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ABSTRACT

Two dimensional solitary and periodic waves in water of finite depth are
considered. The waves propagate under the combined influence of gravity and
surface tension. The flow, the surface profile, and the phase velocity are
functions of the amplitude of the wave and the parameters £ = A/H and

T= T/pgﬂz. Here )\ 1is the wavelength, H the depth, T the surface
tension, p the density and g the gravity. For large values of ¢ and
small values of the amplitude, the profile of the wave satisfies the Korteweg
de Vries equation approximately. However, for T close to 1/3 this equation
becomes invalid. 1In the present paper a new equation valid for T close to
1/3 is obtained. Moreover, a numerical scheme based on an integro-differential
equation formulation is derived to solve the problem in the fully nonlinear
case. Accurate solutions for periodic and solitary waves are presented. In
addition, the limiting configuration for large amplitude solitary waves when

T> % is found analytically. Graphs of the results are included.
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SIGNIFICANCE AND EXPLANATION

The study of the influence of surface tension on nonlinear water waves
has attracted much attention in recent years because of the challenging
mathematical difficulties associated with the non-uniqueness of the
solutions. Several numerical schemes are now available to compute capillary-
gravity waves in water of infinite or moderate depth. (Schwartz and Vanden-
Broeck (1979), Chen and Saffman (1980)).

In the present work we present a numerical scheme which enables us to
compute waves in the limit as the ratio of the depth versus the wavelength
tends to zero. A problem of non-uniqueness is discovered and discussed.
Moreover, a new equation analogous to the Korteweg de Vries equation is
obtained. 1In addition, the limiting configuration of steep depression

solitary waves is obtained analytically.
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SOLITARY AND PRRIODIC GRAVITY-CAPILLARY WAVES OF PINITE AMPLITUDE

- *e
Je. K. Hunter and J.~M. Vanden-Broeck

1, Introduction

Approximate solutions for gravity solitary and cnoidal waves of small amplitude werse
obtained by Rayleigh (1876), and Korteweg and de Vries (1895). These results were derived
systematically by Keller (1948) who calculated a first order perturbation solution in
povers of the wvave amplitude. This work was extended to second order by Laitone (1960).

More recently, &ccurate fully nonlinear solutions for gravity solitary waves were
obtained by Longuet-Higgins and Penton (1974), Byatt-Smith and Longuet-Higgins (1976),
witting (1975) and Hunter and Vanden-Broeck (1982). A review of some of these theories can
be found in Miles (1980).

Accurate solutions for periodic gravity waves in water of finite depth were cbtained
by Schwartz (1974), Cokelet (1977), Vanden-Broeck and Schwartz (1979), and Rienecker and -
Fenton (1981). The effect of surface tension on periodic waves was investigated by Crapper
(1957), Harrison (1909), wWilton (1915), Pearson and Fife (1961), Schwartz and Vanden-Broeck
(1979) and Chen and Saffman (1980). For a review of these calculations see Schwartz and

Fenton (1982).

The effect of surface tension on solitary waves was first considered by Korteweg and
de Vries (1895). They discovered that depression solitary waves can exist for sufficiently
large values of the surface tension. A systematic perturbation calculation was attempted

by Shinbrot (198t1). However, his results are partially incorrect because he excluded the

'Depattunt of Mathematics, Ooclorado State University, Fort Oollins, Colorado 80523.

"Deplrmnt of Mathematics and Mathematics Research Center, University of Wisconsin-
Madison, Madison, Wisconsin 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MCS~7927062,
Mod. 1 and No. MCS-8001960.
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1 possibility of depression waves. A first order perturbation solution allowing depression

waves was derived by Vanden-Broeck and Shen (1982) and Benjamin (1982).

T -——’—2 (1.1) )

‘% This perturbation calculation is invalid when
:
L pgR

: is close to 1/3. In {1.1) T is the surface tension, p the fluid density, g the
% gravitational acceleration, and H is the undisturbed depth of the fluid.

