
RD-A12@ 472 JOVIAL (J73) TO ADA TRANSLATOR(U) PROPRIETARY SOFT&JARE 1/2
INC LOS ANGELES CR M J NEIMAN JUN 82 RRDC-TR-82-175
F38682-8i-C-82i7

UNCLASSIFIED F/G 9/2 N

SM 1.0 W n. n

__2
I 1 2

M.. r

- Eta 11 1.25 .

1.25 1= 1.6I I -

MICROCOPY RESOLUTION TEST CHART

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A
NATIONAL BUREAU OF STANOAROS-1963-A

-
1.251 1-A 2
111W

IIII1 hi'm ,

MICROCOPY RESOLUTION TEST CHART

-. -" "_. NATIONAL BUREAU OF STANDARDS-1963-A r

11 JM 28 4 111.0 1 L 2.

1111 111 -INIQ I '

w*1" 1&8
,. L No

MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTIOI TEST CHART

"ATIOAL bIfEAU OF STANDAROS-1963-A NATIONAL BUREAU OF S;TANOARIX-1963-A

-vo .777 *,,

RADC.TR-82. 175
Final Technical Report
June 1982

JOVIAL (173) TO ADA TRANSLATOR

Proprietary Software Systems, Inc.

DTIC
Mark Nolman S OmCT 0

F

APPROVED FOR PUBLI RELE., DISTRIDUTIDI UNLIMITED

C-,)

LU-

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441

82 d o

____ -- ---.---- ___ -, ___ ____ - __
- -__ I - - -,--" .. , , , . . ., - . _. ,,

l-- I I "I L I , - . . r . , , , I I , - - . ,; - - "7 ., -1
I I : .., ,' . , ,. I , , . , I .. - I , , '-',..,.. -. . , - , , , "; "'. 1 I - I I ; , I 1 7, .. . I I -_ , _ , - -

. . . I I - I I " ", , : - . , _- j: ;. 1-1 I " " . .1 I I , ,,, ,,,: r, ': - , I I , . I . I I
; .: . , , - , . " ... ; "t , I , A " .., , , - 1 11 i '.1 ., , - I I I I p .. ".. .

i " . ?' , , . . , , " ; _
,; . , , , , ., (, "

, - r._ , ,A, ' ._

1 - , " , ". , " - , '.., ., ,, - , . ," ,, .", ,, ,I- ,'-, , I., . . I f - . , - - 6 - .- - I . .
- z.. ,',- - . , , - ., , - 1 ,

I I .1 , " . , ,;, I , " I , I , , ;? 111 !:,;: " '"' _,.','
, 7 1 , . , , . , ";, , , ! - _1 : , 4nw - . 1 ., " . . - 11

1 - , , , i . "' II I * . I : - . ._ : , . , , ., , - ." " , " '. -:%_ , ." -*, ,, , " , 4 . ,_ ,:_.-,2j,,'%,:- ,W,; _ "" , , , ,7 . _- -
1 I - 11 . - , , " , ,',,- . ,.. 4 11 _0 % 1'!,Ij l I , . ,_ ,, 4. , . n I !,

"I , 1 ,,,,, , -, .. , .", , I I ', " 1, , ,,, -, I , ; a , ., ". I';' , "' , ! - - , .. I . ".-1 . 1. . '. , - , " l, _ I .. _ , _.- '! "5"'i, *,'.- 2,i) ,,,, . * .1 , .. I I., , . , 'y - . " ; 11 - . I,I I _ " , - , , , , ". -'-w:,: " , ", - . - , I..! , , - , ; i, ,
-, . I '. " " I '.

. .

