CATHODE-RAY-TUBE RASTER LINE SELECTOR WITH HORIZONTAL MODULATION CAPABILITY(U) ARMY AEROMEDICAL RESEARCH LAB FORT RUCKER AL J H HAPGOOD ET AL. SEP 82 USAARL-82-10
CATHODE-RAY-TUBE RASTER LINE SELECTOR
WITH HORIZONTAL MODULATION CAPABILITY

John H. Hapgood
and
Clarence E. Rash

RESEARCH SYSTEMS DIVISION
SENSORY RESEARCH DIVISION

This document has been approved for public release and sale; its distribution is unlimited.

September 1982

U.S. ARMY AEROMEDICAL RESEARCH LABORATORY
FORT RUCKER, ALABAMA 36362
NOTICE

Qualified Requesters

Qualified requesters may obtain copies from the Defense Documentation Center (DDC), Cameron Station, Alexandria, Virginia. Orders will be expedited if placed through the librarian or other person designated to request documents from DDC.

Change of Address

Organizations receiving reports from the US Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

Frank E. Chappel, III, LTC, VC
Director, Research Systems Division

Released for Publication:

Roger W. Wile, LTC, MSC
Chairman, Scientific Review Committee

Dudley R. Price
Colonel, MC
Commanding
A simple and inexpensive circuit which provides a method of selecting the number and position of active raster lines visible on a CRT display is presented. Requiring inputs of vertical drive and horizontal and vertical sync signals, the circuit produces an output which can be fed directly into the video input of the display.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Illustrations</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Circuit Description for Raster Line Selector</td>
<td>5</td>
</tr>
<tr>
<td>Circuit Description for Raster Line Selector with</td>
<td>7</td>
</tr>
<tr>
<td>Horizontal Modulation Capability</td>
<td></td>
</tr>
<tr>
<td>Discussion</td>
<td>8</td>
</tr>
<tr>
<td>Appendix List of Components</td>
<td>11</td>
</tr>
</tbody>
</table>

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic for Raster Line Selector Circuit</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Actual Waveforms for Test Points A - D.</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Schematic for Raster Line Selector Circuit with Horizontal Modulation</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Capability</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Photographs of Actual Raster Demonstrating Circuit</td>
<td>9</td>
</tr>
</tbody>
</table>
INTRODUCTION

With the increased usage of cathode-ray-tube (CRT) displays in the areas of target detection and recognition, a greater emphasis has been placed on the ability to measure the image quality of these displays. Much of this effort has been restricted to determining the image quality for static targets. Only recently has attention been focused on dynamic imagery, that is, imagery resulting from relative target/sensor motion.

The US Army Aeromedical Research Laboratory (USAARL) has been investigating the parameters of CRT displays which affect the imaging of targets in motion and techniques that can quantify the image degradation resulting from this motion. In the attempt to develop methods and instrumentation to aid in this investigation, it was decided to enhance the normally available control of the individual raster lines of the CRT display.

To reach this goal, a circuit was developed which provides a simple method of selecting the number and position of active raster lines on the CRT display. The circuit development was actually accomplished in two stages. First, a circuit was developed which allowed the selection of the number of active raster lines and their position. In the second stage, the capability to modulate these lines horizontally was added.

CIRCUIT DESCRIPTION FOR RASTER LINE SELECTOR

The circuit shown in Figure 1* allows the user to select from zero to five active lines and control the vertical position at which they occur on the display. The required inputs are a negative-going vertical blanking signal and horizontal and vertical synchronization pulses.

The active lines are written at the frame rate. In other words, the standard interlacing method of presenting two alternating active fields is defeated. This is accomplished by blanking the electron beam on alternating fields. The number of active lines is controlled by the width of a pulse which turns on the electron beam. The time at which the beam is turned on, referenced to the active field's vertical sync pulse, determines the positioning of the active lines.

