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b
4 [ ] number of input channels
éﬁ " sample time
E‘ Xp(m) m-th time sample of n-th channel input waveform
M number of time samples accumulated
L , number of quantizer abscissa breakpoints; L+l is the number of
y quantizer output levels
N q(} quantizer nonlinear characteristic
& _ ql L-th quantizer breakpoint location
t; y(m) input to accumulator
~ z output of accumulator; decision variable
‘gﬁ . w(m) output of or-ing device in figure 5
":' P(g) cumulative distribution function of input x for signal absent
N ; |
4:; P(i’_ cumulative distribution function of input x for signal present
73 Ho, H1 hypotheses 0 and 1: signal absent and present, respectively
N :
. Pw cumulative distribution function of random variable w
2; o area of impulse at £ in the probability density function of
! random variable y '
B By area of impulse at n in the probability density function of
- ‘ random variable z '
:§: fz, fy characteristic functions of z and y, respectively
b N, size of discrete Fourier transform; N. > ML+l
%' J integer-valued threshold
: Wys Wi characteristic points of probability density function of w;
. figure 8
‘zi Mys My means of input x under H,, H;, respectively
fi o standard deviation of x
3 Gaussian cumulative distribution function; (17)
. G d, input deflection statistic; (18)
9 normalized quantizer breakpoint; (20)
54 &
vl v normalized variable; (23)
o PD,PF detection, false alarm probabilities, respectively
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X DETECTION PERFORMANCE CHARACTERISTICS FOR A
¢ SYSTEM WITH QUANTIZERS, OR-ING, AND ACCUMULATOR
& | '

R INTRODUCTION

)

™

Practical realizations of desired systems often incorporate approximations
to the ideal processor or devices, for the sake of reduced expense and
equipment complexity. In particular, quantization is frequently employed,
since it facilitates data handling and processing in terms of storage and
execution time. In addition, the large number of alternatives for signal

o s

N presence and location that must be considered often dictates that data

fiﬁ reduction procedures, such as or-ing, be adopted. Both of these suboptimum
gj approaches, quantization and or-ing, degrade system performance, and it is

e important to know tne extent of the degradation. Alternatively, it is

3 desirable to know how much the received signal strength must be increased in
’S order to maintain a specified level of performance.

ES The effects of or-ing by itself were analyzed in ref. 1, where the

t, required input signal-to-noise ratio for specified false alarm and detection
2& probabilities was evaluated as a function of tne number of input channels and
?% the observation time. In ref. 2, the additional degradation caused by the

o ipclusion of quantization was derived, where the number of levels and

> breakpoint locations of the quantizer were completely arbitrary. Both of

31 these analyses, however, were limited to second-order moments of the decision
A; variable, and were therefore most appropriate to the situation of large

r?1 observation time and moderate false alarm probabilities. That is, the

v Gaussian presumption played a prevalent role in the analysis. A cursory study
fJ of good quantizer breakpoint locations was also given in ref. 2.

‘9 Numerical evaluation of the or-ing losses, based upon the derivations in
< refs. 1 and 2 , were given in refs. 3 and 4, and a more extensive investiga-
:Q tion of quantizer characteristics was conducted in ref. 5, which corroborated
if the results given in ref. 2. But again, all results were based on a second-
Eﬁ order moment approach. '
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Here we will derive exact results for the false alarm and detection
probabilities of a system with quantization, or-ing, and accumulation-in-time,
for arbitrary input signal and noise statistics. Surprisingly, it turns out
that inclusion of the additional nonlinearity (quantization) actually
simplifies tne analysis, and the judicious use of FFTs (fast Fourier
transforms) makes tne numerical evaluation of the probabilities an efficient
and accurate procedure.
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SYSTEM BESCRIPTION AND ASSWPTIONS

'ﬂie system of mtemt is mnm in figwe 1. There are N input

channels, each of which is subject to noise statistically independent of the

g other channel noises. A signal is either present on one (and only one)

- unknown input channe) or it is mot preseat at all; we wish to make a decisfon
: on presence versus absence with good quality. The input signal (if present)
a4 - need not be additive to the input noise; all that is required is knowledge of

the mrehauility density function of the inaut channel random variable Xp(m)
(at sample time m) for signal present. By setting the signal strength to
zero, we obtain the probability demsity funct ion for noise-only, of course.

umed that the signal, if present, remains so for all M discrete
la%ed At the or-ing output.. MHowever, the signal could

remain in eme euml, it mﬂd wander over any number of channels in a

‘detmiuimic or random mmw. frm time samle to time sample.

Tne armnm ms,iw f‘uaeeim mF thS‘ { ')} are arbitrary except

Extension to

- . Eilbn chamel fuput Rylm) 15 subject to memoryless quantization, where
‘. tife quantizer W%M 6{xain]} nas a total of L+l levels, and the L quantizer
E . anse:ﬁ;&u Makwirfts are arbitrary; see figure 2. A general analysis for this

general quantizer 1s possible and will be outlined Tater. We confine our

o atuntmu here to the less-gemeral quantizer depicted in figure 3, where the
ordinate (cutput) Tevels are limited to tne equi-spaced values 0, 1, 2, ..., L,
- _m the absctssa (input) breakpoints {B] are arbitrary, except that
b g 51..4 forlg 2 ¢ L-1, without loss of generality.
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Xy (m)
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. M

. Greatest y(m) Z |Threshold

o 2 ["|Comparison
of m=1

(m) [:
XN m a

Quantizers Or-ing Accumulator Decision
Figure 1. Nonlinear System

hy

o o o &

Figure 2.

5, b, ' LN - X

General Quantizer Characteristic

q{x}

L-1

b,

Figure 3.

B, b, b - X

Specific Quantizer Characteristic
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[ This limitation on the possible quantizer output levels is not as

\ restrictive as first appears. Reference to figure 1 quickly reveals that if
the quantizer output levels were at equi-spaced vaiues h0 + £ ah, for

0 ¢ L < L, the operating characteristics, namely detection probability versus
g false alarm probability, would be completely independent of ho and

N ah (> 0). That is, h and an affect the absolute scale of y(m) and z, but

: they can be absorbed in a modified threshold at the system output. In fact,

if one wants to approximate a given nonlinearity (such as tanh(x), for example)
by a quantizer, L can be selected large enough, h0 and Ah chosen without

‘ restriction, and the ﬁi}h selected for a good fit. Then the analysis, as con-

tained here for the quantizer of figure 3, applies directly, where h0 and ah
(determined from tne nonlinear fit) are discarded. h, and ah are
temporarily used for the fitting procedure, but are not fundamental to the
system operating characteristics. '

An example of a fit to tann(x) is given in figure 4 for L = 7, where the

14
: i tanh(x)
) q{x}
x /
e

-3 -2 -1 Lo 2 3
. $ I bz + 4 X
; 4

3 1 /

S {%/ -14

Figure 4. A Quantizer Fit to tanh(x) for L = 7
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maximum ordinate error has been minimized and equalized at all the steps, and
both functions approach #1 as x tends to *®. The best locations of the
breakpoints are at
A3 |
E-%xﬂ-—TzT forls,QsL ,A (1)
. + .
- ‘2’ - .

for this example. We also have hy = -1, ah = 2/L.

