This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, under Contract F04701-81-C-0082 with Space Division, P. O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009. It was reviewed and approved for The Aerospace Corporation by C. M. Price, Director, Satellite Navigation Department. Captain James C. Garcia, SD/YLXS, was the Deputy for Technology project engineer.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

James C. Garcia, Captain, USAF
Project Officer

Jimmie H. Butler, Colonel, USAF
Director of Space Systems Technology

FOR THE COMMANDER

Norman W. Lee, Jr., Colonel, USAF
Deputy for Technology
Limit Theorems for Extremes in a Particular EARMA (1,1) Sequence

By M. R. Chernick

The Aerospace Corporation
El Segundo, Calif. 90245

Approved for public release; distribution unlimited.

20. Abstract

Chernick (1980) showed that when the parameter λ in an EARMA (1,1) sequence is equal to one, the distribution of the maximum term converges to a distribution of the general form given by Galambos (1978). This distribution is not one of the three extreme-value types. In this report the asymptotic joint distribution of the maximum and minimum is obtained using the same conditioning argument as in Chernick (1980). The maximum and minimum are asymptotically independent and the minimum behaves as if the sequence were a collection of

References...

Keywords

- Minima
- Maxima
- Asymptotic theory
- Extreme values
- ρ_0
independent and identically distributed random variables even though the maximum does not behave as such. The asymptotic distribution for the range and midrange are also obtained.
CONTENTS

1. INTRODUCTION... 3
2. ASYMPTOTIC RESULTS.. 5
REFERENCES.. 9
1. INTRODUCTION

The ARMA (1,1) process was introduced by Jacobs and Lewis (Ref. 1). When the parameter $\rho = 1$ the sequence is given by

$$X_n = \beta \epsilon_n + U_n A_0 \quad \text{for } n > 1,$$

where ϵ_n's are i.i.d. with density $f(x) = \lambda e^{-\lambda x}, \; x > 0, \; \lambda > 0, \; 0 < \beta < 1$ and \{U_n\} is an i.i.d. Bernoulli sequence with $P[U_n = 1] = 1 - \beta$. A_0 has density $f(x)$ and is independent of the ϵ_n's.

Chernick (Ref. 2) showed that for $M_n = \max (X_1, X_2, \ldots, X_n)$

$$\lim_{n \to \infty} P[M_n < \frac{\beta (x + \ln(n))}{\lambda}] = \int_0^{\infty} \lambda e^{-\lambda x} \exp(-e^{-x}(\beta + (1-\beta)e^{\lambda x})) \, dx$$

This asymptotic distribution denoted by $G_\beta(x)$ is not an extreme-value type but is of the general form given by Galambos (Ref. 3) p. 144. The sequence \{X_n\} is exchangeable.

The conditioning argument given in Chernick (Ref. 2) can be used to obtain the joint asymptotic distribution for the maximum and minimum. This result will be given in the next section. The maximum and minimum are asymptotically independent and the minimum behaves asymptotically similar to the minimum of an i.i.d. sequence of exponential random variables.

Lemma 2.2.1, p. 58, Galambos (Ref. 3) can be applied to show that the range and midrange behave similar to the maximum asymptotically.
2. ASYMPTOTIC RESULTS

When $\beta = 1$ the sequence is i.i.d., and when $\beta = 0$, $X_n = A_0$ for each n. So we will not consider these cases.

Theorem 2.1. Let $\{X_n\}_{n=1}^{\infty}$ be an ARMA (1,1) process with $\rho = 1$ and $1 > \beta > 0$.

Let

$$M_n = \max (X_1, X_2, \ldots, X_n)$$

and

$$W_n = \min (X_1, X_2, \ldots, X_n).$$

Then

$$\lim_{n \to \infty} P[W_n > \frac{y}{\lambda n}, M_n < \frac{x + \lambda n}{\lambda}] = e^{-y} G(x).$$

Proof: Let K_n = number of U_i which are 0. We consider

$$P[W_n > \frac{y}{\lambda n}, M_n < \frac{x + \lambda n}{\lambda}] =$$

$$P\left[\frac{y}{\lambda n} < X_1 < \frac{x + \lambda n}{\lambda}\right] \text{ for each } i.$$

We note that K_n has a binomial distribution with parameters n and $1 - \beta$. Also given $A_0 = a$, $X_1 = \beta_1$ if $U_1 = 0$ and $X_1 = \beta_1 + a$ if $U_1 = 1$.

Let $u_n = \frac{\beta(x + \lambda n)}{\lambda}$ and $v_n = \frac{y}{\lambda n}$.

