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Nmerical methods for the analysis of the elastic-plastic fracture

problem using a special finite element technique are presented. A brief

description of some concepts in elastic-plastic fracture mechanics and of the

finite elemeut vothod is followed by the formulation procedure of the

stiffness matuix using oight-noded quadrilateral isoparametric elements.

After a terse discussion of the initial stress method, the procedure of

computation is extended in the analysis by using an incremental load

prooess. The size ad the shape of the plastic zone of a center crack

specimen is investigated.

The problem of crack growth is also studied using the moving crack tip

~ element procedure. Results are presented in graphical form.

It was found that the moving finite element technique can be modified to

solve the crack branching problems.
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LIST Of SYMOLS

A hardening parameter

a crack length

A crack increment

anow crack length

[B] partial differential operator matrix

" [B] strain-displacement relationship matrix

[D] stress-strain relationship matrix

EpD] olasto-plastio matrix,. ep

E Young' s modul us

" F function of stress

G shear modulus

* I the 3-integral

*• (3] Yacobian matrix

k constant

[K] stiffness matrix

. K mode I stress intensity factor

-. L crack-tip element size

L length of the strip

n normal vector

N shape function

(P) Plastic load vector

(q) generalized displacement vector

tp radius of plastic zone

S,8 local coordinates of isoparamotric element
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- distance along integration path

Ti surf a*e traction vector

displacement in x-direction

I) displacement vector

U strain energy

v displacement in y-direction

' width of strip

v elastic strain energy density

zxy global Cartesian coordinates

(a) stress vector

(A6') increment of stress vector

* (a ) initial stress vector
0

a. effective equivalent stress

a oeffective stress

-- Oya yield strength of material

2p

%* opost yield applied load

'a1,o2sa3 principal stresses

* tshear stress component

(a) e total strain vector

(aI) elastic strain vector

(a) plastic strain vector
p

I,*s2,s3  principal strains
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SECTION 1

Introduction

-I,

Fracture mechanics has in recent years become an independent discipline

that deals with the determination of the conditions under which machine or

structural elements attain uncontrollable failure by crack propagation. This

* topic has been a challenging subject in the area of solid mechanics; its

historical development can be traced back to the early part of the century.

A knowledge of this subject can assist the engineer or designer to safeguard

machine elements against catastrophic failure.

Two fracture criterions of failure which have played the major and

* fundamental roles in the study of fracture mechanics are based on the

*concepts of energy balance and stress intensity factors. In 1921 and 1924,

Griffith [1.21 introduced a fracture criterion of failure which would take

into account the effect of minute flaws and small cracks in material. His

theory basically involves the energy balance, which states that the energy

consumed in creating a new fracture surface within solid body must be

supplied from the release of the elastic strain energy and from the work done

by the external load. Although this theory has since been proven inadequate.

it still provided the basis for newer theories developed in the field ofE. fracture mechanics.
An alternative approach was later proposed by Irwin [3,41. Rather than

follow Griffith's theory, he concentrated on a crack tip region which is

' small In comparison with the body as a whole but sufficiently large with

respect to atomic dimensions for him to be reasonably comfortable with the

application of linear elasticity theories. He stated that fracture

6



initiation occurs when the intensity of stress in the near crack tip region

reaches a critical value. He subsequently introduced the three modes of

crack extension and the corresponding stress intensity factors Ki, K11. and

K III which provide a measure of the amplitude of the stress field in the

*: near crack tip region.

The study of the elastic-plastic fracture problems are the main concern

of this report. The discussion which follows will be restricted to Mode I

(in-plane tensile mode) crack propagation. The problem from a designer's

viewpoint is to prevent brittle fracture. For this purpose, the state of

stress and strain close to the crack tip should be accurately known. The

cocmon approach, known as Linear Elastic Fracture Mechanics (LEFM), is to

assume linearly elastic material behavior around the crack tip. Since it is

known that there is always some mount of plastic deformation at the crack

tip, the LEPM approach can provide satisfactc.-y answers only for highly

. brittle materials and under such loading condition! which cause a negligibly

small plastic zone at the crack tip as compared to the crack length and the

thickness of the specimen. Since a considerable number of engineering

. materials are relatively ductile, and since the thickness of the specimen

cannot always be considered large, the plastic deformation at the crack tip

* cannot always. be ignored. The significance of the size of the plastic zone

ahead of the crack tip as one of the parameters which govern the growth of a

=.:.: s first emphasized by Irwin (3,4,9]. Later researchers, such as Rice

[,8.101, Hutchinson [6), Cherepanov [7], and others, also incorporated the

effect of the shape and size of plastic zone in their proposed fracture

criteria.