In this paper we present a perturbation calculation valid near T = 1/3. 1In addition,

we solve the exact aonlinear equations numerically.

In Section 2 we formulate the nonlinear problem and briefly review some of the
classical perxturbation calculations. In Sections 3 and 4 we describe the perturbation
calculation valid for T close to 1/3. In Section 5 we reformulate the problem as an
integro-differential equation on the free surface, which allows us to calculate solitary
and periodic waves of arbitrary amplitude. A numerical scheme for solving the integro-
differential equation is presented in Section 6. The numerical method is similar in
philosophy if not in details to the scheme derived by Vanden-Broeck and Schwartz (1979).
The results of the numerical computation are discussed in Section 7. In addition the
limiting configuration for large amplitude solitary waves when T > 1/2 is found

analytically in Section 7.
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2. _Pormulation and Classical Perturbation Solutions

We consider a two dimensional progressive wave in an irrotational incompressible
inviscid fluid having a free surface with surface tension acting upon it, and bounded below
by a flat horizontal bottom. We take a frame of reference in which the flow is steady,
with the X-axis parallel to the bottom, and with the Y-axis a line of symmetry of the

wave. The phase velocity C is defined as the average fluid velocity at any horizontal

level completely within the fluid.
We introduce a potential function #(X,Y) and a stream function Y¥(X,Y¥). Let the
stream function assume the values zero and -Q on the free surface and on the bottom

respectively. The undisturbed fluid depth H 1is defined by

-2
H=%. (2.1)

We take the origin of our coordinate system on the undisturbed laevel of the free
surface, so that the bottom is given by Y = -R, and we denote the equation of the free -

surface by Y = Z(X).

The exact nonlinear equations for & and { are

.xx + .“ = 0, -H < Y < g(X) , (2.2)
.'.0 on Y = -H , (2.3)
Ox(x - .Y =0 on Y= g(X) , (2.4)
LRI _2____‘_)(!____‘1!,2 Y = £(x) (2.5)
2 Ot 23/2 2% ©o° cx . .
1+ Cx)

Equation (2.2) follows from conservation of mass. Equations (2.3) and (2.4) are the
conditions that the bottom and free surface are streamlines, and equation (2.5) is the

dynamic free surface condition. The Bernoculli constant b on the right hand side of (2.5)

is to be found as part of the solution.

In order to derive asymptotic solutions it is convenient to introduce the following

dimensionless variables

IS KIS (2.6)
’- He - H’ B--P— *
— ' .
LA/ gH 1AYgH /o
3=
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In (2.6) L 1is a length scale of the wave in the X direction and A is a measure of the

amplitude. Rewriting (2.2)-(2.5) in terms of the dimensionless variables (2.6) gives

p—

: LL I ’w =0 -1 ¢y < anix) (2.7)
13 .
j ¢ =0 on y= -1 (2.8)
i Yy
; ‘ - - o
; an ¢, - B Oy 0 on y = an(x) (2.9)
1 .2 1a,2 Mox p?
—ag‘+ =94+ n- 8t === on y= an(x) . (2. 10)
k 2 'x 287% 1+ czan,z‘)a/z 20

In (2.7)=(2.10) o and § are the dimensionless parameters

2
a=2, pg.i | (2.11)
H L2

Relations (2.7)-(2.10) are the classical water wave equations.
We seek solutions for periodic water waves of wavelength A, and introduce the

dimensionless wavelength

=21 (2.12)
The Froude number P is defined by
e '
re—=-=2] ¢ax. (2.13)
‘ fo

Solitary waves are the limit of periodic waves as i + ®, In that case Fr = B,

L | In order to motivate the considerations presented in the next sections, it is
worthwhile reviewing briefly some of the classical perturbation solutions of the system
(2.7)=(2.11). Stokes (1847, 1880) derived a perturbation solution for pure gravity wvaves
by assuming o small and B of order one. His results were generalized to include the
effect of surface tension by Harrison (1909), Wilton (1915) and Rayfeh (1970). However,

these perturbation calculations become invalid as B + 0 because the ratio of successive

terms is then unbounded.
The shallow water equations are derived by assuming 8 small and a of order one.
These equations do not have travelling wave solutions because the dispersive effects are ¢

neglected (Whitham (1974), p. 457). The inclusion of dispersive effects into the shallow

4=




This equation can be derived by

water theory leads to the Korteweg de Vries equation.