* Component values are given in Appendix.
The vertical drive pulses are applied through coupling capacitor C_1 to the emitter of transistor Q_1 which is operating as a common-base amplifier. The amplification assures that the pulses will be of sufficient driving amplitude when they arrive at pin 2 of IC_1. The amplified vertical drive pulses are taken off of the collector of Q_1 and differentiated by coupling capacitor C_2 and resistor R_5 before being fed into the TRIGGER pin (pin 2) of IC_1. IC_1 is a 555 timer configured as a monostable multivibrator (one shot). The pulse width of the output pulses available on pin 3 is controlled by capacitor C_5 and the control potentiometer R_6 in combination with R_7. This potentiometer positions the active raster lines on the display. Actual waveforms present at test points A and B, noted on the schematic, are shown in Figure 2. The differentiated pulses at test point A have a period of 17 msec. The pulses at pin 3 of IC_1 (test point B) can vary in width between 17 and 33 msec. This pulse makes its high to low transition during alternate fields. Where this transition occurs within the field determines the location of the active lines within the field.

The output from pin 3 on IC_1 is differentiated by the RC combination of coupling capacitor C_3 and resistor R_8. The resulting pulses are fed to the TRIGGER input (pin 2) of IC_2, which is also a 555 timer used in a monostable multivibrator configuration. The timing period of IC_2 is controlled by capacitor C_8 and the control potentiometer R_9. Adjusting R_9, which varies the pulse width of the output of IC_2, selects the number of lines which will be active on the display. For the values indicated, up to five consecutive lines may be selected, requiring a pulse width of from 0 to 315 μsec. Waveform C (from test point C) is shown in Figure 2.

The output from pin 3 of IC_2 is then combined with the horizontal and vertical sync pulses and applied to the base of transistor Q_2 which acts as an emitter follower. The final output, taken off of potentiometer R_{17}, can be fed directly into a 75 ohm input on the display.
In order to provide for the capability of modulating the active horizontal raster lines, the previously developed circuit was slightly modified. The new schematic is shown in Figure 3.* The input of the horizontal and vertical sync pulses was moved to the base circuit of the third stage (Q5) of an added three-stage amplifier. The desired modulating signal is input to the emitter of the first stage (Q3). The first and second stages are a common-emitter configuration; the third stage is configured as an emitter-follower.

The modulation occurs in the transistor Q3. The pulse which arrives at the base of Q3 has a pulse width equal to ~53 μsec, or a multiple thereof, the time required for one (or more) horizontal line scan. Transistor Q3 will have a change in its collector (output) voltage only when the base voltage, i.e., the pulse amplitude, exceeds 0.6V. The signal applied to the emitter of Q3 will have an effect on the collector (output) voltage only when Q3 has been turned on. The resulting signal will be modulated pulses of width equal to the horizontal line scan period. The waveform representing this signal (at test point D in Figure 3) is shown in Figure 2.

* Component values are given in Appendix A.
DISCUSSION

The capabilities of the final circuit (in Figure 3) are demonstrated in the actual display photographs presented in Figure 4. As shown, the number of active lines can be varied, and the location of the active lines can be anywhere on the raster. The number of active lines available for the circuit described is from zero to five. If more lines are required, suitable substitutions for capacitor C_8 and the resistor network R_9-R_{12} (Figure 3) can be made.

The ability to reduce the number of raster lines to one and position this line anywhere on the display will simplify the analysis of pixel response by removing the additional PMT response from preceding and succeeding lines. Single line modulation transfer function analysis may also be enhanced by the ability of this circuit to produce a single modulated line.
FIGURE 4. Photographs of actual rasters demonstrating circuit capabilities.
(a and b) Location of active lines can be seen anywhere on display.
(c and d) The number of raster lines can vary.
(e and f) Close-up view of actual raster with single and multiple active lines.
APPENDIX