One of the challenging problems is to investigate the ihaps and the size

*ii of the plastic zone, which would depend on ... t.al roperties, specimen

447



geometry, loading and boundary conditions. A considerable amount of research

in this direction had been reported in the literature. A good bibliography

on the subject of elasto-plastic stress analysis can be found in references

[101 and [361.

In recent developments of fracture mechanics, the use of the finite

* element method has been quite extensive in both elastic and elasto-plastic

analyses. A number of special finite element techniques have been developed

[16,17,18], by using the displacement finite element method. These special

* elements contain a singularity. The disadvantages of these elements are that

the solutions do not always converge and that they take too much computing

time, especially for elastic-plastic fracture problems.

From the above considerations and practical viewpoint, Barsoum [11]

formulated the eight-noded quadrilateral isoparametric element. The

* singularity in the element can be achieved by placing the mid-sided node near

the crack tip at the quarter point. It has been shown that such elements in

* their non-singular formulation satisfy the essential convergence criteria,

namely, continuity of displacements, compatibility, constant strain modes and

" rigid body motion modes. Therefore, their convergence characteristics and

the high accuracy of the results in a reasonably-sized finite element mesh

make their application in the modeling of the elastic-plastic fracture

problem very docile.

4 8



Finite Element Analysis

: Concepts

fundamental concept of the finite element method is to construct a

model composed of a set of piece-wise continuous functions defined

inite number of closed sub-regions. The sub-reSions are called

s'' which are connected to each other at their common nodes, and

rely approximate the shape of the domain. The generalized

sent components of these nodes are the basic unknowns in the

s.

the column vector (q) be the generalized displacement components at

os; and column vector VU1 be the state of displacement for the

The two parameters can be related and expressed in matrix form as:

- I(q) (1)

i is the shape function, which is a function of special coordinates

to be evaluated at each of the nodal points. The notations ( } and

:e a column vector and a matrix, respectively.

Pting the generalized strain vector as (s), the strain components can

expressed in terms of the displacements through the compatibility

is.

- IM) (2)

9



where [I is a partial differential operator matrix which can be written as:

a0

(B] 0 (3)
ay

a a

Through the constitutive relations of stress and strain, the generalized

stress vector (a) can be written, in terms of the strain vector (a), as:

(a) = [DIs) (4)

where [D] is the material matrix which is given below

a) for plane stress

1 V 0

[ ] v 1 0 (5)

0 0 I-V 2

2

b) for plans strain

1 ~ 0

[D E(1-v) (6)(1+v) (1-2v) V 1 o

0 0 lv
2

to



where E, v are the modulus of elasticity and Poisson's ratio, respectively.

2. Quadrilateral Isparaetric Element

The formulation of the stiffness matrix of the eight-noded isoparametric

element is well documented (28]. Through the following transformation, the

stiffness matrix is found as follows:

S

8 R

• (-1,-i)

Figure 1. Quadrilateral Isoparametric Element

X 8II N (R,S)x

8 (7)

i~ Ni(R,S)y,

K 11



where N. are the shape functions corresponding to the node i, whose

coordinates are (x., yi). In the transformed R-S coordinates system, Ri. Si

=+1for the corner nodes and zero for the mid-side nodes.

2S2

N (R,S) =[(J+RR)(+SS - (1-R2 )(l+SSi) - (1-S2 )(+RRI)] 4

+ 1R ) (l-ISS) (-R) - + (1-S ) (l+R,)(1-S2)a2i2 12

It is quite easy to understand that if the boundaries of each element

2 2vary from -1 to +1 in the R-S coordinate system, the terms (1-R ) and (U-S2)

cannot coexist on any boundary. The interpolation function for an eight-node

* isoparametric element can thus be written in the following form:

N (R,s) - - (1+R)(1+S)(1-R-s)