',. ,,, , _ ," I " -7 ; , _ I I - m". , .1 ,.. , " -1, 4, , ' ' -,f r, . , . , ,L '. , ,7: i I I , ' !', . . ,.,. i, -, "-, , , , 4, , - , , ". ,,, , .1, t " , ; , , , ! , - - -I , , i'. , , -, V,' ,,, ,:;r , , " "', ";:. - L I. ., , ', " T ., . ', :- .,
, - . , ,, I - - , , ,, . - "I - - -1

.1; I - , , , , , - - 1, - ,,, -I - .. , I III i' , , , , -- -'., ,- - " '. ,. , . 111 , . . "',- I , ;, , ,, J ', , , , V , , , . ,'I , 'Ie " , I,. , ,l , . -: , - , ,, ;' , ," ,,, ; ,' .t - , - "T, -';, , , , , , , , .1 11 , . ., ", : , , , ,
, " , 0, . . 11 " .. ,,,-"I . , , , . " r f. " . "I - tw.. - 'o", , , ,N" , I. . ? ll - ill- ', 11 , I 1, , , . ,-, , , - . . I , . . I . - , , , 11 , - . . 11 1. "I , I 11, It'. , , " ,

: , , , - , ;c , , ,:,,, . , ,v, ,', -, 1 - ;, I-, . - I _j 4 , . - , - , - - . - 11 , ,_ J.. * ,':- i,'" . ,n - - ,,, - ,, ,,, , , ", , , ,
1 . . I , I . . :. , - - , tl. ,, - - t , .1, , . - - , , . - _ '. , , l ... ;, 2, - , '.

': . I I I - , I . . . , , , . - , ".. ,;

, . I I . I ,,: I . . .,. . . I I .I
, I I I " I , . .;c,,:.: - " . , , 0 ' .;'

I I I I I 1 - t -1 'r 11, ,.I I . ,;,_ , : _ . 7 1 1 . , I ,; z ,,,' .
. 6 11 , ,; j I- , , ., I - - - * I I - 1, , , ,;;- . 1, _ , : .- . .

- , I JT I I ., Y -i 'I:e I-, I - . 1, . I .
I , .11 ." .- ., , ,%, I 1. 1 I " , ., v i , t , _ "*,:' , , , , , 7:.! , , .1, ,_-& , i:- , -" A. - ,.;- *, .1 . .1 1 W, I I -11 a I , %, . . - 1. -% , . ,., D" I'll11 . " , - , ,,,, _'R - . ,I' ;",, -- . ,, "14 11 . I . , . : , :., ', -4 -.,f , ", , j, I

_j , j

., 1-1 - ,
1A , I , I, 1. , . " ,

.,
I

, , , . , _: ,
,

,, ,,, I " : " I .1I , > . ._,1;4Z I " , ; . - , . . Il I ,:- - , '.I , I , ,, " l- " , - ,. - , ; , , I , '! , 1, I , , , ,. ,: " ' ': ; :4 , i ,, ,,, , -',-'; , ' ! , ,'-,-' . - P , , C- . N, ., - - ,. ", ". - I I .., , , ' "e "', . : _ , . , .
. I I . . . I - I I I 11 " .' zl . I _ , . - - ,

', - F ;, " - , , , ";, - 4 -, , I I. , : J 11 " , , . " r xk" k, ' 41,,- " , - , ; ", , ,. - ., io .1 I I , , , I 11 1, ., r , , " , - " ,IA i . 11 '1111 . ,
11 I ,- , I

-, : - ,- ', j, - - . 1 1 .4.11 ,. I
46 : - I , : ,, , , ." n, :, ,, ,- , - , ,:], , .1 , . , , ,. , 's , . ,_. - "I A", ...

al , -. c ,,I.. . , I 1. I I I 11.1 , - _ n A - ,. .,- I I I - I . . . ,, , ,
I I . I . . I ilg .1 - ---- I I _ ; , ,,,

. I . I I 1 ..Z'r. 'il.'14 , -
I I . -. .. I. 1 , ,. ' ,.7'. . . . I , , . . - yr . . -

