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SUMMARY
an This report presents wechanical test data for two tendons and two

ligaments of the lower limb in three primate species. The research is
being conducted in order to gain insight into the mechanism of extremity
injuries encountered during egress fram high performance aircraft.

Both the ligaments and tendons exhibit viscoelastic effects over both
short and long range test programs. These viscoelastic effects may be
correlated with the percent of elastin in the tissues and show variations
between species. The mechanical properties of the medial collateral and
patellar ligaments of the knee and the flexor hallucis longus and tendo-
calcaneus tendons of the ankle of the rhesus monkey, baboon, and chimpanzee
are presented and specific parameters are determined to be used in the
development of mathematical models. These models will serve as the basis

- for haman injury studies.
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Mechanical Properties of Lower Limb Tendons and Ligaments in Primates
INTRODUCTION

The transmission of force and the control of motion in the skeletal
system are influenced by the mechanical properties of ligaments and ten-
dons. Tendons are mostly collagenous connective tissue and connect muscle
to bone. Ligaments provide bone to bone connections and are composed of
both collagen and elastin. Because of their importance to the understan-
ding of body mechanics, these tissues have been the subject of many investi-
gations. In 1965, D.H. Elliot (2) published a camprehensive survey of the
literature on the structure and function of mammalian tendon. He described
tendon as consisting almost entirely of collagenous tissue (80% of dry
weight) with the collagen fibers in parallel wavy bundles. Elastic fibers
are more prevalent in ligaments and the collagen fibers are much less
aligned than in tendons. This fiber composition and structure greatly
influence the mechanical response of these soft connective tissues.

The viscoelastic nature of biological tissue has been considered in
detail during the last two decades. As long as the strain did not exceed
approximately 4% for strain rates between 1-20%/minute, Rigby et al.(8)
found that the rat-tail tendon‘s mechanical behavior was reproducible, or
reversible, if the tendon was allowed to rest a few minutes after each elon-
gation. Partingon and Wood (7) in 1963 showed that the stress-strain
properties of rat-tail tendon fibers were reversible up to 2% strain. If
fibers were stretched more than 3%, the mechanical behavior was irreversi-
ble, and the fibers did not return to their original length when released.

In the reversible region, tendons and ligaments exhibit a non-linear
behavior. A typical stress-strain curve is shown in Figure 1, and can be
divided into three ranges. In Region I, it is felt that the response is
linear due to the elastin fibers resisting extension, and the wavy colla-
gen fibers straightening. The secondary range, Region II, shows gradually
increasing slope due to the loading of the collagen fibers. In the works
of Rigby et al.(8) in 1959, Millington et al.(5) in 1971, and Diamant et
al. (1) in 1972, it was concluded that Region III exhibited a high, con-
sti:ant slope as all straightened collagen fibers resisted “urther exten-
sion.

Rigby et a7. (8) computed an average maximum slope from the, stress-
styain curves for wet rat-tail tendon to be 8.0 + 2.0 x 10 dynes/
cm~ (800 + 200 MPa) at a strain rate of 10%/min. They also noticed
that strains up to 20% could be reached without collagen fiber bundles
breaking if the strain rate was sufficiently slow, less than 1%/min. When
strain rate was increased, the stress-strain curves appeared to be identi-
cal, but shifted toward the stress axis. Elliott (2) in 1965 measured the
mechanical tensile strength of certain tendons from different mammalian
species, w1§h the human tendo-calcaneus tendon having a tensile strength of
4.7 kg/mm“ (0.48 MPa). Minns ¢t aql. (6), in 1973, observed complete
elastic recovery in human Achilles tendon specimens that were loaded up to
2% strain, and gave values for the failure stress for certain tendons and
ligaments., The fensile strength of human Achilles tendon was given as
4950-8000 ]i)e/in (1.73-2,79 MPa); while the tensile strength was 200-

2500 1lbs/in“ (0,07-0.87 MPa) for the ligamentum nuchae from an adult cow.
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i . viidik (lz)zin 1980 reported a higher ultimate strength for tendons of
e 50-100 N/m" (50100 MPa) with an ultimate strain in the range of 15-30%.