1
N2 (R,S) = - -(1-R)(1+S)(1+R-S)

/ N3(R,S) - - Z(1-R)(1-S) (1+R+S)

N4 (R,S) - - 1(+R) -S)(-R+S) (9)

N (RS) 1 (1+s)(1-R21

1 2

N6 (R,S) = (1-R)(I-S2 )

N7 (R,S) - I(-S)(1R2)7 2

N8 (R,S) - 1 12

48
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The displacements are interpolated by:

8

u - .(RS)u (10)

8

V Z ~N (RS)v~

The strain-displacement relations can be written as:

{€} - [B] v()

where (B] is

aN
" 0

B -aN- (12)

aN aN
ay 3x

where

aN ~ aN1

ax aR

aN3N

ay as

* where []is the ;acobian matrix and is in the following form:

~ax a
9R 3R

[J, [] i (14)
ax a-I

"s as

13
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The variation of the displacement field can now be obtained through the

Jacobian operator:

au (u

ax a

ay as

IV av
ax I

-1(16)

av IV
y as

The inverse of Jacobian matrix is defined as:

as asi

det [J] II(17)
- - a y

a ax as aR

"R " a ax ax

as aR

The stress can be found from the following equation:

*l (@1 - CDJla) (18)

"q 14



where ED] is the material matrix which is a fuction of mechanical properties

of the material. The element stiffness matrix [rl is given as

r1 (,[K]- [B] T[D][B]detIJ dR dS (19)

I J- 1 (1

Since the form of the shape function Ni(R.S) in all elements are polynomials,

BN aN N

the derivatives,-s, -U ° are non-singular. From equations (11). (12). and

(13). the strain can be written in the following form:

'ci - [J]-[B'(R,S)] { } (20)

. Therefore, from the above equation, the singularity can be obtained by

requiring that the lacobian matrix E1l be singular at the crack tip. In

other words, the determinant of the lacobian detj l3 vanishes at the crack

tip. This can be achieved by placing the mid-side mode at the quarter points

of the sides.

"* 3. Quarter Point Elements Around the Crack Tip

In order to obtain the singular element matrices to be used around the

; crack tip, (a) and (a] must be singular. The singularity can be achieved by

placing the mid-side node of any side at the quarter point. Figure 2a shows

the two-dimensional, eight-noded quadrilateral quarter point element and

-' Figure 2b, the six-noded triangular isoparametric elements with the mid-side

nodes near the crack tip at the quarter point.

1s



One of the most important features of these elements is that they

satisfy the necessary requirements for convergence [11] in their singular

form as well as in their non-singular form. They possess rigid body motion,

* constant strain modes, interelement compatibility, and continuity of

displacements, in contrast with many other special crack tip elements.

2 5

S

R 8

33 7 4

Figure 2a. Eight-Noded Quadrilateral Quarter Point Element

3

41

Figure 2b. Six-Noded Triangular Quarter Point Element
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4. Initial Stress Finite Element Method

It is probably true in saying that the elastic-plastic behavior of the

material played a -dominating role in recent developments of fracture

mechanics. One of the major objectives of this report is to provide a

simplified treatment of a very complex problem so that with a minimum of

programming effort, a reasonable solution can be obtained.

The practical interest in solving the elastic-plastic fracture problem

may be in the prediction of displacements stresses and strains at various

stages of loading, the size of the plastic zone, and the growth of crack.

The method. which serves the purpose, called the initial stress finite

element method [13], is outlined in the following.

It is assumed that the von Mises yield criterion [45,461 and flow rules

(See Appendix 1) are valid. Therefore, the following hypothesis appears to

be generally accepted. If &(a)p denotes the increment of plastic strain.
Ip

. then,

'6a) - )(a (21)

In this relation, X is a proportionality constant and F is a function of

. stresses. For the well-known von Mises yield surface, F is given in the

Vi following form:

_0mC(@~ y)2 ++(a 11 2  -(.a ) 2 + 3v2 + 3 2  * 2 1/2 ~~ (2
F x y-a z) + azxxy TYZ + -ZZ]2)

S1 whore a is the effective equivalent stress.