". . , . - . , - ,,-- " " , I " I - I' -,-A, , -,,I - ,4: , I- , , 1_ I - - ,-'-". - 1: , . ,_; I -. I -, , . 11 - I I ,.- I I I
- , , , .

ell, hlt l %_ , ; ,Y f , e

,o - ,t . ,;,5 , , , ,* . ., " , , . - A _ 11'.1,51.j_ ,; , :', t ,;, t - " -0 , J , , C, :,',ft ,,,'- ,,, -, I - , -,;; ., .-,.: - '. _ _(, '. , ., , - . v, , , jj- '-,' ;- , ,. ,r , I -1 . ,, .e ,
*'.., - I . , .1 'r -'%% ', - , ,i!"', , - ,, -1 -

,: . . . , - I . ,1., . I . ,, , , - , v A _,'_ ,I I I lv , 2- 4)" , 5 , , I . ,,, ; -o1: I I I - '. , -, - , " ; . , - . .A ' .q - ,,,,
, . , - , I . :.", , 4 ,", , I I -,,,; ,,, T--" , - tp - , - -- " - : , ". , . -% ,', , % .' ! -Z4_ ,-'T- , , - . - A ., A_-!*,:, , , ", , ,, - - , I _. . 1. I I - 11 1. I - ., , N i ,, 4 -,,Y -, - p 't I

'. , " , VI
: , ,*.- ,., : " , :;, , 7 ..) , 414,11111 . I -, , : , -_, , - .1 ' 1, - IiA I -

I ... , 11 , 1,1441 - I ., .,z

.

L 1_ I I

N . k ,

11 , , -1 . I I '. r ; , f , . , ,, - :9 ,; 1,1 k.. ", ; , I 1, " $- 1 - , , , I , I -,g .1, ... , , . - t, , , '' , . . -,", . , _ ,,,,; ., I I "V , , I-P , - -- , - - - .1 W IT - '.
, I . - . . O .:IcI , 1 1 I i_, ;, - -, " !""'p..4, ' I , ! " A 4; ro, 4 !X :I' , ,

. , ,. e r .. 't i , ,:K
.:. - 'I!A -, 11- , I . k " , -fq, . - . , - ---. j'-T-Irlk- - - "s, " , , ", , -, _- - 4 . I., I - - 11 ,I JI ,_-', 7 - , F_ - - 4 , .. '' I "! .,, 4"- .. ,, *, 'A' Vl; , 4_" 1 I VA

I I , - ,,, , ,i - ., , ' - ; .'. - _.111 1. . , ,, . . Y, , -, - - ,",_. 'd - - ,^ _; _ , " 0;,,lt-, J ',,, ,: : -- I - . I .1 - " , : ,- ,-, :
I'!- .1 , " . . I ., .,:,.:, ,. , .11 A , 1,-, 1. , _ V ,4 ", . , , , - 1. . I I

''.: - _51 W, ... , , ,4 k z 16P - *,- , , I . .- t; .I.., , , ,-. ", :; ,: . - , _ - "I'll".".." I ". A ly , tf ',r , I v - e,... , . . , "' - , v ., . 1,7 .. , k,'.-1 li7,; ,,_-3-12, .,v, - -, - - k,,:?
'. : :.;: - -. zl-. , , , I-, , , , , - - -,tI4-,"--' , ,,-' - - , , - -,-Ae t-v ,,, ;,L, . " . 1, '-. - - I'. , d$ _- .:- :, ,* jh , L , I,

I .1 1;1 .1 *% , ,,. -, ,,v" ,f' i %I'MI"', ",. W , ,- i - - , , -- " ,_,- ---. ,.- ' , m: , 1,
z., - , "" " , , . ,; -! W , i,- "

. , ', , ., ., , __ _ , i",' , 1, .,,, ,,, N . j '

11 , , ., 2, -mi, , 't - , , .1 I , , 1- ,,- , 1, , , " 4 '- , , , Y 7.?, - I I , _"Tk,1,4_, T. .:-, e-"', ,',,,- , ,-,w , ., .

