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SECTION 1

INTRODUCTION AND SUMMARY

The success of extrinsic Si monolithic focal plane arrays, in which
a single chip of Si material incorporates both a high density of IR-
sensitive detectors and the associated signal-processing circuitry,
depends on the availability of Si material with sufficiently uniform IR
responsivity. 1In contrast to detector arrays assembled from discrete
components, there is no possibility of selecting or adjusting individual
detector elements; uniformity must be built into the extrinsic Si sub-
strate material at the wafer stage of processing. There is a limited
possibility of compensating for nonuniformities by off-plane processing,
but this is feasible only to the extent that the nonuniformities are
small to begin with.

A precise specification of the required degree of uniformity is not
yet available, but it is clear that improvements in the state of the art
are desirable. The objective of the work reported here was to carry out
crystal growth and doping operations in ways that would result in the
most nearly uniform distribution of the significant impurities. The
emphasis was on Ga-doped Si. 1In Si:Ga detectors, the Ga concentration
affects responsivity through the quantum efficiency; since the detector
elements are likely to be fairly thick (say 0.5 mm) along the light path,
nonuniformities in Ga concentration on a smaller spatial scale may aver-
age out. The concentrations of compensating donors (mostly P) and of B
influence the responsivity through their effect on the photoconductive
lifetime and hence the photoconductive gain. In the usual operating re-
gime of Si:Ga detectors, the responsivity is proportional to (Np - NB)'I.
To achieve the operating temperature appropriate to Ga-doped Si rather
than the much lower temperature necessary for B-dominated material, Np
must exceed Ny. However, the amount by which Np exceeds Ny should be
small enough to provide a high responsivity without being so small that

the nonuniformities of P and B separately are large compared to the

13
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difference between their concentrations. Unfortunately, the best

present-day technology for Si results in an irreducible residual concen-
tration of B. Although this concentration is small, it constitutes a
lower limit for the P concentration.

Like B, P is present in the high-purity polycrystalline Si that is
the starting material for high-quality Si crystal growth. It differs
from B, however, in that it can be removed by . succession of vacuum
float zone operations, so that a crystal can be prepared that is essen-
tially free of P. By means of neutron transmutation doping (NID), an
inherently uniform and precise doping method, P can be reintroduced into
the crystal after the final growth step. We have verified on this con-
tract that the distribution of B as a result of growth is quite uniform,
so that NP - NB can also be uniform. Our strategy, therefore, has been
to explore modifications in the growth process to make the Ga distribu-
tion as uniform as possible. Our proposed process is to remove P from
low-B polycrystalline silicon by successive vacuum zoning, add Ga in a
final doping zone pass with growth parameters chosen for optimum Ga uni-
formity, and add P uniformly by NID with a dose chosen to achieve a
specified value of NP - NB in the final material.

During the first year of the program, we emphasized the study of
the effect of float zone growth parameter variations on dopant distribu-
tion. Four Z- n.-diameter crystals, th.ee Ga dopéd and one B doped,
were grown in the <100>direction. In two of the Ga-doped crystals,
Z2108Ga and Z118Ga, various combinations of growth and rotation rates
were tried to examine their effects on the radial Ga distribution.
Crystal Z144B is a B-doped crystal grown to assess the uniformity of B
distribution. This is important from the standpoint of achieving a low

and uniform value of NP - N Crystal 2095Ga is a Ga-doped crystal

B
grown with a cooling ring placed near the growth interface to see if
the thermal profile at the interface can be altered sufficiently to
improve the uniformity. The uniformity on a microscopic scale was

assessed by measuring the spreading resistance across the sample in the

14
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radial direction with a Mazur ASR-210 Automatic Spreading Resistance
Probe in the single- and double-probe modes. The two-probe mode was
used so that the spreading resistances of two contact points separated
by a distance of 400 um could be measured across the sample. Resistiv-
ities of the sample at 5-mm intervals were also measured by the four-
point-probe method to give an indication of average doping over a large
interval. The results of the measurements made indicate that spatial
fluctuations in Ga concentration can be significantly reduced by the
proper choice of growth and rotation rates. However, those conditions
leading to reduced Ga fluctuations (i.e., a high rotation rate and a low
growth rate) are also those under which it is very difficult to maintain
single-crystal growth. 1In the second year of this program, continued
growth studies provided us with a better understanding of the segrega-
tion theory and the more detailed nature of the complex interface struc-
ture. Although other parameters, such as eccentric rotation and coil
design, might have been studied, we believed that continued exploration
of the effects of the growth rate and rotation rate of the crystal would
be the most rewarding.