* The or~ing device in figure 1 is subject to N inputs at each discrete time
sample m. It selects the largest of these N random variables at each m and
emits it to the accumulator as variable y(m).

The accumulator adds up M input time samples to yield the decision varianle

M
z= Ey(m) . (2)
m=1 '

This output z is compared with a threshold. If the threshold is exceeded, a
signal is declared present at the input to the system; otherwise, no signal is
declared. For present analysis purposes, it is presumed that the discrete
time samples (which can actually take place on the input channels) are
sufficiently separated in time that the M random variables entering the
accumulator are statistically independent.

When quantizer g in figure 1 is monotonically nondecreasing, the non-
linear system in figure 1 is equivalent (for all inputs) to that shown in

figure 5, where the quantization and or-ing operations have been interchanged.*
The random variable y(m) in figure 5 is identical to that in figure 1. We have
added another random variable, w(m), in figure 5 that has no counterpart in
figure 1, for purposes of analysis. This interchange of operations is valid
whether the quantizer of figures 2 or 3 is used.

Extensions of the above assumptions to more general situaticns, such as
statistically dependent inputs or dependent accumulator samples, are discussed
in ref. 2. However, the analysis there is limited to second-order moments,
not threshold-crossing probabilities as considered here.

*See refs. 2 and 4 for two different proofs.
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ANALYSIS OF PERFORMANCE

In this section, we evaluate the false alarm and detection probabilities
of the system in figure 5. The cumulative distribution function of an

individual channel input, for signal absent, is P(g), where

P(g)(u) = Probability (x < u]signal absent) . (3)
Tne cumulative distribution function of the channel input with signal-present
is P(i). Both of these cumulative distribution functions are presumed known.

The superscript will denote either hypothesis H° (no signal present) or
hypothesis H, (signal present on,that channel). Notice there is no

restriction on the forms of P(g) or P(:); thus arbitrary input statistics

(including nonadditive signals) are allowed. However, the noise-only channels
are identically distributed.

Since the or-ing output in figure 5 is
w(m) = max{xl(m), cees xN(m)} forlgmgM , (84)

tne cumulative distribution function of w(m) is, for any time instant m,

E’(g)(";.lu | for Hy , (5)

Pw(u) = [P(O)(u)] "-1 P(l)(u) for H

X X 1
since the signal (if present) is in only one (arbitrary) input channel. In
fact, the occupied channel can change from sample m to m*l, in a random or
deterministic fashion, and (5) 1s still applicable.

The output y(m) of the quantizer in figure 5 is limited to the L+l values
A=0,1, 2, ..., L; see figure 3. Therefore the probability density function
of random variable y(m) is impulsive, as shown in figure 6, where the area %
of the impulse at { is given by
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P, ;) for g= 0
4 =4 P (b)) —P,0) forlsrsial . (6)
1-°7,0) for f=L

Here f&}" are the L abscissa breakpoints of the quantizer, and PW is the cumu-
1

lative distribution function of w, given by (5).

The output of the accumulator in figure 5 is called the decision variable
and is given oy the sum of M statistically independent random variables
according to

M

= . 7
z l'%y(m) ()

Since y(m) can only take on the values 0, 1, 2, ..., i., the decision variable
Z can only take on the values 0, 1, 2, ..., ML. Thus the probability density
function of z is also impulsive, as depicted in figure 7; the area of the
impuise at n is denoted by Bpe

We now need to relate the {sn} of figure 7 to the (&} of figure 6. To
accomplish this, we resort to the characteristic functions of y(m) and z.

Using the statistical independence of the iy(m)} » the characteristic function
of z is '

R [, o] . (8

where fy is the characteristic function of random variable y(m). But by use
of figures 6 and 7, we have

0 L
f (%) = Jdu py(u) exp(igu) = Z‘h exp(igl) (9)
—ald : A'o
" and
o0 ML
fz(g) = jdu pz(u) exp(iju) = S By exp(ifn) . (10)
~-e0 n=0
10

...........

.......
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Substitution of (9) and (10) in (8) yields
ML L M
fz(y) = E 8, exp(i;n) = z‘& exp(ig) (11)
n=0 ,(-0

Now the results of appendix A indicate that the set of numbers {BA}ML can
. ‘ 0

be recovered directly by an N.-point DFT (discrete Fourier transform) of the
set of characteristic function samples

fZ(ZrnINf) for 0 g ng Ne-l (12)
provided that
Ne 2 MLHL . (13)
And from (11), we have the required characteristic function samples as
L -
flamm) - [> o exp(iZnnRINf)-] . (18)
=0

The sum on £ here is the conjugate of an Ne-point DFT of the L+l real

nonzero numbers fcﬂg augi«nted by zeros. When this DFT is raised ‘to the M-th

power, it constitutes the required No samples of the characteristic function
f, that are needed for the DFT that leads to {sn}.

To summarize, (5) yields the cumulative distribution function of w, and
(6) gives the impulse areas f&}t . An Nf-point DFT of this sequence

(augmented witn zeros) is taken, then conjugated and raised to the M-th
power. Another N.-point DFT is then taken and the results divided by Ne.

Tne end result is impulse areas {Bn}. The values returned (by the second DFT)
for ByL+1s *o0 By 1 should all be zero, as should all the imaginary parts.
f

Although any value for N that satisfies (13) is permissible, the smallest
power of 2 is most reasonable since then we can employ two FFTs above; this

time-saving feature is employed here.

11
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The probability that decision variable z equals or exceeds integer value J
is, from figure 7,

ML
Probability [z 2 J} = ;Bn for0 ¢ T M . (15)
n=4J
Tne above analysis for the exceedance probability in (15) is exact. When
signal is present, (15) is the detection probability, whereas when signal is
absent, (15) is; the false alarm probability. The fundamental input statistics,

P(g) and P(B required in (5), are arbitrary.