&y

iy - Biological materials exhibit viscoelastic behavior i.n any time-depen-
mmtgummmtm:mwmsmﬂummu
. 8  different conmstant strain rates, the hysteresis under cyclic loading, the

A emlic stress relawation, and the stress relaxation under constant strain.
1972, Pung (3) noted that the hysteresis loops of canine artery
e dwmududthmwweﬂimwclestoas&dyat&teafteramof
s : cycles. Totp et al. (11) in 1974 recorded decreases in hysteresis loop
: mamﬂwdmmstressunﬂercyeucstruintoamtmtwdmstninof
- 2% for rat-tail tendon, They also showed that the decay in waximmm stress
by versus the log of the number of cycles was almost a linearly decreasing
S function similar to streéss relaxation at constant strain.

£ o m:esearchersteteteneednseﬂdiffemtmﬂndsoftestmgmdm
R mdysis, lmt all found that tendons and ligaments exhibited viscoelastic
" , be defined from sms-strain curves, hysteresis,
e wlic a relmmtim dm With tlnse arameters a mathematical model
-t could be develope : ’Rnis mr will pment the

EOTIMATED PERCENT OF ELASTIN
Plexor Hallucis Longus Tendon 5-108 5% s
‘ | 208 308 5-10%

- Mdial Collateral Ligament 25-308  25-308  25-308
N Patellar Ligmmnt o + 25-30% 10-15%
# valus was estimated since sasples used for testing were so small that

\ once histological preparations were made for determining ligamsnt cross-
o ssction, insufficient msterial was available for longitudinal ssctions.




Preliminary testing was used for grip design refinement and the confir-
mation of the general viscoelastic nature of the tissues. This testing
showed that the tissues exhibited a typical soft tissue load-extension
response with increasing stiffness at low elongations and an apparent
linear region at higher elongation. Each tissue was ramped slowly to the
point where the load deflection response was in the linear region,and this
maximum extension established the maximum strain, E*. Initial testing was
used to establish the following protocol for examination of the response to
successive extensions, the relaxation of load, and t:2 load response to
haversine extensions at various frequencies.

A. Preconditioning

1) Thaw test sample, wet with normal saline.

2) Mount sample and tighten grips.

3) Ramp slowly to establish a strain level E* well into linear
region III, which will be the maximum non-destructive strain.

4) Hold at E* for 2 minutes and tighten grips.

5) Unload and wait 10 minutes.

6) Ten constant rate cycles of 1% per second to E*.

7) Wait 5 minutes.

8) Determine initial unloaded length .

9) Three tests to E* at 1% per second with 5 minute wait after each
test,

B. Constant Strain Rate Loading and Unloading

1) One test at 100% per second to E* followed by 5 minute wait.

2) One test at 1% per second to E* followed by 5 minute wait.

3) One test at 0.01% per second to E* followed by 5 minute wait.

4) Two tests to E* at 1% per secord with 5 minute wait after each to
check preconditioning stability.

C. Cyclic Tests
mminaticﬁ of the data from the last test in B.4 will establish the
strain, E™, at the transition from the non-linear toe region, region II,
to the linear region III.
1) cycle strain from 0.48'F to E'Y at 10 Bertz for 40 seconds
followed by a 5 minute wait.
2) Using the same minimm and maximum strains as test C.1l, cycle 40 3
3) Using sess minimm and saximmm straings as test C.1, cycle 40 :

4) Check S 1
5) Using a strain equal to + 0.2(B* - EF) as a minimm and

6) Using the minimm and maximm straing from C.5, cycle 40 seconds
at 1 Merts followwd by a 5 minute wvait,

7) Using the minimm and maximmn strains from C.5, cycle 40 seconds
at 0.1 Merts followed by a 5 minute wait,

8) Check preconditioning stability by test B.4.

PP LIV SR LT e detde >
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D. . Relaxation

II

From the Isecou.'!d test in C.8, determine new E transition strain or

confirm EI from test series C.

