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ABSTRACT

Two dimensional solitary and periodic waves in water of finite depth are

considered. The waves propagate under the combined influence of gravity and

surface tension. The flow, the surface profile, and the phase velocity are

functions of the amplitude of the wave and the parameters I - A/N and
2

I - T/pgH . Here A is the wavelength, H the depth, T the surface

tension, p the density and g the gravity. For large values of I and

small values of the amplitude, the profile of the wave satisfies the Korteweg

de Vries equation approximately. However, for T close to 1/3 this equation

becomes invalid. In the present paper a new equation valid for T close to

1/3 is obtained. Moreover, a numerical scheme based on an integro-differential

equation formulation is derived to solve the problem in the fully nonlinear

case. Accurate solutions for periodic and solitary waves are presented. In

addition, the limiting configuration for large amplitude solitary waves when
1

T > I is found analytically. Graphs of the results are included.
2
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SIGNIFICANE AND EXPLANATION

The study of the influence of surface tension on nonlinear water waves

has attracted much attention in recent years because of the challenging

mathematical difficulties associated with the non-uniqueness of the

solutions. Several numerical schemes are now available to compute capillary-

gravity waves in water of infinite or moderate depth. (Schwartz and Vanden-

Broeck (1979), Chen and Saffman (1980)).

In the present work we present a numerical scheme which enables us to

compute waves in the limit as the ratio of the depth versus the wavelength

tends to zero. A problem of non-uniqueness is discovered and discussed.

Moreover, a new equation analogous to the Korteweg de Vries equation is

obtained. In addition, the limiting configuration of steep depression

solitary waves is obtained analytically.
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SOLXTARY AND PERZODIC GRAVITY-CAPXLARY WAVES OF FINITE AMPLITUDE

J. L Hunter* and J.-M. Vanden-Broeck"

1. Intraouction

Approximate solutions for gravity solitary and cnoidal waves of small amplitude were

obtained by Rayleigh (1876). and morteweg and de Vries (1895). These results were derived

systematically by Keller (1948) who calculated a first order perturbation solution in

powers of the wave amplitude. This work was extended to second order by Laitone (1960).

More recently, accurate fully nonlinear solutions for gravity solitary waves were

obtained by Longuet-Higgins and Fenton (1974), byatt-Smith and Longuet-Uiggins (1976),

Witting (1975) and Hunter and Venden-Broeck (1982). A review of some of these theories can

be found in Mileos (1980).

Accurate solutions for periodic gravity waves in water of finite depth were obtained

by Schwartz (1974), Cokelet (1977), Vanden-Broeck and Schwartz (1979), and Rlienecker and

Fenton (1981). The effect of surface tension on periodic waves was investigated by Crapper

(1957). Harrison (1909), Wilton (1915), Pearson and Fife (1961), Schwartz and Vnden-broeck

(1979) and Cen and Saffman (1980). For a review of these calculations se Schwartz and

Fenton (1982).

The effect of surface tenaion on solitary waves was first considered by lorteweg and

de Vries (1895). They discovered that depression solitary waves can exist for sufficiently

large values of the surface tension. A systematic perturbation calculation was attempted

by Shinbrot (1981). However, his results are partially incorrect because he excluded the
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possibility of depression waves. k first order perturbation solution allowing depression

waves was derived by Vanden-Broeck and Shen (1982) and Benjamin (1982).

This perturbation calculation is invalid when

TVr= (1.,1)

is close to 1/3. In (1.1) T to the surface tension, p the fluid density, g the

gravitational acceleration, and H is the undisturbed depth of the fluid.

In this paper we present a perturbation calculation valid near T - 1/3. In addition,

we solve the exact nonlinear equations numerically.

Zn Section 2 we formulate the nonlinear problem and briefly review some of the

classical perturbation calculations. In Sections 3 and 4 we describe the perturbation

calculation valid for i close to 1/3. Zn Section S we reformulate the problem as an

integro-diffeorential equation on the free surface, which allows us to calculate solitary

and periodic waves of arbitrary amplitude. A numerical schme for solving the integro-

differential equation is presented in Section 6. The numerical method is similar in

philosophy if not in details to the scheme derived by Vanden-broeack and Schwartz (1979).

Vhe results of the numerical computation are discussed in Section 7. in addition the

limiting configuration for large amplitude solitary waves when T > 1/2 is found

analytically in Section 7.