................
........
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QUANTIZER BREAKPOINT LOCATIONS

For a given number, L+1, of quantizer output levels, the selection of the
L breakpoints {bi} should be done so as to optimize the performance of the
system, that is, maximum detection probability for a specified false alarm
probability. The equivalence of the two processors in figures 1 and 5 is the
guide to good selection of the breakpoints; namely ﬁh} should lead to a
maximum difference in outputs y(m) for hypothesis H1 VS. HO' However, as
figure 5 shows, this selection of fq{} is governed by the probability density
functions of quantizer input w, not x; that is, the quantizer should take
g account of tne or-ing nonlinearity and the number of input channels, N.

R

<1

A problem arises here, however, in that the probability density functions
of w under H; and Hy depend on tne particular value of input signal-to-
noise ratio that obtains. Thus, phe quantizer design should take the input
_ signal-to-noise ratio into account. This situation is frequently encountered
5 in likelihood ratio processing, in which the optimum processor often requires
knowledge of absolute levels of input signal and noise. Since this knowledge
is almost always lacking, a design that is good for representative values of
input signal-to-noise ratio, that is, which correspond to adequate levels of
performance, should be adopted. If the input signal-to-noise ratio is larger
than tnese representative values, improved performance will result; if
smaller, inadequate performance is expected anyway, regardless of quantizer
breakpoint placements. ‘

SRS At

{ el

s To get at tne quantizer design, consider the probability density functions.

in figure 8 for random variable w under H1 and Ho. o is a point beyond

which tnere is a small chance of w ever reaching under Hys wy is a point

below which w hardly ever reaches under Hl' Generally Wy < wy for cases

Ny of practical importance; otherwise near-perfect performance is possible at
this signal-to--noise ratio. Under Ho, we would like to locate the first

A breakpoint b, greater than Wwg; then the false alarm probability would be

substantially zero, regardless of the remaining ﬁh}. On the other hand,

- under Hy, we would like to locate the last breakpoint by less than wy;
then the detection probability would be essentially 1.
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These desirable quantizer characteristics under H0 and Hl are.depicted
in figure 9. It is immediately seen that the desired features of both cases
can be realized for w < w; and w > wy; that is, choose g=0 for w < Wis
and choose g=L for w > w,. However there is an inherent conflict in the
intermediate region w; < w < wg. The only way to strike a reasonable
compromise is to make q small near W) and make q large near wo- That is,
locate the breakpoints in W), Wg , as indicated in figure 10. We shall
make them equally spaced on the input w, that is, QL+1 - by independent of A ;
nonuniform abscissa spacings, such as in figure 4, are possible and could give
sligntly petter performance. However, sample computer runs have demonstrated
that for L > 4, essentially optimum performance is attained via uniform
breakpoint spacing. Also, for the larger values of input signal-to-
noise ratio, it will be shown that the optimum processor of the available
inputs takes precisely the form of figure 5, where the quantizer is replaced
by a linear gain.

The best quantizer placements in figure 10 obviously depend on the number,
N, of input channels and the input signal-to-noise ratio, since the
probability density functions of w displayed in figure 8 depend on these
quantitjes. But there is an additional less-obvious dependence on M, the
number of samples accumulated at the quantizer output. For larger M, the
separation of the prooability density functions of z under HO and Hl will
become better, if the input signal-to-noise ratio is heid fixed. But often,
tne larger values of M are employed so that lower input signal-to-noise ratios
can be tolerated and yet realize adequate performance levels; thus, the
probability density functions of w in figure 8 generally overlap more for the
larger values of M. This means that wy will be smaller and therefore the
breakpoints should be relocated. Further discussion of quantizer breakpoints
is deferred until the numerical investigation is undertaken.
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INPUT STATISTICS

Up to now, the statistics of inputs jx }in figures 1 and 5 have been
arbitrary. We now specialize to the case of Gaussian noises; some other
candidate statistics are given in appendix B. In particular, the cumulative
distribution functions under Ho and Hl are

u-m u-m
D -§(5). D -5(52)

respectively, where § is the Gaussian cumulative distribution function
X X
g0 = [t (20 2exp(-t22e [ ot ¢l8) . (17)
-e) -0

The means of X, are mg and m under Hd and Hl’ respectively, while the

standard deviation is the common value o in both cases. For later use,
we define the deflection statistic of the inputs as

My =]
1"
Reference to (5) and (6) indicates that we need the quantities
0) (, \ % {2 ™
P (%) ok ] o /7 i(&)
forl< <L, (19)

CORY ("‘;m‘-) -3 (-4

where we have used (16), (17), and defined the normalized breakpoints of the
quantizer as .

-m
&-&00 forlgspsgstl . (20)

Then (5) and (19) yield

17
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‘;ﬂ’ {‘ (\!e) for H,
.

Pw(b)): forlg gl . (21)

5 T4 for
.,i .

Tnese are tne quantities needed in (6) for the areas {ok} in figure 6.
(If the noise standard deviations were 9% and oy under ‘HO and Hys
instead of tne common ¢ in (16), the only changes would be to replace % -d,

R .
e tesiasd K.

. g
in the second line of (19) and (21) by ;% (y!'-di)) . The results in the

next section are based upon this Gaussian noise example.
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/S . RESWTS

By mmmg the general result for the cumulative distribution function
of w in (5) vﬁm the Eaussian example in (16), we obtain

\. B Mu)-§" .ma) (Ml)

- §N—1 (V) §'(V-ﬁdi )
where we define normalized variable

oo
BT
Ll
S

(22)

R B
€

& e o , s . - (B)
.and have used (18). The probability density function of w under H; is

| _ 9 (U) 'T Pw(”) 9 37{&.‘-1“) §(V_“i)}
.1 [cu-n i(v-d.) tm * §('m"diﬂ it

uhm we used '(;lz) ms Wiliw density fmmn is plotted in figure 11

. (&)

-,

Figure 11, Probability Density Function of w for N = 3
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for N=3 and several values of d;. If we select, for example, d;=5, the
points W1 and wg in figure 8 correspond approximately to v = 1.4 and 4.1
in figure 11. The curve for d.=0 is the probability density function of w
under HO'

The false alarm probability, as given by (15) et seq., is plotted in
figure 12 for an example with
N=3 input channels,
M=5 time samples accumulated,
L=7 quantizer breakpoints,
{vl} = 1.4(.45)4.1, normalized breakpoints.* (25)

(Since L+1=8 here, this is called a 3-bit quantizer.) Since threshold J can
only take on integer values, the false alarm probability is only defined at
those values, and is so indicated by crosses in figuré 12. The detection
probability P, is plotted vs. tne false alarm probability P , in figure 13,

by eliminating tne parametric dependence of both on J. Again, both PD and

PF are only defined at discrete points, as indicated by crosses; straight
lines have been drawn between these points for ease of association of values.
(In the curves to follow, tnese crosses are suppressed.) The program for the
generation of figures 12 and 13 is given in appendix C.

