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PREFACE

This report presents a method for estimating depth-limited significant
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W.N. Seelig and L.L. Broderick provided laboratory data.

(- Technical Director of CERC was Dr. Robert W. Whalin, P.E., upon publica-
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to
metric (SI) units as follows:

Multiply by To obtain
inches 25.4 millimeters
2,54 centimeters
square inches 6.452 square centimeters
cubic inches 16.39 cubic centimeters
feet 30.48 centimeters
0.3048 meters
square feet 0.0929 square meters
cubic feet 0.0283 cubic meters
yards 0.9144 meters
square yards 0.836 square meters
cubic yards 0.7646 cubic meters
miles 1.6093 kilometers
square miles 259.0 hectares
knots 1.852 kilometers per hour
acres 0.4047 hectares
foot-pounds 1.3558 newton meters
millibars 1.0197 x 10-3 kilograms per square centimeter
ounces 28.35 grams
pounds 453.6 grams
0.4536 kilograms
ton, long 1.0160 metric tons
ton, short 0.9072 metric tons
degrees (angle) 0.01745 radians
Fahrenheit degrees 5/9 . Celsius degrees or Kelvins!

r.-v-r.d
'
-

1To obtain Celsius (C) temperature feadings from Fahrenheit (F) readings,
use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.

r
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SYMBOLS AND DEFINITIONS
total variange in wind sea, often called energy
variance density,often called energy density
depth-limited value of total variance
upper bound on energy demsity in a frequency, £
variance density spectrum in wave number space
frequency
low-frequency cutoff
peak frequency of the spectrum
depth-controlled wave height (spectral)

depth-limited wave height (monochromatic)

depth-limited wave height (irregular sea)

zero-moment wave heigh;, also called significant wave height
largest individual wave

significant wave height

depth

wave number

transcendental function of dimensionless frequency wy,
windspeed

Phillips' equilibrium coefficient

3.1415

dimensionless function describing deviation from deepwater equilibrium
range

dimensionless combination of g, £, and h
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DEPTH-LIMITED SIGNIFICANT WAVE HEIGHT: A SPECTRAL APPROACH

C. Limwood Vincent
I. INTRODUCTION

Research into the shape of wind wave spectra in finite-depth water has
suggested an expression for the upper limit on the energy density as a func-
tion of depth and frequency (Kitaigorodskii, Krasitskii, and Zaslavskii, 1975).
In this report this expression is integrated over the part of the spectrum
expected to contain energy to estimate a limit on the energy, E, in the wind
wave spectrum and to define a depth-limited significant wave height, HL=~

Hp = 4.0(E)1/2 (1)
More precisely, the quantity estimated is the variance of the sea surface to
which E is directly related. Following convention, E and E(f) denote
energy and energy density spectrum although the true units of computation are
length squared and length squared per hertz. The term zero-moment wave height,
Hyo will be used to denote 4.0(E) /2, Hyj/3 1s the average height of the ome-
third highest waves. Hp denotes values of Hy,, that are depth limited. 1In
deep water, Hyo is approximately H,/3, but this is not necessarily true in
shallow depths. H; refers to the depth-limited monochromatic wave. The vari-
ation of Hp with depth, h, 1s investigated and compared with the mono-
chromatically derived depth-limited wave height, H;. Because Hy, and Hy/3
are about equal in deep water, they are both frequently called significant
wave height.

This report briefly reviews the theoretical development of the limiting
form for spectral densities as a function of water depth and presents field
evidence supporting this form. The simple derivation of the depth-limited
energy and significant wave height is then given, followed by field and labora-
tory data evaluating the prediction equation. Unless otherwise noted, the
developments of this report are restricted to wave conditions described by a
wave spectrum of some width such as an active wind sea or a decaying sea.

II. THEORETICAL BACKGROUND

Phillips (1958) suggested that there should be a region of the spectrum
of wind-generated gravity waves in which the energy is limited by wave steep-
ness. Phillips derived an expression for the limiting density in deep water:

Em(f) = ag2f5(2%)"" 2)

vhere o was considered to be a universal constant. Field studies reviewed
by Plant (1980) demonstrated that equation (2) adequately describes the part
of the wind sea spectrum sbove the pesk frequency of the spectrum. However,
Hasselmann, et al. (1973) indicated that the equilibrium coefficient a is

not constant but varies systematically with wave growth leading the authors

to speculate that resonant interactions in the spectrum force the spectrum to
evolve to the form of equation (2). Toba (1973) suggested that the equilibrium

range form might be proportional to U,f™* in order to remove the variationm
of a.




