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20. (Cont'd)

The optimum placement of quantizer breakpoints, for a fixed total number
of levels, L+1, is a subtle one and is shown to depend on N, M, and the
desired level of performance; a simple rule-of-thumb is presented which
yields near-optimum capability over the useful range of the operating
characteristics. A brief comparison with the optimum processor is made.
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DETECTION PERFORMANCE CHARACTERISTICS FOR A

SYSTEM WITH QUANTIZERS, OR-ING, AND ACCUMULATOR

INTRODUCTION

Practical realizations of desired systems often incorporate approximations

to the ideal processor or devices, for the sake of reduced expense and

* equipment complexity. In particular, quantization is frequently employed,

since it facilitates data handling and processing in terms of storage and

execution time. In addition, the large number of alternatives for signal

presence and location that must be considered often dictates that data

i reduction procedures, sucn as or-ing, be adopted. Both of these suboptimum

approaches, quantization and or-ing, degrade system performance, and it Is

important to know tne extent of the degradation. Alternatively, it is

desirable to know how much the received signal strength must be increased in

order to maintain a specified level of performance.

The effects of or-ing by Itself were analyzed in ref. 1, where the

required input signal-to-noise ratio for specified false alarm and detection

probabilities was evaluated as a function of tne number of input channels and

the observation time. In ref. 2, the additional degradation caused by the

inclusion of quantization was derived, where the number of levels and

breakpoint locations of the quantizer were completely arbitrary. Both of

these analyses, however, were limited to second-order moments of the decision

variable, and were therefore most appropriate to the situation of large

observation time and moderate false alarm probabilities. That is, the

Gaussian presumption played a prevalent role in the analysis. A cursory study

of good quantizer breakpoint locations was also given in ref. 2.

Numerical evaluation of the or-ing losses, based upon the derivations in

refs. 1 and 2 , were given in refs. 3 and 4, and a more extensive investiga-

tion of quantizer characteristics was conducted in ref. 5, which corroborated

the results given in ref. 2. But again, all results were based on a second-

order moment approach.

9i
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Here we will derive exact results for the false alarm and detection

probabilities of a system with quantization, or-ing, and accumulation-in-time,
for arbitrary input signal and noise statistics. Surprisingly, it turns out

that inclusion of the additional nonlinearity (quantization) actually

simplifies tne analysis, and the judicious use of FFTs (fast Fourier

transforms) makes tne numerical evaluation of the probabilities an efficient

and accurate procedure.

2
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SYSTEM DESCRIPTION MO ASSUMPTIONS

The sstemof interest is depictWd in f igure 1. There are N input

Channels, each Of. which is subject to noise statistically independent of the
other channel noises. A signal is either present on one (and only one)
unknown input channel or it is oft present at all; we wish to make a decision

on presence versus absence wIth good quality. The input signal (if present)
need not be additive to the input noise; all that is required is knowledge of

the probability density function of the rnput channel random variable xn(m)

(at s*yle time r*) for signal present. By setting the signal strength to

zero, we obtain the probability density function for noise-only, of course.

It is presumd that the signl, if present, remaini so for all, M discrete
tim aples acc latedMktrat or-ng output., ibaver, the signal could

remtin, i one faaltl, or It coU14 *ader over any moer of channels in a

deteministic or randa m n, rn* time sample to time sample.

The: prObaility tnsity fuctlftt Of tilPutt {x,(s)) areo arbitrary except
that 4ty 'mastd .~npta o a , i es-only channels.' Extentsion, to
-nn.eittically distrbted c I nos- appears possible but has not been

OMM S ansa tRf ons ae made at afl point of the system of
fign; I, :Far tir gfral atalysls to follow. Howee, the numrical example

that nwettel pus sfrGusa nputs, although thi's could easily
f rt u 0 0 dtfert Se of"Interest'; in fact,, soa candidate examples

Etal casJiI9Put xn(M) isuect to meryless quantization, where
* ubpaterO0W61~t1 has a itul of L,+1 levals, an the L. quantizer

ase sa breakpwints are arbitrary; see figure 2 A general analysis for this
'wet-genral quntiW is possible and witl be outlined later. We confine our

" attention he to the less-geneal quantizer depicted in figure 3, where the
ordinate (Otput) levels are lited to the equi-spaced values 0, 1,. 2, ... ,

bWt the abwfs a (1i-pt) brtakpoints (I are arbitrary, except that

t g S b~,.1 for I A £-L-, without loss of generality.

3
. .
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Figure 1 NonlomerrSyste

q(x

LL

q~x)

Figure 2. Secific Quantizer Characteristic
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This limitation on the possible quantizer output levels is not as

restrictive as first appears. Reference to figure 1 quickly reveals that if

the quantizer output levels were at equi-spaced values ho +Xah, for

0 £i L, the operating characteristi'cs, namely detection probability versus

false alarm probability, would be completely independent of ho and

an (> 0). Tnat is, h0 and an affect the absolute scale of y(m) and z, but

they can be absorbed in a modified threshold at the system output. In fact,

if one wants to approximate a given nonlinearity (such as tanh(x), for example)

by a quantizer, L can be selected large enough, h0 and ah chosen without

restriction, and the {b230 selected for a good fit. Then the analysis, as con-

tained here for the quantizer of figure 3, applies directly, where ho and ah

(determined from tne nonlinear fit) are discarded. h and ah are

temporarily used for the fitting procedure, but are not fundamental to the

system operating characteristics.

An example of a fit to tann(x) is given in figure 4 for L = 7, where the

1.
:,tanh~x

7 -q{x}

-3 -2 -1 1 2 3

2/L

Figure 4. A Quantizer Fit to tanh(x) for L =7

4 5
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maximum ordinate error has been minimized and equalized at all the steps, and

both functions approach *1 as x tends to *m. The best locations of the
breakpoints are at

/1~Y I n for 1 S< I L ( 1)

for this example. We also have h -1, ah a 2/L.

