A General Algorithm for the Calculation of Laser Beam Spreading

August 1982

By

M. B. Richardson

Approved for public release; distribution unlimited.

US Army Electronics Research and Development Command
Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
ERRATA

ASL-TR-0116

A GENERAL ALGORITHM FOR THE CALCULATION OF LASER BEAM SPREADING

Please change subject document as follows.

Page 10 Second line from top of page, change "... [(equations (1) and (2a)]" to "... [equations (1) and (2a)]"

Page 10 Third line from top of page, change "... equations (3), (4), (5), and (6);" to "... [equations (3), (4), (5), and (6)]"

Page 11 First line on page, change "... [(equations (2a) and (2b)]" to "... [equations (2a) and (2b)]"

Page 14 Last line in figure 3 caption, change "... \(\Omega = \text{to } 20 \)" to "... \(\Omega = 2.0 \)"
This paper compares two different beam spreading formalisms in the limits of near- and far-field, short exposure and long exposure. A description is given of an interpolation algorithm bridging the limits, giving entirely reasonable results in the intermediate regimes while having the proper limiting values.
CONTENTS

LIST OF FIGURES.. 4
LIST OF TABLES.. 4
INTRODUCTION.. 5
Short and Long, Exposure Limit Expressions.................. 6
Short Exposure Comparison: Near-Field, Far-Field and Inter-
mediate cases... 10
Long Exposure Comparisons..................................... 12
Short, Long, and Intermediate Exposure Comparison........ 12
SUMMARY OF BEAM SPREADING RESULTS......................... 16
REFERENCES... 17
LIST OF FIGURES

1. Normalized resolution R as a function of strength of turbulence $\frac{D}{F_0}$ in the near-field, short exposure limit; far-field, short exposure limit; and long exposure limit.................. 8

2. Normalized resolution R as a function of strength of turbulence $\frac{D}{F_0}$ in the short exposure limit; long exposure limit; and interpolated case.......................... 14

3. Beam spread (in meters) as a function of strength of turbulence $\frac{D}{F_0}$ in the short exposure, long exposure and interpolated cases.... 14

LIST OF TABLES

1. COMPARISON OF BREAUX'S ANALYTICAL EXPRESSION (6) WITH FRIED'S INTEGRAL EXPRESSION (2a) IN THE NEAR-FIELD, SHORT TERM LIMIT... 10

2. BEAM SPREAD IN SHORT EXPOSURE LIMIT............................ 11

3. COMPARISON OF BREAUX'S ANALYTICAL EXPRESSION (5) WITH FRIED'S INTEGRAL EXPRESSION (2c) IN THE LONG EXPOSURE LIMIT... 13

4. BEAM SPREAD IN THE SHORT EXPOSURE, LONG EXPOSURE, AND INTERMEDIATE CASE... 15
Laser beam spreading is an unavoidable consequence of finite aperture size (resulting in diffraction) and atmospheric turbulence (resulting in temporal variations in the index of refraction, which in turn induces beam spread). Although the quantification of beam spreading is important in the design and subsequent performance of electro-optical systems, (e.g., laser designators and homing seekers), previous calculations of turbulence effects have been limited to the cases of very short exposure in the near-field and far-field and to the case of very long exposure. 1 2 The difficulty in quantifying turbulence effects is in the accurate representation of the stochastic nature of turbulence.

In the near-field limit, the beam profile maintains its initial shape. As the beam propagates, however, in the absence of turbulence the beam profile gradually changes to a diffraction-induced profile in the far-field limit (e.g., an "Airy pattern" for a uniform circular beam). An indication of whether we are in the near-field or far-field limit is determined by the value of the Fresnel number $\alpha = \frac{kD^2}{\lambda L}$. The variables are the wavenumber $k = \frac{2\pi}{\lambda}$, λ = wavelength, D = aperture diameter, and L = path length. When $\alpha >> 1$, we are in the near-field limit; when $\alpha << 1$, we are in the far-field limit.

It is readily apparent that for typical laser designator parameters (e.g., $\lambda = 10.6 \mu$m, $D = 0.1$ m, and $L = 3$ km), $\alpha = 2$; thus, neither the near-field or far-field limit is applicable. The condition of short or long exposure is determined by a comparison of the pulse duration time t with the time t_c it takes a turbulent eddy whose size is on the order of the beam size to cross the beam. An indication of whether we are in the short or long exposure limit is given by the parameter $\tau = \frac{t_c}{t + t_c}$, where $\tau \approx 1$ in the short exposure limit and $t \approx 0$ in the long exposure limit. For an eddy ≈ 0.1 m and an eddy velocity ≈ 10 m/s, $t_c = \frac{0.1}{10} = 0.01$ ms. Since pulse duration times range from nanoseconds ($\tau \approx 1$) to seconds ($\tau \approx 0$), neither the short nor long exposure limits are, in general, applicable.