The cnoice of opreakpoints in (25) has realized near-optimum performance
for L=7 and dizs, in the upper-left corner of the plot. The curves for the
smaller values of input signal-to-noise ratio, that is small di' are more
crowded together; this reflects the usual small-signal suppression that is
cnaracteristic of nonlinear processors.

To demonstrate the effects of a bad choice of quantizer breakpoints, the
previous example in (25) is rerun, with normalized breakpoints

fv} = L.1,1,1,1,1,2, (26)

instead of the uniform spacing. The results in figure 14 illustrate much
poorer performance than figure 13, in addition to a very erratic appearance.
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The curves for constant d; must have a nonnegative slope, and never cross,
but can have a wide variety of shapes. A similar bad placement for a 2-bit

(L=3) quantizer is given in figure 15. This jagged behavior of the operating
characteristic is typical when the breakpoints are bunched together instead of
being uniformly spaced.

The next example is for
N3, M=16, L7, fy} =0(1/3) 2 , (27)

and is displayed in figure 16. This can be compared directly with the results
of ref. 2, figure 5. Both require di.1,22 for PF.10‘3,PD..5, and both

require about d;=1.75 for Pp=l0"", Py=.5. Thus the simplified analysis

in ref. 2 is very reliable for large M, where it is reasonable to expect
Gaussian statistics to hold.

In order to see if better performance is attainable by modifying the break-
points, we return to the probability density function in figure 11 (for Na3) h
and observe that if we want to optimize for dy=3 (i.e., top left corner of
figure 16), we should choose W1# 0, wpz 4. However, the narrowing effect
on the decision-variable probability density function, due to the averaging
Caused by large M, indicated (by trial and error) that the best normalized
breakpoints were

fw] = .5(.5)3.5 . (28)
The corresponding operating characteristic is displayed in figure 17; it is
slight 1y better than figure 16. Thus the significant modification in

normalized breakpoints from figure 16 to figure 17 did not yield significantly
better performance, for this example with L=7.

The next example is run for comparison with ref, 2, figure 8. Namely we
have

N=3, M=32, L7 |, (29)

and three different quantizer breakpoint sets:

24
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0(1/3)2 in figure 18
L {ﬂ = $0(.5)3  in figure 19 . ' (30)
a 0(.7)4.2 in figure 2

_?i The results in figures 18 through 20 are in almost perfect agreement with the
simplified analysis in ref. 2. The normalized breakpoints in figure 19 are
best in the intermediate range of detection probabilities; figure 18 is just
Fa sligntly better for the high performance region of di.z.z.

We now present a series of comparisons where some of the parameters are

o held constant, while the remainder are varied in order to determine the effect
o5 upon the operating characteristics. The first comparison is for M5, N=10,
and tne quantizer varied as follows:

L7, {4} = 1.4(.45)4.1 in figure 2
L=3, fu} = 2(.75)3.5 in figure 227 . (31)
L=l, % =275 in figure 23

§; These correspond to 3-bit, 2-bit, and 1-bit quantizers respectively, where the
' normalized breakpoints have been chosen in each case so as to optimize the

f@ performance for d;=4. Increasing L beyond 7, and changing the breakpoints,

: failed to improve the operating characteristic noticeably above that of figure
2l. The increase in the input deflection, d;, needed to maintain the same

performance at PF'I‘PD‘" 10‘3'5 is approximately 4.5/4 for L=l vs La7.

If inputs fxn} are interpreted as voltages, this corresponds approximately
to a 1 dB degradation for the hard clipper, L=l.

The next series is for Ma5 and the quantizer fixed at the 3-bit
characteristic in the first line of (31). N is varied over the values 1, 5,
10, 2, 40 in figures 24-28, respectively. The slight improvement in
performance, that miéht ensue from modifyi‘ng the breakpoints at each N, was
ﬁ; not investigated in tnis comparison. Tne effect of increasing N is to degrade
Yﬁi the performance, since the or-ing must select one of the input channels for
EQ accumulation, and it will not always pick the signal-bearing channel. The

increase in dy required to maintain Ppal-Pp= 10‘5 is approximately
5- 5,4 - 2035 dB fOl‘ “.40 Vs “-10
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*’ Tne last series investigates the effect of varying M. In figures 29
g through 33, M takes on the values 1, 2, 5, 10, and 2, respectively. The
' effect of increasing M is to realize better performance with smaller input

signal-to-noise ratios. The decrease in di allowed, in order to maintain
Pe=l-Pp2 1073, is approximately 2.4/6.8 = -9 dB for M=2) vs M=l. When M
is made large, the approximate analysis in ref. 2 can be used with confidence;
this is fortunate, since in the case of very large M, the DFT size, N, >
ML+1, required here may not be easily attainable on some computer setups.
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Figure 33. Operating Characteristics for M = 20 /
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- DISCUSSION
;3 Tne large number of possible combinations of values of N, M, L, and fg&%
3 precludes an exhaustive compilation of results. Instead we have presented

some representative examples and give a program in appendix C by which the
user can investigate his particular situation and alternatives. This program
gives exact results for any quantizer, provided only that ML is not too large
and that round-off errors do not get out of hand. For extremely large M, a

Gaussian approximation for the decision variable is justified and the analysis
. _ of ref. 2 is applicable.

o If the quantizer is not specialized to the equal ordinate spacings of
figure 3, but is of the general form depicted in figure 2, the performance
analysis is more difficult. However, the characteristic function of the

;I ' decision variable is still capable of a closed form expression; see appendix
Iy D. Evaluation of tne cumulative distribution function of the decision

N variable is possible via one FFT, according to the methods given in refs. 6
. and 7. No numerical investigation nas been undertaken of this case. '

In appendix E, the form of the optimum processor operating on N input
channels, of which only one may contain a signal, is derived and then
~ specialized to the Gaussian input example of (16). This optimum prbcessor, in
general, requires knowledge of the absolute levels of the input signal and
noise. However, for d; > 2, the form of the optimum processor approaches
that of figures 1 or 5, where the quantizer is replaced by a linear device,
and tne apsolute level knowledge is no longer required. Thus the performance
;é: of the system considered here should be nearly optimum for large L and well-

"
TR AL P S

‘ane

.% placed preakpoints.