LIST OF COMPONENTS
FOR FIGURE 1

INTEGRATED CIRCUITS

IC₁, IC₂ - 555 Timer

TRANSISTORS

Q₁, Q₂ - 2N3904

RESISTORS

R₁	270 Ω
R₂	2.2K Ω
R₃, R₅, R₈	22K Ω
R₄, R₁₄	1K Ω
R₆	400K Ω
R₇	2M Ω
R₉, R₁₀	100K Ω
R₁₁	62K Ω
R₁₂	21K Ω
R₁₃	5K Ω
R₁₅	6.8K Ω
R₁₆	20K Ω
R₁₇	500 Ω

CAPACITORS

C₁, C₆, C₁₁ - 100 μf, 10 VDC, electrolytic
C₂, C₃, C₉ - .001 μf
C₄, C₇ - .01 μf
C₅ - .039 μf
C₈ - .0019 μf
C₁₀ - 200 μf, 16 VDC, electrolytic

FOR FIGURE 2

INTEGRATED CIRCUITS

IC₁, IC₂ - 555 Timer

TRANSISTORS

Q₁, Q₂, Q₃, Q₅ - 2N3904
Q₄ - 2N3906

RESISTORS

R₁₁	10K Ω
R₁₂	21K Ω
R₁₃	6.8K Ω
R₁₅	20K Ω
R₁₆	2K Ω
R₁₇, R₂₈	500 Ω
R₁₈	300 Ω
R₁₉	4.7K Ω
R₂₂	150 Ω
R₂₃	3.3K Ω
R₂₅	10K Ω
R₂₆	47K Ω
R₂₇	470 Ω

CAPACITORS

C₁, C₆ - 100 μf, 10 VDC, electrolytic
C₂, C₃ - .001 μf
C₄, C₇ - .01 μf
C₅ - .039 μf
C₈ - .0019 μf
C₉ - 200 μf, 16 VDC, electrolytic
C₁₀, C₁₁ - 10 μf, 50 VDC, electrolytic
C₁₂ - 47 μf, 16 VDC, electrolytic

All fixed resistors are 10%, 1/4-watt.
INITIAL DISTRIBUTION

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 (12)

Under Secretary of Defense for
Research and Engineering
ATTN: Military Assistant for
Medical and Life Sciences
Washington, DC 20301 (1)

Uniformed Services University
of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20014 (1)

Commander
US Army Medical Research and
Development Command
ATTN: SGRD-RMS/Ms. Madigan
Fort Detrick
Frederick, MD 21701 (5)

Redstone Scientific Information
Center
ATTN: DRDML-TBD
US Army Missile R&D Command
Redstone Arsenal, AL 35809 (1)

US Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364 (1)

US Army Aviation Engineering
Flight Activity
ATTN: DAVTE-M (Technical Library)
Edwards AFB, CA 93523 (1)

US Army Combat Developments
Experimentation Command
Technical Library
HQ, USAACDEC
Box 22
Fort Ord, CA 93941 (1)

Aeromechanics Laboratory
US Army Research & Technology Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035 (1)

Sixth United States Army
ATTN: SMA
Presidio of San Francisco,
California 94129 (1)

Director
Army Audiology & Speech Center
Walter Reed Army Medical Center
Forest Glen Section, Bldg 156
Washington, DC 20012 (1)

Harry Diamond Laboratories
Scientific & Technical Information
Offices
2800 Powder Mill Road
Adelphi, MD 20783 (1)

US Army Ordnance Center & School
Library, Bldg 3071
ATTN: ATSL-DOSL
Aberdeen Proving Ground, MD
21005 (1)

US Army Environmental Hygiene
Agency Library, Bldg E2100
Aberdeen Proving Ground, MD
21010 (1)

Chemical Systems Laboratory
Technical Library
Aberdeen Proving Ground, MD
21010 (1)