1) Ramp at 10038 per second to 0.7E' and hold until relaxation
approaches zero (approximately 10 minutes).

2) Return to zero strain and wait an equal time as relaxation time
in D.l.

3) Ramp at 100% per second to E* and hold until relaxation
approaches zero (approximately 25 minutes).

4) Return to zero strain and wait an equal time as relaxation time
in D.3.

5) Check preconditioning stability by test B.4.

Geometric Properties:

The initial length of a tendon or ligament was defined as the distance
between grips and was measured with the unloaded tissue in place in the
testing machine. Crude cross-sectional areas were taken at this time,
width times thickness, but the areas used in data analysis were obtained by
measurements from histological slides made after testing. The cross-sec-
tional areas calculated did not include the surrounding connective tissue
having a large elastin content in the peripheral area. Any discrepancy of
the cross-sectional areas of the tendons and ligaments recorded between
right and left leg can be explained by the fact that the primates tested
were of different sex and body weight. Thus, the chimpanzee's left and
right patellar ligament and flexor hallucis longus tendon were taken from
two physically different specimens, one weighing nearly three times more
than the other.

RESULTS AND DISCUSSION

An initial adjustment of biological tissues to load and deformation
was suggested by Fung (3), and initial testing was suggested to obtain repro-
ducibility of test responses. This adjustment was termed preconditioning
and although observable it is not conceptually understood. The adcpter{
test protocol incorporated an initial preconditioning and constant strain
rate tests throughout the balance of the testing program to check stability
of the preconditioning. In general, it was found that the material could
not be preconditioned in a manner to yield reproducible 1% per second
constant strain rate responses throughout the program. The peak stress at
maximum strain during these checks was narmalized against the post-precon-
ditioned peak, and the results are shown in Figures 1-4 for each tissue and
different species.
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It is not known whether these preconditioning or long term viscoelas-
tic effects are independent of the short term viscoelastic responses nor
their exact cause. It has been suggested that they may be due to changes
in the state of cross-linking, alteration in the state of hydration, or
realignment of the fiber matrix. Figures 1-4 indicate that the peak check
loop stress declined or relaxed to 70-90% of its initial value during the
test sequence. This lack of stability presents difficulties when one
attempts to compare the response to different tests within the test proto-
col due to the continuous long term relaxation. However, comparisons may
be made between specimens for any given tests due to the standard protocol.
The observation that ligaments and tendons do not reach a stable precondi-
tioned state also raises questions about direct comparisons between one
study and another when different test protocols are used.

The mechanical properties of the 4 tissues from the different species
are summarized in Table 2 for a constant strain rate of 100%/sec. These
data are based upon averaged curves for each of the tissues shown in

the range of 300 to 1000 MPa as reported by Swanson (10) for mammalian
tendon. In general the tissue from the chimpanzee was stiffer than that
from either the baboon or rhesus monkey. This coincided with the smaller
percent of elastin in these tissues for the chimpanzee. This variation in
elastin content between species may represent a functional adaptation
reflecting different lower limb usage by the various primates.

TIBIE 2. A SUMERY OF AVERIGES FOR SPECIFIC MECHMNICAL PROPERTIES
AT A CONSTANT STRAIN RATE OF 1004/SKC,

Spacies Mmber  jaximm Strain, §  Jverage* Range of*  Hysteresis Bnergy Tangent$

or tandon of Stress at 5% Max. Stress  to Ioeding Energy Modalus

Swples Merage+ Ranget+ Strain, NPe [ WPa
Meragel  Rangel®

Mu Mhesus 9 8.9 4.76-17.7 1312 65.50-212.11 18.68 5.57-29. 49 600

: Baboon 4 8.63 4.82-14.38 17.50 3.46-100,25 20.681 5.86-37.46 950
Chisp 2 S.46 0.12,8.79 28.% 62,08,346.57 30.48 23.41,37.%8 1050