4~

4 Exact analysis of the system of figures 1 or 5, with a linear gain instead
b of a quantizer, is more difficult than that given here. A simplified second-
; moment analysis was presented in ref. 1; an exact analysis is possible and

'; will be presented by the author in a future report.

»
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i& A detailed comparison of the exact performance results obtainable via this
report, with the second-moment results given in refs. 1-5, has revealed

s excellent agreement over a wide range of parameter values. However, until an
: extensive thorough investigation of the two approaches is made for a wide

AR range of values of N, M, L, {vz}’ Pes and Pp, it is difficult to state

H exactly where the earlier approximate analyses can be used with full

=2 confidence. This time-consuming investigation has not been undertaken;

S however, the program in appendix C affords the mechanism whereby this
comparison can be conducted. The statements here regarding large M and
moderate Pp can only be made quantitative after this study is completed.
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Appendix A

N INTERRELATIONS BETWEEN CHARACTERISTIC FUNCTIONS AND
PROBABILITY DENSITY FUNCTIONS OF DISCRETE RANDOM VARIABLES

) Suppose random variable x is limited to the integer values 0, 1, ..., N,
and that the probability of taking on value n is a. That is, the
probability density function of x is

N
B _ p (u) = Zan §tu-n) . (A-1)

n=0
The characterisic function of x is then
oo N
. f (F) = Idu exp(ifu) p_(u) = 2 a, exp(ifn) (A-2)
—0 n=0 .

this function has period 2 in ¥.
Now let integer M be selected such that
M >N, (A-3)

Tnen consider M samples of characteristic function fx at increment 2x/M;
that is, consider the set of samples

f (m2s/M) for0gmgMl . (A-4)

Now let us take an M-point DFT of these samples, and scale by 1/M; that is,
for 0 ¢ k ¢ M-1 , :

49
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o M-1
\ % E e}xp(-i&nnklM)fx(mZn/M)
- m=0
M-1 N
_ =5 2 exp(-1i2xmk /M) 2 a, exp(i2xnm/M)
I ' n=0
:g N
§ a & § exp(i2n(n-k)m/M)
: n=0
‘i N (M) a for 0 < k ¢ N
‘ = § a4 k.= . (A-5)
n=0 0 for N < k ¢ M-1

Here, in the second line, we used expression (A-2) for the characteristic
function, and in tne last line, we used (A-3).

Expression (A-5) states that the scaled M-point DFT of the set of
cnaracteristic function samples, (A-4), yields precisely the areas

{ak}N of the impulses in probability density function Pys provided that
0

M > N*1. Tne values returned by the DFT for Ane]s ces Y] should all be
zero.

More generally, if random variable x is limited to the values

;' ho’ h°+Ah’ seey h°+N Ah, (A-G)
4
- the characteristic function takes the form

() = exp(ifng) § a, exp(ifn ah) . (A-7)

n=0
. In this case, the sample set that must be subjected to an M-point DFT is not
3 (A-4), but rather '
Cf'm) exp( 2um "o) for0 g mg M-1 . (A-8)

é Wnen scaled by 1/M, this DFT yields areas {an} directly.
v
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J}ﬁ Appendix 8

L |

¥ ALTERNATIVE INPUT STATISTICS

:ﬂ Here we give the equations for two other typical random processes that

- could serve as candidates for inputs to the nonlinear system of interest. No
ﬁ; numerical results have been evaluated for either of the following.

%

2 CHI-SQUARED RANDOM VARIABLES

. |

Jgj This case could correspond to Gaussian noise with additive Gaussian

‘)_v

3 signal, after passage through a square-law device and summation. That is,

,ﬁg under Hj, consider tne signal-bearing channel input to be the sum

s ZD ,

% x(m) = 21 Betm + nem] © (8-1)
'l:é: k’ .
B where {Skﬁnﬂ and th(mﬁ are independent zero-mean Gaussian random

i : ) :

N variables with variances of and of for the signal and noise, respectively.

'ii x is a Chi-squared variate with 2 degrees of freedom.

[

o 2 2, 2 : |

L Letting 9 = o¢ + L the probabiltty density function of x is given by
e D-1

535 p(i)(u) = -"-'!""'U exp(- —%— forus>0 . (B-2)
N 1 2 20

hoxd v

b The cumulative distribution function of x is, via repeated integration by

™ parts, given by

%

12; P(l)(u) =1-expl- x\e u for 0 (8-3)
e X P(=5.2)%-1(.2 u> , -
i 2% %

‘ 1 1

%; where (ref. 8, 6.5.11)

'};‘

‘ -1

_ n

epg(t) = > ot (8-4)
Pie, n=0

o

NE
S

Ny
e
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is tne first D terms of exp(t).

The cumulative distribution function of x under Ho follows immediately

2

from (B-3) by setting o = 0 and identifying 002 = af :

0 | |
P(x)(u) =1 -‘exp(- -Zfz)eu_l (;:—02) forus>0 . (B-5)

In fact, (B-3) and (B-5) could be used as input statistics for the analysis
contained here in the main body of the report, without the need for

interpretation (B-1); (B-1) merely lends the physical interpretation of x as
the sum of a number of diversity inputs.