During an infinitesimal increment of stress, the change of strain can be

assumed that it is the sum of the elastic and plastic parts. Thus,

" 6(s) - &is) + 6(s) (23)

I ".p

[q 17
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The elastic strain increments are related to stress increments by

M) (D]16(a) (24)

Therefore. the strain increment can be written as

6s) - [DI Me) + V (25)

o From the above equation, it is convenient to solve for the stress changes in

terms of the imposed strain changes [131.

6 ) - ED] ep6S) (26)

* where ED] is the elasto-plastic matrix. It is symmetric, and positive.
Op

- [Dl ~ aF(D)F [A
? Ep D D 6al1(1 D] E6o1 D] 11 ! ) (27)

where A is the hardening parameter. For ideal plasticity with no hardening,

A will be zero. If hardening is considered, in general, the value of A can

be obtained from the slope of the uniazial stress-plastic strain curve at the

particular value of plastic strain.

For an elasto-plastic situation, the computation procedures during a

series of load increment can be outlined as follows:

a) Apply the load increment and calculate elastic increments of stress

(A')1 . and the corrisponding strain {As'} 1 .

b) Add (Aa'}) to the existing stresses at the start of increment (eo to
0

obtain {e'}.

a *) Check whether F(a l 0. If this condition is satisfied, the pure

elastic casi is continued.

is



d) If F(') 0 and F(ao 0, this means that the element was yield at the

start of load increment. Find (Aa)1 by following the equation

(A) [D] (As'
OP

e) Evaluate stress which has to be supported by body forces

(Au')1 - (A') 1 - (Au)l

f) Store the current stresses and strains

(u) - (u') - (a') 1l

(a) ) (W') + A(s') 1

g) If F( ) 0. but F( o I 0, find the intermediate stress at which yield
0

begins and calculate the stress increment (Au). Then proceed as in d).

h) Calculate nodal forces, or the plastic load vector corresponding to the

equilibrating body forces for any element by following relation

(P)e = f[B]T (AeO)d(vol)

i) Find (Au')2 and (Aa')2 using original elastic properties and the load

system.

J) Find the current value of a and repeat steps b) to i) etc...

The cycling will be terminated if the nodal forces in step h) reach

• /sufficiently small values.

4
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t°t t t t tl l t

L-3 in.

I x W-2 in.

a-1/3 in.

L IThickness 1 1/2 in.

Im2a u

w

Figure 3a. Plate With Center Crack Under Tension

xcrac

m- .4

4 Figure 3b. Region be Analyzed (Plate With Center

Cr ac k)
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[ Figre 4.Crack
Figue 4.Finite Element Mesh of the Region to be An~alyzed
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Y/a

0.5 = .4

0.4-

0.30

-! = 0.18

yr
0.1- -- = 0.182 [12]

1.0 1.1 1.2 1.3 1.4 1.5 X/a

Igure 6. Growth of Plastic Zone for a Center Crack Plate

is the post yield applied load)
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is the Post Yield Applied Load
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SECTION III

The I-Intearal

The 3-Integral [81 is basically a generalization of Griffith's theory to

elasto-plastic rather than purely elastic crack tip behavior. 3 is a path-

independent integral which can be interpreted as the energy release rate when

a crack starts to propagate. In the finite element analysis of a static

crack problem, the stress intensity factor K I is commonly evaluated by the

path-independent 3-integral as follows:

au.
f (Wdy- Ti  1 das] (28)

r

*where w is the elastic strain energy density and r is a path of arbitrarily

chosen contour which is followed by the integration and which begins at any

pe.a4 on the lower crack surface, encircles the crack tip, and ends at any

point on the upper crack surface. T is a traction vector acting along the
i

outward normal to the contour.

y•1 x
['-C

C,

L Figure 8. J-Integral Representation

25



SECT=O IV

Movement of the Singular Elements

One of the latest developments to numerically model a propagating crack

is the use of moving singular elements. We treat the singular element mesh

as a function of stresses. When the Von Mises stress around the crack tip

* reaches a level greater than the yield strength of the material, the crack

; will be propagating at a distance of

2
1 (I
27r ( ) (29)LI rp " \YP

1-V2  2
and -- K, (30)

The schematic representation of the movement of the singular elements is

in the following figure.