Since, as shown above, the limiting cases do not apply to typical scenarios, a
general expression for beam spreading, valid for arbitrary values of \(\sigma \) and \(t \),
is needed. Using an interpolation scheme, this paper describes an algorithm
that bridges the near- and far-field, short exposure and long exposure
limits. Also, comparisons are made of laser beam spreading due to turbulence
as calculated by Fried\(^1\) in the near-field, short exposure and long exposure
limits, with that calculated by Breaux.\(^2\)

Short and Long, Exposure Limit Expressions

Fried\(^1\) derived expressions for the average resolution of very long and very
short exposure images in terms of the modulation transfer function (MTF). In
the short exposure case, the image sharpness and the MTF are insensitive to
the tilt of the wavefront. In the long exposure case, the random variations
in the tilt substantially add to the image spreading and, therefore, result in
poorer resolution.

Beam spreading, using Fried's\(^1\) resolution expressions, is calculated from the
following equation.

\[
\frac{r_T}{r_D} = \left(\frac{D}{r_0} \right) R
\]

where \(r_T \) = turbulence- and diffraction-induced beam spread,

\[
r_D = \text{diffraction-induced beam spread},
\]

\[
\frac{D}{r_0} = \text{strength of turbulence},
\]

\[
D = \text{aperture diameter},
\]

\[
r_0 = \text{coherence length} = 1.67 \left(\int_0^L C_n^2(z) W(z) dz \right)^{-3/5},
\]

\[
C_n^2 = \text{refractive index structure constant},
\]

\[
W = \text{geometry-dependent weighting function}, \text{ and}
\]

\[
L = \text{total propagation distance}.
\]

The function \(R \), using the notation of Fried,\(^1\) is given by

\(1\) Fried, D. L., "Optical Resolution Through a Randomly Inhomogeneous Medium for

\(2\) Breaux, Harold J., "Correlation of Extended Huygens-Fresnel Turbulence
Calculations for a General Class of Tilt Corrected and Uncorrected Laser
Apertures," BRL IMR 600, Ballistic Research Laboratory, Aberdeen Proving
\[
R = \begin{cases}
\left(\frac{n R_0}{R_{\text{max}}} \right)^{-1/2} & \text{near-field, short exposure limit (} a \gg 1, \tau + 0), \\
\left(\frac{f R_0}{R_{\text{max}}} \right)^{-1/2} & \text{far-field, short exposure limit (} a \ll 1, \tau + 0), \\
\left(\frac{R}{R_{\text{max}}} \right)^{-1/2} & \text{long exposure limit (} \tau + 1),
\end{cases}
\]

where the expressions for the resolution, normalized by the limiting resolution \(R_{\text{max}} \), are given by

\[
\frac{n R_0}{R_{\text{max}}} = \left\{ \frac{16}{x} (\frac{D}{R_0})^2 \int_0^1 u \left[\cos^{-1}(u) - u(1-u)^{1/2} \right] \\exp \left[-3.44 (\frac{D}{R_0})^{5/3} u^{5/3} (1-u^{1/3}) \right] \right\}, \tag{2a}
\]

\[
\frac{f R_0}{R_{\text{max}}} = \left\{ \cdots \right\} x \exp \left[-3.44 (\frac{D}{R_0})^{5/3} u^{5/3} (1-0.5 u^{1/3}) \right], \tag{2b}
\]

and

\[
\frac{R}{R_{\text{max}}} = \left\{ \cdots \right\} x \exp \left[-3.44 (\frac{D}{R_0})^{5/3} u^{5/3} \right]. \tag{2c}
\]

The quantity in braces corresponds to the optical-system MTF and the exponential factor corresponds to the atmospheric MTF.

In figure 1 the normalized resolutions given in equations (2a), (2b), and (2c) are plotted as a function of strength of turbulence. Note that in the limits of very strong \((\frac{D}{R_0} \gg 1)\) and very weak \((\frac{D}{R_0} \ll 1)\) turbulence, the results approach a single curve. In the limit of strong turbulence, the exponential factors in (2a), (2b), and (2c) go to zero. In this case all the resolutions approach the value of the limiting resolution in the long exposure limit, \(R_{\text{max}} \); thus, the normalized resolutions all approach unity. In the limit of weak turbulence, the exponential factors go to unity. In this case, all the
normalized resolutions are proportional to the factor \(\left(\frac{D}{r_0} \right)^2 \) which shows up as the linear section of the curve seen in figure 1. However, in the intermediate regime \(\left(\frac{D}{r_0} \sim 3 \right) \), all three expressions differ by as much as a factor of 5. Because turbulence is often encountered in this intermediate regime, the need exists for an expression for beam spreading that gives values intermediate to the extremes.

Breaux's approach to the calculation of beam spreading was to develop beam spreading algorithms in terms of a scaling variable in the near-field limit. The scaling variable chosen was the strength of turbulence \(\frac{D}{r_0} \) for various beam shapes, where \(D \) is the effective aperture diameter and \(r_0 \) is the coherence length.

Figure 1. Normalized resolution \(R \) as a function of strength of turbulence \(\frac{D}{r_0} \) in the near-field, short exposure limit; far-field, short exposure limit; and long exposure limit.

