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As h the eontim case, central to the 'mumy analysis of the hybrid

7 sdaptive control problem erve the error models. If §88-8%, the error models relate
 the seasitivity vector §, the paremster error vector ¢ and the cutput error €.
|  In Navendre and Khalifs(1982)saveral error models have been anslyzed and stable
‘bybrad algorithms have been derived. One of thess algorithms is snalysed fn some

4  detatl ta the following section. It is used ia Section & to sdjust the control

f§  paramster mm % and the global stability of :h resulting system is established.
G . - The other np:n:m in ltuﬂd‘n and Mﬁt(un)cn also be used in & o:l.-uar

N msuner to duip stable mpcivo mta-

3.-

mmwmatmmmu.mcmmmnm
V tcn"', tbmc! mtmmw- ﬂs!"'*la and cui'-'l ave plecewise coun-
| tisuous fussticds ssd will be referred oo se the laput aad Gurpet functiens
'm;mzyasmumm ‘They serrespend to the ssusitivity fuacticn de-
'mmmm-mmmmmmuwmmmu
8 msectiond. . . “ |

. Let {t*i uaMmmem
or, sT,5T <-¢ﬂ-u'ihm1 mmmmmtm {e,} w12

st £ T S Toum.
umuummmm Ozl"'*l u.mw

G function ana m‘tb v&m
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3;(t') - 3‘ o ssltaty,) (9)
- where ¢, 1s s constant vector. -The error model of interest in this paper is then

dascribed by the ‘squation

T |
;k w(t) = ey (t) , tele ) (10)
'“ keN -
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It is assumed that §¢ 1s unknown vhile e;(t) and @(t) can be measured for
a1l en’, The objective is to datermine the adaptive lav for choosing the
" sequence {“1} » where A‘i"iﬂ-’i so that u- ol(t) -0,

Consider the Lyapmov function candidate.
e - av
.

y | avaR) & vaer) - (o) = (408, /21708, a2)
N | a

“ril

fove Choosing the adaptive law as

e (i)ﬁ(ﬂ }d-r | | (14)

1 o, --2 [ {*

§ ok %; 1487 (Va(r)

were T, 8 (5, - 1), yielts

- oK) » - 23 "m LR, A (s)
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Since "k,t-t-l is a positive semi-definite matrix with cigtnviluu less than unity,
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“m‘ - i:‘i-m‘t s0 - (17a)
ﬁa vm 1% & Lyeputov function end assures the boundedness of ||;k|| 1f
tWoH 1s W Fron ma) 1t tollows that

E

mu) +0 sk >

(17m)
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m t! 5 ummmuu ”u“ is
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| , nawum“ummuo:uym,au
'f"-emm!y ﬁch" (Morgan and Nerendrs, 1977) over any

- W of length ‘l‘d.‘ 80 that ‘h " is positive definite

'ﬁt-m keN, AV(!)‘O and hsuce the paramster error vector
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adsptive law can be modified to
| e . - }
B A O LGN (20) |
1+ (T)Tw(T)

k

vhere T 1s a positive definite diagonal matrix with

‘eigenvalues within the unit circle.
4. GLOBAL STABILITY OF THE HYBRID ADAPTIVE SYSTEM

The proof of stability of the vhybrid adaptive control problem follows gemerally
along the same lines as those for the continuous case discussed in Narendra et al
(1980). Bowever, since the idjunment of the parameters is done at discrete
ingtants, §(t) 1is diacontimx_onlvat ‘thau_ instants and honcc. the arguments have
to be :lu:lubly modified. oﬁly tho;c futuru vhich are mtht to the hybrsl.d
control problu are discussed here and the reader b:l.s referred éo the earlier paper
(Sarendra et al, 1980) for son of the details. The basic mathema:ical concepts
as well as Lemma 1 essential for the proof of stability, are developed briefly
in the appendix. |

' roi ease of exposition the stability problem is discussed in two stages.
In the fif eaoﬁ the high frequency gain Kp of the plant is assumed to be
known while the more general problea with Kp unknown is discussed in Case (ii).