-2-

" ! "



2. formulation and Classical Perturbation Solutions

We consider a two dimensional progressive wave in an irrotational incompressible

inviscid fluid having a free surface with surface tension acting upon it, and bounded below

by a flat horizontal bottom. We take a frame of reference in which the flow is steady,

with the X-axis parallel to the bottom, and with the Y-axis a line of yine try of the

wave. The phase velocity C in defined as the average fluid velocity at any horizontal

level completely within the fluid.

We introduce a potential function #(XY) and a stream function Y(XY). Let the

stream function assume the values zero and -Q on the free surface and on the bottom

respectively. The undisturbed fluid depth H is defined by

S- •(2.1)

We take the origin of our coordinate system on the undisturbed level of the free

surface, so that the bottom is given by Y = -H, and we denote the equation of the free

surface by Y = ;(.

The exact nonlinear equations for * and C are

*XX + 01M - 0, -i < Y < ;(X) , (2.2)

#y . 0 on Y - -H , (2.3)

*X -C X = 0 on Y-(X) , (2.4)

1 (#2 + *2 ) + 1 C XX 3 b on Y- V(X) * (2.5)
2 X Y P 2 3/2 2

(I +

Equation (2.2) follows from conservation of mass. Equations (2.3) and (2.4) are the

conditions that the bottom and free surface are streamlines, and equation (2.5) is the

dynamic free surface condition. The Bernoulli constant b on the right hand side of (2.5)

is to be found as part of the solution.

In order to derive asymptotic solutions it is convenient to introduce the following

dimensionless variables

X

Ht H b (2.6)

-3-



In (2.6) L is a length scale of the wave in the X direction and A is a measure of the

amplitude. Rewriting (2.2)-(2.5) in terim of the dimensionless variables (2.6) gives

8* + - 0 -1 < y < an(x) (2.7)

#- 0 on y--1 (2.8)y
- y- 0 on y an(x) (2.9)

1 2 +a 2_ _ _ _2

2 0 + a 2.2 )3/
2 " on y 2 Mq(x) * (2.10)

In (2.7)-(2.10) a and S are the dimensionless parameters

H 2
C& - A, 0 a ..z.

HL2
Relations (2.7)-(2.10) are the classical water wave equations.

We seek solutions for periodic water waves of wavelength A, and introduce the

dimensionless wavelength

- x/L .(2.2)

The Froude number F is defined by

• x (2.13)

Solitary waves are the limit of periodic waves as I t -. In that case F - B.

In order to motivate the considerations presented in the next sections, it is

worthwhile reviewing briefly some of the classical perturbation solutions of the system

(2.7)-(2.11). Stokes (1847, 1860) derived a perturbation solution for pure gravity waves

by assuming a mall and 0 of order one. His results were generalized to include the

effect of surface tension by Harrison (1909). Wilton (1915) and *ayfeh (1970). However,

these perturbation calculations become invalid as 0 + 0 because the ratio of successive

term is then unbounded.

The shallow water equations are derived by assuming 0 small and a of order one.

These equations do not have travelling wave solutions because the dispersive effects are

neglected (Whitham (1974), p. 457). The inclusion of dispersive effects into the shallow

-4-

.
4



water theory leds to the Korteweg de Vries equation. This equation can be derived by

assuming 0 small and a of order 0 (Keller (1948), vanden-Broack and Shen (1982)).

Thus we let

a - 6" (2.14)

and expand n, # and 3 as

11 n + en1  C n 2 +

X- + 4 0 + 61 + 2 2 + **" (2.15)

a solj + to I + 9% 2 
+ 

e00

Then we use (2.14) and (2.15) in (2.7)-(2.10), and find that

a arO 1 (2.16)

00, - mo (2.17)

21 R; - 3n0n + (T - )q, -0 (2.18)

The primes in (2. 17) and (2. 18) denote derivatives with respect to x. The dispersive

effect arises from the last tarm in (2.18).

Korteveg and de Vries (1895) showed that periodic solutions of (2.18) can be found in

closed form. As the wavelength tends to infinity these waves tend to the solitary wave

solution

n0 "a ech2(b)

(2.19)
r4( - T)1/2

a - 241 3 1/]

When I < 1/3 these are elevation waves with Froude number greater than one when

' ) 1/3 they are depression waves with roudse number less than one.

Squation (2.19) shows that the slope of the wave profile becomes large near T - 1/3

and the solution ceases to exist altogether when T - 1/3. Thus the Morteweg do Vries

equation (2.18) (denoted in the remaining part of the paper as the KdV equation) is invalid

in the neighborhood of i - 1/3. This is due to the fact that the dispersive effects

disappear as t approaches 1/3.