B - e

assuming B small and o of order B (Keller (1948), Vanden-Broeck and Shen (1982)).

Thus we let

and expand n, ¢ and B as

n=ng+en, + czn2+ oo

¢ --’—:‘- + 4yt et 1202 + oo (2.15)

I-'oftﬂ #Czﬂzﬁ‘°°c

1
Then we use (2.14) and (2.15) in (2.7)~(2.10), and £find that

(2.16)

'o.’o-‘

.6 - -no (2.17)
1
2’1"5 - 3n°na + (1~ 3)n6" 0. (2.18)

The dispersive

The primes in (2.17) and (2.18) denote derivatives with respect to x.

effect arises from the last term in (2.18).

Korteweg and de Vries (1895) showed that periodic solutions of (2.18) can be found in

clogsed form. As the wavelength tends to infinity these waves tend to the solitary vave

solution

-a nochz(ﬁ)

"o
(2. 19)
’ 4(1 - 31) V2
a=2r, b= I 1 .
P” When T < 1/3 these are slevation waves with Frouds number greater than one when

T > 1/3 they are depression waves with Froude number less than one.

Bquation (2.19) shows that the slope of the wave profile becomes large near T = 1/3
Thus the Korteweg de Vries

and the solution ceases to exist altogether wvhen Tt = 1/3.

eguation (2.18) (denoted in the remaining part of the paper as the KdV equation) is invalia

in the neighborhood of T = 1/3. This is due to the fact that the dispersive effects

1/3.

approaches

disappear as <t




3. Perturbation Solution Near T = 1/3

In this section we shall derive an equation analogous to the KAV equation which {is
valid in a neighborhood of T = 1/3. The coefficient of the dispersive term na" in
(2.18) vanishes at T = 1/3 making a travelling wave impossible. To obtain a balance

between the dispersive and nonlinear terms near T = 1/3 we take

a= ez f=c (3. 1)

in (2,7)=(2.10). Then we expand n, ¢, B and T as

n=n,+en, + c2n2+ eoe

Bx 2 3 oss
Q-c2+0°+c¢1+e02+:¢3+
(3.2)

1’--1-+ ET +£21’ 4+ sse
3 1 2

1+5232+ eee
2
F-PO+EP1+$P2+'°'.

Prom (3.1) and (2.7)-(2.8) ¢ satisfies

B’B°+€B

[{] +é¢ =0
> W (3.3)

=0 = =),
’y on y
Then using (3.2) in (3.3) and equating coefficients of powers of € to zero, we obtain
¢ =~ tix)
R NIRRT ARt
(3.4)
- 4,0iv) _ 1 2
02 T (1 + y)% 2(1+y) g”" + h(x)
- 6 (vi) 1 4 iv _ 1
R AR O A - LI b 3 (1 + 05" +kix) .