The or-ing device in figure 1 is subject to N inputs at each discrete time
sample m. It selects the largest of these N random variables at each m and

emits it to the accumulator as variable y(m).

The accumulator adds up M input time samples to yield the decision variaole
M

z - 5y(m) (2)

This output z is compared with a threshold. If the threshold is exceeded, a

signal is declared present at the input to the system; otherwise, no signal is
declared. For present analysis purposes, it is presumed that the discrete

time samples (which can actually take place on the input channels) are
sufficiently separated in time that the N random variables entering the

accumulator are statistically independent.

When quantizer q in figure 1 is monotonically nondecreasing, the non-
linear system in figure 1 is equivalent (for all inputs) to that shown in
figure 5, where the quantization and or-ing operations have been interchanged.*

The random variable y(m) in figure 5 is identical to that in figure 1. We have
added another random variable, w(m), in figure 5 that has no counterpart in
figure 1, for purposes of analysis. This interchange of operations is valid

whether the quantizer of figures 2 or 3 is used.

Extensions of the above assumptions to more general situations, such as
statistically dependent inputs or dependent accumulator samples, are discussed

in ref. 2. However, the analysis there is limited to second-order moments,

not threshold-crossing probabilities as considered here.

*See refs. 2 and 4 for two different proofs.

6
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Greatest

U 1 -

.., xN(m)

Or-ing Quantizer Accumulator Decision

:::': Figure 5. Equivalent Nonlinear System

a

area a

Figure 6. Probability Density Function of y(m)

p (u) 02B3

area B
n

1 2 3 4 n ML u

Figure 7. Probability Density Function of z
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ANALYSIS OF PERFORMANCE

In this section, we evaluate the false alarm and detection probabilities

of the system in figure 5. The cumulative distribution function of an

individual channel input, for signal absent, is P(O), where

P(O)(u) a Probability (x < ulsignal absent) (3)

The cumulative distribution function of the channel input with signal-present

is P(i). Both of these cumulative distribution functions are presumed known.

The superscript will denote either hypothesis Ho (no signal present) or

hypothesis HI (signal present on,that channel). Notice there is no

restriction on the forms of P or P"); thus arbitrary input statistics

(including nonadditive signals) are allowed. However, the noise-only channels

are identically distributed.

Since the or-ing output in figure 5.is

w(m) - max{xl(m), ... , xN(m)) for 1 < m M 1 (4)

tne cumulative distribution function of w(m) is, for any time instant m,

(0Pw(U)( for H0

(O)(u P(')(u) for H1

since the signal (if present) is in only one (arbitrary) input channel. In

fact, tne occupied cnannel can change from sample m to m+1, in a random or

deterministic fashion, and (5) is still applicable.

The output y(m) of the quantizer in figure 5 is limited to the L+1 values

- ~{=~ 0, 1, 2, ..., L; see figure 3. Therefore the probability density function

of random variable y(m) is impulsive, as shown in figure 6, where the area

of the impulse at is given by

9
S. . . . . .. ..
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Pb) for 0

- for 1 1A< L-1 (6)

L 1 - Pw(bL) for A. L

Here are the L abscissa breakpoints of the quantizer, and is the cumu-

lative distribution function of w, given by (5).

The output of the accumulator in figure 5 is called the decision variable
and is given oy the sum of M statistically independent random variables

according to

z ylm) .(7)

Since y(m) can only take on the values 0, 1, 2, ... , L, the decision variable

z can only take on the values 0, 1, 2, ... , ML. Thus the probability density
'* function of z is also impulsive, as depicted in figure 7; the area of the

impulse at n is denoted by on.
.4

We now need to relate the f[,n} of figure 7 to the (121 of figure 6. To

accomplish this, we resort to the characteristic functions of y(m) and z.
Using the statistical independence of the &(m)1, the characteristic function

of z is
M M

f exp(t1z) - exp(1Ty) - y (8)

where fy is the characteristic function of random variable y(m). But by use

of figures 6 and 7, we have
so L

fy() - jdu py(u) exp(iju) - r exp(i J) (9)

and

ML

fz()- Sdu pZ(u) exp(i~u) o *n exp(itn) (10)

1- n.O

10
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Substitution of (9) and (10) in (8) yields

MLLM
fz(y) - O Sn exp(ifn) - exp(il) (11)

Now the results of appendix A indicate that the set of numbers 0~}M can

be recovered directly by an Nf-point OFT (discrete Fourier transform) of the
set of characteristic function samples

fz(2mnINf) for 0 n e, Nf-1 , (12)

provided that

Nf ML+1 . (13)

And from (11), we have the required characteristic function samples as

L -M
fz(2in/Nf) - I exp( Nj . (14)

The sum on,( here is the conjugate of an Nf-point OFT of the L+1 real

nonzero numbers augiented by zeros. When this OFT is raised to the M-th

power, it constitutes the required Nf samples of the characteristic function

fz that are needed for the OFT that leads to

To summarize, (5) yields the cumulative distribution function of w, and

(6) gives the impulse areas . An Nf-point OFT of this sequence

(augmented witn zeros) is taken, then conjugated and raised to the I-th

power. Another Nf-point OFT is then taken and the results divided by Nf.

Tne end result is impulse areas 10n) . The values returned (by the second OFT)

for *ML+1' ""' *Nf-1 should all be zero, as should all the imaginary parts.

Although any value for Nf that satisfies (13) is permissible, the smallest

power of 2 is most reasonable since then we can employ two FFTs above; this

time-saving feature is employed here.

