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I. INTRODUCTION

The mechanism of solid propellant combustion is commonly idealized as a
single exothermic pyrolysis reaction occurring atthe surface followed by a
single exothermic chemical reaction in the gas phase. Additional assumptions,
such as constant thermal conductivity, and unit Lewis number, are also u ual.
The appropriate equations and boundary conditions are derived elsewhere.
A comparison of the solution to these equations with experimentally measured
burning rates should provide information as to the correctness of the assumed
mechanism. In practice one of the difficulties with this line of reasoning
(others are liscussed in Ref. 2) is that these equations do not have analytic
solutions and indeed can sometimes be difficult to solve numerically. Generally
this problem has been dealt with by making further simplifications in the
equations to obtain a convenient computational algorithm. The object of this
paper is to test the accuracy of these algorithms by direct comparison with
numerical solutions.

It has previously been shown1 that most models addressing the stated
mechanism can be catalogued by the assumed manner of heat release in the gas-
phase. These methods of specifying the heat release are generally appropriate
to complementary ranges in the kinetics parameters. Since no general agreement
exists on the values of these parameters for any propellant, we have developed

%" several data sets which cover a sufficient range of variation to probe the

strengths and weaknesses of all the model algorithms. The reasoning behind
these data sets is given in a companion paper but the values are summarized
here in Table 1 for convenience.

II. DESCRIPTION OF PROBLEM AND NUMERICAL SOLUTION

A. Basic Idealization.

The mechanism used in this study is common to more models than probably
any other. Along with the attendant conservation equations, it is thoroughly
discussed in Reference 1. In brief, it is assumed that propellant molecules
"A" pyrolyze at the solid surface into gaseous products "B" and "C" at the
mass burning rate M (gm/cm2s) which depends on the surface temperature Ts
according to

M = M exp(-Es/RT) . (I)

(Symbols are identified in the List of Symbols and in Reference 1). This
surface reaction is exothermic by an amount Qs(cal/gm). The pyrolysis product.
B is the reactant for the gas-phase reaction of order v. B is converted by

this reaction into non-reactive products C with the release of QG calories

per gram of B.

1Miller, M.S., "In Search of an Idealized Model of Homogeneous Solid Propellant

Combustion," Combustion and Flame, Vol. 46, pp. 51-73, 1982.

2

Miller, M.S. and Coffee, T.P., "A Fresh Look at the classical Approach to
Solid Propellant Combustion Modeling," to be published in Combustion and

Flame.
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TABLE I.

RDXI NO1 NC2 NC3 TrI

M (gm/cm2 sec) 1.035E12 8.CE1O 3456 460 1.OE12

E s(kcal/mole) 47.8 42 108 45.0

S

A 2.5E16 2.SE9 1.44E1 2 1.2E5 lOOT

G(sec-) (cc/gm sec) (sec-) (sec-1) (sec-1

E G(kcal/mole) 46.2 15 54 5 0

G

h8(g/mole) 222 40 40 40 50

v 1 2 1 1 1

mB.48 1 1 1 1

N,) 6 1.33 1.33 1.33 1

Ps(/ 1.6 1.6 1.55 1.6 1.6

X 2.OE -4 cal/cm secIC Cp .3S cal/gmoK
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In the pyrolysis reaction for every unit mass of A the fraction mB  is

converted to B and (i-mB -o) is converted directly to C. At some temperature
T,in the gasthe rate at which B is converted to C is given by

R = (mBp)V AG exp(-EG/RT) (2)

where mB is the local mass fraction of B and p is the local mass density of
the gas. For every mole of B which reacts N2 moles of C are produced.

B. Numerical Solution.

The linear burning rate r is to be calculated for a semi-infinite block
of propellant whose surface is situated normal to the x axis. Because the
propellant is homogeneous, the burning is one-dimensional. Two levels of
approximation to the conservation equations are discussed in Reference 1.
The more general of the two is discussed here (termed Level I in Ref. 1).