In (3.4) £, g, h and k are arbitrary functions of x and primes denote differentiation

by x.
We use (3.1), (3.2) and (3.4) in (2.9)-(2.10), expand in power series about ¢ = 0
and equate coefficients of eo, e‘ and cz. This gives the following equations
Bof' + ny =0 (3.5)
Bon"’ + " =0 (3.6)
Bog' + Ny =3 N3+ 3 ByEttY - Bye (3.7
BNy + 9§ = -; gliv) o B,ng (3.8)

-6=

—
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X N R TS SN AL W R L AR T WS (3.9)
By + bv = -pnd + 3 glT) Lnn o LT s oy (3.10)
For (3.5) to have a nontrivial solution we must have
=1, (3.11)
We shall consider waves moving to the right and take
By~ 1. (3.12)
Then (3.5) implies
n =-£, (3.13)

0
We differentiate (3.7), add the result to (3.8) and use (3.12)-(3.13). Then it

follows for a nontrivial solution that
By =0, {3.14)

Using (3.12)~(3.74) in (3.7) gives

1

n, = -g' +-6-f"' . (3.15)

1
Next we use (3.12)~(3.15) in (3.9)~-(3.10), and after eliminating “2 and h we cbtain the

following equation for 4

1 (v)
- [ . .
2’2'\0 3n + 1.0 n

oMt TG M
Pinally we show that the Bernoulli constant B is the same as the Froude number ¥

=0 . (3.16)

to the order considered here. From (2.1), (2.6) and (2.11) we have

an
F=af ¢d . (3.17)

-1 x
Then using (3.1), (3.2) and (3.4) in (3.17) we £find that
’o - SO = 1' !'1 - B' - o, '2 - Bz . (3.18)
A similar perturbation calculation using (3.1) can be performed on the time dependent
water wave equation. This leads to
-V 3 2,, 1 at
2 - - - - - — -

2(qil) ‘t a:x a i::x + H (T 3“‘xxx a5 tm 0. (3.19)

Equation (3.19) reduces to (3.16) for travelling wave solutions ¥ = (X + ct).

In the next section we seek periodic solutions of (3.16) by a Stokes type expanaion.

-l




4. Periodic Waves Near T = 1/3

We seek 'a periodic solution of (3.16) in the form of an expansion in powers of the
wave amplitude. Therefore we write
ny = ‘"01 + aznoz + o(a3) ’ (4.1)
Fy= Fy + aFy + azrzz +o(ad) . (4.2)
Here a is a meagure of the wave amplitude, the precise meaning of it will become clear
laterx.
Next we substitute (4.1) and (4.2) into (3.16) and (3.18) and collect all terms of

like powers of a. Thus we obtain

1 (v)
1] 1988 o mm 3
Zoh * %1 " EE Ny "0 (4.3)
1 (v)
’ [ 23 . S 1 - 1 ] .
Z2%2* T1"%2 T35 o2 ~ 3011 T FMg ¢ (4.4)
The solutions of (4.3) and (4.4) are given by
“01 = cos Kx (4.5)
- 2 gyy - 64 451
ng, = ~3Kl16T X% - Bxr - S x5)71c0s 2xx (4.6)
‘l‘1K2 <
Pyo= 5+ % (4.7)
Py = 0. (4.8)

Here X = a/i' is the wavenumber. Relations (4.1) and (4.5) define a as the amplitude
of the fundamental in the Fourier series expansion of no(x).
The classical dispersion relation for linear water waves is given by (see Whitham

(1974), p. 403)

2,2
FT

1 '
From (2.11), (2.12) and (3.1) we have 2¥H/A = ¢ 72 2w/%. Subgtituting this result and

4%

r tanh(ZE)(1 + «

2
7). (4.9)
(3.2) into (4.9), and expanding for € small we find

F2

=1+ 2F 5,
where F,, is given by (4.7). Thus the solution of (3.16) overlaps the classical linear
solution, as the amplitude tends to zero.

