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Numerical methods for the analysis of the elastic-plastic fracture
problem using a special finite eslement technique are presented. A brief
description of some comcepts in olustic-pli:tic fracture mechanics and of the

. finite elemont method is followed by the formulation procedure of the
f stiffness mairix uwsing eight-noded quadrilateral isoparametric elements.
& After a terse discussion of the initial stress method, the procedure of

computation is extended in the analysis by using an incremental 1load
process. The size and the shape of the plastic zone of a center crack

specimen is investigated.

The problem of crack growth is also studied using the moving crack tip
slement procedure. Results are presented in graphical form.
It was found that the moving finite elament techmique can be modified to

solve the crack branching problems.
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SECTION 1

Introduction

Fracture mechanics has in recent years become an independent discipline
that deals with the determination of the conditions under which machine or
structural elements attain uncontrollable failnre by crack propagation. This
topic has been a challenging subject in the area of solid mechanics; its
historical development can be traced back to the early part of the century.
A knowledge of this subject can assist the engineer or designer to safeguard
machine elements against catastrophic failure.

Two fracture criterions of failure which have played the major and
funhancntnl roles in the study of fracture mechanics are based on the
concepts of energy balance and stress intemsity factors. In 1921 and 1924,
Griffith [1,2] introduced a fracture criterion of failure which would take
into account the effect of minute flaws and small cracks in material. His
theory basically involves the energy balance, which states that the energy
consumed in creating a mnew fracture surface within solid body must be
supplied from the release of the elastic strain enmergy and from the work done
by the extermal load. Although this theory has since been proven inadequate,
it still provided the basis for newer theories developed in the field of
fracture mechanics.

An alternstive approach was later proposed by Irwin [3,4]. Rather than
follow Griffith’s theory, he concentrated on a crack tip region which is
small in comparison with the body as a whole but sufficiently large with
respect to atomic dimensions for him to be reasonably comfortable with the

application of 1linear elasticity theories. He stated that fracture




initiation occurs when the intensify of stress in the near crack tip region
reaches a critical value. He subsequently introduced the three modes of
crack extension and the corresponding stress intensity factors KI. ‘II' and
‘III’ which provide a measure of the amplitude of the stress field in the
near crack tip region.

The study of ghe elastic-plastic fracture problems are the main concern
of this report. The discussion which follows will be restricted to Mode I
(in-plane tensile mode) crack propagation. The problem from a designer’s
viewpoint is to prevent brittle fracture., For this purpose, the state of
stress and strain close to the crack tip should be accurately kmown. The
common approach, known as Linear Elastic Fracture Mechanics (LEFM), is to
assume linearly elastic material behavior around the crack tip. Since it is
known that there is always some amount of plastic deformation at the crack
tip, the LEFM approach c;n provide satisfactc. 'y answers only for highly
brittle materials and under such loading condition: which cause a negligibly
small plastic zone at the crack tip as compared to the crack length and the
thickness of the specimen. Since a considerable number of engineering
materials are relatively ductile, and since the thickness of the specimen
cannot always be considered large, the plastic deformation at the crack tip
cannot always be ignored. The significance of the size of the plastic zome
ahead of the crack tip as one of the parameters which govern the growth of a
3xn3: was first emphasized by Irwin ([3,4,9). Later researchers, such as Rice
[5.8,10), Hutchinson [6], Cherepanov [7), and others, also incorporated the
effect of the shape and size of plastic zone in their proposed fracture
criteria.

One of the challenging problems is to investigate the shape and the size

of the plastic zome, which would depend on m....1a] .roperties, specimen
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geometry, loading and boundary conditions., A considerable amount of research

in this direction had been reported in the literature. A good bibliography
on the subject of elasto-plastic stress analysis can be found in references
{101 and [361].

In recent developments of fracture mechanics, the use of the finite
element method has been quite extensive in both elastic and elasto-plastic
analyses. A number of special finite element techmiques have been developed
[16,17,18), by using the displacement finite element method. These special
elements contain a singunlarity. The disadvantages of these elements are that
the solutions do not always converge and that they take too much computing
time, especially for elastic—-plastic fracture problems.