Acéording to (5) and (6), we need the quantities

p(g) (lh) =1-exp(-y) e, (w)

\ for 1;15 L , (8-6)

2 2
(1) c1 - expl 0 %
P () =1 -exp :f)’t €p-1 ;iz‘,'z

where now tne normalized breakpoints are defined as »
Y = —% for L clg L . ' (8-7)
)] 22 S
Of course, we should always select '& 2 0, since x is never negative. -
NONCENTRAL CHi-SQUARED RANDOM VARIABLES
This case corresponds to Gaussian noise with additive deterministic

signal, after passage through a squarer and summation. Under Hl, let the
input be composed as follows:

)]
A = > [ylm + n (a2, (8-8)
k=l
where {ck(m)} are constants, and noises {nk(m)} are independent zero-mean
2
n

Gaussian random variables with variance o For exainple, x{m) corresponds to
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the sum of D squared-envelopes of the output of a narrowband filter subjected
to a sinewave and Gaussian nojse. Tne probability density function of x in

(8-8) is
D-1 2 '
M) « Ly (!—:: e”( T- "u'z) Tp1 (:—@) for u >0, (8-9)
2, n : 2, n
where ' 2 1/2
w13 cf(m)] (8-10

is a measure of the total signal-to-noise ratio of random variable x(m).
(a is generally a function of m.) The cumulative distribution function is

p(:)(u) =1 - QD(a,{::) forus>0 , (8-11)

where the Q-function is (ref. 9)

e\l 2, .2
Qp(a,0) = Iqt e) exp(- t—-}‘—) Iy (at) . (8-12)
b

Tne probability density function and cumulative distribution function

under Hy follow from (B-9) and (B-11) by setting as0, where we presume that
{Ck(m)} represent the signal components in (B-8); there results

(0) w1 u -
Py (u) = — exp(— -—2) forus>0 (8-13)
(o () 2,
and '
0
P(x)(u) -1- exp(— ;:-5) ep_1 (é) forus>0 . (8-14)
According to (5) and (6), we need
0
Do) =1 - e0(g) 1)
-1 forlg gl , (8B-19)
P(y) =1 - 0y V)
where normalized breakpoints
b
% 3-2{7 forl< gl . (8-16)
n

Again b, > 0 since x in (B-8) can never be negative.
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N Appendix C
\ .
-1‘ +
v PROGRAM FOR OETECTION AND FALSE ALARM PROBABILITIES
3
23 18 ! DETECTION CHARACTERISTICS FOR QUANTIZERS, GRERTEST-OF, AND ACCUMULATOR
3 20 | GUANTIZER OUTPUT (ORDINATE) LEVELS ARE %ET AT @,1,...,L; L+1 LEVELS
~ 38 ! QUANTIZER ABSCISSA BREAKPOINTS ARE ARBITRARY; L BREAKPOINTS
40 M=S | NUMEER OF TIME SAMPLES ACCUMULATED: M:=i
~ S0 N=3 ! NUMBER OF INPUT CHANNELS SUBJECT 70 OR-ING: N>=1
% . 60 L=? ! NUMEER OF NON-ZERO QUANTIZER GUTFUT LEVELS: L>=1
-} 78 ! NORMALIZED ABSCISSA BRERKPOINTS OF QUANTIZER (L HUMBERS):
& 38 DATA 1.4,1.85,2.3,2.7%9,3.2,3.6%,4.1
» 29 Dimax=4.% | MAXIMUM VYALUE OF Di OF INTEREST
. 168 Distep=.%5 ! INCHEMENTS IN Di OF INTEREST
a 118  Np=6 ! SMALLEST PROBABILITY OF INTEREST IS 10~¢-Np>

120 DIM X(1:10245,Y(1:1024),Axis<1:19)
DIM v(1:10>,8¢1:10),Pu(1:10>,Pfa1:1024)

REDIM V(13L),$C11L),Puclil),PFacltMsL)

150  RERAD V(%)

166 PRINTER IS ©

170 PRINT "NUMBER OF TIME SAMPLES ACCUMULATED: mo="sn

186 PRINT "NUMBER OF INPUT CHANNELS SUBJECT TO OR~ING: N ="jN

199  PRINT "NUMBER OF NON-2ERO QUANTIZER OUTPUT LEVELS: L ="jL

208  PRINT *  QUANTIZER OUTPUT C(ORDIMATE) LEVELS ARE SET AT 8,1,...,L."
218  PRINT *  QUANTIZER NORMALIZED (ABSCISSA> BRERKPDINTS ARE AT:"

220 FOR J=i TO L ,

236 PRINT ¥<J)3

[
(]
[\

’
-
H
o

Pt W et
W

LI LP) PR YL

3 240  NEXT J

% 256 PRINT

¥ 260  PRINT "INPUT VOLTAGE-SNR Di VARIES FROM @ TO";Dimax;“IN STEPS OF";Distep
270  PRINT '

ATk

28@  PRINT "THE GRAPH BELOW GIVES THE (FALSE ALARM> PROBABILITY THARAT THE*
299 PRINT “SYSTEM OUTPUT IS GREATER THAN OR EQUAL TO J, FOR J = 1 TO ML."
300 PRINT "THE INPUT SIGNAL-TO-NOISE RATIO IS ZERD FOR THIS GRAPH."

310 Mo=ML

320 Mi=MO+1

a2 P4
&

b 330 M2=M/2
- 340  Ni=N-1
5 3590 FOR J=2 TO 10
A 360  Nf=2~J
, 370 IF Nf>MO THEN 426G
£ 380  NEXT J
> 390  PRINT
! 400 PRINT "ARRAYS X,Y,Pfs ARE NOT DIMENSIONED LARGE ENJUGH“
. 410  STOP

420  REDIM XC1:NF),YC1INED

430 FOR J=1 TO L
‘ 440  SCJ)=FNPhi(YC(I)>~N1
S 450  NEXT J
ot 460 FOR Di=0 TO Dima> STEP Distep

470 FOR J=1 TO L
M 180 Pw(JOmSCI)#FNPhi(Y(JI>=Di) ! EQUATIONS S AND 21
2 490  NEXT J
* S00 MAT X=2ER
eW
5
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Sie MAT Y=ZER
20 K1)>=Pw(l) o EQURTION 6;
530 FOR J=2 TO L
540 RCI)aPw(J)=Pw(JI~-}>

. S5e NEXT J '
Se0 X(L+1)=1-Pwil)
¥4 ) CALL FRedNf,KCed),¥Y(#))
-1:1) FOR J=1 TO Nf !
-3-1) Tu(X(I»~24Y(ID~2;~M2
60@  A=SM*FNRrg(X(J>,Y¢J))
610 RK(J»=T*COSCA)>
620 Y(J>a=-T#SINCA>
630 NEXT J
640 CALL FFt(Nf, XC*),Y(*))
650 FOR J=1 TO M}
660 ACIrmXCI)/NE !
€70 NEXT J .
€80 IF Di>0 THEN 1220
690 PLOTTER IS “GRAPHICS"
700 GRAPHICS
710 Hpi=Np+1l
720 Np2sNp#2+1
730 Axis(Npl>=0
740 FOR J=1 TO Np
750 T=sFNInvphi (. 1~))
760 Axis(Npl=J)=T
770 Axis(Npl+J)=~-T
780 NEXT J
798¢  SCALE 0,MO,RAxis{(1),Axis(Np2>
800 FOR J=@ TO M@ STEFP S
810 MOVE J,Axis(Np2>
820 DRAN J,AxisCl1)
830 NEXT J
840 FOR J=1 TO Np2
8350 MOVE @,RAxis<J)
260 DRAW MO,Axis(J)
87ve MEXT J
880 PENUP
890 T=0
900 FOR J=M1 TO 2 STEP -1
910 TaT+XC(I) .
920 I=)-1
930 IF (T>1E~-11> AND (T<1-1E-11)> THEN
940 Pfacly)=100
950 GOTO 1039
960 _AsFNInvphi(T)
970 Pfadli=A
980 PLOT I,R
990 ! GOTO 10%@ !