. -_ I -

,

il - I I., q , I . - I I .. -,Or , , ,v, ' , - ,: ., - , - '4' 4w ; 'i I ,v ';,;ll :tu 4

. " I , 4'. ", , ", -1 . . I I.,. I _ rvk '. , , -, 1, -,

P
. ,

,
-

, ;, ,

- "" - ": - ' __ , ,:-", "1111. , . I 1_ P.v '.1,11 , ;, " __ " , f '. , --,,,;'. --P 1, ,;,;

'IV

"

'
-f

-
-1

.-

-

,
,

--

Ap

-

, .
,,

-,
,s-

&

,

11
"

I

, ,,,
"

,

, , T ,

, ,1: 1. -. 1, %! ', , I ,
"114 t

,, ' - . I .' -
' , ' ' 4.

_,, , , , , I , , ,
, _; I I . i , ,,> _Vl ,,.I, - ,, ' -, - ", ,, , - Z - x -17i"111 . ! ,-ViN-w ,,, tz, -, - u .. , " ,

,,,, I 1; -, I, I j - I , _ ._Y,-, ,- " . ..-

, - . , , - -'-.,' ' I , 1, , 1.11,1; -. . W I_ lF. _, ,,

I. " , , - ", ... ' ' 41" -- .- ? , - ,(- - kfi, ,., - .1 -t
- ., - 11 ,,, " ,Il,17 Y., I 1* 1-_ ", , 5, - I..

., ,'- -. -- , , , ' , , -, I I , I . . - , _;a , , . .P, . ,q *, - , , - ,Zx

", ': -1-1 I - A ,; . , , . :, , , - -, ,,, 4? W,- - - z ,!--'e, j - , Y - I

- . - :. .

,
. '- 1.14-v . .,-,, '' tl),,,.

;I -,; - - , F.

1. , , - _ ,., , 'o" , - v , .V ,

,, , ,,, , - , - ".. , ' , . 1, ,- -i " : ,k ;, .- ,_ ,, , . , ., -, .t , . V ,

- __ . 1 .- ,

- I - ',
-

11
. -, ,- - - .*

_
DI -4

."- p , :, .,' ',f- ,, _ ,,t , , .- , - , , , - , . , e-t -, " ,J *"i W 5V " - , , ;, , 4. ,, , :,,,A' -. , , - I" 1', . 1.

. .,', :, ., . , , f im ., ; 1 'I ...

_ z , : _ , ,,': , . e , _ , , , I . . 3, R ; 4 (4"A'f"%,
i , - , 'i - , , , -, - i - . i zf -'74 -

,.; , , , - , , , , --- ,-',% , . ,W
--- _.-%'. 1, ,,- .r , '' , .., " , ,_ I

,
A

,,

' ; :-,r, .. -. _ , ,,:, . - ,tl ., ,; ,4 '. ',
i_! ,

,Z, .;;

,

." A rw - ,,.9,,,* %:A"*- -' '
_,It

.

.. ".: , . ., ,, ,-,,.,,. -,,,- . -, . , " , ", I , ' 'I" ' I , - . " ., ', I

_- : : . , 2 .

" . I .1 ,
.0

- , , OP . ,,17 ,_f, g , ,!A,*;. w, , ,,_ 4

,- - I . ,, - I ,'A m - ; - -, _
. E - "'

1. 1 -. 7 Ii., I - , f !_ I,'11 1, :Z _. "' "Q,' ' . . . , le-;.sg ;,. . , !,- ,. e _, . ', , , ,*c I 1, j '- , . , ".J.- , - , 1 , ',, ,,, - r. ,lgf 5 ,, ;_ -,Z -, - -1 I.e FAK , "

,
11-1

I

.t
, _',

4 r _

- --,,N
k , ,

I - 4.-;,

1 I - -, 1.

,,, , , I, , % I, " . , " " j ; IIL , , :, "::_., '. , . , . , , ., .,j
. -4 - I

O . ._ 4 - K m 1,
1 , !' ', : : : ;,'-&-";", ',' , I ", 4 ' " '3 , - 'z j : , i - ,1,, 'g'- V - , ... ,I t ;, _ -

', , . ,

-!,:, ,
p.