Breaux's expression for beam spreading,

\[\frac{r_T}{r_D} = \text{SR}^{-1/2} \]

is calculated as a function of the Strehl ratio,

\[\text{SR} = \frac{I_T}{I_D} \]

where \(I_T \) = on-axis irradiance with turbulence and diffraction and \(I_D \) = on-axis irradiance with only diffraction. The quantities \(r_T \) and \(r_D \) have the same meanings as in equation (1).

For a uniform beam, the long-term Strehl ratio is

\[\text{SR}_{LT} = \left[1 + \left(\frac{D}{r_0} \right)^2 \right]^{-1} \]

For a uniform beam, the near-field, short exposure Strehl ratio is

\[\text{SR}_{ST} = \begin{cases} \left[1 + 0.182 \left(\frac{D}{r_0} \right)^2 \right]^{-1} & \frac{D}{r_0} \leq 3 \\ \left[1 + \left(\frac{D}{r_0} \right)^2 - 1.18 \left(\frac{D}{r_0} \right)^{5/3} \right]^{-1} & \frac{D}{r_0} > 3 \end{cases} \]

Short Exposure Comparison: Near-Field, Far-Field and Intermediate Cases

Fried's1 integral expression [(equations (1) and (2a))] are compared with Breaux's2 analytical expression equations (3), (4), (5), and (6) in the near-field, short exposure limit in table 1. Equation (2a) was evaluated numerically using a 1/2 Simpson rule integration. The agreement between the two sets of results is excellent. For \(\frac{D}{r_0} \approx 2 \), the results are within 1 percent of each other; for \(\frac{D}{r_0} \approx 4 \), the results are within 6 percent of each other.

\begin{table}[h]
\centering
\caption{Comparison of Breaux's Analytical Expression (6) With Fried's Integral Expression (2a) in the Near-Field, Short Term Limit.}
\begin{tabular}{ccccccc}
\hline
D(m) & \(C_n^2 \) (m\(^{-2/3}\)) & \(r_0 \) (m) & \(\frac{D}{r_0} \) & \(\alpha \) & Fried(2a) & Breaux(6a,b) \\
\hline
0.1 & \(1 \times 10^{-13} \) & 0.2363 & 0.4233 & 2.964 & 0.2441 & 0.2430 \\
0.1 & \(5 \times 10^{-13} \) & 0.0900 & 1.112 & 2.964 & 0.2646 & 0.2647 \\
0.1 & \(1 \times 10^{-12} \) & 0.0593 & 1.685 & 2.964 & 0.2921 & 0.2945 \\
0.4 & \(1 \times 10^{-13} \) & 0.2363 & 1.693 & 47.42 & 0.0731 & 0.0737 \\
0.4 & \(5 \times 10^{-13} \) & 0.0900 & 4.447 & 47.42 & 0.1445 & 0.1534 \\
0.4 & \(1 \times 10^{-12} \) & 0.0593 & 6.740 & 47.42 & 0.2505 & 0.2540 \\
\hline
\end{tabular}
\end{table}

For the far-field, short exposure limit, a similar comparison cannot be made owing to the lack of an analytical expression analogous to (6) in the far-field limit. However, for values of \(\frac{D}{r_0} \approx 1 \), the near-field and far-field, short exposure values can differ by more than 50 percent. In order to bridge the near-field and far-field limits, the short exposure limit resolutions

2Breaux, Harold J., "Correlation of Extended Huygens-Fresnel Turbulence Calculations for a General Class of Tilt Corrected and Uncorrected Laser Apertures," BRL IMR 600, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1978.
[(equations (2a) and (2b)) were combined in the following interpolation expression:

\[
\frac{\ln R_0}{R_{\text{max}}} = \left\{ \ldots \right\} \times \exp \left[-3.44 \left(\frac{D}{r_0} \right)^{5/3} u^{5/3} (1-F \cdot u^{1/3}) \right]
\]

(7)

where \(\left\{ \ldots \right\}\) is the MTF of the optical system listed in (2a), the near-field/far-field interpolation factor \(F = \frac{a+1}{a+2}\), and \(a\) is the Fresnel number.

The interpolated, normalized resolution given in equation (7) was used in conjunction with equation (1) to get the beam spread.

In table 2 we compare Fried's\(^1\) near-field and far-field, short exposure results for beam spreading with the interpolation expression. Consistent with the resolutions shown in figure 1, the beam spread values approach one another for \(\frac{D}{r_0} = 0.4233\), diverging for \(\frac{D}{r_0} > 1\). The interpolation formula in the present study correctly goes to the proper limits in the near-field \((a >> 1)\) cases. For intermediate cases \((a \sim 1)\), the results fall between the near- and far-field limits.

TABLE 2. BEAM SPREAD IN SHORT EXPOSURE LIMIT.