From the above considerations and practical viewpoint, Barsoum [11]
formulated the eight-noded quadrilateral isoparametric element. The
singularity in the element can be achieved by placing the mid-sided node mear
the crack tip at the quarter point. It has been shown that such elements in
their non-singular formulation satisfy the essential convergence criteria,
namely, continuity of displacements, compatibility, comstant strain modes and
rigid bvody motion modes. Therefore, their convergence characteristics and
the high accuracy of the results in a reasonably-sized finite element mesh
make their application in the modeling of the elastic-plastic fractnre

problem very docile,




Finite Element Analysis

¢ _Concepts

fundamental concept of the finmite element method is to construct a
model composed of a set of piece-wise continuous functions defined
inite number of closed sub-regions. The sub-regions are called
ts’* which are connected to each other at their common nodes, and
rely approximate the shape of fhe domain. The generalized
sent components of these nodes are the basic unknowns in the
n.
the column vector {q} be the generalized displacement components at
3s; and column vector (U} be the state of displacement for the

The two parameters can be related.and expressed in matrix form as:
= [N1{q} (1)

| is the shape function, which is a function of special coordinates
to be evaluated at each of the nodal points. The notations { } and

e a column vector and a matrix, respectively.

iting the generalized strain vector as (e}, the strain components can
expressed in terms of the displacements through the compatibility

[ M

1{u} (2)

= [
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where [B] is a partial differential operator matrix which can be written as:

PT?( .
(8] = o % (3)

2 2

Lay ox

Through the constitutive relations of stress and strain, the generalized

stress vector {c} can be written, in terms of the strain vector {e}, as:

{c} = [DI{e} (4)

where [D] is the material matrix which is given below

a) for plane stress

o —
1 v o
E
Pl= 1552 v 1 o (5
o o 1-v?
o 2 -
b) for plane strain
o —
1 A o
- E(1-v)
(D] ™) (1229 v 1 o (6)
°o o lwv
2
. -
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where E, v are the modulus of elasticity and Poisson’s ratio, respectively.
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b The formulation of the stiffness matrix of the eight-noded isoparametric
element is well documented [28]. Through the following transformation, the

stiffness matrix is found as follows:

AR BRI
<

S

B ?

- 1

, (-1,1) 1 5 (1,1)
' 2

- 8

- -—R
3 6

. (1,-1)
b 3 7 4

e ("1:‘1)

>

Figure 1, Quadrilateral Isoparametric Element
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X = Z Ni(R,S)x:l
i=]

n
8

y= 2. N (R,S)y,
i=]

11
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where Ni are the shape functions corresponding to the mnode i, whose

coordinates are (xi. yi). In the transformed R-% coordinates system, Ri' Si

=+1for the cormer nodes and zero for the mid-side nodes.

2 2 Risi
Ni(R,S) = [(l+RRi) (1+ssi) - (1-R )(1+ssi) - (1-s )(1+in)] 7
SZ R2 (8)
_n2 a2y 4 _a2 2y 1
+ (1-R )(1+ssi)(1 Ri) 5> + (1-S )(1+RR1)(1 si) 3

It is quite easy to ppderstand that if the boundaries of each element
vary from -1 to +1 in the R-S coordinate system, the terms (I-R?) and (1-82)
cannot coexist on any boundary. The interpolation function for an eight-node

isoparametric element can thus be written in the following form:

N, (R,S) = - %(1+R)(1+S)(1—R-S)

Ny(R,S) = = (1-R) (1+S) (1+R-S)

N3(R,S) = = 2(1-R) (1-S) (1+R+5)

N,(R,S) = = T(1+R)(-S) (1-R+S) 9)
Ns(R,S) = 2(1+5) (1-K%)

Ng(R,S) = 3(1-B)(1-s?)

N (R,S) = %(1-3)(17—1{2)

1 2
NS(R,S) - 2(1+R)(J.-S)

12

""" - - .y > - - PIN - M - M 2. o = R - PR W SO 1 P — VY Y S S .




.

L s
.........

.....