* ,j,



3. Perturbation Solution Near T - 1/3

In this section we shall derive an equation analogous to the rV equation which is

valid in a neighborhood of T - 1/3. The coefficient of the dispersive term %f in

(2.18) vanishes at T = 1/3 making a travelling wave impossible. To obtain a balance

between the dispersive and nonlinear terms near T = 1/3 we take

a - 2 (3.1)

in (2.7)-(2.10). Then we expand nl, #, B and T as

+ +2n 2 + ...

M- + 0 + C#1 + 2 2 + 
93 3 +

£2

(3.2)
1 €22

T - + £T + £ 2 +
3 1 2

B - s0 + EB I+ C2 2+ 2+

F = P0 
+ CF1 + €2F2 +

From (3.1) and (2.7)-(2.8) * satisfies

e*xx +*t -o0C# xx yy(3.3)

*y - 0 on y-1

Than uming (3.2) in (3.3) and equating coefficients of powers of C to zero, we obtain

*0 " f(x)

- - (1 + y) 2f + g(x)

24i(1+ y)-f .) 41 h
-L (I + y)6f(vi) 1 ( +y)4iv (I (+

3 -- 61 41 - 2 + k(x)
In (3.4) f, g, h and k are arbitrary functions of x and primes denote differentiation

by x.

We use (3.1), (3.2) and (3.4) in (2.9)-(2.10), expand in power series about c - 0

and equate coefficients of C0, C1 and e2. This gives the following equations

Bof' + no - 0 (3.5)

Bll + f" 0 (3.6)

Bog s + n, " 1 no. + 1 BO , I V (3.7)

Bor; + 5 I f(iv) a (3.6)
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he +2 LO goes a f(V ) (f2+. e

30h +112 a+9 +e t," +fV -, too1 f4S(Lg)
2 .0 2. , 2  e  - 9 (3.9)

SBO; +Ih" "]0 I g(iv) . not" f f(vi) .,f*.1n (3.10)

For (3.5) to have a nontrivial solution we must have

2 I . (3.11)

We shall consider waves moving to the right and take

so- (3.12)

Then (3.5) implies

n o - - f' . (3.13)

We differentiate (3.7), add the result to (3.8) and use (3.12)-(3.13). Then it

follows for a nontrivial solution that

"- 0 . (3.14)

Using (3.12)-(3.14) in (3.7) given
i "1 " " go + I f loe (3.15 )

6

Weft we use (3.12)-(3.15) in (3.9)-(3.10), and after eliminating q2 and h we obtain the

following equation for nO
0w

20p1'- 3n 0n; + Ten' 0 - no - 0. (3.16)

Finally we show that the Bernoulli constant B Is the same as the Frouds number P

to the order considered here. From (2.1), (2.6) and (2.11) we have

an

F- a f I xd . (3.17)
-1

Then using (3.1), (3.2) and (3.4) in (3.17) we find that

F0 - so - 1, T1 se 61 - 0, 7'2 - 92 •(3.18)

A similar perturbation calculation using (3.1) can be performed on the time dependent

water wave equation. This leads to
- 1/2 Ct H C . rI4

2(g) 3 + 2( (-) -- - 0 . (3.19)

Zquation (3.19) reduces to (3.16) for travelling wave solutions C - C(X + ct).

In the next section we seek periodic solutions of (3.16) by a stokes type expansion.

IIIII lll il ll I I I-I-



4. Periodic Waves Near T - 1/3

We seek a periodic solution of (3.16) in the form of an expansion in powers of the

wave amplitude. Therefore we write

no - ae0 1 + a2n02 + 0(a3 ) , (4.1)

F2 - F20 + aF 2 1 + a2
?2 2 + o(a 3 ) (4.2)

Here a is a measure of the wave amplitude, the precise meaning of it will become clear

later.

Next we substitute (4.1) and (4.2) into (3.16) and (3.18) and collect all terms of

like powers of a. Thus we obtain

+ Tow 4 (V) . 0 (4.3)

2r ' * i'" -1 (v) - n (4.4)20 02 +10n2 45 02 " 3' 1 2F2 1n0 1

The solutions of (4.3) and (4.4) are given by

q " Cos x (4.5)

n2 -3X[16T1 K 2 B 20 " 4 K5] cos 2Kx (4.6)

T 4 2

1 K 4
r2+ L 0 (4.7)

P21 - 0 . (4.8)

Here K - 2N/ is the wavenmber. Relations (4.1) and (4.5) define a as the amplitude

of the fundamental in the Fourier series expansion of n0(x).