In crystal Z180Ga, we tried still slower growth rates (pull rates)
and faster rotation rates, conditions that should yield better uniform-
ity according to the segregation theory. In crystal Z179Ga, we examined
the theory by exploring the other extreme by maximizing the growth rate
and minimizing the crystal rotation rate. The complex morphological
feature which disrupts rotation striations in a feathering pattern was
also examined. We also carried out thermal diffusion experiments and
showed that uniformity can be further implemented by the post-growth
annealing process. Using the growth processes developed in this program
we have subsequently grown several Si:Ga crystals of very high doping
uniformity. Results are given for two of these in Section 4. This pro-
gram has established a lower limit in our equipment of about 3 mm/min

for the growth of dislocation-free crystals.
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During this program, data on the optical absorption cross section
of Ga in Si appeared in the literature. Because those data were at vari-
ance with long-accepted values, we made independent measurements of the
cross section for samples with Ga concentrations suitable for IR detec-
tors. These new measurements are in good agreement with those that have
long been used for detector design and analysis. We estimate that these
measurements are accurate to within *15%.

Just before the close of the crystal growth experiments, an oppor-
tunity arose to examine both the material properties and detector per-
formance for several Si:Ga crystals which had been grown and processed
for FTD/LADIR-type applications. The contract was extended so that
comparisons could be made between theory and FPA behavior. The results
were most encouraging and showed that the longitudinal detector model
of Baron and Szmulowicz predicts quantum efficiency and detectivity very
well for typical FLIR conditions. At high Ga concentrations, evidence
of impurity band conduction was observed; this conduction mechanism is
being studied further in an on-going program with the Materials Laboratory.

To furnish additional background on three technical issues of key
importance to extrinsic silicon detector arrays, we have included three
appendices. Appendix A describes the float-zone crystal growth process
and briefly discusses the factors that control the uniformity of the
gallium concentration in a doped single crystal of Si:Ga. Appendix B
presents information obtained prior to this program which shows the ben-
eficial effects of counterdoping by neutron transmutation as mentioned
above. Appendix C contains some experimental observations of impurity

band conduction in Si:Ga.
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SECTION 2

TECHNICAL RESULTS

A. SEGREGATION THEORY

Compusitional striations result mainly from microscopic growth rate

fluctuations arising from the rotation of the crystal in an asymmetric
thermal field. The growing crystal interface experiences accelerating
and decelerating growth rate fluctuations as it rotates in an asymmetric
thermal field. The solute in the diffusion boundary layer responds to

such variations in the instantaneous microscopic growth rate and segre-

r.vw—u—, =

gates in phase with the rotation to give rise to compositional varia-

tions in the crystal.

T

The solute distributes itself between the crystal and the melt
@ according to the thermodynamically determined coefficient — the equilib-

rium distribution coefficient k. For a solute having k < 1, the solute

(3 ann amn 4

accumulates in the boundary layer as it is rejected from the crystal. A
concentration gradient, therefore, is established in the diffusion

boundary layer, whose slope is determined by the net rate of accumula-

T P~

tion and depletion of solute in the boundary layer. The depletion rate
of solute is determined by the rate at which solute is diffused through
E the boundary layer to the bulk melt, where it is transported away by

z convection currents. Clearly then, the steady-state segregation behav-
ior of solute depends on the microscopic growth rate and the thickness

of the diffusion boundary layer.

Gl

Superimposed on the complex distribution of solute in a striated
pattern is the less periodic and more random distribution of solute
arising from the temporal (transient) and spatial variations in the

thermal convection flows. The amplitudes of compositional variations

TTTYRYTrTeY

arising from transient convection flows are less pronounced than that

P from the rotation of the brystal and appear as higher harmonic oscilla-
tions on the periodically varying spreading resistance fluctuations.
Crystals are grown under forced convections to minimize the effect from

the transient convection flows.
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The distribution of solute between the solid and the diffusion
boundary layer at the crystal liquid boundary is determined by the equi-
librium distribution coefficient k, which differs from the effective
distribution coefficient ke. The effective distribution coefficient is
more commonly used because it is the ratio between two measurable quan-
tities: the concentration in the solid over that in the bulk melt.
Burton, Prim, and Slichter (BPS)1 derived the well-known expression from
the diffusion equations for the effective distribution coefficient ke

under a steady-state condition:

k
e ~ k+ (1-k)exp(-R&/D) °’ 1)

where R is the microscopic growth rate, § is the thickness of the inter-
facial diffusion boundary layer, and D is the diffusion coefficient of
solute in the melt. Using the above expression, ke can be calculated
knowing the microscopic growth rate and the thickness of the boundary
layer.

The thickness of the diffusion boundary layer can be estimated from

the Cochran2 analysis:

s = 1.6p/3,1/6,1/2

s (2)
where v is the kinematic viscosity, and w is the angular rotation rate
in radians per second. The expression was derived by Cochran for an
infinite disk rotating in an isothermal liquid with no convections or
edge effects. Under actual growth conditions, the thickness tends to be

smaller due to thermal convection flows and edge effects.