The displaacenents are interpolated by:

u= 2N1(R,S)ui
is}
8

ve Z‘,ui(n,sw1

....................

The straian-displacement relations can be written as:

u

(et =3 f.°
er = [B { }
Ve
where [B] is
N, o
Ix
0o AN,
B = 3y
aNi BNi
L_By 9x
where
oy _3“1
ax 3R
~1
¢ - 3]
BNi 3Ni
\ % 23S

where [J] is the Jacobian matrix and is in the following form:

E:
3R
[J] =

wlw
(711

3y
2R

3y
3s

13

(10)

(11)

(12)

(13)

(14)
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The variation of the displacement field

Jacobian operator:

du du
ax 3R
- J-l
3u 3u
y 3S
v v
- J-l
av av
dy as

can now be

The inverse of Jacobian matrix is defined as:

- 3y
9S
-1 1
DI = Fet o7

3y
R

L r—,

o:k:
w

1
EREE
3s aR

3

=%
s

-

-lar
wniR

- 2x)
28

9x
R

- o]
aR

ax
3R

The stress can be found from the following equation:

(o} = (D1{s]

14

(14)

obtained through the

(15)

(16)

an

(18)

AR
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where (D] is the material matrix which is a function of mechanical properties

of the material. The element stiffness matrix [K] is given as

1 1 :
K] = J_l Ll [B]"[D][Bldet|J| dR dS (19)

Since the form of the shape function Ni(R.S) in all elements are polynomials,

oN, ON
the derivativcs.-—si.-—aé. sre non-singular. From equations (11), (12), and

(13), the strain can be written in the following form:

Yy
{e} = [317}[B' (R,5)] | } (20)
M

Therefcre, from the above equation, the singularity can be obtszined by
requiring that the Jacobian matrix [J] be singular at the crack tip. Ia
other words, the determinant of the Jacobian det lIl vanishes at the crack
tip. This can be achieved by placing the mid-side mode at the quarter points

of the sides.

3. Quarter Point Elements Around the Crack Tip

; In order to obtain the singnlar element matrices to be used around the
Eé crack tip, [e] and [o] must be singular. The singularity can be achieved by
; placing the mid-side node of any side st the quarter point., Figure 2a shows
E the two-dimensional, eight-noded quadrilateral quarter point element and
Ez Figure 2b, the sixz-noded triangular isoparametric elements with the mid-side
*; nodes near the crack tip at the quarter point,

I 1s

-----------------
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One of the most important features of these elements is that they
satisfy the necessary requirements for convergence [11] in their singular
form as well as in their non-singular form. They possess rigid body motion,
constant strain modes, interelement compatibility, and continuity of

displacements, in contrast with many other special crack tip elements,

2 5 1

L

Figure 2a. Eight-Noded Quadrilateral Quarter Point Element

J§ 3
.77 7?1 |

FPigure 2b, Six-Noded Triangular Quarter Point Element
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4. i nt Method

It is probably true in saying that the elastic—-plastic behavior of the
material played a .dominating role in recent developments of fracture
mechanics. One of the major objectives of this report is to provide a
simplified treatment of a very complex problem so that with a minimum of
p:o;:cnping effort, a reasonable solution can be obtained.

The practical interest in solving the elastic-plastic fracture problem
may be in the prediction of displacements stresses and strains at various
stages of loading, the size of the plastic zone, and the growth of crack.

The method, which serves the purpose, called the initial stress finite
element method [13], is outlined in the following.

It is assumed that the von Mises yield criterion [45,46] and flow rules
(See Appendix 1) are valid. Therefore, the following hypothesis appears to
beigonotally accepted. If G{c}p denotes the increment of plastic strain,

then,

ste) ) = 3% (21)

In this relation, A is a proportionality constant and F is a function of
stresses, For the well-known von Mises yield surface, F is given in the
following form:

- 2 2 Y 2 2 ,1/2 _ -
F=(2 (cx-ui) + % (cy-cz) + (o -0 )" + 31Xy vz Tog) c (22),
where ; is the effective equivalent stress.