(path length = 2 km, wavelength = 10.6μm)

<table>
<thead>
<tr>
<th>(D) (m)</th>
<th>(C_n^2)</th>
<th>(r_0) (m)</th>
<th>(\frac{D}{r_0})</th>
<th>(\alpha)</th>
<th>(r_T) (m)</th>
<th>(\text{near-field})</th>
<th>(\text{far-field})</th>
<th>(\text{in} \rightarrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>(1 \times 10^{-12})</td>
<td>0.2363</td>
<td>0.4233</td>
<td>2.964</td>
<td>2.964</td>
<td>0.2441</td>
<td>0.2565</td>
<td>0.2491</td>
</tr>
<tr>
<td>0.1</td>
<td>(5 \times 10^{-13})</td>
<td>0.0900</td>
<td>1.112</td>
<td>2.964</td>
<td>2.964</td>
<td>0.2646</td>
<td>0.3266</td>
<td>0.2906</td>
</tr>
<tr>
<td>0.1</td>
<td>(1 \times 10^{-12})</td>
<td>0.0593</td>
<td>1.685</td>
<td>2.964</td>
<td>2.964</td>
<td>0.2921</td>
<td>0.4128</td>
<td>0.3457</td>
</tr>
<tr>
<td>0.4</td>
<td>(1 \times 10^{-12})</td>
<td>0.2363</td>
<td>1.693</td>
<td>47.42</td>
<td>47.42</td>
<td>0.0731</td>
<td>0.1035</td>
<td>0.0746</td>
</tr>
<tr>
<td>0.4</td>
<td>(5 \times 10^{-13})</td>
<td>0.0900</td>
<td>4.447</td>
<td>47.42</td>
<td>47.42</td>
<td>0.1445</td>
<td>0.2386</td>
<td>0.1539</td>
</tr>
<tr>
<td>0.4</td>
<td>(1 \times 10^{-12})</td>
<td>0.0593</td>
<td>6.740</td>
<td>47.42</td>
<td>47.42</td>
<td>0.2505</td>
<td>0.3604</td>
<td>0.2651</td>
</tr>
</tbody>
</table>

*Includes diffraction and turbulence

\(\text{in} \rightarrow\) interpolation

Though the interpolation scheme is ad hoc, the results are reasonable since one expects a smooth, continuous shift from the near-field to far-field results, as a function of decreasing Fresnel number.

Long Exposure Comparison

In the limit of long exposures, the random tilt variations are responsible for most of the distortion and beam spread. Thus, no distinction between near-field and far-field is necessary.

Fried's\(^1\) integral expression is compared with Breaux's\(^2\) analytical expression in the long exposure limit in table 3. A reasonably good agreement exists between the two sets of calculations, always within at least 7 percent of each other. The results, using Breaux's formalism, yield slightly smaller values for the beam spread; the differences are not considered significant.

Beam spread in the long exposure limit has larger values compared with beam spread for the same parameters in the short exposure limit (compare tables 3 and 2). This difference occurs because the long exposure beam spread consists of random tilt variations along with the short exposure beam spreading; therefore, beam spread in the long exposure limit will always be larger than in the short exposure limit.

Short, Long, and Intermediate Exposure Comparison

Analogous to the interpolation scheme used to bridge the near-field/far-field results, an interpolation factor for short and long exposures was incorporated into an expression for the normalized resolution. The normalized resolution now becomes:

\[
\frac{R_{SE-LE}}{R_{\text{max}}} = \left\{ \frac{1}{\tau} \right\} \exp \left(-3.44 \frac{D}{r_0} \right)^{5/3} u^{5/3} \cdot (1 - \tau \cdot F \cdot u^{1/3})
\]

(8)

where \(\tau\) is the short exposure/long exposure interpolation factor.

TABLE 3. COMPARISON OF BREAUX'S ANALYTICAL EXPRESSION (5) WITH FRIED'S INTEGRAL EXPRESSION (2c) IN THE LONG EXPOSURE LIMIT.

(path length = 2 km, wavelength = 10.6 μm)

<table>
<thead>
<tr>
<th>D(m)</th>
<th>C^2_n (m^-2/3)</th>
<th>r_0 (m)</th>
<th>(\frac{D}{r_0})</th>
<th>a</th>
<th>Beam Spread (r_T) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1 x 10^-11</td>
<td>0.2363</td>
<td>0.4233</td>
<td>2.964</td>
<td>0.2685</td>
</tr>
<tr>
<td>0.1</td>
<td>5 x 10^-11</td>
<td>0.0900</td>
<td>1.112</td>
<td>2.964</td>
<td>0.3802</td>
</tr>
<tr>
<td>0.1</td>
<td>1 x 10^-12</td>
<td>0.0593</td>
<td>1.685</td>
<td>2.964</td>
<td>0.5013</td>
</tr>
<tr>
<td>0.4</td>
<td>1 x 10^-11</td>
<td>0.2363</td>
<td>1.693</td>
<td>47.42</td>
<td>0.1258</td>
</tr>
<tr>
<td>0.4</td>
<td>5 x 10^-11</td>
<td>0.0900</td>
<td>4.447</td>
<td>47.42</td>
<td>0.2864</td>
</tr>
<tr>
<td>0.4</td>
<td>1 x 10^-12</td>
<td>0.0593</td>
<td>6.740</td>
<td>47.42</td>
<td>0.4232</td>
</tr>
</tbody>
</table>

In figure 2 the normalized resolutions given in the short exposure limit using the near-field/far-field interpolated resolution given in equation (7), the long exposure limit using equation (2c), and the interpolated case using the short exposure/long exposure resolution given in equation (8) are presented as a function of strength of turbulence. For the interpolated resolution, the Fresnel number \(\alpha \) was set to 2 and the pulse time over eddy cross-time \(t/t_c \) was set to 0.11. Note that the interpolated results always lie between the two limiting results and that, as in figure 1, the results go to the same values in the limit of weak or strong turbulence.