The method used to obtain a burning rate in this paper has been discussed
schematically in Reference 1. First the conductive heat feedback, *G, from
the gas phase to the surface of the solid is computed numerically for many
values of Ts at a given pressure. A value for Ts is then sought for which

is equal to the heat flux, *s, required by the solid tolmaintain a mass
regression rate M when the inital temperature is To, i.e.,

fs = MCp (T s-T o-Qs/C p). (3)

By using this method the numerical functions *G(TsP) do not depend on either
Q or T

s 0

The gas-phase equations are solved by a computer code designed to handle
premixed, laminar, one-dimensional flames involving elementary chemistry. 5,"

This code is based on the package PDECOL developed by Madsen and Sincovec5 to
solve sets of second order partial differential equations using finite element
techniques.

Although the equation governing mB can be eliminated using the unit Lewis
number assumption, both the mB and the T equations are integrated by the code.
The self-consistency of the two solutions can then be checked, as will be
explained (Eq. 4).

3 Coffee, T.P. and Heimerl, J.M., "A Method for Computing the Flame Speed for
q a Laminar, Premixed, One Dimensional Flame, BalZistic Research Laboratory

Technical Report ARBRL-TR-02212, January 1980. (AD A082803)
4Coffee, T.P., "A Computer Code for the Solution of the Equations Governing a
Laminar, Premixed, One Dimenional Flame," Ballistic Research Laboratory
Memorandum Report No. ARBRL-MR-03165, April 1982. (AD A114041)

.5
'Madsen, N.K. and Sincovec, R.F., "PDECOL, General Collocation Software for
Partial Differential Equations, 'ACM TOMS Vol. 5, pp. 326-351, 1979.

9
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The basic numerical procedure is to work with the time dependent equations
using arbitrary startirg profiles for mo and T. The cold boundary condition is
just T-Ts . For the mass fraction equation it is

+0 _D (aB m-0
B "M / , B

which expresses the required continuity of B mass flux across the boundary.
The first derivatives of m8 and T are taken to be zero at the hot boundary.
Numerically the hot boundary was chosen sufficiently distant from the surface
that the mB and T profiles were essentially unaffected by its location. ThIse

" boundary conditions were previously used to model burner stabilized flames.

The equations are integrated in time until the steady state solution is
*: reached. Since a finite element code is used, the solution profiles are

represented by piecewise polynomials and the temperature gradient at the sur-
* face is available. As a check the heat feedback is also calculated by the

formula

= NI(mB +0) (4)

which follows from the unit Lewis number assumption.

The steady state solution is usually quickly reached, taking on the order
of a second on a CDC 7600. The exception is when M becomes so large (due to
high Ts) that the flame is blown far from the surface. This strong convective
flow allows little heat to be conducted back to the solid. As a result the
flame is barely stabilized and tends to oscillate before finally approaching

* the steady state.

As a partial check on the code, it was run on a test data set (Tl) for
which an exact analytic solution exists (Eq. 31 of Ref. 1). The numerical
solution proved accurate to within a small fraction of a percent except when Ts
became large enough so that the heat feedback was negligibly small. Even
there the numerical solution was good to a few percent (and could be improved
by using a finer grid). In the subsequent figures the numerical computations
will be denoted by N.

* C. Analytic Models Used for Comparison

Most of the models which deal with our assumed mechanism have been recently
reviewed and classified into one of three idealizations of the gas-phase heat
release.1 The constant temperature reaction rate (CTRR) approach should aply
in the limit of very low EG. The quasi-constant heat release (QCHR) model
might pertain to moderate values of EG whereas the delta function heat release
(DFHR) models would be appropriate to very high EG. We shall in this paper

*compare our numerical calculations to the following specific models in each
of these classes.

A solution to *G under the CTRR assumption is not available for v=2 in a
Level I (diffusion not neglected) treatment ; therefore, Equation (33) of
Reference I is used to compute *G for thp NC data set. (Eq. 31 of Ref. 1

, is used for the v=l cases). A comparis, of the lutions with and without

* 10



diffusion for the v=l cases shows that the burning rate is not greatly affect-
ed by this assumption so long as the solution value of Ts lies to he right
of the peak in the *G(T ) curve. For example, Fig. 5 suggests that the use
of the no-diffusion f is probably justified for TO greater than about 3000K.