The classical dispersion relation for linear water waves is given by (see Whitham

(1974), p. 403)
2 _.L ta- Z )( + T41 2H

2

F 2 - )U1X X- _) . (4.9)

From (2.11), (2.12) and (3.1) we have 25/k C/ 2w/I. Substituting this result and

(3.2) into (4.9), and expanding for C small we find

F
2 

= I + 2F20

where F is given by (4.7). Thus the solution of (3.16) overlaps the classical linear

solution, as the amplitude tends to sero.

The perturbation solution (4.5)-(4.8) is invalid when

P20 2TIK 
2 
+ 

8 
K
4  

(4.10)

- 45



because the coefficient of cos 2Cx in (4.6) is then unbounded. When (4.10) is satisfied,

the solution of (4.3) is given by

n01 - coo Vx + 82co 2Kx (4.11)

12T 
+ 2 

+ 
8  

.! K (4.12)

20 0 1 45

Here 12 is a constant to be found as part of the solution. Substituting (4.11) into

(4.4) we obtain

2F ~ ~ (v) -(2F21K. K) Bnx

S20 02 +  12 " 2 1  2 )sin3 9

+ (4F2 1KE 2 - 2 K)sin 2Kx - E 2 sin 3Kx - 3K(92 )
2
sin 4Kx . (4.13)

The solutions of (4.13) are periodic and bounded if and only if the coefficients of

sin Xx and sin 2Kx in the right hand side of (4.13) vanish. Thus we have

92 = * -1 (4.14)

* 1 (4.15)F 21 4 -2

Substituting these results into (4.1) and (4.2) we obtain

no - a cos Kx * a2-1/2 coo 2rx + O(a
2
) , (4.16)

T K 
2  

4

F2 - +-- L- * 3a2-5/2 + 0(a
2
) (4.17)

Relations (4.16) and (4.17) show that two solutions exist when (4.10) is satisfied.

Similar properties were found by Wilton (1915), Pearson and Fife (1961), Schwartz and

Vanden-Broeck (1979) and Chen and Saffuan (1980) for waves in water of infinite depth and

by Nayfeh (1970) for waves of small amplitude in water of moderate depth. It is

interesting to note that the solutions (4.13), (4.14) given by Nayfeh (1970) converge to

(4.16) and (4.17) as the depth tends to zero. Thus Nayfeh's solution and the present long

wave calculation overlap.

A non-uniqueness analogous to the one described by (4.16) and (4.17) will occur in

general when waves of wavenumber K and nK travel with the same phase velocity, i.e.

when

-9-
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I IK 2  
1
4  

n 2T1
K 2  

n4K4

2+ F " 2 9 TOF (4.18)

Here n is an arbitrary integer greater than one. The solution of (4.3) is then

no . coo Kx + gn coo nKx . (4.19)

For n - 2, (4.18) and (4.19) reduce to (4.11) and (4.12).

Relation (4.18) can be rewritten as

451
K2 - (4.20)

It follows from (3.2), (3.14) and (4.20) that this non-uniqueness can only occur for

T < 1/3.

Numerical values of F2 for a - 0.01 and K - I obtained by integrating (3.16)

numerically are shown in Figure 1. The broken line corresponds to the solution (4.7),

(4.8) and the two crosses to the solutions (4.17). These results indicate that the two

solutions (4.17) are embers of two different families of solutions.

Other numerical solutions of (3.16) will be discussed in Section 7.

-10-
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5. Reformulation a an Integro-differential Squation

It is convenient to reformulate the problem as an integro-differential equation by

considering the complex velocity u - iv. Here u and v are the horizontal and vertical

coponents of the velocity respectively. The variables are made dimensionless by using

H as the unit length and C am the unit velocity. We choose the complex potential

f - + i$ (5.1)

as the independent variable.

In order to satisfy the boundary condition (2.8) on the bottom * - -1, we reflect

the flow in the boundary * - -1. Thus we seek x + iy and u - iv as analytic functions

of f in the strip -2 4 # 0.

Next we define the dimensionless wavelength I - A/H and introduce the change of

variables

f - + i - -1 log p (5.2)

where

is
p -re • (5.3)

Relations (5.2) and (5.3) map the bottom -- -1, the free surface * - 0 and its image

2W

- -2, respectively, onto the circles r - r0  a • t r - I and r - r
2
.