During an infinitesimal increment of stress, the change of strain can be

assumed that it is the sum of the elastic and plastic parts. Thus,

5(e} = 6(:]. + 5(clp (23)

17
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The elastic strain increments sre related to stress increments by

ste}, = (D) '8(0) (24)

Therefore, the strain increment can be written as

8{e) = (D) 1s(c) + 5'{%‘ c A (25)

From the sbove equation, it is convenient to solve for the stress changgs in
terms of the imposed strain changes [13].

8{c) = [D]epbtsl (26)

where [D].p is the elasto-plastic matrix. It is symmetric, and positive.

w1, = 01 - o) e ES o) [A +{6%’}}T (o} {3{%}]-1 (27)

where A is the hardening parameter. For ideal plasticity with no hardening,
A will be zero.. If hardening is considered, in general, the value of A can
be obtained from the slope of the uniaxial stress-plastic strain curve at the
particular value of plastic strain.
For an elasto-plastic situation, the computation procedures during a
series of load increment can be outlined as follows:
8) Apply the 1load increment and calculate elastic increments of stress
{Aa'}l. and the corrisponding strain [Ac'lI.
b) Add (Aa'11 to the existing stresses at the start of increment [col to
obtain (o’).
¢) Check whether F(o’} < 0. If this condition is satisfied, the pure

olastic case is continued.

18
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d)

e)

f)

8)

h)

i)

J)

If F{c'} > 0 and F[aol = 0, this means that the element was yield at the
start of load increment. Find {Aull by following the equation

(a0}, = D1 (ae’}
Evaluate stress which has to be supported by body forces

(a0’ '}, = {Ac’}; - (4o},
Store the current stresses and strains

(o} = (o'} - (a0’’},

(e} = {s')} + Als'},
If F{e)} > 0, but F{col < 0, find the intermediate stress at which yield
begins and calculate the stress increment {Ac}. Then proceed as in (d).
Calculate nodal forces, or the plastic load vector corresponding to the
equilibrating body forces for any element by following relation

Prg=/ (817 (a0 qd(vol)
Find {Ac'}z and (An'lz nsing original elastic properties and the load
system.

Find the current value of o and repeat steps b) to i) etec...

The cycling will be terminated if the nodal forces in step h) reach

sufficiently small values.

19
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SECTION III

The J-Integral

The J-Integral [8] is basically a generalization of Griffith'’s theory to
elasto-plastic rather than purely elastic crack tip behavior. J is a path-
independent integral which can be interpreted as the energy release rate when
a crack starts to propagate. In the finite element analysis of a static
crack problem, the stress intensity factor KI is commonly evaluated by the

path~independent J-integral as follows:

ou,
J =I (Wdy - T, _3?:_. ds] (28)
r

where w is the elastic strain energy density and I' is a path of arbitrarily
chosen contour which is followed by the integration and which begins at any
p¢ise on the lower crack surface, encircles the crack tip, and ends at any
poiat on the upper crack surface. 'l‘i is a traction vector acting along the

outward normal to the contour.

y

L_..

St

Figure 8, J-Integral Representation
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Movement of the Singular Elements

One of the latest developments to numerically model a propagating crack
is the use of moving singular elements., We treat the singular element mesh
as a function of stresses. When the Von Mises stress around the crack tip
reaches a level greater than the yield strength of the material, the crack

will be propagating at a distance of

2
1 &
rp = 2T o (29)
yp
1-v¥ 2
and J = 5 KI (30)

The schematic representation of the movement of the singular elements is

in the following figure.
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Figure 9. Schmatic Representation of the Movement of
Crack-Tip Elements
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A rectangular plate, L = 3 in, and ¥ = 2 in., with a center crack, Fig.
3a, mas considered. The thickness of the plate was chosen to be 1/2 inch and
plane stress oconditions were assumed in this case. The material properties

were chosen to be the following:

E= 10 x 106 psi

vs= 0,33

= §0,000 i
‘yp 000 ps

- Due to the symmetry of the problem, only one—quarter of the plate needs
!! to be analyzed. A total of 163 nodes and 44 elemonts were used in the
- analysis of growth of the size of the plastic zome with increasing external

loads. The plastic zones were plotted by comnecting the centroidal points of

the yielded elements around the crack tip.
: For the analysis of the propagation of .ého crack, moving singular
E. elements were used. The criterion of moving condition was that when the
E! stress of the crack tip element was greater than the von Mises effective
B stress, the crack will propagate., The normalized stress intensity factors
are determined from averaging the three different J-integral paths. The
4 variation smong tho;o paths is less than 3%,

T
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Suzmary apnd Conclusions

Although considerable progress has been made in the field of
elasto-plastic fracture mechanics, it is the common consensus of most of the
foremost researchers in the (field that the actual size and shape of the
plastic zone near the crack tip are mnot accurately established yet. It
would, therefore, be improper to claim that the results presented in this
report are the most reliable and accurate; nevertheless, they provide a basic
knowledge that can be used to betteor understand more complex problems in the
near future. The analysis and procedure presented in this report for
olasto—flastic analysis do provide a better and more reliable method in
comparison with the other similar procedures available in the literature [12,
17, 19, 20, 36]. For physical engineering problems, the eight-noded
quadrilateral isoparametric elements and the eight-noded gquarter-point
elements yield a good result with proper calibration. The main improvements
in using these elements instead of the constant strain triangular elements
are the convergence and the stability of the solution warranted.

It has been demonstrated that the technique can be applied where crack
propagation is very small and may not otherwise be measured by conveantional
experimental techniques.

The following conclusions are based on the elastic—-plastic crack growth
analysis.

1) A method was developed to calculate th§ size ‘nd shape of the plastic
zone around the crack tip. The problem was solved by using the initial

stress finite element method. Eight-noded quadrilateral isoparametric

K}
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elements were used in the anslysis. It was proved that this method is

quite efficient and provided reasonable, accurate results.

2) The eight-noded quarter—point element yielded a good result with proper
calibration. This singular element, when coupled with the moving
element technique, was preferable for studying the fast fracture
problem.

3) It was found that the procedure of the moving singular element was much
sasier to use than the so-called crack tip node release method.
Furthermore, the moving singular element provided realistic crack growth
values.

4) The moving finite element technique can be modified to solve the crack
branching problem.

The above advancements in the understanding of elastic-plastic crack growth

are specially suited for asiding the future study of the fast or dynamic

fracture problems. In addition, the crack growth criteria imnvestigation and
the calculation of the plastic zone size provide significant progress towards

life prediction of machine elements, such as turbine blades and turbine

disks.
The following additional research work is recommended to further the
. machine element life prediction capability.

1) Future work needs to include impact 1loading and cyclic 1loading

conditions.
ki 2) Use present approach to analyze other test specimen geometries to
?? determine the dependence/independence of results on speciment geometry.
;2 Also, investigate the repeatability.
e '
: 2
e
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3) Use preseat approach to amalyze the crack growth of the composite
material structures.

4) Eanvironmental effects should be further researched by conducting fatigue
and creep crack growth tests in differemt environmental conditions, such
as high sulfur content, vacuum, etc.

In summary, the technique developed here is worth exploring further to
provide a better understanding of crack growth rate behavior in machine

elements under normal operating conditionms.

1. Yop Mjises Crjteron

A criterion that imvolves a smooth function was proposed by Von Mises.
In its most widely used form, the von Mises criterion, in terms of principal
stresses, prediets that yielding occurs when

(01 - 62)2 + (a2 - 03)2 + (03 - 01)2 = constant (1)

In a more general form,

(ax - ay)z + (csy - c:z)2 + (c!z - °x)2 + 6('!:“2 + tyzz

2
t T, ) = coanstant (2A)
To determine the constant, the following procedure is used:
a) For uniaxial teansion, yielding occurs when 5, = cyp. oy, =0y = 0.
Therefore equation (1A) becomes
2

2012 = gonstant = 20
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b) For pure shear, yielding occurs when o, = -0y " k, o = O and using

equation (1A):

012 + 012 + 4«12 = 6012 = constant = 6k2

Thus the von Mises criterior may be written as :

2 2 2 2 2

)" + (6, - 0,) = 20 = 6k (3A)