It became apparent during the course of this work that, while the QCHR
model *G gives good results for *G at high Ts for some cases, at sufficiently
low Ts the model oG exceeds the maxiium possible heat feedback (QG!hnB-°).
This occurs because at low Ts the characteristic transport distance (N/NE )
becomes so large (as N1 diminishes) that the integrated heat release

exceeds QGmB-O . This problem is easily corrected by assuming a constant heat
release, q , only for x<x1 where xI is chosen by the energy conservation
requiremen? =xl

QG 'N =1 q0 dx

Thus we have the "constant heat release" (CHR) model given by

G= 1-q° [lxexp(_ xl/X)] (5)
P

which will be used in the present paper (cf. Eq. (46) of Reference 1). At
high Ts the QCHR and CHR results for *G merge. The unknown value of mB+O
in q0 is found by requiring self-consistency between Equations (4) and (5).

6
In Reference 1 it was argued that the BDP monopropellant moddI'1 , although

a delta function model, is likely to overestimate G in the limit of high EG
because of an improper choice for the flame standoff distance. 7 This
assessment is borne out in the calculations to follow. Fortunaely there does
exist an accurate high EG theory which was advanced by Williams and elaborated
by Buckmaster, et al. The theory is based on the asymptotic analysis of
Bush and Fendell1 for laminar gas flames. In our notation the burning rate

9

for general reaction orders is given by

GvX' v+l v T2(v+l)

2I G -oP f2N1Q mA R+.2+ ) exp(-EG/RTf) (6)
(E f

In this paper we shall designate the theory by A.

6Becktead, M.W., Derr, R.L., and Price, C.E., "The Combustion of Solid Mono-
propellants and Composite Propellants, Thirteenth Symposium (International)
on Combustion, The Combustion Institute, pp. 1047-1056, 1971.

7Hermance, C.E., "A Model of Composite Propellant Combustion Including Surface
Heterogeneity and Heat Generation, AIAA Journal Vol. 4, pp. 1629-1637, 1966.

8Williams, F.A., "Quasi-Steady Gas-Flame Theory in Unsteady Burning of a Homo-

geneous Solid Propellant, AIAA Journal: Vol. 11, pp. 1328-1330, 1973.

9Buckmaster, J.D., Kapila, A.K., and Ludford, G.S.S., "Linear Condensate
Deflagration for Large Activation Energy, Acta Aetronautica Vol. 3, pp. 593-
614, 1976.

lOBush, W.B. and FendeZ1, F.E., "Asymptotic Analysis of Laminar Flame Propagation
for General Lewis Numbers," Comb. Sci. Tech.,, Vol. 1, pp. 421-428, 1970.

i II1=



III. RESULTS

In this section we shall first show how the model heat release and
temperature profiles compare with the numerical ones. The comparison is then
extended to the heat feedback functions * (Ts,P), the burning rates M(P), and
finally the temperature sensitivities ap(o).

p 0

A. Flame Structure

Sample comparisons are made in Figs. 1-4 for a high EG data set (RDX1) and
one with low EG (NC3). In both cases the conditions of pressure and initial
temperature are lO00atm and 3000 K. It is clear that all of the models give very
simplistic representations of the heat release (q(x)) profiles (Figs. I and 3).
In Fig. I the tendency of the BDP model to underestimate the flame standoff
distance1 for high activation energy is evident. The high activation energy
case (Fig. 2) causes the greatest divergence in predicted temperature profiles.
The asymptotic theory does quite well, however, at points near the surface. As
expected the CHR and CTRR models give significantly better temperature profiles
than the flame sheet models for the low activation energy case (Fig. 4).

