%2)

IF(T.EQ.0.0)L1I=L1
IF(T.EQ.0,0)L21=L2
IF{T.EQ.0.0)L3I=L3
IF(T.EQ.0.0)LA4I=L4

LIGAMENT FORCES

[ar IR ol o

IF(L1.GT.L1I} ABSF1=K1¥(L1-L1I)%%2
IF(L2.,6T.L2I) ABSF2=K2%(L2-L2I)%%2
IF(L3.6T.L3I) ABSF3=K3x(L3-L31)%%2
IF(L4,GT.LAI) ABSFA=KAX(LA-LAI)%X2

IF(L1,LE.L11) ABSF1=-ABSF1
IF(L2.LE.L2]) ABSF2=-ABSF2
IF(L3.LE.L3I) ABSF3=-ABSFJ3
IF(LA.LE.LAI) ABSFA=-ABSF4

F1X=ABSF1%(XS-X1)/L1
F2X=AKSF2k{X6-X2)/L2
F3X=ABSF3%(X7-X3)/L3
FAX=ABSFAX(X8-X4)/L4
F1Y-ARSF18(YS5-Y1)/L1
F2Y=ABSF2X(Y6-Y2) /L2
F3Y-ABSF3X(Y7-Y3) /L3
F4Y=ABSFA%X(YB-Y4)/LA

ALFDEG=ALFA%180.0/PI

IF(T..7.0.05)60 TO 8

IF(ALFSAV LT, ALFDEG) GOTO 999
8 CONTINUE
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SO0

ALFSAV=ALFDEG

MOMENT ARM

HOMARN=0,0DO

TOTAL EXTERNAL ENERGY (N-M)

EXTENR=DBABS (X0-TEMPXO0)XFEXTX+DABS (YO-TEMPYO)XFEXTY+
$ (FEXTXSMOMARM) $DABS ( TEMALF-ALFA)

TOTEXT=EXTENR+SAVE

SAVE=TOTEXT
TEMFX0=X0
TEMPYO=YO
TEMALF=ALFA

TOTAL INTERNAL ENERGY

POTENI=(K1x(Li-L11)%%3)/3
POTEN2=(K2%(L2-L21)%%3)/3
FOTEN3=(K3x(L3-L31)%%3)/3
FOTEN4A=(K43(LA-LAT)*%3)/3

IF(L1.LE.L1I)POTEN1=0.0D0
IF(L2,LE.L2I)POTEN2=0.,000

IFCL3.LE.L3T)FOTEN3=0,0D0
IF(L4.LE.LAI)FOTEN4=0.0DO

POTENR=POTEN1+POTEN2+POTEN3+POTENA
KINENR=(MOMINRXALFDM1%%2)/2+SEGHASK (XODM18%2+Y0DM1$%2) /2

TOTINT=POTENR+KINENR

YC=A1+B1EXC+C1RXCER2+D1XXCRRI+E1XXCERRA
YPC=A2+B2XXPC+C2EXPCA%2

IF(7.6T7.0.0) GO TO 102
WRITE(6515)

15 FORMAT(’ “93Xs ‘T’ »4Xs’ALFA’ #SXs "ALFAL9T289 X0’ 1 T38» /YO’ #9Xs ' X3’
$s9Xs /Y3 9 T6Bs 'XC/ 2 T78s ‘XPC/»T88» ‘FN’»T95»'MC.LIG'»T103,’LC.LIG'
$T1119'AC.LIG'»T1299 ‘PC.LIG' 1 T128+ ' IER.#’ +2X» ‘EXT-ENR’ »2X» ' INT-ENR
$ 96Xy 'YC 27Xs'YPC2//)

102 WRITE(6916)T+ALFDEGyALFDD1+X0sY0s XODDML » YODDM1 »XCo XPC»FNyABSF1»
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16 FORMAT( “sF7.59T105F6429T16:F8,19T265F7,49T369F7.4,TA59FB,29TS6:
$FB8.29T669F8.51T769F7.5,T85,F8.2+T945F7.2sT102,F7.2yT110+F7.2,T118

ay

39 FORMAT(’ /9T2s'NUMBER OF ITERATIONS EXCEEDED THE SPECIFIED

w

$ABSF2,ARSF3,ABSFA, IT TOTEXT» TOTINT,YCs YPC

$1F7.25T12891493XsF74492X9F744»3X9F8.593XsF8.3)
TZERO=TFULSE

AFFLIED DYNAMIC FUNCTION

FULSE=AMFXEXF (-4,73%(T/TZERQ)XX2)XDSIN(PIXT/TZERD)