(o, - o.) 3 1 vp

1= %) *tle, -0

3

According to this criterion the tensile and shear yield stresses are related
as cyp = J?ET
It is convenient to consider this criterion as a fuaction of an
effective stress, denoted as o, where G is a function of the applied
stresses, Whenever its magnitude reaches the yield strength in uniaxial
tension, then that applied stress should cause yielding to occur. Thus
- 2 2,1/2

c '\f;: [(o‘1 - 0’2)2 + (02 - 63) + oy - °1) ]

(44)

%

020

G =205 =1.15 07

|

a"'-~0; Pure Shesr

. 17 L 2
Yo 0;'-05 0;'.0; 0.3770;'
Y

2 2
G +0y-00;=0,,

-0

Figore 1A, Von Mises Yield Locus: c'zoo

2. Distortion Energy

An interpretation of the Mises criterion is that yielding occurs when
the elastic energy causing distortion reaches a critical value. This strain
energy is found in s genmeral way by subtracting the dilatational strain

energy from the total elastic strain energy. The total strain energy per

34
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unit volume is:

+ v,.) (54)

T
X 22X

[‘ Uv = 1/2 (csxcx + aycy + o.¢, + txyvxy + tyzryz
1
3

or for the case of principal stresses:

F Uv = 1/2 (alsl + o, + 6383) (6A)

To express the above equation as a function of stresses, the generalized form

B of Hooke's law, gives
B 1,2 2 2, __V
» U, = 2E (°1 to, +to3) - (0102 + 0,05 + 040,) (7A)
}_"-
g Since only normal stresses cause a volume change, the dilatation is:
L. = 1-2v = 2 -
- A 01+32+33 E (al+cz+03) E(l 2V) % (8A)
[
.
i‘ Let A = 3¢
4 " 1-2v
Therefore e, = E Um

From the above discussion, it can be seen that the work due to dilatation is

Ud = 3(1/2 cmsm).

then Ud = [3(1-2V)e 2]/2E
a

o Az2v 2
" =g 33 g + 0, + 53) (94)
By subtracting eq. (9A) from (7A) to give the shear strain energy, U'. the

result after rearrangement is:

-

, - i _ 2 2 2

Us = T5C [(a1 0,)" + (o, - 03) + (63 - 9,)7] (10A)
d Now, the shear strain emergy induced during uniaxial tension where o, =03 =
h-

0 is:

8 33
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The critical value, Us

U

when 0, = c¢_ .,
1 yp

L
126

e’ that may be developed to cause yielding will

2
[(a1 - 62) + (02

W TRTTR

result

Setting eq. (10A) equal to this critical value leads to:

5 2
_4p

6 (114)

2 2.
- 63) + (63 - cl) ]l =

3. Flow Rules or Plastic Stress-Strain Relationships

Consider plastic

figure:

flow under uniaxial tension as indicated in following

{UT,Cigl

1

e — fz=0)

dE,x0

s

5

Figure 2A,

Now the deviatoric stress in the 1 direction is ¢ =g - @

=20, dfj#o

Stresses and Incremental Plastic Strains

for Untaxial Tension

’

and at the

1 1 m

particular instant represented in the above figure,

! =
o'y 2/3 oy and 5

Therefore,

61' f - 202' = - 263'

o,' = 03' =0-1/3 &

1= 1/3 oy
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volume constancy, the sume of the plastic strain increments must be

irefore,
+ dez + de3 =0
ire is symmetry in this instance, dzz = d¢3. therefore, del = - 2de2

This leads to:

de de (12a)
?;3z= i = constant = dA
2 3

ication is that the ratio of the current incremental plastic strain
s to the current deviatoric stresses is a constant. This expresses

[}
idtl-Reuss flow_rules. where the elastic strain increments have been

convenience, the flow rules may be expressed in other forms

12 da
1~ 9%
-2 1
3 $loy -3 (0, + 0] (13a)

is the incremental effective strain which is defined as

2 1/2 (14a)

v-l-vl

2
[(de, - de,)” + (de, - de)” + (de, - del)zl
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