B. Heat Feedback vs. Surface Temperature

Figures 5-11 display the numerical and model values of heat feedback (i.e.,
S+) as a function of surface temperature for the model propellants. At

* dx x=.o
- sufficiently low Ts all of the models predict OG to approach the maximum value,

i.e., QGMmB-O. In this limit the bulk of the energy release takes place close
(compared with X/MCp) to the surface. Increasing Ts promotes two competing
effects. The gas reaction is accelerated tending to increase OG, but M also
increases by the pyrolysis law tending to blow the "flame" further away from
the surface and reducing the effectiveness of energy release at any given
distance from the surface (see the discussion of Eq. (6) in Ref. 1). Eventu-
ally the latter processes dominate and G decreases with Ts.

Also shown in these figures is *C(T ) computed by Eq. (3) for To=300°K.
The intersection of *s(TsTo) and fG(Ts,M) occurs at the value of Ts pertinent
to the conditions (ToP). With this solution value of T one can compute the
burning rate via Eq.(l).

An important feature to notice in these figures is that the CHR model gives
the correct value of OG in the high Ts limit. (The CHR and QCHR models are
identical in this limit). Although the solution to s= G can always be forced
to occur in this region by cqnsidering a sufficiently high value of T , the

YG
* fractional heat feedback ( - may be so small there that the gas phase

processes no longer affect the burning rate.

Another interesting feature is the way that the BDP model exhibits
similarities to both the asymptotic (A) and CTRR solutions. This results
from the BDP model using the delta function (high Eq) formalism but with a
flame standoff which is appropriate to the low EG limit. (See discussion in
Section IIIB of Ref. 1).

12
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In general the CTRR approximation is the poorest and is most notably so in
the high Ts region. In this portion of the curve the neglect of diffusion has

sF
almost no effect on the numerical value of G since j is small there. (See
Section IIIA of Ref. 1). G 2  "

Finally, Fig. 11 gives good evidence that the asymptotic theory is numeri-
cally accurate in the high EG limit. The approach to this limit is also evident
in Figs. 7 and 8. The asymptotic theory, in fact, does quite well generally

although Fig. 9 and high T0 cases in Figs. 5-8 are exceptions.

In short it is clear that no single combustion model that we have considered
can be relied upon for even approximate results under all conditions of T and
P for any set of propellant data.

* C. Burning Rate

The burning rate as a function of initial temperature for the NC2 data set
is shown in Fig. 12 at a pressure of 136 atm. The .C2 data set is obtained2
by a fit of the BDP model to double-base propellant burning rates. Iowever it
is clear that the BDP model is particularly inaccurate for the parameters ob-
tained by this fit, overestimating the numerical rate by an order of magnitude.

Note that only the asymptotic theory gives good accuracy for this flame-sheet
case.

Figures 13, 14, and 15 indicate that, for the most part, the pressure
index (exponent) is slightly less than v/2 and that the model algorithms
approximate this value fairly well. Eq. (61) of Reference 1, which connects
the pressure index with Es and EG, is found to be inaccurate for values other
than v/2. The absolute accuracy of M depends rather strongly on the parameters
of the data set. In general the asymptotic theory does best at the highest EG
(RDXl) and the CHR model does best at the lowest EG(NC3). As expected from
the discussion of Figures 5-11, the BDP model leads to an overestimate of the

* burning rate for high EG . All of the burning rates in Figs. 8-10 are computed
for an initial propellant temperature of 300°K. We note also that the burning
rates are computed only at l,lC,lOC,lCCO atm. For clarity, straight lines are
used to connect these points.

D. Temperature Sensitivity vs. Initial Temperature

The temperature sensitivity at constant pressure, a is defined by

opp

d ( n M1 its usefulness lies in the fact that
Like the pressure sensitivity ( d Z
it is nearly constant over variable rangel of practical concern. Though nearly
constant,O p has nonetheless been observed to increase generally with increases

K

t I I I I I I I" i i I kb24
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in To. Applying Eq. (7) to the asymptotic theory (Eq. (6)) one obtains
(cf. Coatesl Eq. 23)

Ev Gup = (1+ . + T )/ Tf (8)

which predicts n to be1 a monotonic decreasing function of To (since Tf = T
QT/Cp). The QCHR model , on the other hand, predicts up to increase monotogi-
cally with T . Figures 16-21 show the resolution of this conflict. In all of
the figures ?he abrupt transition of the asymptotic theory curve (A) to the solid-

E
phase control limit (given by s2) does not derive from Eq. (8), but

R(T +Q /Cp)
0s P

rather from the condition that the surface temperature cannot drop below T =
To+Qs/Cp, It can also be seen that in the CHR model o does decrease with
increasing T, at sufficiently low To . This behavior contradicts the QCHR
formula derived in Ref. 1 even though most of the conditions for the derivation
are satisfied. The discrepancy can be traced to the fact that the QCHR formula
was based on a neglect of diffusion.