US Army Materiel Systems
Analysis Agency
ATTN: Reports Distribution
Aberdeen Proving Ground, MD
21005 (1)
US Army Field Artillery School
Library
Snow Hall, Room 16
Ft Sill, OK 73503 (1)

US Army Dugway Proving Ground
Technical Library
Bldg 5330
Dugway, UT 84022 (1)

US Army Materiel Development &
Readiness Command
ATTN: DRCSG
5001 Eisenhower Avenue
Alexandria, VA 22333 (1)

US Army Foreign Science &
Technology Center
ATTN: DRXST-IS1
220 7th St., NE
Charlottesville, VA 22901 (1)

US Army Combat Surveillance & US Army Training and Doctrine Command
Target Acquisition Laboratory
ATTN: DELCS-D
Fort Monroe, VA 23651 (2)

US Army Training and Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651 (1)

US Army White Sands Missile Range
Technical Library Division
White Sands Missile Range
New Mexico 88002 (1)

US Army Research & Technology Labs
Structures Laboratory Library
NASA Langley Research Center
Mail Stop 266
Hampton, VA 23665 (1)

US Army Research & Technology Labs
Natick R&D Laboratories
Propulsion Laboratory MS 77-5
NASA Lewis Research Center
Cleveland, OH 44135 (1)

US Army Medical Research Institute of Chemical Defense
Aberdeen Proving Ground, MD
21010 (1)

Commander/Leader
Naval Air Development Center
ATTN: Code 6022 (Mr. Brindle)
Warminster, PA 18974 (1)

Ballistic Research Laboratory
ATTN: DRDAR-TSB-S (STINFO)
Aberdeen Proving Ground, MD
21005 (2)

US Army Research & Development Technical Support Activity
Fort Monmouth, NJ 07703 (1)

US Army Avionics R&D Activity
ATTN: DAVAA-O
Fort Monmouth, NJ 07703 (1)

Chief
Benet Weapons Laboratory
LCWSL, USA ARRADCOM
ATTN: DRDAR-LCB-TL
Watervliet Arsenal
Watervliet, NY 12189 (1)

US Army Research & Technology Labs
Propulsion Laboratory MS 77-5
NASA Lewis Research Center
Cleveland, OH 44135 (1)

Commander
US Army Medical Research Institute of Chemical Defense
Aberdeen Proving Ground, MD
21010 (1)

Commander
Naval Air Development Center
ATTN: Code 6022 (Mr. Brindle)
Warminster, PA 18974 (1)

Director
Ballistic Research Laboratory
ATTN: DRDAR-TSB-S (STINFO)
Aberdeen Proving Ground, MD
21005 (2)

US Army Research & Development Technical Support Activity
Fort Monmouth, NJ 07703 (1)

Commander/Leader
US Army Combat Surveillance & US Army Training and Doctrine Command
Target Acquisition Laboratory
ATTN: DELCS-D
Fort Monroe, VA 23651 (2)

US Army Training and Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651 (1)

US Army White Sands Missile Range
Technical Library Division
White Sands Missile Range
New Mexico 88002 (1)

US Army Research & Technology Labs
Structures Laboratory Library
NASA Langley Research Center
Mail Stop 266
Hampton, VA 23665 (1)

US Army Research & Technology Labs
Natick R&D Laboratories
Propulsion Laboratory MS 77-5
NASA Lewis Research Center
Cleveland, OH 44135 (1)

Commander
US Army Medical Research Institute of Chemical Defense
Aberdeen Proving Ground, MD
21010 (1)

Commander
Naval Air Development Center
ATTN: Code 6022 (Mr. Brindle)
Warminster, PA 18974 (1)

Director
Ballistic Research Laboratory
ATTN: DRDAR-TSB-S (STINFO)
Aberdeen Proving Ground, MD
21005 (2)

US Army Research & Development Technical Support Activity
Fort Monmouth, NJ 07703 (1)