Tendo- ] [ ] 7.96  4.12-11.63 10.50 3.4~ 37,70 1.7 16.84-60.17 620

Tendon BSeboon 4 7.8 5,98~ 9.18 4.0 0,63~ 24,08 24.90 8.00-53.23 20
Chimp 2 6.00 5,52, 8,08 17.% 13,48, 37. 37.00 35.50,40.12 1060

Madial Rhasus 2 9.15 8.3, 9.92 6.80 17.78, 26.08 33.% 26.15,40.44 500

Collateral

Ligumnt Baboon 2 4.5 4,12, 4.99 17.80 12,05, 14.001 43.32 42.42,4.22 640
Chimp 2 5.0 5.5, 6.04 15.%0 13,79, 22.%5 19.07 0.00,38.13 610

Patellar Rhesus 2 9.64 9.40, 9.87 1.0 2.87, 4.3 “.29 40.92,47.66 ™
Baboon 2 6.00 4,04, 7.95 .20 1.1, 9.M 47.26 44.94,49.%8 30
Chimp 2 4.2 3,62, 4.93 19.20 16.71, 69.56 20,85 13.70,28.00 690

+ Total average of all maximm test straine for all ssples

+ Rage of strain values that occurred at different test strains for each specisen

*  Valums were recorded at 5§ strain from the stress-strain curves in Pigures 5 to 8

**  Range of stress valuss thet occurred at different pesk straine for each specimen

@ Total average of all § hysteresis eneryy to the loading energy for all ssmples

@ Rege of the § hystaresis energy to the loading energy for all samples

§ Values were taken a8 the sicpes of the average constant stress-strain curves in Pigures 5 to 8

................

Figures 5-8. The stiffness or tangent modulus of the tendons were within
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Large variations occurred in the maximum test strain E*, and therefore
" stress comparisons were made at a strain of 58%. Hysteresis is defined as
" the percent of energy dissipated of the input energy during a constant
v strain rate cycle.
E‘ . TIBLE 3. A SMERY (F PERCINTIGES FOR
SPECIFIC MECHMIICAL YPOPIRTIERS AT VARIABLE STRAIN RATES
., ———Recowpt of 1000/Sec, Strain Bate Vejues
:w Ligamant Species Strain Maximm® Tengent* uu‘ u-umu'
o o« Rate Stress Modulus Ingut Area
N Tendon V/8ec. 0 . Bnergy,$
. Rhasus 100.00 100.0 100.0 100.0 100.0
21 1,00 97.1 91.0 1.3 9.8
o Plexor 0.01 93.0 79.0 73.0 7.7
- Hallucis
- Longus Baboon 100.00 100.0 100.0 100.0 100.0
tos, Tendon 1,00 98.2 93.5 07.4 5.7
0.01 9.3 62.0 7.0 7.5
Chimp 100.00 100.0 100.0 100.0 100.0
. 1.00 3.0 9.5 .5 64.9
" 0.0 3.6 n.1 7.9 52.9
A
}".- Rhesus 100,00 100.0 100.0 100.0 100.0
e 1.00 97.3 92.4 3.3 6.7
X Tendo- 0.0 0.2 .7 6.1 .9
o) Calcansus
Tendon Beboon 100.00 100.0 100.0 100.0 100.0
- 1.00 9.4 9.5 84.3 72.8
% s 0.0 .5 .9 6.8 69.1
‘ Chimp 100.00 .0 100.0 100.0 100,
o 1.00 m:., 5.3 0,5 oo.g
_‘ 0.01 3.0 6s.1 .0 58.7
Masus 100.00 100.0 100.0 100.0 100.0
1. 2.4 7 0.5 9.9
. Medial : 0.0 0.3 .l 7.6 5.8
. Collateral
e Ligasant Beboon 100.00 100.0 100.0 100.0 100.0
u 1,00 9.2 9.9 7.8 2.7
0.0 2.0 0.0 a.¢ X
& Chinp 100,00 100.0 100.0 100.0 100.0
e 1.00 0.4 9.0 2.4 n.1
o 0.0 .6 0.6 X 2.4
=
i Mwsus . 100.0 100.0 100.0 100.0
- 1.00 9.4 ”.¢ Q2.3 3.9
TR 0.01 &4 6.2 7.4 "X
s Beboon 100.0 100.0 100.0 100.0
AN Patsllar 1.00 .1 93.0 0.9 52.9
e Ligement 0.0 73.1 %.7 61.0 .7
Chinp 100.00 1000 100.0 100.0 100.0
:;' 10" ”.1 ”o‘ ”01 “.1
..:T: 0.01 ”.3 ”.3 ‘3.3 “.‘
o werape \dmmamu-n' o for all suples.
T L m\dwmhmﬁcmﬁ:‘qbfu
= Table 3 shows the strain rate sensitivity of maximm stress, maximm
b tangent modulus, input energy, and hysteresis energy for the tissues from
i different primates. Bach of these paramsters decreasss with dscreasing
' strain rates. The strain rates spanned four orders of magnitnde from