1J.A. Burton, R.C. Prim, and W.P. Slichter, J. Chem. Phys. 21 1987

(1953)

2u.G. Cochran, Proc. Cambridge Phil. Soc. 30, 365 (1934)
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Another expression which may better describe the compositional

variations, AC/C, with growth rate variations for float-zone growth was

derived3’4 for high~frequency growth rate fluctuations (w >> D/éz):

AC/C
AR/R

R&/D

2

(1-k) 1
(2ws“/D)

77 (3)

The above expression may be more applicable to float-zone growth for the
ranges in which we can vary the growth rate and rotation rate. Figure 1
shows compositional variations with growth rate fluctuations as a func-
tion of rotation rate in rpm for the three microscopic growth rates. It
shows that, to minimize the compositional variations with growth rate
fluctuations, the growth rate must be minimized and the rotation rate
maximized. Our approach to achieving compositional uniformity will be
directed toward finding the optimum combination of growth rate and rota-
tion rate.

Since no attempts were made to determine the microscopic growth
rate by the interface demarcation technique, either by the Peltier
effect5 or vibrations,6 the term growth rate used throughout this report
refers to the pull rate of the crystal and not to the instantaneous

microscopic growth rate unless it is so indicated.

3D.T.J. Hurle and E. Jakeman, J. Cryst. Growth 5, 227 (1969)

aJ.R. Carruthers and A.F. Witt, "Transient Segregation Effects in
Czochralski Growth," BTL Tech. Memo. TM 74-1522-6 (1974)

5

A.F. Witt and H.C. Gatos, J. Electrochem. Soc. (1968)

115
6A.F. Witt and H.C. Gatos, J. Electrochem. Soc. 119, 1218 (1972)
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B. GROWTH AND ROTATION RATE SURVEY

Crystal Z108Ga was grown to study the effect of growth rate and
rotation rate on the segregation of Ga and the role these rates play in
determining the shape of the solid-liquid interface. The following com-

binations of growth rate and rotation rate were used.

Section 1 2 3 4 5

Growth rate, mm/min | 4 4 4 2 3

Rotation rate, rpm 6 8 3 3 3

Figure 2 shows the crystal after etching with a striation etch to reveal
the shape of the interface. The crystal was cut where the parameters
were changed, and evaluation wafers were sliced from the other half of
the sectioned crystal. The first combination, a growth rate of 4 mm/min
and a rotation rate of 6 rpm, was what we normally used to grow Ga-doped
crystals. Striations start to appear where Ga was initially embedded in
the polycrystalline Si charge. The shape of the striation shows that
the interface is convex toward the growing crystal at this setting.

In the next section, where the rotation rate was increased to 8 rpm
while the growth rate was kept at 4 mm/min, the core of the crystal
moves further into the melt, forming a flatter interface. The iistance
between striations decreases because of the increased rotation rate.

The third section was grown by decreasing the rotation rate to
3 rpm while keeping the growth rate constant at 4 mm/min. As the rota-
tion decreased, the downward velocity component of the convection flow
increased to raise the temperature at the center of the crystal. The
result is a very pronounced convex profile toward the crystal.

In the last two sections, the growth rate was decreased to 2 mm/min
and 3 mm/min. The resulting flattening of the interface appeared
clearly although not enough time was allowed to reach a steady state.

Spreading resistance measurements were made on these sections in

the radial direction. Figure 3 shows the microscopic fluctuation in
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resistance for the three sections grown at 4 mm/min. The maximum
resistance minus the minimum resistance divided by the minimum resis-~
tance times 100 in each 800-um interval along the radial direction is
plotted on the ordinate and the radial distance is plotted on the
abscissa in normalized increments of 800 um width. The traverse in this
and following figures is made across a diameter of the wafer.

Comparing the three sections in Figure 3, the uniformity of Ga dis-
tribution is clearly worst for the case where the crystal was grown with
a 6 rpm rotation ("normal" condition). Comparing the two cases where
the crystal was rotated at 8 rpm and 3 rpm, the faster rotation appears
to be better. The measurements do indicate, however, that the result is
not in agreement with the predictions from the segregation theory or
with the shape of the interface, as discussed later. Ambiguity may
arise from the two-point-probe spreading resistance measurement, which
gives the total value of the two spots separated by the probe separation
of 400 um. Single probe measurements were made and the results are
discussed in Section 3.