Beam spreading, using the normalized resolutions plotted in figure 2, is tabulated in table 4 for a pathlength of 2 km, wavelength of 10.6 μm, and a short/long exposure interpolation factor \(\tau \) of 0.5. Note that the long exposure beam spread is always larger than the short exposure value—as it should be. The intermediate cases all fall between the long and short exposure values. For small values of \(\frac{D}{r_0} \) (e.g., the first entry in table 4, \(\frac{D}{r_0} = 0.4233 \)), the differences between the three formulations are small. For values of \(\frac{D}{r_0} > 1 \), the differences become appreciable. For the 0.4 m aperture diameter, \(\frac{D}{r_0} = 4.447 \) entry, the long exposure value is 86 percent greater than the short exposure value. The intermediate value is 56 percent larger than the short exposure value and 19 percent smaller than the long exposure value.

Beam spread in the short, long, and intermediate exposure cases is plotted as a function of strength of turbulence in figure 3. In calculating the values for the intermediate cases, \(\alpha \) was set to 2 and \(t/t_c = 0.11 \) (equivalent to \(\tau = \) ...
Figure 2. Normalized resolution R as a function of strength of turbulence D_0 in the short exposure limit (using the near-field/far-field interpolated resolution given by equation (7)); long exposure limit, and interpolated case (using the short exposure/long exposure resolution given by equation (8)). For the interpolated case, $\alpha = 2.0$ and $t/t_c = 0.11$.

Figure 3. Beam spread (in meters) as a function of strength of turbulence D_0 in the short exposure, long exposure and interpolated cases. For the interpolated case, $\alpha = 2.0$ and $t/t_c = 0.11$.
Again note the convergence to the same beam spread value for weak \(\frac{D}{\rho_0} \ll 1 \) and strong \(\frac{D}{\rho_0} \gg 1 \) turbulence. The intermediate exposure curve \(r_0 \) falls between the two extremes with the differences largest around \(\frac{D}{\rho_0} \approx 1 \).

TABLE 4. BEAM SPREAD IN THE SHORT EXPOSURE, LONG EXPOSURE, AND INTERMEDIATE CASE.

(path length = 2 km, wavelength = 10.6\(\mu \)m and \(\tau = 0.5 \))

<table>
<thead>
<tr>
<th>(D(\text{m}))</th>
<th>(C_n^2(\text{m}^{-2/3}))</th>
<th>(r_0(\text{m}))</th>
<th>(\frac{D}{\rho_0})</th>
<th>(\alpha)</th>
<th>Beam Spread (r_T(\text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>(1 \times 10^{-13})</td>
<td>0.2363</td>
<td>0.4233</td>
<td>2.964</td>
<td>0.2491</td>
</tr>
<tr>
<td>0.1</td>
<td>(5 \times 10^{-13})</td>
<td>0.0900</td>
<td>1.112</td>
<td>2.964</td>
<td>0.2906</td>
</tr>
<tr>
<td>0.1</td>
<td>(1 \times 10^{-12})</td>
<td>0.0593</td>
<td>1.685</td>
<td>2.964</td>
<td>0.3457</td>
</tr>
<tr>
<td>0.4</td>
<td>(1 \times 10^{-13})</td>
<td>0.2363</td>
<td>1.693</td>
<td>47.42</td>
<td>0.0746</td>
</tr>
<tr>
<td>0.4</td>
<td>(5 \times 10^{-13})</td>
<td>0.0900</td>
<td>4.447</td>
<td>47.42</td>
<td>0.1539</td>
</tr>
<tr>
<td>0.4</td>
<td>(1 \times 10^{-12})</td>
<td>0.0593</td>
<td>6.740</td>
<td>47.42</td>
<td>0.2651</td>
</tr>
</tbody>
</table>

*SE = Short exposure
†LE = Long exposure
‡IN = Intermediate
SUMMARY OF BEAM SPREADING RESULTS

Comparison of Fried's near-field, short exposure expressions and long exposure expressions with those of Breaux showed excellent overall agreement. The interpolation expression of the present study shows the proper limiting results in the near- and far-field, short exposure cases and in the long exposure case. It also gives entirely reasonable results in the intermediate cases. It would be preferable—for ease of computation—to have an analytical interpolation expression similar to the limiting expressions developed by Breaux. The lack of an analytical, far-field, short exposure expression, however, prevents formulating such an expression.