1008/ssc to 0.01%/ssc. The hysteresis energy showed the largest rate sensi-
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tivity, but when compared with the corresponding input energy, the percent
hysteresis (defined as percent of hysteresis area to input energy) did not exhi-
bit high rate sensitivity for the tendon material. The peak stress values at
1008/sec were lower than anticipated due to the fact that the testing machine
did not consistently follow the command function at high strain rates. This
resulted in a rounding of the extension-time profile with a lower than desired
extension peak. Therefore, in most cases the maximum stress and tangent modulus
results show greater sensitivity between 1.0%/sec and 0.01%/sec, which may be
attributable to test conditions.

Each primate tissue was tested in cyclic strain at frequencies of 10, 1,
and 0.1 cps between the maximum and minimum amplitudes indicated in the test
protocol. The decrease in peak stress was plotted against the logarithm of time
with the three tests plotted continucusly. These data, in Figures 9-12, show a
continuing stress relaxation under cyclic strain. All stress values were normal-
. ized by the initial peak stress which occurred at maximum amplitude during the
J‘ first cycle. A smooth transition between the different frequencies, with tests
» separated by a five minute wait, was observed on all tests. The scatter of the
: cyclic data was too large for identification of significant variation between
: species. Comparisons between low to high frequencies cannc“ be made because the
three different frequency tests were conducted at different times in a consis-
. tent sequence in the testing protocol. The only way such a camparison could be
e made would be to either (1) vary the order of test frequencies or (2) run single
. frequency tests on many different specimens. The smooth trapsition between
frequencies may not indicate lack of frequency dependence, but instead a simple
time response, dependent upon the total time of cyclic testing. The negative
slope of the linear region for the ligaments ranged between 0.012 to 0.037,
while for the tendons ranged between 0.021 to 0.043. The initial cyclic relaxa-
tion showed a short term relaxation phenomena similar to that cbserved in stan-
dard relaxation tests.

Two types of short term viscoelastic effects were examined and compared.
The first type of viscoelastic effect was the short term relaxation phencmena
represented by the change of the percent of peak stress at maximm strain ampli-
tude from cyclic relaxation data. A second examination of short term viscoelas-
tic effects used standard relaxation tests (See Figures 13 to 16) to measure the
short time (10-30 minutes) response. A normalized relaxation function, G(t),
can be approximated as a linear function of the logarithm of time:

G(t) =1~ uln (t +1)

G(t) is a reduced relaxation function defined by Fung (3) in a heredit xy
integral formlation. A measure of tissue viscoelasticity is given by the
relaxation coefficient, u, and is calculated by finding the slcpe of the linear
region of these curves.

The cosfficient varied from 0.022 to 0.038 for the ligaments and from
0.031 to 0.045 for the tendons. The scatter of the relaxation data did not
allow for comparison betwesen species. When the values from the relaxatior. data
were compared to the slope values from the cyclic data for each primate tissue,
the values ware spproximately the same. This would seem to indicate that the
tissues relax at the sams rate under the two dissimilar strain conditions.
However, direct comparison between these two tests is difficult since they were
performed at two different tims periods in the test sequence.
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