Kitaigorodskii, Krasitskii, and Zaslavskii (1975), using Phillips' (1958)
expression for the steepness limited form of a wave spectrum, F, in terms of
the wave number modulus,

P(k) = k3 (3)
solved the transformation of equation (3) to a frequency spectrum in finite-

depth water. The finite-depth form, E_(f,h), was shown to be equal to the .
deepwater form (eq. 2) times a dimensionless functiom, O(mh),

o 2f"5
Em(f,h) = rg;’-r O(u\h) (4)

Kitaigorodskii, Krasitskii, and Zaslavskii suggested a value of 0.0081 for «a.

The function ¢ requires an iterative procedure for solution and is
defined as

(5)

202 R(w ) F-1
®(up) = R"2(a) |1+ “h % )J

Sinh (2uﬁ)n(uh
with wp = w(h/g)!/2 (6)

where w = 2nf and R(w,) is obtained from the solution of

Rluwy) canh(wg R(uh)) -1 ¢))

The dimensionless parameter thhrelated the frequency and depth to the devia-
tion from the deepwater form. en is greater than 2.5, ¢ is approxi-
mately 1, when oy is zero ¢ is zero. When wy is less than 1

¥(w, ) = ulz‘lz (8)
;l; For less than 1, a combination of equations (8) and (4) leads to the
- expression
s E_(£,h) = aghf~3/(2(21)2) (9)
- Thus in the shallow-water limité the bound on energy demsity in the wave
- spectrum is proportional to f£~3 compared to f£™° in deep water, and depth
o is included linearly.
L
& 4
— Resio and Tracy (U.S. Army Engineer Waterways Experiment Station, personal
communication, 1981) have analyzed the resonant interactions and derived
- equivalent expressions to equations (3) and (4) on the basis of similarity
- theory. The conclusion of their theoretical study is that the role of the
= wave-wave interactions in both deep and shallow water is to force the spectrum
£ to evolve to the form of equation (4). Their theory may be distinguished from
. 8
e
=
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that of Kitaigorodskii, Krasitskii, and Zaslavskii (1975) in that their
coefficient o is expected to vary with wave conditions and not remain a
universal constant.

III. FIELD EVIDENCE FOR THE FINITE-DEPTH SPECTRAL FORM

- . . 4
-

Prior to Kitaigorodskii, Krasitskii, and Zaslavskii (1975), Kakimuma
(1967) and Druat, Massel, and Zeidler (1969) had noted that the shape of the
spectrum in shallow water deviated from Phillips' (1958) form. Kitaigorodskii,
’ Krasitskii, and Zaslavskii cited evidence supporting the £-3 form, as did
Thornton (1977) and Gadzhiyev and Kratsitsky (1978). Ou (1980) provided
laboratory evidence for equation (4). A review of spectra collected at the
Coastal Engineering Research Center's (CERC) Field Research Facility (FRF) at
Duck, North Carolina, and at other gages in shallow water supports a near
g3 spectral slope in depths less than 10 meters for large wave energies.

R————

o o
Lael S
-

. These findings indicate a further evaluation is needed of how well the

1! equation fits observed spectra. During the Atlantic Remote Sensing Land and
Ocean Experiment (ARSLOE) conducted in October and November 1980 at the FRF,

- North Carolina, wave spectra were collected in 36 meters of water about 36

| kilometers offshore of the CERC facility (Fig. 1), using the National Ocean

: Survey's directional buoy, XERB, with accelerometer buoys in depths of 25, 18,

and 17 meters of water located at distances of 12, 6, and 3 kilometers offshore

along a line from the facility to the XERB. In addition, data from Baylor

gages at seven locations in 1.5- to 9-meter depths along the FRF pier were

collected. On 25 October 1980 a large, low-pressure system generated waves

with significant heights up to 5.0 meters. Data were collected continuously

at the XERB. during the per‘od of high waves and spectra at all gages were

computed every 20 minut: s.