'i11
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The probability that decision variable z equals or exceeds integer value J

is, from figure 7,
ML

Probability [z > . On  for 0 5 , ML . (15)

n-J

Tne above analysis for the exceedance probability in (15) is exact. When

signal is present, (15) is the detection probability, whereas when signal is

absent, (15) ii the false alarm probability. The fundamental input statistics,

P(O) and P(l) required in (5), are arbitrary.
x

I.1

;.1

-.
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QUANTIZER BREAKPOINT LOCATIONS

For a given number, L+1, of quantizer output levels, the selection of the

L breakpoints Wjbt should be done so as to optimize the performance of the

system, that is, maximum detection probability for a specified false alarm

probability. The equivalence of the two processors in figures 1 and 5 is the

guide to good selection of the breakpoints; namely fb should lead to a

maximum difference in outputs y(m) for hypothesis H1 vs. HO . However, as

figure 5 shows, this selection of Y is governed by the probability density

functions of quantizer input w, not x; that is, the quantizer should take

account of the or-ing nonlinearity and the number of input channels, N.

A problem arises here, however, in that the probability density functions

of w under H1 and H0 depend on the particular value of input signal-to-

noise ratio that obtains. Thus, the quantizer design should take the input

signal-to-noise ratio into account. This situation is frequently encountered

in likelihood ratio processing, in which the optimum processor often requires

knowledge of absolute levels of input signal and noise. Since this knowledge

is almost always lacking, a design that is good for representative values of

input signal-to-noise ratio, that is, which correspond to adequate levels of

performance, should be adopted. If the input signal-to-noise ratio is larger

tnan tnese representative values, improved performance will result; if

smaller, inadequate performance is expected anyway, regardless of quantizer

breakpoint placements.

To get at tne quantizer design, consider the probability density functions.

in figure 8 for random variable w under H1 and HO . w0 is a point beyond

which tnere is a small chance of w ever reaching under H0 ; wI is a point

below which w nardly ever reaches under H1 . Generally w1 < w0 for cases

of practical importance; otherwise near-perfect performance is possible at

tnis signal-to.nolse ratio. Under HO, we would like to locate the first

breakpoint b1 greater than wo; then the false alarm probability would be

substantially zero, regardless of the remaining fbJ. On the other hand,

under H1, we would like to locate the last breakpoint bL less than wl;

then the detection probability would be essentially 1.

13
,. .
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p (u)

W, W.

Figure 8. Probability Density Functiormof w in figure 5

L L

Figure 9. Desirable Quantizer Characteristics

q~w)
L

W, We

Figure 10. Comuproilse Quantizer Characteristic

14
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These desirable quantizer characteristics under H0 and H1 are depicted

in figure 9. It is immediately seen that the desired features of both cases

can be realized for w < w, and w > wo; that is, choose q=0 for w < wl,

and choose q.L for w > wO. However there is an inherent conflict in the

intermediate region wi < w < wO . The only way to strike a reasonable

compromise is to make q small near w1 and make q large near wO . That is,

locate the breakpoints in wl, w0 , as indicated in figure 10. We shall

make tnem equally spaced on the input w, that is, b 1  - bA independent of t;

nonuniform abscissa spacings, such as in figure 4, are possible and could give

sligntly oetter performance. However, sample computer runs have demonstrated

that for L > 4, essentially optimum performance is attained via uniform

breakpoint spacing. Also, for the larger values of input signal-to-

noise ratio, it will be shown that the optimum processor of the available

inputs takes precisely the form of figure 5, where the quantizer is replaced

by a linear gain.

The best quantizer placements in figure 10 obviously depend on the number,

N, of input channels and the input signal-to-noise ratio, since the

probability density functions of w displayed in figure 8 depend on these

quantities. But there is'an additional less-obvious dependence on M, the

number of samples accumulated at the quantizer output. For larger M, the

separation of tne prooability density functions of z under H0 and H1 will

become better, if the input signal-to-noise ratio is held fixed. But often,

tne larger values of M are employed so that lower input signal-to-noise ratios

can be tolerated and yet realize adequate performance levels; thus, the
probability density functions of w in figure 8 generally overlap more for the

larger values of M. This means that w1 will be smaller and therefore the

breakpoints should be relocated. Further discussion of quantizer breakpoints

is deferred until the numerical investigation is undertaken.

15/16
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INPUT STATISTICS

Up to now, the statistics of inputs [xnjtn figures 1 and 5 have been

arbitrary. We now specialize to the case of Gaussian noises; some other

candidate statistics are given in appendix B. In particular, the cumulative

distribution functiorrunder N0 and H1 are

Pi:) (l)u). /u- 0 P/ (u). ,- (16)
rix x (16)

respectively, where is the Gaussian cumulative distribution function

x x

1(x) - dt (2w)d112 exp(t 2  $ dt a() . (17)

The means of xn are m0 and m1 under H0 and H1 , respectively, while the

standard deviation is the common value a in both cases. For later use,

we define the deflection statistic of the inputs as

m1m
" di (18)

Reference to (5) and (6) indicates that we need the quantities

,P(o) (b
( for 1 1 ,f L, (19)

-,l (b N "M ( v -d,

where we have used (16), (17), and defined the normalized breakpoints of the

quantizer as

" * o for 1 s L (20)

Then (5) and (19) yield

17
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{w"R for H0  for1L (21)

5 -di) for H,

These are tne quantities needed in (6) for the areas fe, in figure 6.

(If the noise standard deviations were ao and aI under H0 and H1,

instead of tne common o in (16), the only changes would be to replace -

in the second line of (19) and (21) by -di)) The results in the

next section are based upon this Gaussian noise example.

18
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RESULTS

By combning the general result for the cumulative distribution function

of w in (5) wtth the Saussian example in (16), we obtain

p W(u) k7 /

(v) (V-dj) *(22)

where we define normalized Variable

u-*nV (23)

and have used (1a), The probability density function of w under H1~ is

whir. weue u.Tis probability density function is plotted in figure 1

.3m

AS

Figare 116 Prohbbility Darns ity Function of w for N 3

19
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for N-3 and several values of di. If we select, for example, di=5, the

points w1 and w0 in figure 8 correspond approximately to v . 1.4 and 4.1

in figure 11. The curve for di.o is the probability density function of w

under HO.