Figures 18 and 19 for RDXl show a slight hump in the numerical a (T )
curves just to the left of the minimum. The numerical integrations were
recomputed in this region with increased accuracy for the 1 atm case. The hump

remained, indicating that it is apparently not an artifact of the numerical
method.

Although the abscissa in Figs. 12-17 is given as To, it could also be
(To+Qs/Cp) with equal validity since Qs is fixed for each of the data sets.
However if one assumes T0 to be fixed and increases in the abscissa to be due
to higher Qs, one sees that the consequences for a depend on the data set. For
example increasing Qs by 50 cal/gm would decrease Rp over the practical range
for the RDX1 data set but increase ap for the NC3 case (at 1000 atm). Thus it
would seem that if combustion models were looked to for guidance in making
formulation changes to affect ap, a determination of the effective kinetic
parameters for the unmodified propellant is first required.

IV. CONCLUSIONS

The objective of this study was to assess the numerical accuracy of the
computational algorithms employed by several combustion models by direct
comparision with accurate numerical solutions of the conservation equations.
This comparison was made for a number of data sets with widely varying kinetics
parameters. None of the algorithms were found to give reliable numerical accuracy
for all data sets and conditions of pressure and temperature. Such inaccuracies
can confuse efforts to associate idealized combustion mechanisms with real
propellants and give erroneous guidance for performance tailoring attempts.

II,

Coates, R.L., "An Analysis of a Simplified Laminar Flame Theory for Solid
Propellant Combustion, Comb. Sci. Tech.: Vol. 4, pp. 1-8, 1971.
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In spite of the poor reliability of these algorithms in general, some of
the models were shown to give accurate results under certain limiting conditions.
However, quantitative criteria for identifying these limits may be difficult
to establish for a priori use.

Finally, we have reported numerical calculations of gas-phase heat feedback
*l for a wide range of kinetics parameters. It is hoped that future algorithm

developers will find in them a reedy means for validating their efforts.
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* LIST OF SYMBOLS

A - propellant molecule label

AG - gas-phase reaction frequency factor

B - gas-phase reactant label

C - gas-phase product label

C - specific heat for solid and gas phases
p

D - diffusion coefficient

E activation energy for gas-phase reaction

E- activation energy for solid-phase reaction

M - mass regression rate (mass flux)

N- constant in pyrolysis surface decomposition mechanism~0 +

mB ,0 m+0 - mass fraction of B evaluated at negative and positive sides of
• B the solid/gas interface, respectively.

N2 - number of moles of C produced per mole of B which reacts

P - total pressure

- heat of reaction per unit mass for solid reaction (positive for exothermic)

- exothermic gas-phase reaction heat per unit mass of B

QT total exothermic reaction heat (solid + gas) per unit mass of A

q(x) - gas-phase heat release per unit volume per unit time at x

q " value of the heat release function at the surface

R - universal gas constant

R(x) - mass of B reacting per unit volume per unit time at x

R - constant mass reaction rate in Constant Temperature Reaction Rate model
• -. 0

r - linear regression rate of propellant surface

T,T(x) - temperature at x

To,TsTf - initial, surface, and flame temperatures, respectively

ti-average molecular weight of mixture in gas-phase

x - spatial variable

39



LIST OF SYMBOLS CCont'd)

X - heat conductivity in gas-phase

v - gas-phase reaction order

p - local mass density in gas-phase

a - temperature sensitivity at constant pressure

- heat flux from gas phase to surface supplied by gas-phase heat release

s " heat flux from gas phase required by solid to maintain steady-state
regression

4
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