'2
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Flow

LI

O Original Node

* New Node (After Movement)

I

Figure 9. Schmatic Representation of the Movement of

Crack-Tip Elements
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--- .J-integral path

L

-'I s i

Crack Tip

FiSure 10. Finite Element Mesh with Quadrilateral Quarter

Point Element for a Center Crack Plate

28



2.0

1.5

0.5

0i

0 II II I , I I

1.000 1.005 1.010
/a

Figure 11. Stress Intensity Factor for a Crack Propagation with

a - 1/3 in. and W - 2 in. (I--new crack, after crack

propagating)
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Roleslts of Numerical Examle

A rectangular plate, L - 3 in. and V = 2 in., with a center crack, Fig.

3a, was considered. The thickness of the plate was chosen to be 1/2 inch and

plane stress conditions were assumed in this case. The material properties

were chosen to be the following:

6E 10 Z 10 psi

V- 0.33

gp- 60,000 psi

Due to the symetry of the problem, only one-quarter of the plate needs

to be analyzed. A total of 163 nodes and 44 elements were used in the

analysis of growth of the size of the plastic zone with increasing external

loads. The plastic zones were plotted by connecting the centroidal points of

the yielded elements around the crack tip.

For the analysis of the propagation of the crack, moving singular

elements were used. The criterion of moving condition was that when the

stress of the crack tip element was greater than the von Mises effective

stress, the crack will propagate. The normalized stress intensity factors

, are determined from averaging the three different 3-integral paths. The

UI variation among these paths is less than 3%.

30
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Suarv and Conclusions

Although considerable progress has been made in the field of

- elasto-plastio fracture mechanics, it is the common consensus of most of the

- foremost researchers in the field that the actual size and shape of the

plastic zone near the crack tip are not accurately established yet. It

would, therefore, be improper to claim that the results presented in this

report are the most reliable and accurate; nevertheless, they provide a basic

knowledge that can be used to better understand more complex problems in the

*near future. The analysis and procedure presented in this report for

elasto-plastic analysis do provide a better and more reliable method in

comparison with the other iimilar procedures available in the literature 112.

17. 19, 20, 361. For physical engineering problems, the eight-noded

quadrilateral isoparumetric elements and the eiSht-noded quarter-point

elements yield a good result with proper calibration. The main improvements

. in using these elements instead of the constant strain triangular elements

are the convergence and the stability of the solution warranted.

q It has been demonstrated that the technique can be applied where crack

propagation is very small and may not otherwise be measured by conventional

experimental techniques.

V ,The following conclusions are based on the elastic-plastic crack growth

S" analysis.

1) A method was developed to calculate the size and shape of the plastic

q zone around the crack tip. The problem was solved by using the initial

stress finite element method. Eight-noded quadrilateral isoparametric

31



elements were used in the analysis. It was proved that this method is

quite efficient and provided reasonable, accurate results.

2) The eight-noded quarter-point element yielded a good result with proper

calibration. This singular element, when coupled with the moving

element technique, was preferable for studying the fast fracture

problem.

3) It was found that the procedure of the moving singular element was much

easier to use than the so-called crack tip node release method.

Furthermore, the moving singular element provided realistic crack growth

values.

4) The moving finite element technique can be modified to solve the crack

branching problem.

The above advancements in the understanding of elastic-plastic crack growth

are specially suited for aiding the future study of the fast or dynamic

fracture problems. In addition, the crack growth criteria investigation and

the calculation of the plastic zone size provide significant progress towards

life prediction of machine elements, such as turbine blades and turbine

disks.

The following additional research work is recommended to further the

machine element life prediction capability.

1) Future work needs to include impact loading and cyclic loading

conditions.

q 2) Use present approach to analyze other test specimen geometries to

determine the dependence/independence of results on speciment geometry.

Also, investigate the.repeatability.

32



3) Use present approach to analyze the crack growth of the composite

material structures.

4) Environmental effects should be further researched by conducting fatigue

and creep crack growth tests in different environmental conditions, such

as higk sulfur content, vacuum, etc

In summary. the technique developed here is worth exploring further to

provide a better understanding of crack growth rate behavior in machine

elements under normal operating conditions.

1. Von Mises Criteron

A criterion that involves a smooth function was proposed by Von Mises.