,,, ; ,:, ,
,411 1, tj _ " 9 "' W. 4" * ' $f',

. A . q '. , 1, - 4, I_" 1' ,,$ _ _ - , -, ",
-- E-z , , '4 -P , " , . ,f,:Z,-; -".NM a,

" , - ,i -

, ,
, _

""

PIWV.

. 1. I'll -W I_. Q. I - -_0,4 , " 1, I - , ', . 1. ' -14 - .01""', "',
11

'r "I. .I-

-

-_p ,

119, I.,

I, _ - ,.
a I

': , . . ,.,'f5 W", , _ - N RR% ft
_Ij

, -

- -

-

.!A .
, , .,

' Illle ," c , "t" ,
.; .. -

_111i(,",,,;,. ,> - 2.? , ""; . . , _ " ' _"""' "I " ; ' k; ' * T - ,
-.- ij , , 110 , ,11, J I '*,I - - "' --

" ',,WI. -,;'-,,, -; . kj .; _.- ;_, ,-,r "',f" _ - - .-, ..
.: , ,2',o-r -1_11 , I,'-,- -,;,.A" I .11

I - - -, , , , - R.I, S -7,i:

,: . .
_ , gfj , - ,

-111 1,,,I Wk;_ n "' - - V, --- ,, M ?A, ,,-,i , , ,, .. 111.
, 0, " ' "_-

,', 4 1 . M . . 11 115 ',.,_ _ _ _ , -, - 11"k, - 11 _;
:71", :.. _2; ,;, 'I'."r"'7 -_ ',, """ ;' 4 " " ,tj , . ., 11Z ,,- , - I.j ". , , 1 , li, ,,, 4 -- ,. b - .

'
- ,, 1 ,M Iv.

- - I I- Y .1 , , -,

-

"
. I IikLr ' _ ..l' V " ,,, ",;, 1, V , - ,, " ,4 , -Q.%Zle-A-11, -1 ,W- _ . .1-1, ;I;At ,:, -- -

V, .

I., , - - - _ , , V, ;;p I . " - , . w 'J' "rl , ": , " ' , ,,., ,6 -',,I ,e '- - ' " - L - i 111,11

,, . "?.?' ,
. 1

,

' , 7 'I ,,*.,,,,k',j, I . .
- - jo;, , 7 , " , - , <, :; -7, NAv-14-,r . 1711Z

,; , , W I" - t -, o4k U " , N . . i'- -, , - ,,, , , A , , "; ', ,, i,
-, .: .- ,- .- .. " ",- ;e-- %, . ,-V -, ,,-,,,- - .- I fo% , O

.-11-I, , ., . 'I g. . "., , , -",p ', , __ ,7, z, - , , ", , . . i ,

, .

, - I NI M
, "M"4_-,'V-7

,4 W

, ,'

G

'. , . i -,! , Tqw V "g , "k -,Z ",-,_. -- I
, , , 'of -- -?- -.. ,- . , . ,

". ,I , ,
_Z

, .
,I ""'W I

',V

.

,,,

,

.

"
.,_,

',',
.,

- ', Y;-,,;::,, j , ;.

'I', ! _v I . , . , ,,, -", ." V -j.L -,- N - -, _- , 1, _; I ', 1.11, , ;, , " _ i
*3 M -, r * ,;r

,,; "A

5.

,

. vrz 74-

, , . v,-1, A . , ,i,., .-I ,-,, ! , .1 Ir4. .1 11 w m, _ , - .V A, -,,,., v. 11
.- , , - .- , o M , N ,_, ___T .. . , ;, ., , " , , ." -,

-
. :_ , ,lmz, , -1 ,- ",.- - _i "..