The false alarm probability, as given by (15) et seq., is plotted in

figure 12 for an example with
N=3 input channels,
M=5 time samples accumulated,

L-7 quantizer breakpoints,

- 1.4(.45)4.1, normalized breakpoints.* (25)

(Since L+1-8 here, this is called a 3-bit quantizer.) Since threshold J can

only take on integer values, the false alarm probability is only defined at

those values, and is so indicated by crosses in figure 12. The detection

probability P0 is plotted vs. the false alarm probability PF , in figure 13,

by eliminating tne parametric dependence of both on J. Again, both PD and

.F are only defined at discrete points, as indicated by crosses; straight

lines have been drawn between these points for ease of association of values.

(In the curves to follow, tnese crosses are suppressed.) The program for the

generation of figures 12 and 13 is given in appendix C.

The cnoice of Dreakpoints in (25) has realized near-optimum performance

. for L=7 and diz5, in the upper-left corner of the plot. The curves for the

smaller values of input signal-to-noise ratio, that is small di, are more

crowded together; this reflects the usual small-signal suppression that is

cnaracterlstic of nonlinear processors.

To demonstrate the effects of a bad choice of quantizer breakpoints, the

previous example in (25) is rerun, with normalized breakpoints

' 129 (26)

instead of the uniform spacing. The results in figure 14 illustrate much

poorer performance than figure 13, in addition to a very erratic appearance.
'.4

* The notation a(b)c denotes the sequence a, a+b, a+2b, ... , c-b, c.

2D . . . .. . . .
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The curves for constant di must have a nonnegative slope, and never cross,
but can have a wide variety of shapes. A similar bad placement for a 2-bit
(L-3) quantizer is given in figure 15. This jagged behavior of the operating

characteristic is typical when the breakpoints are bunched together instead of
being uniformly spaced.

The next example is for

N-3, M=16, L=7, - 0(1/3) 2 , (27)

and is displayed in figure 16. This can be compared directly with the results
of ref. 2, figure 5. Both require di-1.22 for PF-10-3 ,PD.5, and both

require about dial.75 for PF=1O-6, PD-.5. Thus the simplified analysis

in ref. 2 is very reliable for large M, where it is reasonable to expect

Gaussian statistics to hold.

In order to see if better performance is attainable by modifying the break-

points, we return to the probability density function in figure 11 (for N-3)
and observe that if we want to optimize for di-3 (i.e., top left corner of

figure 16), we should choose w1 z O, w2 x 4. However, the narrowing effect

on the decision-variable probability density function, due to the averaging
caused by large M, indicated (by trial and error) that the best normalized

breakpoints were

fill .5(.5)3.5 . (28)

The corresponding operating characteristic is displayed in figure 17; it is
slightly better than figure 16. Thus the significant modification in

normalized breakpoints from figure 16 to figure 17 did not yield significantly

better performance, for this example with L.

The next example is run for comparison with ref. 2, figure 8. Namely we

have

N-3, M-32, L-7 , (29)

and three different quantizer breakpoint sets:

24
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0O(1/3)2 in f igure 18)
0 (.5)3 in figure 19 .(30)

[0(.7)4.2 in figure 2D

The results in figures 18 through 20 are in almost perfect agreement with the

simplified analysis in ref. 2. The normalized breakpoints in figure 19 are
best in the intermediate range of detection probabilities; figure 18 is just
sligntly better for the high performance region of di-2.2.

We now present a series of comparisons where some of the parameters are

held constant, while tne remainder are varied in order to determine the effect
upon the operating characteristics. The first comparison is for M-5, N.10,

and the quantizer varied as follows:

L=7, 3 . 1.4(.45)4.1 in figure 21
L-3, v = 2(.75)3.5 in figure 22 (31)

L.19 - 2.75 in figure 23

These correspond to 3-bit, 2-bit, and 1-bit quantizers respectively, where the

normalized breakpoints have been chosen in each case so as to optimize the
performance for dim4. Increasing L beyond 7, and changing the breakpoints,
failed to improve the operating characteristic noticeably above that of figure

21. The increase in the input deflection, di, needed to maintain the same
performance at PF..3PD .13 5 is approximately 4.514 for =I vs 17.
If inputs 1xn) are interpreted as voltages, this corresponds approximately
to a 1 dB degradation for the hard clipper, L1.

The next series is for M,5 and the quantizer fixed at the 3-bit

characteristic in the first line of (31). N is varied over the values 1, 5,
10, 20, 40 in figures 24-28, respectively. The slight improvement in

performance, that might ensue from modifying the breakpoints at each N, was
not investigated in tnis comparison. Tne effect of increasing N is to degrade

the performance, since the or-ing must select one of the input channels for
accumulation, and it will not always pick the signal-bearing channel. The
Increase in di required to maintain PFm1-PDO10"5 is approximately

5.25/4 - 2.35 dB for N,40 vs Nl.
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The last series investigates the effect of varying M. In figures 29

through 33, M takes on the values 1, 2, 5, 10, and 20, respectively. The

effect of increasing M is to realize better performance with smaller input

signal-to-noise ratios. The decrease in di allowed, in order to maintain

PFI-PD;1O -3, is approximately 2.4/6.8 - -9 dB for M120 vs M-1. When M

is made large, the approximate analysis in ref. 2 can be used with confidence;

this is fortunate, since in the case of very large M, the OFT size, Nf A
ML+1, required here may not be easily attainable on some computer setups.

40
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DISCUSSION

IL

The large number of possible combinations of values of N, M, L, and W1

precludes an exhaustive compilation of results. Instead we have presented

some representative examples and give a program in appendix C by which the

user can investigate his particular situation and alternatives. This program

gives exact results for any quantizer, provided only that ML is not too large

and that round-off errors do not get out of hand. For extremely large M, a

Gaussian approximation for the decision variable is justified and the analysis

of ref. 2 is applicable.