The values of the real and imaginary parts of the function G(p) - u - iv - 1 on the

free surface r - I and its image r - 2 are related by the identitiesre ar rlte b heidnite

u(#) - I + Real{G(e ie) 1 + Real(G(r e )} , (5.4)
0

v(#) - -m(G(e } - Im(G(r0 e ) } (5.5)

where

(5.6)
29

The functions u(#) and v(+) in (5.4) and (5.5) are the horizontal and vertical

components of the velocity on the free surface * - 0.

In order to find a relation between u and v we apply Cauchy's theorem to the

function G(p) in the annulus r0
2  IpI • 1. Using the relations (5.4)-(5.6) and

exploiting the bilateral sysmetry of the wave about 0 - 0 we find after some algebra

-12-
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1/2
() - - - f/2 [u(s) - 13dm

0

+ /2 a v(-)[cotg (3-6) + cotq 1 (a + 0))d.
0

1/2 [u(s) - 1[r2- con + v(S)sin (s -( )
+ r2 f 0w k0c. -, ds (5.7)

0 4 2

,/2 [u(s) - Mr - cos A (a.+ G) + v(S).in a ,+ 0)

0 4+ r- _22oo ( -- + d,.
0 140 -200

The third integral in (5.7) is of Cauchy principal value form.

The surface condition (2.10) can nov be rewritten as

1 F2[U 2+)]] 2 1 2 v(S) do
2 (u(s)] 2 + v(s)1 2

[uMiM v#)) / 21.() ] "u- u 2 _ Tv'(0) (5.6)

(Lu(*)2 + IV(.] 2) Y2 2 UCO)

In the remaining part of the paper we shall choose coordinates x.y with the origin

at a crest or a trough of the wave. The shape of the free surface is then defined

parameterically by the relations

f(*) " f u(s)((u(s)i2 + [v(s)2 do (5.9)
0

y()-f v(s)(Lu(s)j 24+ I(@)3 2-1 d

0

Finally We impose the periodicity condition

;(1/2) - 1/2 * (5.11)

We shall measure the amplitude of the wave by the parameter

U0 u(O) . (5.12)

-13-
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For given values of T, UO and to (5.7)-(5.12) define a systen of intagro-

differential equations for a(#), v(#), X(4), y(O) and F.

The equations for solitary waves are obtained by taking the limit A + in (5.7).

this leads after some algebra to

u(O)[ I -~4..L + _I Ids + )v(s) + 2lu(s) 1)
0 a-0v0 (a3-6) 21+4

1 (a + *)v(s) + 21u(s) - 11
+;12 do.(.3

In the next section we teacribe a numnerical scheme to solve these equations.

-14-



6. Numerical procedure

(a) Periodic waves

To Solve the system (5.7)-(5.12) we introduce the N mesh points

2(I - 1)

We also define the corresponding quantities

U, - u(#I), I - 1,...,N , (6.2)

v1 - v(*I), I . 1'...,N * (6.3)

It follows from symmetry that v, vV 1 0, so only N - 2 of the vI are unknown. In

addition from (5.12) we have u, - u 0  so only 8 - 1 of the u, are unknown. We shall

also use the N - I midpoints 1Z+ 1/2 given by

. / (# + *l), 1 - 1 ..... - 1 • (6.6)
4 1 + 1/2 2 1 1 +

We evaluate uI+1/2 - u(#,+ 1/2), v,1/ 2 - v(, 1  )/2, u +1/2 - u'(#1 +1/2), and

vj+ 1/2 - v (+ 1/2) by four points interpolation and difference formulas.

We now discretise (5.7) by applying the trapezoidal rule to the integrals on the

right-hand side with a - I1, 1 - 1,...,N, and 8 - #1+I/2, 1 - 1. N - 1. The symmetry of

the quadrature formula and of the discretization enables us to evaluate the Cauchy

principal value integral as if it ware an ordinary integral. In this way we obtain

V - 1 algebraic equations.

Next we substitute into (.6) the expressions for , +1/ 2 , v+ 1/2 , u1  1/2 and vj+ 1/2

at the points # 1+/2' 1 - 2,...,N - 1. The integral in (5.8) is evaluated by the

trapezoidal rule with the mesh points a - *Z" The derivative v'(0) in (5.8) is

approximated by a four points difference formula. Thus we obtain another N - 2 algebraic

equations.

For given values of T, u0  and I we have therefore Z. - 3 algebraic equations for

the 2H - 2 unknowns uI, v i and P. The last equation is obtained by discretizing

(5.11).

The 2N - 2 equations are solved by Newton's method. After a solution converges for

given values of T, u0 and 1, the surface profile Xc(*), y(*) is obtained by applying

the trapezoidal rule to (5.9) and (5.10).