As a test the obse ved spectra, E(f), were normalized to the following
forms

o, (£) = £5e(f) (27)~Y/g2 (10)

o, () = £5E(£) (2m%/g% #(w) a1

%3 (£) = £3E(£) /g, (12)

P SRR LV A

p——
o1 a. ieas

Equation (10) is an estimate of the equilibrium coefficient as a function of
frequency if the spectra follow the deepwater form. Likewise, equation (11)

is an estimate of the coefficient if the spectra follow the proposed finite-
depth form, and equation (12) is an estimate of the coefficient if the proposed
shallow water (w_less than 1) holds over most of the spectrum. If any of
these forms fit a spectrum then the corresponding function a(f) should be
constant with frequency. Therefore in a regression of f against a(f), f
should explain no variance; consequently, the degree of fit to the spectrum

by each of the three forms can be estimated by how poorly f explains variance
in the regression and how flat the slope with f is. The regressions were
performed over the region from the spectral peak to twice the spectral peak
and the results are tabulated in Tables 1 and 2.
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Base Line (000.0)
0 30 100 1% 200
Figure 1. Location of the XERB buoy and the wave gages at CERC's Field
Research Facility, Duck, Morth Carolina, during the October-
November 1980 ARSLOE experiment.
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Table 1. Normalized form regression (analysis average
of percent variancel in regression of
normalized form against frequency, f,
explained by f£).

Gage | Mean Deepwater | Finite-depth | Shallow-water|
depth form? form3 limit form"
(m)
XERB 36 43 17 48
710 25 53 28 8
630 18 40 13 10
620 17 55 24 18
625 9 68 35 32
655 5 70 60 59
615 2 72 60 59

lgince the proposed form is supposed to remove variation
with f, a high explained wvariance with f indicates that
the form does not fit the spectra well.

265 B(£) (2m)~4/g2
385 B(E) (2m)7%/g2 ¢ (uwy)
b3 E(£)/g

Table 2. Average slope, X103,
against f°.

Gage | ap(f) | op(f) a3(£f)

XERB 31 17 10
710 54 35 4
630 47 18 -3
620 49 25 3
625 82 81 35
655 60 101 53
615 18 67 33

lslope a is unit change of
a a per hertz. Region of the
™ spectrum analysed in regression
analysis is about 0.1 hertz.

Eas it o
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stng the criteria established above, data summarxzed in Table 1 indicate
that in all cases either the finite-depth form or the £~ 1limit appears to
fit the spectra better than the deepwater form. This is because f consist-
ently explains less variance in these regressions than in the regressions
againat the deepwater form. In a regression analysis under an assumption of
normally distributed variates, the hypothesis cf rero correlation is rejected
for the number of frequency components from to 2fp, 1if the regression
coefficient is greater than 0.632 at a 5 percent level of significance. This
translates to a value of 40 percent for the values in Table 2. Table 1 indi-
cates that the average R2 for the regressions in the deepwater form are
always greater than 40 percent, suggesting that there is correlation with f.
The average finite-depth form value is less than 40 percent for all but two
(655 and 615) of the gages, suggesting a tendency for no correlation with f£.
The shallow-water limit results suggest zero correlation except for gages XERB,
655, and 615. Table 2 indicates that the slopes are, in general, lower as
well Plots of f E(f) and f5E(f) show that the spectra appear to more
closely follow a f~3 slope (Fig. 2).

The results of the regression analysis for the §a3es at depths greater
than 9 meters appear to be more closely fit by a form than the results
at 9 meters and at shallower gages. The observed spectra at the shallower
gages tend to be less than the proposed upper limit. It is thought that
refraction, bottom friction, and massive breaking must dominate the spectra
in and around the peak, suppressing the values below the proposed limiting
value. This would indicate that in very shallow water, the proposed form may
be conservative. Plots of storm spectra at different gage sites are compared
to the limiting form in Figure 3.

The variation of the equilibrium coefficient @ computed over the range

to 2f, varies based on gage and time (as represented by sea and swell
cond1t1onsf with o for the sea conditions being larger. Additiomally,
there appeared to be a tendency for a to increase slightly from deep to
shallow water. Om occasion a calculated at the peak of the spectrum exceeded
the value of 0,0081. However, when'the a value at the peak was compared to
the a value averaged over the frequencies from f to 2f_ , it was evident
that the average value was much less than the value at the pg

The field evidence from a variety of sources supports the conclusion that
the maximum energy densities above the peak frequency of the spectrum can be
approximated by equation (4), which in the shallow-water limit approaches
equation (9). Evidence from Ou (1980) and the data in this report suggest
that the coefficient o may not be a universal constant. There is also
evidence that once very shallow depths are reached, other mechanisms can
dominate spectral shape in the vicinity of the peak; the deviation, however,
is such that equation (4) appears to be an overestimate.