The perturbation solution (4.5)-(4.8) is invalid when

2_ _8 4
Fog = 21'1K + o K (4.10)

4

o A Y 8o S M 1+ -8 D g M a1 = 1 3




because the coefficient of cos 2Xx in (4.6) is then unbounded. When (4.10) is satisfied,

the solution of (4.3) is given by

n01 = cos Kx + E.cos 2Kx (4.11)
2
T, K 4
1 X 2 8
Fu0 T to " K *tE . (4.12)

Here E, is a constant to be found as part of the solution. Substituting (4.11) into :

(4.4) we obtain

1 _(v) 3
. LI X . - - -
2?20102 + 11"02 a5 '102 (2!'211( 2 Klz)s:l.n Kx
3 -2 - 2
+ (4F KB, - 3 K)sin 2Kx 3 KE, sin 3Kx IK(E,)“sin 4Kx . (4.13)

The solutions of (4.13) are periodic and bounded if and only if the coefficients of

sin Kx and sin 2Xx in the right hand side of (4.13) vanish. Thus we have

82 = 3 — (4.14)
/2
Foy ™12 % - . (4.15)
/2
Substituting these results into (4.1) and (4.2) we obtain
-1
n, = a cos Xx £ a2~ /2 cos Xx + o(a?) , (4.16)
2
L % ¢ 4
L A . 3 ~5/2 2
Py = 2 + 20 + 3a2 + 0(a“) . (4.17)

Relations (4.16) and (4.17) show that two solutions exist when (4.10) is satisfied.
Similar properties were found by Wilton (1915), Pearson and Fife (1961), Schwartz and
vanden-Broeck (1979) and Chen and Saffman (1980) for waves in water of infinite depth and
by Nayfeh (1970) for waves of small amplitude in water of moderate depth. It is
interesting to note that the solutions (4.13), (4.14) given by Nayfeh (1970) converge to
(4.16) and (4.17) as the depth tends to zero. Thus Nayfeh's solution and the present long
wave calculation overlap.

A non-uniqueness analogous to the one described by (4.16) and (4.17) will occur in
general when waves of wavenumber K and nK travel with the same phase velocity, i.e.

when




T, K 4 n Ttk 4 4
1 K 1 n K
2 #90- 2 + 30 ° (4.18)
Here n is an arbitrary integer greater than one. The solution of (4.3) is then
"0 = cos Kx + B, Cos nkx . (4.19)
Yor nw 2, (4.18) and (4.19) reduce to (4.11) and (4.12),
Relation (4.18) can be rewritten as
451t
.- —L (4.20)
1+n

It follows from (3.2), (3.14) and (4.20) that this non-uniqueness can only occur for
T < 1/3.

Numerical values of F, for a = 0.01 and K = 1 obtained by integrating (3.16)
numerically are shown in Figure 1. The broken line corresponds to the solution (4.7),
(4.8) and the two crosses to the solutions (4.17). These results indicate that the two
solutions (4.17) are members of two different families of solutions.

Other numerical solutions of (3.16) will be discussed in Section 7.
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5. Reformulation as an Integro-differential Equation

It is convenient to reformulate the problem as an integro-differential equation by
considering the complex velocity u - iv. Here u and v are the horizontal and vertical
components of the velocity respectively. The variables are made dimensionless by using
H as the unit length and C as the unit velocity. We choose the complex potential

£=¢+ 1y (5.1)
as the independent variable.

In order to satisfy the boundary condition (2.8) on the bottom ¢ = -1, we reflect
the flow in the boundary % = -1. Thus we seek x + iy and u - iv as analytic functions
of £ in the strip =-2¢ p ¢ 0,

Next we define the dimensionless wavelength & = A/H and introduce the change of
variables

£= ¢+ 10 = -1 3% logp (5.2)
where
p= reie . (5.3)

Relationa (5.2) and (5.3) map the bottom ¥ = -1, the free surface ¥ = 0 and its image
2%

¥ = -2, respectively, onto the circles r = Ip = e ", r=1 and r = rg.

The values of the real and imaginary parts of the function G(p) = u - iv -~ 1 on the
2

free surface r = 1 and its image r = ry are related by the identities
ulé) = 1 + Rnl(G(eie)} -1+ Rul{G(r:e“)} . (5.4)
v(4) = -m{c(e'®)} = mic(z2e!®)} (5.5)
where
2
¢ - = 9. (5.6)

The functions u(¢) and v(¢) in (5.4) and (5.5) are the horizontal and vertical
components of the velocity on the free surface ¢ = 0.