In its most widely used form, the von Mises criterion, in terms of principal

stresses, predicts that yielding occurs when

2 (0 32 + a l2
a- a2) + - 63) + (63 - 6i) - constant (iA)

1 2

In a more general form,

(az - cy) + (ay - z)2+ ( z  a . )2+ 6(T + T + 2 constant (2A)X yY y z1 Zr

To determine the constant, the following procedure is used:

a) For uniazial tension, yielding occurs when a I gyp, a2 a 3 = 0.

Therefore equation (1A) becomes

2 constant = 26 2
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b) For puce shear, yielding occurs when a1 = - 3  k, a2  - 0 and using

equation CiA):

a + 4*2 -6a I constant 6k2

Thus the vou Hises criterion may be written as

- a)22 +(a 2 - 3 ) 2 + (a3 - a)2 2ap2 = 6k2 (3A)

According to this criterion the tensile and shear yield stresses are related

as a A rk
yp

It is convenient to consider this criterion as a function of an

effective stress, denoted as a, where a is a function of the applied

stresses. Whenever its magnitude reaches the yield strength in uniazial

-' tension, then that applied stress should cause yielding to occur. Thus

1 ( a + - 22 ( a - a 2 21/2 (4A)

• re

[(ai 2 T'2 63)tS +3 1

. Pur Sh

Figure IA. Von Nimes Yield Locust ,oO

2. Distortion Energy

An interpretation of the Mises criterion is that yielding occurs when

the elastic energy causing distortion reaches a critical value. This strain

energy is found in a general way by subtracting the dilatational strain

energy from the total elastic strain energy. The total strain energy per
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4 .5

unit volume is:

Uv  1/2 (aye + ayey zz z yxy +yzYyz zz zz (SA)

or for the case of principal stresses:

U =1/2 (alI  + a2 2 + 0 3 a) (6A)

To express the above equation as a function of stresses, the generalized form

of Hooke's law, gives

U -L (a (2 + * +6) E(a1 OA)3 a3 1
Uv  2E 12 + 2 +o32 --- 1'lo2 + a.2a 3 + '3'.1 1 7A

Since only normal stresses cause a volume change, the dilatation is:

A Ms I + 2 + a3= 1 (a3 +62+ a) - (1-2v) (BA)

Let A - 36lm
" 1-2v

Therefore E % a

From the above discussion, it can be seen that the work due to dilatation is

Ud = 3(1/2 a a).

then U d [311-2v)a 2]/2E

1-2v +62
.d 6E 1 +  a)2 + a 3 (9A)

By subtracting eq. (9A) from (7A) to give the shear strain energy, Us, the

result after rearrangement is:

1 _ 212 + 2 + (a a 2 (10A)
U~i2G [a 6) +(a2a) +(36) 1 b

Now, the shear strain energy induced during uniaxial tension where 6 2 * 63 3

* 0 is:
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a1
2

s 6G

The critical value, U sc, that may be developed to cause yielding will result

when a yp. Setting eq. (10A) equal to this critical value leads to:

a 2

1 2 2 21 (A)
12G [(( 1 C 2 ) + (a2 - 3) + (a 3  a1 ) ] = 6G

3. Flow Rules or Plastic Stress-Strain Relationships

Consider plastic flow under uniaxial tension as indicated in following

figure:

b ..

0 0~

Figure 2A. Stresses and Incremental Plastic Strains

I

for Uniaxial Tension

Now the deviatoric stress in the 1 direction is a1  a m - and at the

particular instant represented in the above figure,

' 1 2/3 a1 and ' ' 0 1-/3 (1  -113 a1

Therefore,

a1  2 2 ' -2a 3 '

r' 36

- - - - - - - - - -



volume constancy, the sume of the plastic strain increments must be

Prefore,

+ de2 + de3 = 0

-re is symmetry in this instance, dc2  de3, therefore, dgI = - 2de2

This leads to:

dE2  dE3  (12a)

-7--7 - constant dX
2 3

ication is that the ratio of the current incremental plastic strain

,s to the current deviatoric stresses is a constant. This expresses
i

.dtl-Reuss flow rules, where the elastic strain increments have been

convenience, the flow rules may be expressed in other forms

--dA
1- a2

a 2

2 1[dA(a, - " (a2 + a3)] (13a)

_. [ 1  2 (2 +  3)

is the incremental effective strain which is defined as

'-2 2 2]1/2 (14a)
1- d 2) + (dC2 - de3) + (dc3 - dc 1 )
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