If the quantizer is not specialized to the equal ordinate spacings of

figure 3, but is of the general form depicted in figure 2, the performance

analysis is more difficult. However, the characteristic function of the

* decision variable is still capable of a closed form expression; see appendix

D. Evaluation of tne cumulative distribution function of the decision

variable is possible via one FFT, according to the methods given in refs. 6

and 7. No numerical investigation has been undertaken of this case.

In appendix E, the form of the optimum processor operating on N input

channels, of whicn only one may contain a signal, is derived and then

specialized to the Gaussian input example of (16). This optimum processor, in

general, requires knowledge of the absolute levels of the input signal and

noise. However, for di > 2, the form of the optimum processor approaches

that of figures 1 or 5, where the quantizer is replaced by a linear device,

and the absolute level knowledge is no longer required. Thus the performance

of the system considered here should be nearly optimum for large L and well-

placed oreakpoints.

Exact analysis of the system of figures 1 or 5, with a linear gain instead
of a quantizer, is more difficult than that given here. A simplified second-

moment analysis was presented in ref. 1; an exact analysis is possible and

will be presented by the author in a future report.

* 47
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A detailed comparison of the exact performance results obtainable via this
report, with the second-moment results given in refs. 1-5, has revealed

excellent agreement over a wide range of parameter values. However, until an

extensive thorough investigation of the two approaches is made for a wide

range of values of N, M, L, {vt}, PF, and PD, it is difficult to state

exactly where the earlier approximate analyses can be used with full

confidence. This time-consuming investigation has not been undertaken;

however, the program in appendix C affords the mechanism whereby this

comparison can be conducted. The statements here regarding large M and

moderate PF can only be made quantitative after this study is completed.

-. 4
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Appendix A

INTERRELATIONS BETWEEN CHARACTERISTIC FUNCTIONS AND

PROBABILITY DENSITY FUNCTIONS OF DISCRETE RANDOM VARIABLES

Suppose random variable x is limited to the integer values 0, 1, ... , N,

and that the probability of taking on value n is an. That is, the

probability density function of x is

N

Px(u) = an j(u-n) . (A-i)

n=O

The characterisic function of x is then

N

f J du exp(ifu) px(u) = an exp(iVn) (A-2)

-- n=O

• * this function has period 2: in .

Now let integer M be selected such that

M 2 N+1 (A-3)

Tnen consider M. samples of characteristic function fx at increment 2w/M;

that is, consider the set of samples

fx(m2w/M) for 0 < m e M-1 . (A-4)

Now let us take an M-point OFT of these samples, and scale by I/M; that is,

for O<k M-1

-4

.4
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M-1

. exp(-i 2-mk/M1)fx(m2r/M)

-.. M-1 N

= ]. j exp(-i2wmk/M) 2 an exp(igirnm/M)
m=0 n=O

N M-1

;- an  exp(i 2w(n-k)m/M)
n=O m=O

N (M) ak for 0 < k N

- an En-k. (A-5)

n=O for N < k < M-1

Here, in the second line, we used expression (A-2) for the characteristic

function, and in the last line, we used (A-3).

Expression (A-5) states that the scaled M-point OFT of the set of

*: cnaracteristic function samples, (A-4), yields precisely the areas

{a N of the impulses in probability density function px, provided that

M N+1. The values returned by the OFT for aN+1, ..., aM_ 1 should all be

-. zero.

More generally, if random variable x is limited to the values

ho , ho+ah, ..., ho+N an, (A-6)

the characteristic function takes the form

N

f - exp(irh0 ) an exp(iln Ah) (A-7)

nO

In this case, the sample set that must be subjected to an M-point OFT is not

(A-4), but rather

f 121m exp t 2 n for 0 S m I M-1 (A-8)

3 Wnen scaled oy i/M, this OFT yields areas a directly.
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Appendix B

ALTERNATIVE INPUT STATISTICS

Here we give the equations for two other typical random processes that

could serve as candidates for inputs to the nonlinear system of interest. No

numerical results have been evaluated for either of the following.

CHI-SQUARED RANDOM VARIABLES

This case could correspond to Gaussian noise with additive Gaussian

signal, after passage through a square-law device and summation. That is,

under H1, consider tne signal-bearing channel input to be the sum

2D 2
x(m) k= k(m) + nk(m)] , (B-1)

where Isk(m)) and 'nk(m) are independent zero-mean Gaussian random

variables with variances a2 and an for the signal and noise, respectively.

x is a Chi-squared variate with 2D degrees of freedom.