In order to find a relation between u and v we apply Cauchy's theorem to the
function G(p) in the annulus rg < |pl € 1. Using the relations (5.4)-(5.6) and

exploiting the bilateral symmetry of the wave about 6 = 0 we find after some algebra

-12-
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/2

wo) -~ 1=-2/" [us) - 1)as :
0

1 M2 » )
*3: f v(s)[cotg ¢ (s - 8) + cotg 1 (s + 0))ds
[}
rt/2 [u(s) = 1)(z2 ~ cos 2% (s - 9)] + v(s)ain 2% (s - 6)
2 _2 ] £ [3
+1 7% i yy 3% as (5.7)
0 1+r°-2r°¢0l'7(l-0)
2 2 JV/2 lu(e) - 11rl - cos Z (s + 0] + v(m)ain % (s + 8)
+ 212 ] ds .
Loy 1458 - 2208 B (s + 0)
0 0 ]
The third integral in (5.7) is of Cauchy principal value form.
The surface condition (2.10) can now be rewritten as
1_2 2. 1.2 2 ¢ v(s)
2 F e+ S pven® + J 3 3 ds
0 (u(s)]™ + [v(s)]
-y LY - vielut(e) | 3 p2py0))2 - ZLLO) (5.8)

2 u(0) °

"

{2+ v 72

In the remaining part of the paper we shall choose coordinates ;,; with the origin
at a crest or a trough of the wave. The shape of the free surface is then defined

parameterically by the relations

~ ¢ -

9 = [ we{taeN?+ vz s , (5.9)
V]

~ ¢ 2 2,-1

i) = [ wis){(us)]® + [v(s)1°} 'as . (5.10)
0

Finally we impose the periodicity condition
x(2/2) = /2 . (5.11)

We shall measure the amplitude of the wave by the parameter

“o = u(0) . (5;'2)




For given vslues of T, u; and 2, (5.7)-(5.12) define a system of integro~
differential equations for u(¢), v(§), x(¢), y(¢) and P,
The equations for solitary waves are obtained by taking the limit £ + & in (S5,7).

This leads after some algebra to

(s - O)vis) + 2[uis)

) ~U
(s =-0)" + 4

-» -
1 1 1 1
o) -1 =g veliTg e gagle e g

[ ]
+;1! (s ¢+ 8)v(s) + 2[{u(s) - 1) as .

2 {5.13)
0 (s + 8)° + &

In the next section we wescribe a numerical scheme to solve these equations.

-14-
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6. MNumerical procedure

(a) Periodic waves

To solve the system (5.7)-(5.12) we introduce the N mesh points
2(X - 1

.I TR I= 1,000,N. (6.1)

We also define the corresponding quantities
u = u(OI), I= 1,e0e,N, {(6.2)
vy = '“I)' I = 1,400,N¢ (6.3)

It follows from symmetry that Vy= %" 0, soonly N~ 2 of the vy are unknown. In

addition from (5.12) we have uy = up so only N = 1 of the u; are unknown. We shall

also use the N - 1 midpoints .I+ 1/2 given by
1
’1’1/2 3 (01 + .Iﬂ)' I 1,000, =1, (6.6)

We evaluate uy, Y, = uld,, ,/2), Vis V" vie,, 1/2). us v, = u'ie, '/2). and
Vie 1/2 = y! (0I - 1/2) by four points interpolation and difference formulas.

We now discretize (5.7) by applying the trapezoidal rule to the integrals on the
right-hand side with g = ’I' I=1,.00,N, and 0 = ’I+ Vz' I=1, N~ 1. The symmetry of
the quadrature formula and of the discretization enables us to evaluate the Cauchy
principal value integral as if it were an ordinary integral. 1In this way we obtain
N - 1 algebraic equations.