IV. FORMULATION OF DEPTH-LIMITED SIGNIFICANT WAVE HEIGHT, Hp

Since equation (4) provides an estimate of the upper limit on energy
density in water depth h as a function of frequency and wave generatxon
condition as expressed by the coefficient &, it is possible to estimate the
upper bound on the depth-limited wave emergy, E,, if a low-frequency cutoff
value, f., is known. Ep can simply be estimated by

12
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The depth-limited significant wave height (spectral) is then

Hy = 4.0 (Bp)!/2 (14)
In shallow water, Hp is expected to be different from H)/3, but how differ-
ent is uncertain. Aithough Hy/3 has a long tradition of use in coastal engi-
neering, the wave height Hp defined in equation (14) appears to be a more

consistent parameter because it is directly related to the energy of the wave
field.

Figure 4 provides curves of Hy as a function of cutoff frequency, f,
and depth, h, for a = 0.008l. If a is different an estimate of Hp for
that a can be made by :

Hy = nZ(u/o.oosnl/ 2 (15)

where Hz is HL estimated with o of 0.0081.

Clearly the cutoff frequency and the value of o are crucial for obtaining
estimates of Hp. An examination of storm spectra indicates that the spectral
peak is quite sharp. Consequently, a reasonable choice for f; would be about
90 percent of f,. If there is evidence of more energy on the forward face of
the spectrum, ' f could be estimated by using a lower percentage. The param-
eter o can be obtained by fitting equation (4) to observed data if available,
For field engineers, most often this may not be possible in which case a can
be estimated by knowledge of the pesk frequency, fp, and windspeed, U,
through the relationships developed by Hasselmann, et al. (1973). The values
of f, and U can be obtained from hindcasts or measurements. Figure 5
provides values of (a/0.0081)1/2 g8 a function of fp and U.

When the primary frequency components containing the major part of the
energy are in shallow water, as determined by the condition uwh < 1, then Eam
is given by equation (9). This can be integrated analytically to give an
estimate of H for a = 0.0081

HL - % (“sh)llz fc-l (16)

Equation (16) has the remarkable consequence of suggesting that Hp defined
as 4.0(E)1/2 varies with the square root of depth when the primary spectral
components are depth limited. The monochromatic depth-limited wave height,
By, varies linearly with h.

S V. FIELD AND LABORATORY EVIDENCE FOR DEPTH-LIMITED SIGNIFICANT HEIGHT, Hp

: In order to test the applicability of equations (15) and (16) in predicting
$id Hp in shallow water, laboratory dats taken by Seelig and Broderick (1981) in
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Figure 4. Depth-limited significant wave height, Hp, as a function
of water depth and cutoff frequency. Curves are calculated
for a = 0.0081. Hy is plotted for lower limit of 0.8 h.
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a flume 44 meters long and 0.45 meter wide with a maximum water depth of 0.6
meter and a bottom slope of 1:30 at one end were exsmined. Seelig and Broderick
ran a variety of apectral shapes and enzrgxes. Figure 6 is a plot of H
calculated, as in equation (1), from a Fourier analysis of their wave data
against ni/2, Typically, the wave appear to shoal with decreaging depth,
thereby increasing in height until a point is reached at wvhich the wave height
decreases linearly with the square root of depth. Figure 7 is an estimate of

, based on equation (15), for two forms of fc. A plot of the maximum
individual wave, Hp,x, is plotted as is the monochromatic breaking limit which
Hmax appears to follow. Hp is much less than the nonochtona’1c breaking
limit in this case. Figure 8 provides plots of Hp versus nl for wave data
at FRF on 25 October 1980. The value of h 1is estimated by an average of
profiles before and after the storm and incl des the tide and the wave setup.
The curves are approximately linear with h!