FEXTX=FULSEXDCOS (ALFA-FI)
FEXTY=PULSEXDSIN(ALFA-PI)

IF(T.GE.DELT. AND.T.LE.TPULSE)FEXTX=FEXTX
IF(T.,GE.DELT+AND. T.LE. TPULSE)FEXTY=FEXTY
iF{T.GT.TRULSE)FEXTX=0.0D0
IF(T.GT.TPULSEYFEXTY:=0.0D0

T=T+DELT
17=0.0

NEWTON-RAFHSON ITERATION PROCESS
CONTINUE

IT=IT+!
IFCITWGT W ITHAXIWRITE (60 39)

$ ITERATION NUMBER ! EXECUTION ABORTED.:vosees’)
IFC(IT.GT.ITHAX)GO TO 999

SN=DSIN{ALFA)
CN=DCOS(ALFA)

INITIALIZATION OF CAK] AND CD] MATRICES
D0 S5 I1=1,22

D(I)=0.0

00 5 J=1,22

AR(I»J)=0.0

GONTINUE

COMFONENTS OF C[D] MATRIX

[(1)=-X1+XO0+XPL1RCN-YP1%SN
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[¢2)=-X2+X0+XP2XCN-YF2%XSN
[D(3)=-XI+X0+XPIACH-YPIKSN
D{4)y=-X4+X0+XPAXCN-YP4XSN

[5)==YL1+YO+XF LXSN+YFLXCN
D(E)=-Y2+YO+XF2ASNtYF2ECN
0(7)=-13+Y 0+ XPIXSNEYPIKCN
D{B8)=-74+Y0+XP4KSN+YF4AXCN

(5= SEGHASK((3.0/DELTXX2)X(X0-XOM1)-(4.,0/DELT)%&X9DN1-XODDML)

$-(FIXHFEXHFIXEFAX) +FNX (MEURNLY-N1X) XGAMA-FEXTX

D(10)=5E5MASK((4,0/DELTXX2, X (YO-YOM1)~(4.0/DELT)%YODM1-YODDM1)

$-iF1YHF2VHFIY4FAY) ~FNK(MEUXNIX4N1Y ) XGAMA-FEXTY

D11 ==({X1-XO0)XF1Y+(X2-X0)¥F2Y+(XI-X0) kF3Y+(X4-X0)XF4Y-(Y1-Y0) X
$FIX-(Y2-Y0 ) RF 22X~ (Y3-YO)I KF IX~ (Y4-YO) KF4X ) -FNXGAMAX ( (XC-X0) R (N1Y+

$HEUANIX) - (YC-YO) X (NIX-MEUNN1Y)) +MOMINRS( (4,0/DELTXX2) X (ALFA-ALFN1

$)-{4,0/DELT)XALFDM1-ALFDD1) +FEXTXXMOMARM
0(12)=X0-XC+XFCKCN-YPCXSN
D(13y=YC-YC+XFCRSNHYPCHCN
DC15)=AL+B1¥XCHCIRXCRRZ2HD1XXCRRIHELIXXCAXA-YC
0(16)=A2+B2¥XFCHCIRXFCAX2-YFC
D(173=RI+2XCLRXC+IRNIAXCRR2+4XE1IXCKXI-F
D{iB)==(F/DSART(14+PX%2) ) XGAMA-N1X
D{19)=(1,0/DECRT (1+FK%2) ) XGAMA-NLY
[(20)=R2+24C2%XFC-Q
DE21)={~-Q/LSHRT{1+0%%2) ) XRETA-N2XP
z2)=01,0/050RT(1+04¥2) )XBETA-N2YP

CIMPONENTS GF CAKI MATRIX
Al l)=-10000

AKU13)=XF I ASNEYP1XCN
AN.19731.000

AR{2,10=~1,000
An{2s3)=XF2ASNE{YF2ACN
ARCZ,8)=1,CIO
Ak {3r1)=-1,000
Al (T 3 =XFIRSN+YPIXCN
AK{Z» 521,000

ANC(4y Lo=~1,0D0
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Ah:Q:3)=XP4*SN+YP4‘CN
nke4: 107=1.0D0

Fl (T 2)=-1,0D0
A (b92)=-1,0D0
AR(7¢2)=-1,0D0
AR{Es2)=-1.0D0

AR {9 3)=~ (XF1XCN-YP1ASN)
Al {61 3)==(XP2XCN-YP2XSN)
ER (79 3)=- (XPIXCN-YPIASN)
AK(8,3) == (XFAXCN-YPAXSN)