1000 MOVE I,R-Axis(Npi)#,008

‘ Wy Cw

Alphadty in %(J+1)

(R=iv>~M

BETA OF FIGURE 7

960

V0 T St R T A AT

R R A R

TO ELIMINATE CROSSES, INSERT THIS INSTRUCTION
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1619
1020
1030
1040
10350
1060
1070

1080

1090
11090
1110
11208
1130
1148
1150
1160
1170
1180
11950
1200
1210
1220
1230

. 1248

1250
1260

1270

12280
1290
1380
1310
1320
1330
1340
1350
1368
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
14790
14380
1490
1568
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DRAK [,A+RAxis{Npi>#*.008

MOVE 1-.004#M@,R

DRAW +,004%M0,RA

PLOT I,R

NEXT J

PENUP -

DUMP GRAPHICS

PRINT LINCL)

PRINT “THE GRAPH BELOW IS A PLOT OF DETECTION PROBABILITY VERSUS"
PRINT “FALSE ﬁLRPM PROBABILITY, FOR THE VYALUES OF Di GIVEN RBOVE."
GCLEAR ~

SCALE RAxiscl), Rx:;(NpZ) AxisClI,RxisChpZ)
FOR J=1 TO Np2

MOVE Axis(1),Axis<I)

DRAN ﬂxjs(NpZ),ﬁxis(J)

NEXT J

FOR J=1 TQ Np2

MOVE RAxis<J),Axis(Np2>

DRAW RAxis(J)>,Axis(1>

HEXT J '

PENUP

T=0

FOR J-~ MI T0 2 STEP -1

TaT+¥{J)

IF (T<1E-11) OR (T>1-1E=~11) THEN 1360
BsPfa(J-1> o

IF RBS(B)>>7 THEN 1360

AR=EFNInvphi(T)

PLOT B,H ‘ '

1 GOTO 1360 " TO ELIMINARTE CROSSES, INSERT THIS INSTRUCTION
MOVE B,R-Axis(Npi +,008 :

DRAW B,A+Axis(Nps)»,008

MOVE B-Axis(Np2)>+».008,A

DRAN B+Axis(Np2)>+,008,A

PLOT B,A’

MEXT J

PENUP

NEXT Di

DUMP GRAPHICS

PRINT LINC(E)

PRINTER IS 16

END

'

DEF FNArg(X,Y> ! PRINCIPAL ARGUMENT OF X+i¥
IF ¥=Q THEN As,S»PI*8SGNCY)>

IF X<>0 THEN AsSATNC(Y/X)

IF X<@ THEN AsA+PI#(1-24(Y<@))

RETURN R

FNEND

!
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1510
1528
1530
1540
15509
1560
1576
1580
1390
16280
1610
1620
1630
1640
16350
1660
1670
1680
1699
1700
1710
1720
1730
1740
1730
1760
1770
1780
1790
1800
1810
1820
1830
1240
18350
1869
1870
1880
1890
1900
1910
1920
1930
1940

............

DEF FNPhi () ! CUMULATIVE GRAUSSIAH DISTRIBUTION
IF ABS(X>>5.14 THEN 178@

A=, 2823842712475%)

C=COS(A)

SsSINCAD

Ba2x»C

AsB#C-1
CaA#(1.25367351E~-18+B%7.10205E-20+A*7.4517E~21)
CsA#(1.533423425E~16+B#1.01649277E-17+L)
Caf*%(1,.367604447%7E-14+B#1.0601364635E~15+C)
C=A*(8.8978632672E~-13+B#8,.06068838945E-14+L)
C=R#(4,22616144318E-11+B%#4,46968225249E~12+0)
C=A%.1,46660614234E-9+B#1,80848587810E~10+C>
C=R#(3.722T23493€9E~S+D#3. 34273027603E-9+C>
C=R*({6,9192752032SE-7+B#1.15330990944E-7+()
C2A%(9.43281169818E~-6+B+1.82066316364E-6+()
CoA*#(9,.44909268310E-S+B#2, 10404533073E-5+C>
CsA#(6,.971337924UBE-4+B#1,78228016253E-4+C)
C=R#(3.8013076794BE~3+B#1.10860643342E-3+C)
C=A*(.0153985726137+B+.00307906961220+1>
C=A#(,04677552341:23+B%.0172439623887+C)
Cafin(, 108630243053 +B#*,.0439773381941+C)
C=A*(,201339747263+B#%.0869894549939+()
Cafi#{,330501521917+B#*,144227226362+0)

Cm, 703225002744 +h»,.2472551681408+4C
Phi=,5+.04501381%i8079%X+, S#S#C

.GOTO 1920

IF X>? THEN 1918

N=MRAX (6, INTC(69/RESC(X) ), INT(525/X~2) +1
A=}

S=i

B=1-/X

CsB4B :

FOR J=1 TO N

Am(1-22J)8RA%C

S=S+A

NEXT J

Phi=, 398942280401 #EXP(~. S#X#X)*ABS(B)*S
IF %50 THEN Phis]-Phi

GOTO 1920

Phi=}

RETURN Phi

FNEND

!
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"

-,

L

_:3' 1950 DEF FNInuphi¢2) I INVERSE CUMULATIYE GAUSSIAN DISTRIBUTION

1960 K=2#2-1 :

2 1970 DIM T(H:20),RAC0:20)

7 1980 DRATA .992885376619,.120467516143,.01653781993421,.00258670443716

N v 1999 DRTR ,4996347302<E~3,.988982186E-9,.20239181276E~-4,.43272V142E-T
2009 DATA .93308141E-¢,,.20673472E-6,.461597E~7,.1041663E~-7,.23715E-8