Next we substitute into (5.8) the expressions for u;, 1/2, Vie Yy ur, Y, and vy, A

at the points ¢ I= 2,000,N = 1. The integral in (5.8) is evaluated by the

=+ Y
trapezoidal rule with the mesh points s = .I' The derivative v'(0) in (5.8) is
approximated by a four points difference formula. Thus we obtain another N - 2 algebraic
equations.

For given values of T, uy and L we have therefore 2N - 3 algebraic equations for
the 28 - 2 wunknowns uy, vy and F. The last equation is obtained by discretizing
(5.11),

The 2N -~ 2 equations are solved by Newton's method. After a solution converges for

given values of T, u, and £, the surface profile ;(0). ;(0) is obtained by applying

the trapezoidal rule to (5.9) and (5.10),
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For each calculation presented in Section 7 the number of mesh points N was
progressively increased up to a value for which the results were independent of W within
graphical accuracy. Most of the computations were performed with N = 60. A few runs were
performed with N = 100 as a check on the accuracy of the computations.

In the remaining part of the paper we shall refer to the above numerical scheme for
periodic waves as numerical scheme I.

(b) Solitary waves
To solve the system (5.8)-(5.13) we introduce the N mesh points
‘I = B(x - 1), I= 1,000,M.

Here E is the interval of discretization.

The quantities Uy, Vps OH 1/2, Ure 1/2 and V14 1/2 are defined as in the previous

subsection. It follows from symmetry that vy = 0. 1In addition uy = u, 8o that only
2l -2 of the u; and v; are unknown.

The discretization of (5.13) is entirely analogous to the procedure used to discretize
(S.7). In this way we obtain N - 1 algebraic equations. The truncation error due to
approximating the infinite integrals by integrals over a finite range, was found to be
negligible for NE sufficiently large. As shown in the previous subsection, the
discretization of (5.8) leads to another N - 2 algebraic equations.

Thus, for given values of T, u, and 2 we have 2N - 3 algebraic equations for
the 2N - 1 unknowns uy, vp and P. The last two equations are obtained by imposing
Uy - 1 and " 0.

We shall refer to this numerical scheme as numerical scheme II.




7. Discussion of the Results

(a) Depression solitary waves

Numerical scheme II was used to compute depression solitary waves for given values of
T and uj. In the first calculation, the Newton iterations were started with the
asymptotic solution (2.19) as the initial guess. Por ug close to one, the iterations
converged rapidly. Once a solution vas obtained it was used as the initial guess for the
next calculation with a slightly different value of T or ug. The curve a in Figure 2
shows a typical profile for Tt = 0.7 and ug = 3.0.

The asymptotic solution (2.19) can be rewritten in terms of the variables used in the

numerical scheme as

~ 2 3A Va,
y = A[sech [m] x-1], (7.1)
PP=1+a. (7.2)

The curve b in Figure 2 corresponds to the profile (7.1) in which the amplitude A is
equal to the amplitude of the numerical solution. Xor 1 < uy < 1.03 the numerical
results and the asymptotic formula (7.1) were found to be indistinguishable to graphical
accuracy.

In Table 1t we compare numerical values of F with the approximation (7.2) for various
values of u, and T = 0.4, and 0.7.

As u; increases for a given valug of T > l, the wave profile becomes steeper and
the distance between the trough and the bottom decreases. PFor T > —; this distance tends
to zero as u, * ®. The corresponding Froude number tends to zero and the profile
approaches a static limiting configuration in which gravity is balanced by surface

tension. Then (2.10) reduces to a differential equation for the free surface:
=3/2

2
n=-m_(1+n) 1. (7.3)
The boundary conditions for (7.3) are
no) = 0 (7.4)
n(e) =1, (7.5)
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TABLR 1 .