a) Case i (E& knon)
With no loss of generality we assume that K, = K, - 1 so that
c, ™ 1 and only (2n~1) parsmeters have to be adjusted. Defining

8T (e)mle ,07(e) ], aT(e)=lr(e) 0T ()] and §T(0)=l0,07(®)]

the input and the ocutput of the plant can be expressed as




\:‘

N 10
.:i u(t) = r(t) + 8- ()ult)

9 7,(£) = Wy (8)[x(t) + 47 (Bu(®)] 1)
;i As in the continuous case an augmented error &;(t) is generated by

,3::

fg . adding an auxiliary signal y a t© the plant output, where

::.' A (T T

Y, () = [07(E)V_(8)I - W ()0 (t)]u(t). (22)
3 The augmented error is then given by

Y. )

& g1(t) & ey (0) + v, (0)

v T

e = (t) z(t) (23)
vhere W (s)u(t) = {(t). The adaptive law for adjusting ¢(t) is

'4',{, .

.3 ) generated using e;(t) and {(t) in equation (23) but it remains to

]

sl be shown that equation (21) will be globally stable with such an

» .

& adaptive law.

"ﬁ In the hybrid control problem e(:)-ek and ¢(t)-¢k over the

Vi ‘

" interval [tk’tk+1)’ keN where ek and ¢k are comstant vectors.

o Hence equation (23) can be expressed in the form of the error model

:1 described in Section 3 as:

&

he-! T ) -

- ok:(c = e (t) te[ck,tkﬂ)

g (24)
41 keN

"}% The corresponding adaptive law is given by (14) as

X t e

o ko 1+ 2 (&)

N ‘k

' 'Anin, to avoid obscuring the principal results the adaptive gain

g matrix T 1is not included here.

n " -




b)

It follows from the discussions in Section 3 that ¢k will

be bounded and hence the plant output yp as well as the state
variables of the entire system can grow at most exponentially.

Again from Section 3 we have

B = ofiileenl] | 26

or the augmented error |e;(t)| will grow more slowly “han the

norm of the vector I(t).

Case ii (Kp Unknown)

The error equations in this case appear, at first sight, to
be considerably more involved than in case (i) . However they
can be reduced té the form of the first error model by a change
of variables. The input to the plant is

u(e) = 8 (e)ace)
The main difficulty arises since X, # K, 1in general, resulting

in a plant output which can be described by

5 =T, -
Yp(t) = Wy(s)r(t) + R, Wy(s)e (t)u(t) 27
and an error equation
K T
¢ (t) = —‘5 Wy ($)F (D)t . (28)

In generating the augnented error, an additional parameter
¥1(t) has to be used making a total of (2n+l) adjustable

parameters. Defining the augmented error once again as

§1(t) = ey(t) +y,(0)
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vhere _ 7
Y,(8) & w1 (t) {’(t)“u(-)l“'u(-ﬂr(t)] w(e) - (29)

¥
]

o
.

we odtain
§(c) = %.;[;”(c)wx(a)a(t)_ + v(t)e(t)] . (30)
v (t) 8 -:':[1 + y(t) and |

.

sogias

-

i

= . | 7. (31)
£(t) 4 [er(t)'ﬂu(t)t - uu(.)i‘ (t)] w(t)

e =) e

The ;umt-d ctm cmeion ny be m a»

eyt 858

A‘J__’;j ) ‘.‘v,‘! ‘ r _‘ni 3 Y.
.

k ;"}‘a'

& (_:) - ,;;n t’(tme) . | (33)

which again corresponds to the error model described in Section 3.
In the hybtid coantrol problem tin (20%1) Ms of the coatrol
vector § and hence of the pnmmm- vector $ are adjusted at

aar o i

- discrete instants of time and the adaptive law can be expressed as

: ) S oY S |

3 1 T R D g, (34)
® k 1+ (T)f(t) :

. “x

E: |

From the discussions in Section 3 it follows once again that ‘k

is bounded and hence the plant output as well as all variables of

et the system grov at most exponentially. From the results of

3

Section 3 this implies that

" Iil(t)l-o[::: c(r)”] or equivalently o [nl,:l I:(t)ll]
since ’k is bounded. (35)
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Proof of Global Seability:
The mein results of the snalysis carried out so far, which are

central to the proof of global mbﬂity, -y be sunmarized as follows:

(1) the hydbrid adaptive equations assure the boundedness of
all the peramsters 90 that the signals in the system can

grow at most expomentislly.