The complete beam spreading expression is given by

\[r_T = r_T(\frac{D}{r_0}) \cdot \left\{ \frac{16(D/r_0)^2}{\pi} \int_0^1 u \cos^{-1}(u) - u(1-u^2)^{1/2} \right\} \]
\[\times \exp \left[-3.44(D/r_0)^{5/3} u^{5/3} \cdot (1-\tau F u^{1/3}) \right] \]
\[\cdot (-1/2) \]

where \(\tau = \frac{t}{t + t_c} \), and \(F = \frac{a + 1}{a + 2} \), and

where \(\tau \) interpolates between the short and long exposure limits and \(F \) interpolates between the near- and far-field limits.

REFERENCES

ELECTRO-OPTICS DISTRIBUTION LIST

Commander
US Army Aviation School
Fort Rucker, AL 36362

Commander
US Army Aviation Center
ATTN: ATZQ-D-MA (Mr. Oliver N. Heath)
Fort Rucker, AL 36362

Commander
US Army Aviation Center
ATTN: ATZQ-D-MS (Mr. Donald Wagner)
Fort Rucker, AL 36362

NASA/Marshall Space Flight Center
ATTN: ES-83 (Otha H. Vaughan, Jr.)
Huntsville, AL 35812

NASA/Marshall Space Flight Center
Atmospheric Sciences Division
ATTN: Code ES-81 (Dr. William W. Vaughan)
Huntsville, AL 35812

Nichols Research Corporation
ATTN: Dr. Lary W. Pinkley
4040 South Memorial Parkway
Huntsville, AL 35802

John M. Hobbie
c/o Kentron International
2003 Byrd Spring Road
Huntsville, AL 35802

Mr. Ray Baker
Lockheed-Missile & Space Company
4800 Bradford Blvd
Huntsville, AL 35807

Commander
US Army Missile Command
ATTN: DRSMI-OG (Mr. Donald R. Peterson)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REL (Dr. George Emmons)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REO (Huey F. Anderson)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REO (Mr. Maxwell W. Harper)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RHC (Dr. Julius Q. Lilly)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
Redstone Scientific Information Center
ATTN: DRSMI-RPRD (Documents Section)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRA (Dr. Oskar Essenwanger)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRO (Mr. Charles Christensen)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRO (Dr. George A. Tanton)
Redstone Arsenal, AL 35809
Commander
US Army Communications Command
ATTN: CC-OPS-PP
Fort Huachuca, AZ 85613

Commander
US Army Intelligence Center & School
ATTN: ATSI-CD-CS (Mr. Richard G. Cundy)
Fort Huachuca, AZ 85613

Commander
US Army Intelligence Center & School
ATTN: ATSI-CD-MD (Mr. Harry Wilder)
Fort Huachuca, AZ 85613

Commander
US Army Intelligence Center & School
ATTN: ATSI-CS-C (2LT Coffman)
Fort Huachuca, AZ 85613

Commander
US Army Yuma Proving Ground
ATTN: STEYP-MSA-TL
Bldg 2105
Yuma, AZ 85364

Northrop Corporation
Electro-Mechanical Division
ATTN: Dr. Richard D. Tooley
500 East Orangethorpe Avenue
Anaheim, CA 92801

Commander
Naval Weapons Center
ATTN: Code 3918 (Dr. Alexis Shlanta)
China Lake, CA 93555

Hughes Helicopters
Army Advanced Attack Helicopter Weapons
ATTN: Mr. Charles R. Hill
Centinela and Teale Streets
Bldg 305, MS T-73A
Culver City, CA 90230

Commander
US Army Combat Developments
Experimentation Command
ATTN: ATEC-PL-M (Mr. Gary G. Love)
Fort Ord, CA 93941

SRI International
ATTN: K2060/Dr. Edward E. Uthe
333 Ravenswood Avenue
Menlo Park, CA 94025

SRI International
ATTN: Mr. J. E. Van der Laan
333 Ravenswood Avenue
Menlo Park, CA 94025

Joane May
Naval Environmental Prediction Research Facility (NEPRF)
ATTN: Library
Monterey, CA 93940

Sylvania Systems Group,
Western Division
GTE Products Corporation
ATTN: Technical Reports Library
P.O. Box 205
Mountain View, CA 94042

Sylvania Systems Group
Western Division
GTE Products Corporation
ATTN: Mr. Lee W. Carrier
P.O. Box 188
Mountain View, CA 94042

Pacific Missile Test Center
Geophysics Division
ATTN: Code 3250-3 (R. de Violini)
Point Mugu, CA 93042

Pacific Missile Test Center
Geophysics Division
ATTN: Code 3253 (Terry E. Battalino)
Point Mugu, CA 93042

Effects Technology Inc.
ATTN: Mr. John D. Carlyle
5383 Hollister Avenue
Santa Barbara, CA 93111

Commander
Naval Ocean Systems Center
ATTN: Code 532 (Dr. Juergen Richter)
San Diego, CA 92152