Letig 2 2 ~2Letting a 1 0s , the probability density function of x Is given by

~~~I.. i ou o B,
1)'(u)- U 0- xp(-j) for uO > . (8-2)

The cumulative distribution function of x is, via repeated integration by

parts, given by

1-exP. - x 2  e_ 1  u for u > U (8-3)

X eD lit  -1 tn  ,2

e-() tn, (8-4)

, 51
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is the first D terms of exp(t).

The cumulative distribution function of x under H0 follows immediately

from (B-3) by setting 0-0 and identifying a2. 2:

S2)e for u 0 (B-5)

In fact, (8-3) and (8-5) could be used as input statistics for the analysis

contained here in the main body of the report, without the need for

interpretation (B-1); (B-i) merely lends the physical interpretation of x as

A.: the sum of a number of diversity inputs.

According to (5) and (6), we need the quantities

1)(1)
: . . for 1 < t L , (8-6)

where now the normalized breakpoints are defined as

for 1. :S L (B-7)
0o 0

Of course, we should always select ? 0, since x is never negative.

NONCENTRAL CHI-SQUARED RANDOM VARIABLES

This case corresponds to Gaussian noise with additive deterministic

signal, after passage through a squarer and summation. Under H1, let the

input be composed as follows:

2D
x(m) k(m) + nk(m] 2 (B-8)

where fck(m)) are constants, and noises Ink(m)3 are independent zero-man

V Gaussian random variables with variance o. For example, x(m) corresponds to

52
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the sum of D squared-envelopes of the output of a narrowband filter subjected

to a sinewave and Gaussian noise. Tne probability density function of x in
* -, (8-8) is

p (u) - for u > 0, (B-9)

where 1/2

a c (m (B-10)

Is a measure of the total signal-to-noise ratio of random variable x(m).

(a is generally a function of m.) The cumulative distribution function is

P() 1- Q. (a') for u > 0 , (8-11)

where the Q-function is (ref. 9)

QO(ab) r f dt t) -' exp I- 1 (at) (B-12)
b

Tne probability density function and cumulative distribution function

under HO follow from (B-9) and (B-11) by setting a.O, where we presume that

Ick(m)) represent the signal components in (8-8); there results

,u) - exp for u,>0 (8-13)

(n) 2-1

and

P(O(u) l - exp u eo u for u >0 . (-14)
x D-

According to (5) and (6), we need

-N 1 - (I) e,1 )

.(o)(, ) .,_ ,,,,, ) 7for 1 L (8-15)

where normalized breakpoints

12 for I 4 L .(B-16)

2cn

Again b4 2 0 since x in (B-8) can never be negative.
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Appendix C

PROGRAM FOR DETECTION AND FALSE ALARM PROBABILITIES

10 1 DETECTION CHARACTERISTICS FOR QUANTIZERS, GREATEST-OF, AND ACCUMULATOR
20 QUANTIZER OUTPUT (ORDINATE) LEVELS ARE SET AT 0,1,...,L; L+1 LEVELS
30 1 OURNTIZER ABSCISSA BREAKPOINTS ARE ARBITRFRY; L BREAKPOINTS
40 M-5 ! NUMBER OF TIME SAMPLES ACCUMULATED: M)=1
50 N=3 1 NUNER OF INPUT CHANNELS SUBJECT TO OR-ING: N>-1
60 L=7 I NUMBER OF NON-ZERO QUANTIZER OUTPUT LEVELS: L>u1
70 NORMALIZED ABSCISSA BREAKPOINTS OF QUANTIZER (L NUMBERS):
So DATA 1.4,1.85,2.3:,2.75,3.2,3.65,4.1
90 Dimax=4.5 ! MAXIMUM VALUE OF Di OF INTEREST
100 Distepn.5 I INCREMENTS IN Di OF INTEREST

S110 Np-6 SMALLEST PROBABILITY OF INTEREST IS 10A(-Np)
120 DIM X(1:l024),Y(I:l024),Axis(l:19)
130 DIM V(1:18),S(1:1n0,Pw(1:10),Pa(1:1024)
140 REDIM V(I:L),S(I:L),Pu(I:L),Pfa(I:M*L)
150 READ V(*)
160 PRINTER IS 6
170 PRINT "NUMBER OF TIME SAMPLES ACCUMULATED: M =";M
180 PRINT "NUMBER OF INPUT CHANNELS SUBJECT TO OP-ING: N =";N
190 PRINT "NUMBER OF NON-ZERO QUANTIZER OUTPUT LEVELS: L =";L
200 PRINT " QUANTIZER OUTPUT (ORDINATE) LEVELS ARE SET AT 0,1,...,L."
210 PRINT " QUANTIZER NORMALIZED (ABSCISSA) BREAKPOINTS ARE AT:"
220 FOR J-1 TO L
230 PRINT V(J);
240 NEXT J
259 PRINT
260 PRINT "INPUT VOLTAGE-SNR Di VARIES FROM 8 TO";Dimax;"IN STEPS OF";Distop
270 PRINT280 PRINT "THE GRAPH BELOW GIVES THE (FALSE ALARM) PROBABILITY THAT THE"
290 PRINT "SYSTEM OUTPUT IS GREATER THAN OR EQUAL TO J, FOR J a 1 TO ML."
300 PRINT "THE INPUT SIGNAL-TO-NOISE RATIO IS ZERO FOR THIS GRAPH."
318 MO-M*L
320 MiM+i

N 330 M2-t/2
340 NI-N-I
350 FOR J-2 TO 16
360 Nf=2AJ
370 IF Nf>MO THEN 420
386 NEXT J
390 PRINT
408 PRINT "ARRAYS X,Y,Pfa ARE NOT DIMENSIONED LARGE ENOUGH"
418 STOP
420 REDI X(I:Nf),Y(2:Nf)
430 FOR Jul TO L