. (11) the mud error |8 (t) |can grow only at s rate slower

than that of th- m:l.u.v:l.ty fmctml (aquatiou (26) aond
- (35). Using these results it is shown in this section
‘tﬁt the Wt ozfm plant as well as all the relevaat
, u'nloof ehounptin mvﬂ.lunhbwuod for all
tek .
l‘ttlllplmm )‘cl. “mhlﬂw
fashion. Simcs the 3 iranster ‘error nem ¥ 1s bounded,
ull.y (Narsadra et al,1960). |
a (28) as

mm:pucm u(t) nnmbyffp

“i®) '.’t‘: 0@ ﬂ:{a‘m ettt
Stnce W ()3(t) = E(t) and by (17b) 43,40 as i, we
have by Lesms 1 1o the appendix:

[ht"n(-)t - ﬁ(-ﬁ,ﬂ u(e) = o [&' I: © ”]

or .
. f_x (¢) = ;:{t:t(:)-o- ) [::: | |e¢e) | l]}

13

(36)
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.'mm (26) sad (35) we bave

;t%‘ﬂ .o ['ﬂ{ lt(t) H]-O ['"I h-(t) | l] v (38)

X M f”ltt(r)lh‘”liﬁ(r)li - Simce the output of the model
.:.m u aly bounded, iy'(t)i'ﬂ&l‘;(t)l and
_'-cm, ) et (ﬂ) v have

39)

| 4 (39) xhet cod o "-’liﬁtﬂ" ﬂﬁﬂtm.
'tt aam m eu m arvor ]o;(tu- ouu(:)n m
ntsidicts a.- m that y,m 1s m

- (45) ;uhthumnm. thmmotnmm
matrix Tert>0 ummnmammmmm
\Wam:mm
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RAs 2 lﬂmmmh.mwuumtnmxotnmu
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Momlythhmfnmynh x,-s is sssumed to be knowm. The
'v_mmmmmmmmutmmmmm.:

sy ﬁﬂ)umamehuu- 13
auumwwm T

 1n Piges 4, the Sapevviion ummnm
ST ~mmm Y 15 chows. The sluptive gata for the thres
L deede el (), LS (29 e vl (),
mm,ummmn 4,(c).
oo thowgh che final vales of ¢,(t) is eyprosimstely the eeme 1a all three
‘dasss, T respense vith 19.25 1s seen w e substancislly different frem that
ummm. mmmtmt o) for all thees coses 1s shown ia
Pigwe 3. ﬁmmmnmm-uumuuuumm
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sscs, the amplitude of oscillations when T=.25 secs is relatively largs.

_hlqnndu:of T, thnrudummtndjumummr is i
bounded. Simuletion results indicate that the choice of T will be dictated by |
the desired transient response, particularly when the plant is unstable.
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on the figure. While the error e; is smsall for all three responses at t=7.5

This may be attributed to the fact that the plant is unstsble. Hence, though

the overall system is theoretically globally stable for all finite values of the
farmur T, the :i.'mmt respouss may dototiordtc with increasing T, particu-
larly 1f the plant is unstable. Heace, in such cases the desired transisat response
will dictate the chotce of T. = |

6. COMMENTS AND CONCLUSIONS

An adaptive algorithm is presented in this psper which assures the global
oubﬂity of hybtidvsysm in which the signals are continuous but the parameters
are adjueted st discrete ﬂutantn. The global stability of the muu system is