AR{5s11)=1.0D0
AR(5912)=1.0D0
AK(72,13)=1.0D0
AK(8514)=1.0D0

AKL(? »24)==(MEUSN1Y-N1X) XGAMA
AK{(Y 116)=-MEUXFNEGAMA

AK(9 115)=FNXGANA

AK(9 »1)=-4,0%SEGMAS/DELT%%2

AR {1054)=(MEUKNIX$N1Y) XGAMA
AK(10116)=FNXGANA

AN (105 15)=MEUXFNXGANA
AK(1052)=-4,0%SEGMAS/DELT%%2

AK(11,7)=F1Y

AK(11,8)=F2Y

AK(11,9)=F3Y

AK(11,10)=F4Y

AK(11+1)=-C(FIY+F2YHFIYHFAY) +FNEK(N1YHMEUSNIX) XGANA)
AR(11511)=~F1X

AK(11,12)=-F2X

AR(11913)=-F3X

AR(11y14)=-F4X

AR (1192) s((FLIX4F2XHFIXHFAX) +FNE(NLX-MEUSNLY) XGANMA)
AK(1154)=(XC-X0)X(N1Y+MEUSN1X)-(YC-YO) X (N1X~MEUSNLY)
AK(11715)=(MEUSFNS (XC~X0)~FNEK(YC-YO0) ) XGAMA
AK(11518)=(FNX(XC-X0) +MEURFNR(YC-Y0) ) XGAMA
AK(1195)=FNE(N1Y+NEUXN1X ) XGAMA
AK(11519)=-FN3(N1X-NEUXN1Y)XGAMA
AK(1193)=-4,0%MOMINR/DELT¥%2
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AK(12,5)=1,0D0
AK(12,1)=-1.0D0
AK(12,3)=XFCESN+YPCRCN

AK(12,6)=~CN
AK(12,20)=SN

AK(13,2)=~1,0D0
AK(13,3)=YPCESN-XPCECN
AK(13,19)=1.0D0

AK(13,6)=-SN
AK(13120)=~CN

AK(14922)=PESN4CN
AK(14,21)=0%¥SN-CN
AK(14,3)=CNE(14P8Q) +SNE(P-Q)

AR{15,19)=1.0D0
AK(15,3)=-P

AK(16,20)=1.0D0
AK(16,6)=-Q

AK{17,21)=1.0D0
AK1755)=-(28C1+68D18XC+123E18XCEE2)

AK(18,15)=1,0D0
AK(18521)=GAMA/ (14PEP)$X1.5

AK(19+16)=1.0D0
AK(19,21)=GAMASP/(1+PAP) 81,5

AK(20522)=1.0D0
AK(20+6)=-2%C2

AK(21,17)=1,0D0
AK(21,22)=BETA/(14080)2%1.5

AK(22,18)=1.0D0
AK(22,22)=BETASG/(1+080)381 .5

CALCULATION OF COMPONENTS OF DELTA MATRIX
CALL SIM@(AKDs22/KS) |

DO 44 1=1,22
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DELTACI)=D(I)

44 CONTINUE

3

955

IF(KS.EQ.1) WRITE(6923)

FORMAT(’ ‘»‘KS=1 sSINGULAR MATRIX IEXECUTION ABORTED sseevosse’)

IF(KS.EQ.1) GO TO 999

C NEW VALUES

X0=X0+DELTA(1)
YO=YO+DELTA(2)
ALFA=ALFA+DELTA(3)
FN=FN+DELTA(4)
XC=XC+DELTA(S)
XPC=XPC+DELTA(S)
X1=X1+DELTA(7)
X2=X2+DELTA(B)
X3=XJ+DELTA(?)
X4=XA+DELTA(10)
Y1=Y1+DELTA(11)
12=Y2+DELTA(12)
¥3-YI+DELTACL3)
Y4=Y44DELTA(14)
N1X=N1X+DELTA(13)
NLY=N1Y+DELTA(16)
N2XF=N2XP+DELTA(17)
H2YP=N2YP+DELTA(18)
YC=YCH+DELTA(19)
(PC=YPCHDELTA(20)
P=F+DELTA(21)
R=Q+DELTA(22)