't 2010 DATA .54393E-9,.1295%E-9,.2914E~-10,.67%E-11,.159E-11,.37E-12

O 2020 DATA .912158803418,-.0162662813677,.43335647295E-3,.214438570087E-3

2030 DATA .262575108E-5,~-.30218910%E~-5, -.12406A6E-7, .6240€661E~-7,~-.54012E~9

2049 DATA -.142321E-8,.3438E-19, ,.,33358E-106,-.146E-11,-.81E-12,.%E-13,.2€E~-13

L 2050 DATA ,9566797090:0,~.02312870043091,-.0043742360337%1,-.5755034226%5E-3
: 2060 DATA -.1096102231E-4,.2510854702E-4,.1956233607E-4,,275441233E~9

2070 DATA ,.43248450E-¢,-.2033034E~-7,-.4389154E~7,~-,1768401€E-7,~-.399129E-8

2030 DATA ~.18693E-9,.27292E-9,.13282E-9,.3183€E-18,.167E-11,~,204E-11

2090 DRTA -.9€SE-12,-.22E-12

2100 B=ABS(X) '

21190 IF ABS<X)>=.8 THEN BsSQRC(-LOGC(1~-X2#{1+Xs2) v |

2120 IF ABS(®X)<.8 THEM 2220 : '

2130 IF ABS(X»<.9975 THEN 2180

2140 Nmax=20

2150 RESTORE 20350

2160 Y=-,559457631330+B+2,.28791571626

2170 GOTO 2230

2180 Nmax=1$

2198 RESTORE 2020

2200 Y=-1,54881304237+B+2.565490123195

2210 GOTO 22%0 .

2220 Nmax=18 _ <

2239 RESTORE 1980

2240 YsX#X%3,125-1

2290 REDIM ACO:Mmax)

2260 RERD A(»)

2270 Y2=mY#2

2280 T(9)=}

2299 T(1)s=sy

2300 FOR N=2 TO Nmax

2310 TC(NI)sY2#T(N=-1)>=T(N=2)

2320 NEXT N .

2330 Rs=9 ‘

2340 FOR HsNmax TO 9 STEP -1

2330 PRsR+ANI®T(ND

2360 NEXT N :

2370 InvphisSGN(X)»Bxf»1.41421356237

2380 RETURN Invphi

2399 FNEND

4 2400 )

& 2418 SUB FFLiN,X(#),Y(#)) ! FFT SUBRCUTINE HERE
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Appendix D
o | ANALYSIS FOR GENERAL QUANTIZER
The characteristic function of decision variable z is still given by (8)

in terms of fy, the cnaracteristic function of y. But now, from figures.5
and 2,

P
b

oo
4

v S o
PR Tl SN

f (5) = exp(1¥y) = exp(ifqIw}) = rdu p,(u) exp(i¥qfu})
h -0
- exp(ifho) fdu pw(u) + ..+ exp(ith) fdu pw(u)
- 0D » b P
L

omar.
RO

el al Al

. - L-1 '
: _ = exp(i_!ho) P(by) *+ Z exp(ighy ) [Pw(b)ﬂ) - Pw(tf!)]

13 . Q=1 .

g et [1-7 )] | (0-1)

where Pw is the cumulative distribution function of random variable w, as
* given by (5). The inputs for tnis calculation of characteristic function fz

VWIS

are M, N, L, ﬂi}; and &:J'I . Again, input cumulative distribution functions

oY 1§

P(g) and P(:) in (5) are arbitrary.

Y
P

One probliem with this 'quantizer is tnat PD and Pp are stepwise functions
of the decision threshold (which need not be integer now) at irregular points.
A large DFT size would be necessary to track this benavior. However, operating
characteristic plots of Pp vs. P would be smoother functions.
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. Appendix E
DERIVATION OF OPTIMUM PROCESSOR L

We allow the signal, if present, to jump randomly and independently
between input channels on each time sample. Let

N
Y(m) = for 1 ¢ M. (E-1)
(m) {xn(m)} 1 orlg¢<mg
‘Under H;, tne probability density function of N-vegtor Y(m) is
oM (vm)) = § [pu)(xl(m) p(o)(xz(m)) p(o)(xu(m))

+ p(o)(xl(m)) p(l)(xz(m)) p(o)(xN(m)) + ]

- (0) 1 Py (k) »
- H {p (xn(my}ﬂ E O forlgmgM . (E-2)
n=l

n=1

Tnerefore the joint probability density function is

M N _ M N (1)
D(l)(v(l) cee Y(M)) = "n- T\' {p(o) ("n("‘))} T[ % Z p Xn('l)) . (E-3)
. M=

0
M=l n=l nal P ("n(m)

Tne likelinood ratio follows immediately as the last product in (E-3); the
log-1likelihood ratio is therefore

Mal n=1 P ("n(m)

M/ N (1)
Jn likelihood ratio = E}n G 2 P Lnlm) . (E-4)

Tnis result holds for arbitrary inputs with probability density funct'ions
p(0) and p(1),
When we employ tne Gaussian example in (16), (E-4) simplifies to




oy

[ -
.""
Wil

.
i)
*,
R
)
N
4
,'l
-
p
o
.

-
X

h
%
.
.

T oa Wy WV TaVtw " wTa € v, v, CRIPN PR “ . N T e e e . .
W - . - T e P N e e P e P R P . . . . . " - L . -
SN RAa et Y T et e b ta RO IPRL R UL B . P L I e e

TR 6815

M N d )
2 An %‘ z exp (a—i xn(n> : threshold (€-5)
m=]

n=]

where data-indwé scale factors have been absorbed in the threshold.
Exact analysis of (E-5) is conceivable, but is exceedingly tedious. Also

d; and o must be known in order to realize (E-5).

For di > 2, it may be shown, to a good approximation, that

N - _
E exp a‘ xn(m)) -4 exp(;ll max{xn(m)}) R (E-~6)
n=l n '

Substitution in (E-5) yields the approximate 1ikelihood ratio test

M
2 max {x (m} > threshold . (E~7)
n

M=l

Knowledge of d; and o is now not required. ' Processor (E-7) is just figure

1 or 5, with the quantizer replaced by a lTinear gain. This special case of
(E-5) is very impof'tant, because decent performance can be obtained for

d; > 2, and this is exactly where (E-7) is virtualiy optimum. A good
approximation to the performance of (E-7) is afforded by the results contained
herein, if L is chosen large and the breakpoints are well-placed. Some
approximate results via second-moment approaches are given in refs. 1, 10, 11,

12.
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