Vi. DISCUSSION

An examination of the characteristics of spectral shape in shallow water
has led to a method of estimating the upper bound on wave energy as expressed
by a depth-limited wave height. It is shown that in the shallow-water limit
this leads to an approximate variation of Hp with the square root of depth.
Frequently, the monochromatic limiting value Hq is used to provide an upper
bound on the wave height in shallow water. This report indicates that such an
approach can significantly overestimate the significant wave height. The tra-
ditional method of estimating wave conditions in shallow water has been to
obtain an estimate of H;;3 in some depth of water, then refract and shoal
it into the shore. At some point H;;3 becomes larger than Hy, in vwhich
case Hj/3 1s set to Hy. This report indicates, however, that the wave
height Hp, which is directly related to the wave energy, varies with h1/2
and is normally much less than Hy. Counsequently, when the energy in the sea
is of concern, Hp should be used rather than Hy. If the maximum individual
wave that can occur is of concern then Hy 1s appropriate.

The method in this report also indicates that the maximum significant wave
height, Hp, in shallow water in lakes and bays can be different than that in
the open ocean because the cutoff frequency, f., in the smaller water bodies
is normally much higher than £, for large ocean storms. Table 3 provides
esimtates for Hy as a function of h for an ocean, s large lake, and a small
lake for the same windspeed, U, of 25 meters per second but for different
frequencies. Longer waves in an ocean are expected to develop than in small
lakes; con.equently, fo 1is higher in the short fetch cases. The coefficient
a increases in short fetch cases, but it enters Hp through a square root
relationship.

Estimates of depth-limited wave conditions have traditionally been based
on linearity of wave height and depth. This linear relationship is well estab-
lished for monochromatic waves by both laboratory and theoretical studies.
Extensions to irregular wave conditions have relied on this linear relationship
but with a coefticient of about 0.4. Figure 8 is a plot of this variation for
25 October 1980 and shows that in slope snd magnitude this form is a poor
predictor. The method in this report is based on a theory about spectral shape
and appears to be a better predictor. It should be noted, however, that
evaluations of the newer method must account for variations in a and fc
as vave conditions change. Hence, simply plotting Kp versus h or n/2 for
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Variation of significant wave height, Hp, with the square
root of water depth. After a region of shoaling, wave height
drops off linearly with the square root of water depth.
Differing slopes are due to variations in o and f..
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seconds. A linear shoaling curve is also shown.
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Table 3. Variation of H, with depth for ocean, large
lake, and unll&;ke generation cases.

Depth | Monochromatic | Ocean | Large lake, Small hke,
vave, Hy 1 Hp 2 Hp 3 Hp
(m) (m) (m) (m) (m)
1 0.78 1.55 1.18 0.9
3 2.2 2.65 1.9 1.6
L} 3.9 3.4 2.5 1.9
8 6.2 4.2 3.0 2.3
10 7.8 4.7 3.3 2.6

lEstimated by lower limit of 0.78 h.

2¢, = 0.08, £, = 0.07, (a/0.0081)}/2 = 1.20,
3%, = 0.12, £, = 0.11, (a/0.0081)}/2 = 1,37,
“fp = 0.16, £, = 0.14, (a/0.0081)1/2 = 1.44.
SLarger than Hy.

one gage will show considerable scatter because of the time variation of a
and f.. The evaluations of the method in this report have removed this
constramt by using a series of gages across the nearshore zone.

The use of the method at the beginning of this report was restricted to
spectra of some breadth such as storm seas. It is clear that nearly mono-
chromatic waves follow the linear depth relationship, yet it is increasingly
clear that irregular waves do nmot. A question of major importance not yet
resolved is how wide must a spectrum be before the waves follow the relation-
ships in this report. Equally important is the isolation of the physics of
wave motion that determine these differences. In a shoaling monochromatic
wave, nonlinearities arise which force the development of harmonics in the wave
frequency and tend to broaden the spectrum, yet the absence of other wave
components may reduce the transfer energies by resonant interactions. If the
bottom slope is sufficiently steep, the evolution of the swell waves may be
markedly different from irregular waves wvhich may more easily exchange energy
due to resonant interactions.

VII. SUMMARY

A method for estimating depth-limited significant wave height, Hp,
based on a theoretical form for the shape of shallow-water storm wave spectra
vas presented. The method requires an estimate of the peak frequency of the
vave spectrum, fpo; knowledge of the Phillips' equilibrium coefficient, a;
and water depth, h. A method for estimating a based on information about
the peak frequency of the sea spectrum is also ;iven. The results indicate
that the depth-limited significant wave height, Hg, based on the energy of
the sea state is generally less than the depth-limited -onochrout:l.c vave
height, Hy. The depth-limited wave height defined as &.0(E)!/2 appears
to be related to the square root of depth.
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