-15-
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War each calculation presented in Section 7 the number of mesh points N was

progressively increased up to a value for which the results were independent of N wLthin

graphical accuracy. Most of the computations were performed with x - 60. a few runs were

performed with U - 100 as a check on the accuracy of the computations.

in the remaining part of the paper we shall refer to the above numerical scheme for

periodic waves as numerical echeme 1.

(b) solitary waves

To solve the system (5.8)-(5.13) we introduce the N mesh points

2 
= 

( - 1), I = 1,....U . (6.5)

Here K is the interval of discretixation.

The quantities u, v 1 1  + x+ u 1 2 and vw+/2 are defined as in the previous

subsection. It follows from symmetry that v 1 - 0. In addition ul - u0  so that only

2H - 2 of the u, and v, are unknown.

The discretization of (5.13) is entirely analogous to the procedure used to dLecretize

(5.7). in this way we obtain N - 1 algebraic equations. The truncation error due to

approximating the infinite integrals by integral@ over a finite range, was found to be

negligible for MU sufficiently large. As shown in the previous subsection, the

discretization of (5.8) leads to another N - 2 algebraic equations.

Thus, for given values of To u0 and 2 we have 29 - 3 algebraic equations for

the 2M - I unknowns u,, v, and F. The last two equations are obtained by imposing

u.-I and v.-0.

We shall refer to this numerical scheme as numerical scheme 1I.
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7. Discussion of the Results

(a) Depression solitary waves

Numerical scheame 11 was used to comte depression solitary waves for given values of

T and u0 . In the first calculation, the Newton iterations were started with the

asymptotic solution (2.19) as the initial guess. For u. close to one, the iterations

converged rapidly. Once a solution vas obtained it was used as the initial guess for the

next calculation with a slightly different value of T or u 0 . The curve a in Figure 2

shows a typical profile for T - 0.7 and u 0 - 3.0.

The asymptotic solution (2.19) can be rewritten in terms of the variables used in the

numerical scheme a

k 2  (3 A  1/2 (7.1)
" um h2 4( -3T)(.,

F
2 - 1 + A (7.2)

The curve b in Figure 2 corresponds to the profile (7. 1) in which the amplitude A is

equal to the amplitude of the numerical solution. For 1 < u0 < 1.03 the numerical

results and the asymptotic formula (7.1) were found to be indistinguishable to graphical

accuracy.

In Table I we compare numerical values of F with the approximation (7.2) for various

values of u0  and I - 0.4, and 0.7.

A 0  increases for a given value of T >1, the wave profile becomes steeper and

the distance between the trough and the bottom decreases. For T > - this distance tends
2

to zero as uo + f. The corresponding Froude number tends to zero and the profile

approaches a static limiting configuration in which gravity is balanced by surface

tension. Then (2.10) reduces to a differential equation for the free surface:
-3/2

11 - Tin1X(I - I . (7.3)

The boundary conditions for (7.3) are

n(o) - 0 (7.4)

V - • (7.5)
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iDHAI I

T 0.4 0.7

numerical IdV numerical KM

1.0 1.0 1.0 1.0 1.0

1.03 0.986 0.986 0.986 0.985

1.5 0.844 0.850 0.832 0.831

2.0 0.756 0.764 0.734 0.734

4.0 0.578 0.590 0.541 0.542

10.0 0.396 0.407 0.355 0.355

20.0 0.291 0.301 0.255 0.253

50.0 0.190 0.195 0.163 0.152

100.0 0.136 0.137 0.116 0.081

Table 1 t Values of the Froude number for depression solitary

waves for 1 - 0.4 and T - 0.7, and various

values of u0. Numerical values were computed by

scheme II, and the KMV values found from (7.2) with

A taken equal to the amplitude of the numerical

solution.
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Multiplying (7.3) by nx and integrating with respect to x yields

2 + 2 / 1 (7.6)

The value of the constant of integration in (7.6) was evaluated by using (7.5).

Integrating (7.6) gives a formula for the shape of the free surface, namely

1 2 -2 - 1/2
f- iIT2,+ I "2 - _1]- / 1 (7.7)
02 

2

The curve c in Figure 2 represents the profile (7.7) for T - 0.7.

We denote by tan a the slope of the profile (7.7) at the trough x - 0. Then (7.4)

and (7.6) yield
I

Relation (7.8) implies that the present limiting configuration is only possible for

T ) 1/2.