The adsptive lav depends upon the specific error model amalysed fa Section 3.
Several other wum«mma»mmwm.umnn |
(1982) ud sintlax ruulu can h obumi using the sdaptive laws com-mm ' .
wmumm«h MWMOM. ewmlunlatosiuh

nm-m.u output mu- (3130) hare, carry over to multivariable systems as well.
Further the sams spprosch can alse be used for the adsptive control of discrate
1inear systems in which the plant output 1s measured st & certain rate but the
control paramsters are adjusted at slower rates. The latter is obviously significsnt
1n the digital comtrol of complex processes.
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f; Reasult 1: If the input to a linmestr tims-invariant exponentially stable system
ol

. is x(-)cl..' and the corresponding output {s y(.), then

i |

ﬁ"g

& lyce)| = {Q,lx(t)l]

- Result 2: If W, (z) is & rationsl transfer function of a linear time-invariant
discrete system vith all its poles and szeros within the unit circle and with input
'f‘ and output x(°) and y(°), respectively, then

‘}} A LTOT A O]

% Lesma 1: Let w(*), T(°): R" + 2 be the input and output, respectively of
<1

‘ a transfer matrix H(s)I where H(s) is a rational transfer function and I

P e
L&

L

is the (mm) umit metrix. Let H(s) have sll its poles and zeros in the open
left half plams. Further suppose that there is a vector ¢(t)e R° and ||¢||
is waiformly bounded and '

b He) = o t e ltaty)

&

% uhﬁn “ is ‘  constasnt wvector and

= ae b |

5 ‘k Qkﬂ-ok——oo_ a8 k—> =

& » '

b Then

2 T - o)t .o | 2ol |

b (0" ®) BT - B@ ®]a(e) = 0 | 2P| jucn)]| _
K

" According to Lemma 1 1if the input is w(t), the outputs of the two systems
' #5(t) H(s) and H(s)eT(t) differ by o '“"llu(r)ll | 1f 89— 0 as

g C
DX DTN LI W TP PR P & C TP LT SO P T T R N PRI IR it



. Ty T v TS Y ——— st s e S e T e e e LAl A e AL g L
1o Nt SRS it oo pr AL I e S AL NS A IR IEUANR T T S RCR Lol S TR ‘. L *.‘.&“,;‘h \\\"

P

21

ZiR

B Proof: At time t = (n+l)T a=1

T
b ' ¢T(t) H(s) Iu(t) = [00 +§ AOi] H(s) Iu(t)
b {
5 - = g(e) (a-2)

| If the impulse response of H(s) 1s h(t) wher. |h(t)| & Be *° for some positive
constants B8 and r.

bl : :

. B | H(s) 47 (£)w(t) | S O +§ 80} h{ (a+1) T-t]e(T)dT
; } | t=(n+1)T
N | (1+1)T

LT’
- [00 +* s “,] H(s) Iu(t)

t=(a+l)T

. (1#1)T
- g c, h{(a+l)T-t]u(T)dT

DI AP ET B i W

"

L

i=0

iT
(A-3)

e WIAL

F

»K ‘

X ‘ where C = {"n - ¢°} and C, = ; “j

Since the vector ¢ is bounded C 1(1-0.....:;) are bounded. Further since
.y Mn -3 0, c“ —> 0 as n—~> e , From (A-2) and (A-3) it follows that

1 . (1+1)T

[47(£)H(s) T ~ H(s) 9™ (t)Ju(t) gcil h{(2+1) T-t]u(T)dr

byl Ly

to(n+l)T 1=0
iT

S

PR
Pl B

= v[(n+1)T]

- ' 85

t
i

(A=4)
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n-1 i+1)T
[v[(a+1)T] |5 E c, 88" ™D [ 7 [4(0)|ax
1=0
1T
n=-1
-r(n+l)T
o nwmn[Zlcl e ’]
1=0
(A-4)

for some constant Yl’

Since |Cn|-> 0 as n —> o, the term in the brackets as n—> «» tends to

zero by result 2. Hence

scoe o [ 22 llscol ]

proving Lemma 1.