CONVERGENCE TESTS

OMEG=0,0001D0

Do 555 I=1+22

IF (DABS(DELTA(I)).GT.OMEG) GO TO 1
CONTINUE

NEWMARK DIFFERENTIAL APPROXIMATIONS

CALCULATION OF VELOCITIES AND ACCELERATIONS AT TIME T
XODDT=(4,0/DELT$%2)%(X0-XO0M1)-(4,0/DELT)$X0DH1-X0DDM1
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XODT=XODM1+(DELT/2,0)%XODDM1+(DELT/2.0)2X0DDT

x0M1=X0
XODM1=X0DT
XOIDM1=X0DDT

YODDT=(4,0/DELTXX2)%(Y0-YON1)-(4.0/DELT)xYOIM1-YODDM1
YODT=YODM1+4(DELT/2,0)%YODDM1+{(DELT/2.0)XYODDT

YOM1=YQ
YOIM1=YODT
YOLDM1=YODI'T

ALFDDT=(4.0/DELTXX2) X (ALFA-ALFH1)-(4,0/DELT)XALFDN1~-ALFDD1
ALFDT=ALFDM1+(DELT/2.0)8ALFDD1+(DELT/2,0)¥ALFDDT

ALFM1=ALFA
ALFOM1=ALFDT
ALFDD1=ALFDDY
B0 10 101

ST0F
END
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SUBROUTINE SIMQ(AsEBsN»KS)

N N NN A N NN N A N A NN NN N

FURPOSE $
DBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS,
AX=B

USAGE !
CALL SIMQR(AsBsNyKS)

DESCRIPTION OF PARAMETERS!

A - MATRIX OF COEFFICIENTS STORED COLUMNWISE. THESE ARE
DESTROYED IN THE COMPUTATION., THE SIZE OF MATRIX A IS
N BY N.

B - VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE
REPLACED BY FINAL SOLUTION VALUES» VECTOR X.

N - NUMBER OF EQUATIONS AND VARIABLES. N MUST BE .GT. ONE.

KS - OUTPUT DIGIT
0 FOR A NORMAL SOLUTION

1 FOR A SINGULAR SET OF EQUATIONS

Ml B s SN S

REMARKS
MATRIX A MUST BE GENERAL.
IF MATRIX IS SINGULARs SOLUTION VALUES ARE MEANINGLESS.
AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX
INVERSION (MINV) AND MATRIX PRODUCT (GMPRD).

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
NONE

METHOD?
METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL
DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGING
ROMS WHEN NECESSARY TO AVOID DIVISION BY ZERO OR SMALL
ELEMENTS.,
THE FORWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN
N STAGES. THE BACK SOLUTION FOR THE OTHER VARIABLES IS
CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION
VALUES ARE DEVELOPED IN VECTOR By WITH VARIABLE 1 IN B(1)»
VARIABLE 2 IN B(2)seqsrevseer VARIABLE N IN B(N).

IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0
THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS

TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT.

e BeleNr NNl o B oot i o BN o o B or I o B o B we i o I ov Bav N o B o B or B o R o 0 o T o o TN o B o N e IO e AR e 38 e T e N o Mo B o Y o I o N o]
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IMPLICIT DOUBLE PRECISION (A-Hs0-2)
DIMENSION A(1)sB(1)

FORWARD SOLUTION

TOL=0.0
KS=0

JJ=-N

00 &5 J=1»N
JY=J+1
JJ=JJItN+1
BIGA=0
IT=JJ-J

[0 30 I=JsN

SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN

1J=1T+1

IF (DABS(BIGA)-DABS(A(1J))) 20230930
BIGA=A(1J)

IMAX=1

CONTINUE

TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)

IF (DABS(BIGA)-TOL) 35+35,40
KS=1
RETURN

INTERCHANGE ROWS IF NECESSARY

I12J4N8(J-2)
IT=IMAX-J-
DO S50 K=JsN
I1=]14N
12=11417
SAVE=A(I1)
A(11)=A(I2)
A(12)=5AVE

DIVIDE EQUATION BY LEADING COEFFICIENT
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50 A<I1)=A(11)/BIGA
SAVE=B(INAX)
BCINAX)=B(J)
B(J)=SAVE/BIGA

ELIMINATE NEXT VARIABLE

aonm

IF(J-N) 55970455
55 10S=NX(J-1)

10 65 IX=JYsN

IXJ=IAS+IX

IT=J-1IX

DO 60 JX=JYsN

IXIX=NK(IX=-1) 41X

JUX=IXIXEIT
60 ALIXIX)=ALIXJIX)~(ACIXIISA(JIX))
65 B(IX)=B(IX)-(B(J)SA(IXJ))

IS 9 Sttt it

g s

BACK SOLUTION

[qr Bae B o]

70 NY=N-1
IT=N&N
B0 8¢ J=1sNY
IA=1T-J
TB=N-J
IC=N
[0 80 K=1»J
B(IB)=B(IB)-A(IA)SB(IC)
1A=1A-N

80 IC=IC-1
RETURN
END

(N
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