Conditioning on K_n and A_0 as in Chernick (Ref. 2) we have

$$P[v_n < X_1 < u_n \text{ for each } i] =$$

$$\int_0^{v_n} \int_0^{u_n} C_k \beta^{k(1 - \beta)} \left(1 - \beta\right)^{n-k} p\left[v_n < \epsilon_1 < \frac{u_n}{\beta}\right] p^{-k} \left[\frac{v_n}{\beta} - \frac{\epsilon_1}{\beta} < \frac{u_n}{\beta} - \frac{\epsilon_1}{\beta}\right] \lambda e^{-\lambda \alpha} d\alpha.$$
For $0 < a < v_n$ \[P\left[\frac{v_n - a}{\beta} < \epsilon_1 < \frac{u_n - a}{\beta}\right] = \lambda a/\beta \left(1 - e^{-\lambda a/\beta}\right), \]

for $v_n < a < u_n$ \[P\left[\frac{v_n - a}{\beta} < \epsilon_1 < \frac{u_n - a}{\beta}\right] = 1 - e^{\lambda a/\beta} e^{-\lambda u_n/\beta}, \]

and for $u_n < a$ \[P\left[\frac{v_n - a}{\beta} < \epsilon_1 < \frac{u_n - a}{\beta}\right] = 0. \]

Equation (1) simplifies to

\[P[v_n < W_n, Y_n < u_n] = \]

\[\beta^n (e^{-\gamma/(\beta n)} - e^{-x/n}) e^{-\beta x} \int_{0}^{v_n} (\beta e^{-\gamma/(\beta n)} - e^{-x/n}) \]

\[+ (1-\beta)e^{\lambda a/\beta} e^{-\gamma/(\beta n)} - e^{-x/n}) e^{-\lambda a/\beta} \]

\[+ \int_{v_n}^{u_n} (\beta e^{-\gamma/(\beta n)} - e^{-x/n}) + (1-\beta) \left(1 - e^{-x/n} e^{\lambda a/\beta}\right) n \lambda e^{-\lambda a} da. \]

The first term in Eq. (2) clearly tends to zero as $n \to \infty$. The second term is bounded by

\[\int_{0}^{v_n} \lambda e^{-\lambda a} da = 1 - e^{-\lambda v_n} = \lambda v_n + o(1/n) \]

and hence the second term tends to zero also. Now
\[
\lim_{n \to \infty} \int_{0}^{\infty} \left(e^{-\gamma} - \frac{e^{-x}}{n} \right) + (1-\beta) \left(1 - \frac{e^{-x}}{n} \right)^{\lambda a/\beta} e^{-\lambda a} \, dx
\]

\[
= \int_{0}^{\infty} \lim_{n \to \infty} \left(1 - \frac{e^{-x}}{n} \right) (\beta + (1-\beta)e^{\lambda a/\beta}) e^{-\lambda a} \, dx
\]

\[
= \int_{0}^{\infty} e^{-\gamma} \exp[-e^{-x}(\beta + (1-\beta)e^{\lambda a/\beta}) e^{-\lambda a}] \, dx
\]

\[
= e^{-\gamma} G_{\beta}(x). \text{ This completes the proof.}
\]

If we let \(x \to \infty \) and then let \(n \to \infty \) we see that \(\lim_{n \to \infty} P[W_n > \frac{x}{\lambda n}] = e^{-\gamma} \)
and because \(\lim_{n \to \infty} P[M_n < \frac{\beta(x + \ln(n))}{\lambda}] = G_{\beta}(x) \), \(W_n \) and \(M_n \) are asymptotically independent. If \(\hat{W}_n \) represents the minimum of \(n \) i.i.d. exponential random variables with density \(f(x) = \lambda e^{-\lambda x} \), then \(P[\hat{W}_n > \frac{x}{\lambda n}] = e^{-\gamma} \) for each \(n \). So asymptotically, \(W_n \) behaves similar to \(\hat{W}_n \). On the other hand, if \(\hat{M}_n \) is the maximum of \(n \) i.i.d. exponential variables \(P[\hat{M}_n < \frac{x + \ln(n)}{\lambda}] = \exp(-e^{-x}) \) as \(n \to \infty \). So \(M_n \) does not behave at all similar to \(\hat{M}_n \), and in fact the norming constants are different.

Let \(R_n = M_n - W_n \) and \(T_n = (M_n + W_n)/2 \). \(R_n \) is called the range and \(T_n \) is the midrange.

Theorem 2.2. For the EMA (1,1) process with \(p = 1 \) and \(1 > \beta > 0 \)

\[
\lim_{n \to \infty} P[R_n < \frac{\beta(x + \ln(n))}{\lambda}] = G_{\beta}(x), \quad (3) \quad \text{and} \quad \lim_{n \to \infty} P[T_n < \frac{\beta}{2} \frac{(x + \ln(n))}{\lambda}] = G_{\beta}(x). \quad (4)
\]

Proof. Because \(R_n = M_n - W_n \) and \(2T_n = M_n + W_n \) and for every \(\delta > 0 \)

\[
\lim_{n \to \infty} P(W_n > \delta) = 0
\]

direct application of Lemma 2.2.1, Galambos (Ref. 3) yields Eqs. (3) and (4).
REFERENCES