Commander/Leader
US Army Combat Surveillance & US Army Training and Doctrine Command
Target Acquisition Laboratory
ATTN: DELCS-D
Fort Monroe, VA 23651 (2)

US Army Training and Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651 (1)

US Army White Sands Missile Range
Technical Library Division
White Sands Missile Range
New Mexico 88002 (1)

US Army Research & Technology Labs
Structures Laboratory Library
NASA Langley Research Center
Mail Stop 266
Hampton, VA 23665 (1)

US Army Research & Technology Labs
Natick R&D Laboratories
Propulsion Laboratory MS 77-5
NASA Lewis Research Center
Cleveland, OH 44135 (1)

Commander
US Army Medical Research Institute of Chemical Defense
Aberdeen Proving Ground, MD
21010 (1)

Commander
Naval Air Development Center
ATTN: Code 6022 (Mr. Brindle)
Warminster, PA 18974 (1)

Director
Ballistic Research Laboratory
ATTN: DRDAR-TSB-S (STINFO)
Aberdeen Proving Ground, MD
21005 (2)

US Army Research & Development Technical Support Activity
Fort Monmouth, NJ 07703 (1)

Commander/Leader
US Army Combat Surveillance & US Army Training and Doctrine Command
Target Acquisition Laboratory
ATTN: DELCS-D
Fort Monroe, VA 23651 (2)

US Army Training and Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651 (1)

US Army White Sands Missile Range
Technical Library Division
White Sands Missile Range
New Mexico 88002 (1)

US Army Research & Technology Labs
Structures Laboratory Library
NASA Langley Research Center
Mail Stop 266
Hampton, VA 23665 (1)

US Army Research & Technology Labs
Natick R&D Laboratories
Propulsion Laboratory MS 77-5
NASA Lewis Research Center
Cleveland, OH 44135 (1)
Commander
US Army Troop Support & Aviation Materiel Readiness Command
ATTN: DRSTS-W
St. Louis, MO 63102

Commander
US Army Aviation R&D Command
ATTN: DRDAV-E
4300 Goodfellow Blvd
St. Louis, MO 63166

Director
US Army Human Engineering Laboratory
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Commander
US Army Aviation R&D Command
ATTN: Library
4300 Goodfellow Blvd
St. Louis, MO 63166

Commander
US Army Health Services Command
ATTN: Library
Fort Sam Houston, TX 78234

Commandant
US Army Academy of Health Sciences
ATTN: Library
Fort Sam Houston, TX 78234

Commander
US Army Airmobility Laboratory
ATTN: Library
Fort Eustis, VA 23604

Air University Library (AUL/LSE)
Maxwell AFB, AL 36112

US Air Force Flight Test Center
Technical Library, Stop 238
Edwards AFB, CA 93523

Command Surgeon
Rapid Deployment Joint Task Force
MacDill AFB, FL 33608

US Air Force Armament Development & Test Center
Technical Library
Eglin AFB, FL 32542

US Air Force Institute of Technology
(AFIT/LUE)
Bldg 640, Area B
Wright-Patterson AFB, OH 45433

US Air Force Aerospace Medical Division
School of Aerospace Medicine
Aeromedical Library/TSK-4
Brooks AFB, TX 78235

Director of Professional Services
Office of The Surgeon General
Department of the Air Force
Washington, DC 20314

Human Engineering Division
Air Force Aerospace Medical Research Laboratory
ATTN: Technical Librarian
Wright-Patterson AFB, OH 45433

US Navy
Naval Weapons Center
Technical Library Division
Code 2333
China Lake, CA 93555

US Navy
Naval Aerospace Medical Institute
Library
Bldg 1953, Code 012
Pensacola, FL 32508

US Navy
Naval Submarine Medical Research Lab
Medical Library, Naval Submarine Base
Box 900
Groton, CT 06340

Staff Officer, Aerospace Medicine
RAF Staff
British Embassy
3100 Massachusetts Avenue, N.W.
Washington, DC 20008