F T = 0,4 T=0.7
ug numerical xav numerical xav
1.0 1.0 1.0 1.0 1.0
1.03 0,986 0.986 0.986 0.985
1.5 0.844 0.850 0.832 0.831
2.0 0.756 0.764 0.734 0.734
4.0 0.578 0.590 0.541 0.542
10.0 0.396 0.407 0.355 0.355
20.0 0.291 0.301 0.255 0.253
1 50.0 0.190 0,195 0.163 0.152
100.0 0.136 0.137 0.116 0.081

Table 1: Values of the Proude number for depression solitary
waves for T = 0.4 and T = 0.7, and various

values of uge Numerical values were computed by

y scheme 1I, and the KAV values found from (7.2) with
[ . A taken equal to the amplitude of the numerical
solution.
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W

Multiplying (7.3) by "x and integrating with respect to x yields

2 -1/2
Tet(1end)  ensrad. (7.6)

2
The valus of the constant of integration in (7.6) was evaluated by using (7.5).
Integrating (7.6) gives a formula for the shape of the free surface, namely

n 2 -2 -’/2
x=f [Phsr-1-L) -] “an. (7.7)
0

2 2
The curve ¢ in Pigqure 2 represents the profile (7.7) for T = 0.7.

We denote by tan ¢ the slope of the profile (7.7) at the trough x = 0. Then (7.4)

and (7.6) yield

conc-1-%;. (7.8)
Relation (7.8) implies that the present limiting configuration is only possible for
T > /2,

Por T < 1/2, the numerical computations indicate that the wave ultimately reaches a
critical configuration with a trapped bubble at the trough. This critical configuration is
shown in Figure 3 for T = 0.4. Similar limiting configurationa were obtained previously
by Crapper (1957), Schwartz and Vanden-Broeck (1979) and Vanden~Broeck and Keller (1980).
Waves for larger values of u; could be obtained by allowiong the pressure in the trapped
bubble to be different from the atmospheric pressure (Vanden-Broeck and Keller (1980)).

Numerical scheme II was used to compute depression solitary waves for Tt < 1/3., 1In
Figure 4 we present solutions for uy - 1.03 and various values of T. As T decreases
the profiles develop a large number of inflexion points. We were unable to compute
solutions for uy = 1.03 and T < 0.21! Dbecause too many mesh points were required.

In Figure 5 we compare the numerical solution of the exact nonlinear equations with
the profile obtained by numerically integrating (3.16). We found that the two solutions
becosme identical within graphical accuracy in the limit as 7t + 1/3 and uy *+ 1 with the
ratio (uy - ¥)(t - 1/3)"2 constant. This constitutes an important check on the

consistency of our results.
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(b) Blevation solitary waves

In preliminary computations we attempted to calculate solitary waves for T < 1/3 by
using numerical scheme II. The iterations converged rapidly. However, the profiles were
not independent of N and E and they did not appear to approach a limiting profile as
NE +® and E + 0. PFurthermore at large x the profiles oacillated with finite amplitude
about the undisturbed level instead of approaching a uniform stream.

On the other hand we were able to compute periodic waves of large wavelength £ for
T < 1/3, by using numerical scheme I. A large number of dimples are present on these
profiles (see Figure 6). We found many different families of periocdic waves. This non-
uniqueness agrees with the perturbation calculation of Section 4. Waves in different
families are characterized by the number of dimples in a wavelength. In Figure 7 we plot
the Froude number versus wavelength for 3 such families, when T = 0.24. Curve a
corresponds to 14 dimples, curve b to 15 dimples, and curve ¢ to 16 dimplea. Graphs of
representive members of each of these families are presented in Figure 6.

A8 can be seen from Figure 7 each family only exiats for a limited range of

wavelengths. In particular there is a maximum value of the wavelength beyond which
solutions in a given family cease to exist. Therefore, a solitary wave cannot be obtained
as a limit of solutions belonging to a single family.

In conclusion all our attempts to find elevation solitary with surface tension by
either numerical scheme I or II failed. Mathematically the question of the existence of

these elevation waves remain open.
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