440 S(J)=FNPhi(V(J))*.NI
450 NEXT J
460 FOR Di*B TO Dims>: STEP Distep
470 FOR Jul TO L
480 Pw(J)S(J)*FNPhi(VC()-D) EQUATIONS 5 AND 21
490 NEXT 3
500 MAT X-ZER

55
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510 MAT VuZER
520 X(1I)sPw( 1) I EQUATION 6; Alpha(SI) in X(J+1)
530 FOR J=2 TO L
540 X(J)uPwCJ)-PwCJ-I)

$4550 NEXT J
560 XCL+1)n1-Pw(L)
570 CALL FftCHfXC*),Y(*))
580 FOR Ju1 TO N? (X-IY)41

590 Tu(X(J)A2,Y(J)A2>AM2
600 Asf*FNRrgCX(J),Y(J))
610 X(J)sT*COS(A)
620 Y(J)s-T*SIN(A>
630 NEXT J
640 CALL Ffttof,X(*,Y(*))
650 FOR Jul TO MI
668 X(J).X(J)/Nf i BETA OF FIGURE 7

2'.670 NEXT J
Xi680 IF DI>0 THEN 1228

690 PLOTTER IS "GRAPHICS"
706 GRAPHICS
710 Npl.Npi1
720 Np2uNp*2+1

TI730 Axis(Npl)in0
740 FOR Jol TO Np
750 TuPNlnVPhiG.IAJ)
760 Axis(Npl-J)sl
770 Axis(Npl.J)=-T
780 NEXT J
790 SCALE *,M8,Axis(1),Axts(Np2>

a800 FOR J=9 TO 116 STEP 5
810 MOVE J,Axis(Hp2)
9 28 DRAM JgAxts(1)
830 NEXT J
840 FOR Jul TO Np2

14 56 MOVE 8,RxtsCJ)
$ 60 DRAM MO,AxisCJ)

A870 NEXT J
880 PENIJP
98 T=9
980 FOR J-MI TO 2 STEP -1

*910 T=T.XCJ>
928 1.5-I

*930 IF (T>lE-11) AND (T<1-lE-I1) THEN 960
*948 PfaCI)mlO

950 GOTO 1656
960 *AoFNInvphi(T)

4970 PfaCI)mA
986 PLOT I,A

990 IGOTO 1.50 1 TO ELIMINATE CROSSES, INSERT THIS INSTRUCTIONI1800 MOVE I,A-Axts(Np2)>*.008
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1010 DRAW I,A+Axls(Np2)*.0888
1026 MOVE I-.004*MO,R
1038 DRAW I+.004*MO,R
1040 PLOT I,A
1050 NEXT J
t066 PEHUP'
1070 DUMP GRAPHICS
1080 PRINT LIN(1)
1096 PRINT "THE GRAPH BELOW IS A PLOT OF DETECTION PROBABILITY VERSUS"
1100 PRINT "FALSE ALARM PROBABILITY, FOR THE VALUES OF Ii GIVEN ABOVE."
1110 GCLEAR
1120 SCALE Axis(l),RAxis(Np2),Axis(1),Axis(hp2)
1130 FOR 31 TO Np2
1140 MOVE Rxis(1),Axis,(J)
1150 DRAW Axis(Np2),A>:is(J)
1160 NEXT J
1170 FOR Jul TO Np2
1180 MOVE Rxis(S),Axis.(Np2)
1190 DRAW Axis(S),Axi.(l)
1208 NEXT S
1210 PENUP
1220 T-0
1238 FOR 3-44 TO 2 STEP -1
1246 TT*X (J)
1258 IF (T<1E-11) OR cT>1-IE-11) THEN 1360
1260 IsPfa(S-1)
1278 IF ABS(B)>7 THEN 1360
1280 R-FNInvphl(T)
1298 PLOT 3,A
1300 I GOTO 1360 I TO ELIMINATE CROSSES, INSERT THIS INSTRUCTION
1310 MOVE 3,A-Axis(Hpd2)*.098
1320 DRAW I,A+Axis(Np2:)*.888
1338 MOV.E 3-AxisCNp2)s..08,R
1340 DRAW 3+Axls(Hp2)*.808,R
1356 PLOT 29,A
1360 NEXT S
1370 PENUP
139 NEXT Di
1390 DUMP GRAPHICS
140 PRINT LIN(6)
1410 PRINTER IS 16
1426 END
1430 1
1440 DEF FNArg(XY) I PRINCIPAL ARGUMENT OF X+iY
1450 IF Xw0 THEN R.5*PI*SGN(Y)
1468 IF X<>$ THEN RsATN(Y/X)
1478 IF X<8 THEN R=APe*(1-2e(Y<0))
148 RETURN A
1490 FHEND
1500
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1518 DEF FNPhiCX) 1 CUMULATIVE GAUSSIAN DISTRPUTION
1528 IF RBS(X)>5.14 THEN 1780
1530 Rs.282842712475*X:
1540 C=COS(R)
1558 S-SIlICA)
1568 3s2*C
1578 RuB*C-1
1588 CuR*(1.2536751E-18+D*7.18085E-28+R*?.4517E-21s
1590 C=R*dl.533423425E:-16.B*i.016492?7E-1?.C)
1600 CsA*(1.3676844475;7E-14,B*1.8681364636E-15*C)
1618 C=A*C9. 8978652672'2E-13fl*8.86868838H45E-14.C)
1628 CAR*(4.22616144319E-11+3*4.46968229249E-12*C)
1638 CuR*(i.466686142fl,4E-9+U*1.80048587810E-10+C)
1640 C-R.C3. ?22523493E;9E-84U*5. 34275027683E-9+C)
1658 CuA*(~6.9i92752832:5E-7.3*l. 15338990944E-7+C)

,)1668 CRA*C9.43281 16998E-6.3*1.82066316364E-6.C.
1678 C=A*(9.44909268810E-5.3*2. 10404583873E-5,C)
1688 C=R*(6.971837924E18E-4,3*1.7l228016255E-4*C)
1698 CRA*(3.8157679E5E-3+3*1. 18868645342E-3+C)
1788 CRA*( .153985726157+3*.00507906961220.C.
1710 C=A*( .8467755234$ 25.U..017243962588?.C)
1728 CRA*(.*1886382450fl.De.89439l331941'C)
1738 CA#*(.*2013397472E;5.3*. 8869894549959eC)
1740 CuRt*(.330501521917+D*. 1442272263624C)
1750 Ca. ?3225002744l:*. 247255160140.C
1768 Phi .5+. 84581581 iSOOTS*X+. SS*C

&1778 GOTO 1920
1780 IF X>7 THEN 1918
1790 HuMRXCE,INTC69,AIIS(X)),IHT(525,XA2))+1
1808 Ai
1818 S-i
1820 3.1'X
1838 CmB*3
1840 FOR Ju1 TO N
1850 A-C1-2*J)*A*C
1860 SwStA
1870 NEXT J
1800 Phim.39894220401*EXP(-.5*X*X)*RBS(3.*S
1890 IF X>0 THEN Phi-I-Phi
1908 GOTO 1920
1918 Phi-i
1920 RETURN Phi

~11930 FNEND

.41940 I
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1950 DEF FNInvphi(Z) IINVERSE CUMlULATIVE GAUSSIAN DISTRIBUTION
1960 X=2'Z-1
1978 DIMI T(8:20),A(8::0>
1980 DATA .992885376619,.120467516143,.0160781993421,.00268670443716
1998 DATA .4996347382.E-3, .988982186E-4, .2039181276E-4, .43272?-162E-5