For T < 1/2, the numerical computations indicate that the wave ultimately reaches a

critical configuration with a trapped bubble at the trough. This critical configuration is

shown in Figure 3 for T - 0.4. similar limiting configurations were obtained previously

by Crapper (1957), Schwartz and Vanden-Broeck (1979) and Vanden-Broeck and Keller (1980).

Waves for larger values of u0  could be obtained by allowiong the pressure in the trapped

bubble to be different from the atmospheric pressure (Vanden-Broeck and Keller (1980)).

Numerical scheme 11 was used to compute depression solitary waves for T < 1/3. In

Figure 4 we present solutions for u0 - 1.03 and various values of 1. As T decreases

the profiles develop a large number of inflexion points. We were unable to compute

solutions for u0 - 1.03 and T < 0.21 because too many mesh points were required.

In Figure 5 we compare the numerical solution of the exact nonlinear equations with

the profile obtained by numerically integrating (3.16). We found that the two solutions

become identical within graphical accuracy in the limit as T + 1/3 and u. + I with the

ratio (u0 - 1)( - 1/3)-2 constant. This constitutes an important check on the

consistency of our results.
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Figure 3b - The bubble of Figure 3a expanded by a factor
of 12.5. The vertical scale is the same
as the horizontal scale.
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(b) Elevation molitary waves

In preliminary computations we attempted to calculate solitary waves for T 1 1/3 by

using numerical scheme 11. The iterations converged rapidly. However, the profiles were

not independent of N and X and they did not appear to approach a limiting profile as

U 4 0 and 3 + 0. Furthermore at large x the profiles oscillated with finite amplitude

about the undisturbed level instead of approaching a uniform strem.

On the other hand we were able to compute periodic waves of large wavelength I for

T < 1/3, by using numerical scheme I. A large number of dimples are present on these

profiles (see Figure 6). We found many different families of periodic waves. This non-

uniqueness agrees with the perturbation calculation of Section 4. Waves in different

families are characterized by the number of dimples in a wavelength. In Figure 7 we plot

the roude number versus wavelength for 3 such families, when I - 0.24. Curve a

corresponds to 14 dimples, curve b to 15 dimples, and curve c to 16 dimples. Graphs of

representive members of each of these families are presented in Figure 6.

As can be seen from Figure 7 each family only exists for a limited range of

wavelengths. In particular there is a maximum value of the wavelength beyond which

solutions in a given family cease to exist. Therefore, a solitary wave cannot be obtained

as a limit of solutions belonging to a single family.

In conclusion all our attempts to find elevation solitary with surface tension by

either numerical scheme I or II failed. Mathematically the question of the existence of

these elevation waves remain open.

-27-

him..
4



4

C* j
00

-28-



04

4

.0

0s 0

-29-

Mi'o



zK

.40

I CA
cmU

5 0 0

-30-.

LIL



$4

24g.

-I

~ ~

* OQ.

~

if) 0
* 04'
0
* 2

0

.0 r'. t~

if) 4' on
'U 0.4
0 'U
0

0
S

4' ~
e4~

S

N
1') 0 -

4'. 4'
'-4
a'

2 0
LL0~ S I~) IL

S - -

-31-

&
I

*



Benjamin, T. a. 1982 Quart. kppl. Math. 37, 193.

Byatt-8aith, J. G. a. and Longuet-Uiggins, N. S. 1976 proc. Roy. Soc. A350, 175.

Chan, B. and Saff u, P. G. 1980 Studies in Appl. Math. 1& 95.

okelet, 2. D. 1977 Phil. Trans. Aoy. Soc. AM, 183.

Crapper, G. D. 1957 J. Fluid Mech. 2, 532.

Harrison, W. 3. 1909 Proc. land. Math. Soc. 7, 107.

Hunter, J. K. and Vanden-Broeck 3.-N. 1982 (to appear).

Keller, J. S. 1946 Cora. Pure Appl. Math. 1 323.

morteveg D. 3. and de Vries, 0. 1895 Phil. Nag. 39 422.

Laitone, Z. V. 1960 3. Fluid Mach. Z 430.

Longuet-NiggLns, M. S. and Fenton, J. D. 1974 Proc. Roy. Smo. A40, 471.

Riles, 3. V. 1980 Ann. Rev. Fluid Mach. 12, 11.

mayfeh, A. a. 1970 3. Fluid Kech. 40., 671.

Pierson, W. J. and Fife, P. 1961 .r. Geophys. Res...6, 163.

Rayleigh, Lord 1876 Phil. Nag. 1, 257.