Figure 4 shows the uniformity in the last two sections of the crys-
tal where the rotation rate was kept constant at 3 rpm, but the growth
rate was reduced to 2 mm/min and 3 mm/min. We were unable to make a
complete scan across the wafer because the crystal cracked (during cut-
ting) in the fourth section, where the growth rate was 2 mm/min. The
figure shows that the uniformity is considerably better for the 3 mm/min
growth rate. It appears, however, that the time allowed to reach a steady
state was not sufficient to yileld a fair assesswent of the effect of the
slowest growth rate. The uniformity of the last section, grown at
3 mm/min with 3 rpm rotation, appears comparable to that of section two,
which was grown at 4 mm/min and 8 rpm rotation. In Figure 5, the aver-
age values of the concentration of Ga in 800-um intervals determined by
the spreading resistance measurements (Figures 5(a) and (b)) are plotted
together with the values obtained by the four-point probe measurements

(Figures 5(c) and (d)). This averaging over 800-um intervals provides a
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scale intermediate between that of the direct spreading resistance
measurements and that of the four-point probe. The absolute values of
concentration do not agree with the four-point probe values because of
our use of an uncorrected calibration curve to convert spreading resis-
tance to concentration. Since our interest lay in assessing the fluctu-
ations within a wafer, we did not recalibrate after each run.

The mean values,'i, and the associated standard deviations, o,

taken from Figures 3 and 4, are tabulated below.

Section

2108 | 1 2 3 4 5
X 53 36 34 46 31
g 28 14 22 24 13

The fluctuations in the average concentration are considerably less in
the second and fifth sections, where the rotation rate was increased or
the growth rate was decreased from the normal values used in section 1.
As seen in Figures 5(a) and (b), the lower concentration of Ga near the
periphery that usually occurs arises mainly from the thinner interfacial
layer, which results from the higher tangential and radial velocities of
convection flows. The mean concentrations from the spreading resistance

measurements and the associated standard deviations are tabulated below.

Section
Z108Ga 1 2 3 42 5
N, <101, n3 1.4 2.4 2.6 0.79 1.3
a
o x 10718, cp3 0.58 0.39 0.88 0.30 0.25
aOnly 1/2 wafer was available for analysis.
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Following the growth and preliminary evaluation of Z108Ga, we grew
a series of crystals as part of our investigations of the various growth
parameters controlling the microscopic fluctuations in Ga concentration.
For the convenience of the reader, we have summarized these crystals in
Table 1 in chronological order and listed the primary purpose for which
they were grown. Detailed discussions of the significant results from

these crystals constitute the bulk of this report.

Table 1. Crystals Grown for the LADIR Materials Program

e

Z108Ga Initial survey of growth parameters

Z118Ga Enhanced rotation rate studies

21448 'Uniformity of boron distribution

Z145B }

2095Ga Cooling ring study

Z050Ga Growth at 2 mm/min; crystal twinned

Z179Ga Enhanced effective distribution coefficient

Z2180Ga Low growth and high rotation rates

Z196Ga Growth at 2 mm/min; crystal twinned

2203Ga Verify Ga doping levels; crystal twinned

2204Ga For FPA wafers at 2.5 mm/min and 10 rpm

Z2205Ga For FPA wafers at 2.5 mm/min and 10 rpm

Z206Ga For FPA wafers at 2.5 mm/min and 10 rpm;
successful
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C. ENHANCED ROTATION AT FIXED GROWTH RATE

The effect of rotation rate and growth rate as predicted by the
segregation theory was further investigated. Crystal Z118Ga was grown

at the maximum rotation rate and at the slowest growth rate possible for

that rotation rate. The growth rate was kept constant at 4 mm/min while
the rotation rate was increased from 8 rpm to 13 rpm.

Figure 6 is a photograph of this crystal after it had been cut lon-
gitudinally and striation etched. The transition to 13 rpm is clearly
visible by the more closely spaced striations and the bulging at the
core of the crystal.

Figure 7 shows the spreading resistance in the radial direction of
the two sections in which 8 rpm and 13 rpm rotation rates were used.

The correlation between the etched pattern and the spreading resistance
scan is shown in Figure 8. Large amplitude fluctuations toward the
edges of the wafer correlate with the two probes intersecting the rota-
tional striations. At the core of the wafer, where the interface is
flat and almost perpendicular to the growth axis, the spreading resis-
tance profile shows fewer fluctuatioms.

Figure 9 shows the microscopic fluctuations in the 800-um segments
along the radial direction. MNoticeable improvement is seen in the cen-
tral core region in the part of the crystal rotated at 13 rpm. Although
the mean value of the fluctuations across the diameter is the same, the
13 rpm part appears to have a smaller standard deviation in the central
region, as can be seen in Figure 7. The following tabulation shows the

values averaged across the entire diameter.

32




NS SN R )

-

M12843

- -
1

B

-

i 13 rpm 8 rpm
3

i,

T Y

e

Figure 6. Cross section of Z118Ga etched to show Ga concen-
tration striations at two rotation rates. Growth
rate was 4 mm/min,
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