Commander
Naval Ocean Systems Center
ATTN: Code 5322 (Mr. Herbert G. Hughes)
San Diego, CA 92152

Commander
Naval Ocean Systems Center
ATTN: Code 4473 (Tech Library)
San Diego, CA 92152
Dr. A. D. Belmont
Research Division
Control Data Corporation
P.O. Box 1249
Minneapolis, MN 55440

Director
US Army Engr Waterways Experiment Station
ATTN: WESEN (Mr. James Mason)
P.O. Box 631
Vicksburg, MS 39180

Dr. Jerry Davis
Department of Marine, Earth
and Atmospheric Sciences
North Carolina State University
Raleigh, NC 27650

The Johns Hopkins University
Applied Physics Laboratory
ATTN: Dr. Michael J. Lun
John Hopkins Road
Laurel, MD 20810

Science Applications Inc.
ATTN: Mr. G. D. Currie
15 Research Drive
Ann Arbor, MI 48103

Science Applications Inc.
ATTN: Dr. Robert E. Turner
15 Research Drive
Ann Arbor, MI 48103

Commander
US Army Tank-Automotive Research
& Development Command
ATTN: DRDTA-ZSC (Mr. Harry Young)
Warren, MI 48090

Commander
US Army Tank Automotive Research
& Development Command
ATTN: DRDTA-ZSC (Mr. Wallace Mick, Jr.)
Warren, MI 48090

Commander
US Army Research Office
ATTN: DRXRO-GS (Dr. Leo Alpert)
P.O. Box 12211
Research Triangle Park, NC 27709

Commander
US Army Research Office
ATTN: DRXRO-PP (Brenda Mann)
P.O. Box 12211
Research Triangle Park, NC 27709

Commander
US Army Cold Regions Research
& Engineering Laboratory
ATTN: CRREL-RD (Dr. K. F. Sterrett)
Hanover, NH 03755

Commander/Director
US Army Cold Regions Research
& Engineering Laboratory
ATTN: CRREL-RG (Mr. George Aitken)
Hanover, NH 03755

Commander
US Army Cold Regions Research
& Engineering Laboratory
ATTN: CRREL-RG (Mr. Roger H. Berger)
Hanover, NH 03755

Commander
US Army Armament Research
& Development Command
ATTN: DRDAR-AC (Mr. James Greenfield)
Dover, NJ 07801
Commander
US Army Armament Research & Development Command
ATTN: DRDAR-TSS (Bldg #59)
Dover, NJ 07801

Commander
US Army Armament Research & Development Command
ATTN: DRCM-CAWS-EI (Mr. Peteris Jansons)
Dover, NJ 07801

Commander
US Army Armament Research & Development Command
ATTN: DRCM-CAWS-EI (Mr. G. H. Waldron)
Dover, NJ 07801

Deputy Joint Project Manager for Navy/USMC SAL GP
ATTN: DRCM-CAWS-NV (CPT Joseph Miceli)
Dover, NJ 07801

Commander/Director
US Army Combat Surveillance & Target Acquisition Laboratory
ATTN: DELCS-I (Mr. David Longinotti)
Fort Monmouth, NJ 07703

Commander/Director
US Army Combat Surveillance & Target Acquisition Laboratory
ATTN: DELCS-PE (Mr. Ben A. Di Campli)
Fort Monmouth, NJ 07703

Commander/Director
US Army Combat Surveillance & Target Acquisition Laboratory
ATTN: DELCS-R-S (Mr. Donald L. Folan)
Fort Monmouth, NJ 07703

Director
US Army Electronics Technology & Devices Laboratory
ATTN: DELET-DD (S. Danko)
Fort Monmouth, NJ 07703

Project Manager
FIREFINDER/REMBASS
ATTN: DRCM-FFR-TM (Mr. John M. Bialo)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Research & Development Command
ATTN: DRDEL-SA (Dr. Walter S. McAfee)
Fort Monmouth, NJ 07703

OLA, 2WS (MAC)
Holloman AFB, NM 88330

Commander
Air Force Weapons Laboratory
ATTN: AFWL/WE (MAJ John R. Elrick)
Kirtland, AFB, NM 87117

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-SL (Dolores Anguliano)
White Sands Missile Range, NM 88002

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-TDB (Mr. Louie Dominguez)
White Sands Missile Range, NM 88002

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-TDB (Mr. William J. Leach)
White Sands Missile Range, NM 88002

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-TGP (Mr. Roger F. Willis)
White Sands Missile Range, NM 88002

Director
Office of Missile Electronic Warfare
ATTN: DELEW-M-STO (Dr. Steven Kovel)
White Sands Missile Range, NM 88002

Office of the Test Director
Joint Services ED GW CM Test Program
ATTN: DRXDE-TD (Mr. Weldon Findley)
White Sands Missile Range, NM 88002

Commander
US Army White Sands Missile Range
ATTN: STEWS-PT-AL (Laurel B. Saunders)
White Sands Missile Range, NM 88002
Defense Documentation Center
ATTN: DDC-TCA
Cameron Station Bldg 5
Alexandria, VA 22314