2008 DATA .93888141E-E;,.26673472E-6,.461597E-7,.1041663E-7,.23715E-8
2016 DATA .54393E-9,.12555E-9,.2914E-l8,.679E-11,.159E-1l,.37E-12
2020 DATA .912158883418,-.0162662818677, .43355647295E-3, .21443857007E-3

2;2030 DATA .262575108E-5,-.382189105E-5,-.1240606E-7,.6240661E-7,-.54012E-9
2040 DATA -.142321E-S,.3438E-10,.3358E-10,-.146E-11,-.S1E-12,.5E-13,.2E-13
2858 DATA .95667970960,-.8231070043091,-.0043?4236091?51,-. 57650342265E-3
2060 DATA -. 1896102232E-4, .2518954702E-4,.1056233607E-4, .275441233E-5
2070 DATA .43248450E-E;,-.2053834E-7,-.4389154E-7,-. 1768401E-7,-.399129E-8

- ~ 2088 DATR -.18693E-9,.27292E-9,.13282E-9,.3183E-10,.167E-11,-.204E-11
2098 DATA -.965E-12,-.22E-12
2108 BmABS(X)
2110 IF ABSCX>u.. THE:N BuSQR-LOGU1I-X*uI+X))
2128 IF RBS(X)<.8 THEN 2220
2138 IF ABS(X)<.9975 THEN 2186
2148 Nuax=ZO
2158 RESTORE 2850
2166 Y-.559457631338*3.2.28791571626
2178 GOTO 2258
2186 Naxnl
2196 RESTORE 2626
2266 Vu-I.54881384237*.3,2.56549012315
2218 GOTO 2256
2228 Nmax.18
2238 RESTORE 1980
2246 Y.XeX*3.125-1

-'2256 REDIN AC8:Hmax)
2266 READ A<*)
2278 Y2=Y*2
220 T(8)w1

N2296 TCI)wY
N2360 FOR Ns2 TO Nua~x

2316 T(H)uY2*T(N-1)-T(Ne2)
2328 NEXT N
2336 Ru6
2348 FOR HuNmax TO 6 STEP -1
2356 RR*ACN)*T(H)
2366 NEXT N
2376 Invphi.SGN(X)*B*P:*1.41421356237
2366 RETURN Inuphi
2396 FNEHD
2488 1
2416 SUB Fft(N,X(*),Y(*)) I FFT SUBROUTINE HERE

59/60
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Appendix 0

ANALYSIS FOR GENERAL QUANTIZER

The characteristic function of decision variable z is still given by (8)

in terms of fy, the cnaracterlstic function of y. But now, from figures. 5
i and 2,

and 2 fy(, ) . exp(iy) - exp(ifqqw)) a p)

- exp(iyh0) fdu pw(u) + ... + exp(ilJhL) du pW(u)

L-1

- exp(i~yh~ P (bi) + exp(l9f) [P(b~R1 wI

+ exp(ilh L) [1 - '.(bL (D-1)

where P is the cumulative distribution function of random variable w, as

given by (5). The inputs for this calculation of characteristic function fz

are M, 4, L, and -bo!L. Again, input cumulative distribution functions
0

P(o) and P in (5) are arbitrary.

One problem with this quantizer is that P0 and PF are stepwise functions

; of the decision threshold (which need not be integer now) at irregular points.

A large OFT size would be necessary to track this behavior. However, operating

characteristic plots of PD vs PF would be smoother functions.

6116
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Appendix E

DERIVATION OF OPTIMUM PROCESSOR

We allow the signal, if present, to jump randomly and independently

between input channels on each time sample. Let

Y(m) x (m)) n1 for 1 m< Hm . (E-1)

'Under H1, the probability density function of N-vector Y(m) is

)(xl(m)) P(1)(x2(m)) ... P(O)(x (m) +

N N

_Tl{ (X(x(m) ff i Pl*xn~l) for 1 m M . (E-2)
nalfj)) n-1

Tnerefore the joint probability density function is

M Np ()() ... Y(N))- 7 f (O) (xn(4) p(O)(xn(m) . (E-3)

m.1 nm n-l n

The likelinood ratio follows immediately as the last product in (E-3); the

log-likelihood ratio is therefore

M N ( )
, n likelihood ratio. n . (E-4)

M- IlI1 ni 1l xn m

This result holds for arbitrary inputs with probability density functions

<1- p(O) and p(l).

When we employ the Gaussian example in (16), (E-4) simplifies to

63

W 1- 1 1



.-p

TR 6815

N' (d,

In / N exp _xnm > threshold , (E,51

M-1 ni1

where data-inde'ndtit scale factors have been absorbed in the threshold.

Exact analysis of (E-5) is conceivable, but is exceedingly tedious. Also

di and a must be known in order to realize (E-5).

For di > 2, it may be shown, to a good approximation, that

n,1N

~exp iX0  Eepimxx~ (E-6)
-i )

Substitution in (E-5) yields the approximate likelihood ratio test

max {xn(m)) > threshold (E-7)

Knowledge of di and i is now not required. Processor (E-7) is just figure

1 or 5, with the quantizer replaced by a linear gain. This special case of

(E-5) is very important, because decent performance can be obtained for

di > 2, and this is exactly where (E-7) is virtually optimum. A good

*, approximation to the performance of (E-7) is afforded by the results contained

herein, if L is chosen large and the breakpoints are well-placed. Some

approximate results via second-moment approaches are given in refs. 1, 10, 11,

12.
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