Rienecker, N. N. and Fenton, J. D. 1981 J. Fluid Mach. 104, 119.

Schwartz, L. W. 1974 J. Fluid Nech. 62 553.

Schwartz, L. W. and Fenton, J. D. 1962 Ann. Rev. Fluid Mach. 14, 39.

Schwartz, L. W. and Vanden-roeock, 3.-N. 1979 3. Fluid Nech. 95 119.

Shinbrot, N. 1981 Quart. Appl. Math. 39, 287.

Stokes, G. G. 1847 Trans. Comb. Phil. So. 3, 441.

Stokes, 0. 0. 1880 Mathematical and Physical Papers, vol. 1, p. 314, Cambridge University

Press.

Vanden-Broeck, 3.-N. and eller, 3. D. 1980 J. Fluid Mch. 96, 161.

Vanden-broeck, 3.-N. and Shm, N. C. 1962 (to appear).

Vanden-Broeck, 3.-N. and Schwartz, L. V. 1979 Phys. Fluids 22. 1868.

-32-

1



Whitham. G. S. 1974 Linear and Nonlinear Waves, Now Yorkc, Wiley.

Wilton, J. R. 1915 Phil. Nag. 29, 688.

Witting, J7. 1975 SIAN J. App1. Math. ~.700.

31W :JNVBDc

-33-



SECURITY CLASSIFICATION OF THIS PAGE (Wsm. Dmee Unte*Qe

REPORT DOMAENTATION PAGE ORED CM TosBEZl)RZ COMPLETING FORM
I. REPORT NUM601 2. GOVT ACCESSION NO S. RECIPIENT'S CATALOG NUMMER

4. TITLE (and butitle) 1, TYPE OF REPORT & PER40D COVERED

SOLITARY AND PERIODIC GRAVITY-CAPILARYReport - no specific
SO ITE A PTODZC Z¥CZAY S reporting period
OF FINITE~ A~ L ~TDE S PERFORMING ORG. REPORT NUMBER

7. AUTHOR(q) S. CONTRACT OR GRANT NUMUER(e)

'' MCS-8001960
J. K. Hunter and J.-N. Vanden-Broeck DAAGZ-80-C-0041

MC-7927062, Nod. 1
9. PERFORMING ORGANIZATION NAME AND ADDRESS IS. PROGRAM ELEMENT. PROJECT. TASK

Mathematics Research Center, University of AREA & WORK UNIT NUMBERS

610 Walnut Street Wisconsin Work Unit Number 2

Madison, Wisconsin 53706 (Physical Mathenmatics)
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

August 1982
IS. NUMBER OF PAGES

See Item IS below. 33
14. MONITORING AGENCY NAME A ADDRESSrIf diffenmI br CONkel#Ifn Office) IS. SECURITY CLASS. (of de ,pect)

UNCLASSIFIED
I1.. DECL ASSI FICATIONIOOWNGRAOING

SCHEDULE

IS. DISTRIBUTION STATEMENT (o f.de ReP)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of M seb.at mteqmd in Mod&. if dif ffe--t Ir. RePort)

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, D. C. 20550
Research Triangle Park
North Carolina 27709

IS. SUPPLEMENTARY NOTES

iS. KEY WORDS (ContIwe an evwee el. It noeseemy md fdewtrt bl Mock umbr)
Solitary waves
Periodic waves
Surface tension

20. ABSTRACT (Cloetn relwee eide If n.eeeiT mid IdfoeiO' by Wok mmle)

- - Two dimnJsional solitary and periodic waves in water of finite depth are

considered. The waves propagate under the combined influence of gravity and

surface tension. The flow, the surface profile, and the phase velovity re

functions f the amplitude of the wave and the parameters £ - A/H and

ST . Here ,A is the wavelength, H the depth, T the surface

DO 1473 EDITION OF I NOV55 Is OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (31w. DIM Sa6

! 4 C



20. ABSTRACT -cont'd.

- - tension, , the density and 9 the gra4 ty. ior small values of I and small

values of the amplitude, the profile of the wave satisfies the Korteweg de Vries

equation approximately. However, for , close to 1/3 this equation becomes

invalid. In the present paper a new equation valid for / close to 1/3 is

obtained. Moreover, a numerical scheme based on an integro-differential

equation formulation is derived to solve the problem in the fully nonlinear

case. Accurate solutions for periodic and solitary waves are presented. In

addition, the limiting configuration for large amplitude solitary waves when

/ > I is found analytically. Graphs of the results are included.
/ 2

. . ........ _ _ -I