Ballistic Missile Defense Program Office
ATTN: DACS-BMT (Colonel Harry F. Ennis)
5001 Eisenhower Avenue
Alexandria, VA 22333

Defense Technical Information Center
ATTN: DDA-2 (Mr. James E. Shafer)
Cameron Station, Bldg 5
Alexandria, VA 22314

Commander
US Army Materiel Development
& Readiness Command
ATTN: DRORSI-EE (Mr. Albert Giambalvo)
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander
US Army Materiel Development
& Readiness Command
ATTN: DRCLDC (Mr. James Bender)
5001 Eisenhower Avenue
Alexandria, VA 22333

Defense Advanced Rsch Projects Agency
ATTN: Steve Zakanyez
1400 Wilson Blvd
Arlington, VA 22209

Defense Advanced Rsch Projects Agency
ATTN: Dr. James Tegnelia
1400 Wilson Blvd
Arlington, VA 22209

Institute for Defense Analyses
ATTN: Mr. Lucien M. Biberman
400 Army-Navy Drive
Arlington, VA 22202

Institute for Defense Analyses
ATTN: Dr. Ernest Bauer
400 Army-Navy Drive
Arlington, VA 22202

Institute for Defense Analyses
ATTN: Dr. Hans G. Wolfhard
400 Army-Navy Drive
Arlington, VA 22202

System Planning Corporation
ATTN: Mr. Daniel Friedman
1500 Wilson Boulevard
Arlington, VA 22209

System Planning Corporation
ATTN: COL Hank Shelton
1500 Wilson Boulevard
Arlington, VA 22209

US Army Intelligence & Security Command
ATTN: Edwin Speakman, Scientific Advisor
Arlington Hall Station
Arlington, VA 22212

Commander
US Army Operational Test
& Evaluation Agency
ATTN: CSTE-ED (Mr. Floyd I. Hill)
5600 Columbia Pike
Falls Church, VA 22041

Commander and Director
US Army Engineer Topographic Laboratories
ATTN: ETL-GS-A (Mr. Thomas Neidringhaus)
Fort Belvoir, VA 22060

Director
US Army Night Vision &
Electro-Optics Laboratory
ATTN: DELNV-L (Dr. Rudolf G. Buser)
Fort Belvoir, VA 22060

Director
US Army Night Vision &
Electro-Optics Laboratory
ATTN: DELNV-L (Dr. Robert S. Rodhe)
Fort Belvoir, VA 22060

Director
US Army Night Vision &
Electro-Optics Laboratory
ATTN: DELNV-VI (Mr. Joseph R. Moulton)
Fort Belvoir, VA 22060

Director
US Army Night Vision &
Electro-Optics Laboratory
ATTN: DELNV-VI (Luann P. Obert)
Fort Belvoir, VA 22060
Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-VI (Mr. Thomas W. Cassidy)
Fort Belvoir, VA 22060

Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-VI (Mr. Richard J. Bergemann)
Fort Belvoir, VA 22060

Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-VI (Dr. James A. Ratches)
Fort Belvoir, VA 22060

Commander
US Army Training & Doctrine Command
ATTN: ATCD-AN
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-F-A (Mr. Chris O'Connor, Jr.)
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-IE-R (Mr. David M. Ingram)
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-M-I/ATCD-M-A
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATDOC-TA (Dr. Marvin P. Pastel)
Fort Monroe, VA 23651

Department of the Air Force
OL-I, AWS
Fort Monroe, VA 23651

Department of the Air Force
HOS 5 Weather Wing (MAC)
ATTN: 5 WW/DN
Langley Air Force Base, VA 23655

Commander
US Army INSCOM/Quest Research Corporation
ATTN: Mr. Donald Wilmot
6845 Elm Street, Suite 407
McLean, VA 22101

General Research Corporation
ATTN: Dr. Ralph Zirkind
7655 Old Springhouse Road
McLean, VA 22102

Science Applications, Inc.
8400 Westpark Drive
ATTN: Dr. John E. Cockayne
McLean, VA 22102

US Army Nuclear & Chemical Agency
ATTN: MONA-WE (Dr. John A. Berberet)
7500 Backlick Road, Bldg 2073
Springfield, VA 22150

Director
US Army Signals Warfare Laboratory
ATTN: DELSW-EA (Mr. Douglas Harkleroad)
Vint Hill Farms Station
Warrenton, VA 22186

Director
US Army Signals Warfare Laboratory
ATTN: DELSW-OS (Dr. Royal H. Burkhardt)
Vint Hill Farms Station
Warrenton, VA 22186

Commander
US Army Cold Regions Test Center
ATTN: STECR-TD (Mr. Jerold Barger)
APO Seattle, WA 98733

HQDA (SAUS-OR/Hunter M. Woodall, Jr./Dr. Herbert K. Fallin)
Rm 2E 614, Pentagon
Washington, DC 20301

COL Elbert W. Friday, Jr.
OUSDRE
Rm 3D 129, Pentagon
Washington, DC 20301