, - _ , - w ." ,- 0 , R r , -I,'.,- . -F ,, _11;% 4,,R:i-,. Q ";qm , . ,, ,: ,.;, - , 'l-Z "' ,A ,_ -,
, W I 111. "" - ' , -""" , , - 11,- _, -, %, , * -'0, LlZt'. - ,,, ,, -71,nl? . , , .3

uf , 1 7 , - _,2k , .', ', ,.v , '. W , ,,
, .*. , "I'j;- ,4, '- '. P ,- - " - ,, ", . ' Z, .E, , , I* _4

I, .1 .. , ., .. .- ", " ", ,-, %, _Ir ,", - , I . , i ,A ,4 1§
'* - ., . V - 4, . ,,:, .r,,- , .- . : ,, , - ,4,:", - -,,T:_ _ , _W m ,% ,;,; ,f . t, : ,, -- -k- ""

" ',; .._ ,.,, ", , , , L . , , ,., ," 4 , il . I' ,- ; ', " ,", , , ,
.":.", j- , j S 4 , W-A;Z_ 6 ', --g - -"" _ nz,' - 'J'__ _ t, I", ! ,Z,,-, , ' ,. , ", .1 1,111,- , V, '(, , v; - ',;',,. , ,', " 1,1 _ ; , ", , g __,, " ,-1 - - - - . : e-,)!, , ,;,l ', : 1,', , , _,- ,, t, . .. - , -u . & - .

.I v , , ". ,J , ". '.;, .6i4.sA, , Z W ; .k l , , v 4 C4_ 0,: Z'4",v. 12, ",, ,,V4A % , """--,, '-""), l.," , ,,'t, .', ,I I - -- _ :.- , "V" ,t ;-:," ,., : , ,,. :-,.,vc, -, ..
-1 , I ,,, . A'O ., i r sA-,V, , '_ _ , , _ -;,-,-,,, . ,;,. W -,' ,'p,"','.I,, -

"I 1 f ,Z - ,, - i , t, I I.", , "Il , , ,., " % it- T-K ' . :Ie 11. _., - - -2,
.- - , W, ;. , .,4 - , .."I" ,-A - . ,, , '! 1 - iiq , _* - V -- .- -4 _;! , ? -- I

X! -k , t
." I 4 I., ,. 2

- ," , ."I I I., ' Z 1_ * A 1 7' P I ts -I , V I I 1: ! U -, , ', ' . ,,, -,,,,, , *,'.,$, ,",.-,- -,."" '.. 'r , . , - '..: A.,- - , . -Y' !L "4 . . -,, " 4- , -
, , I I , ". . "' , ." " , 1. . .- ", "t -: , ,

,, 51- "_ :.- -. ,, " , - -, , _ , , ,. e , _ I I , L. .

, 1W "..
I t 44 , l."_, ,,J :',. ;, g' , Z.k, ;. -- ;,A,?. 5 . l",fa i '. , . j") - ', .I,-.--,','.' j ,,, ?,.- , , :N 'i, ,_ -_,,-_ -. , -

,4 . ;L , , , , . I.
11 .. Z - - , k.^' g-. ,:, i - :, KU I

,
I

;.%

L
, .

11

L ,.,,,
,,.

,,, ,
%,.,.

";-
QA

-'L

. 11
,1

1_1_

-"Tr-

-

"',

,"_ -' ,-, -i ! , , . ,,,, 7, 1 i ',, , _& ':, "', - " ,4 , - "' , , 1, - - , R .. - ,

e "I 'NII. . - " . LI_- -. 1:r,
-, ' -, , , - -W , , - - l". 5 ; . ,

- -
- *4 ,' . . , .

f ', -, !, V .- ', 4 o ; I ", 11 ' ., ,, _, - r "A - - . _ # Z
, 'a

". -. ::"" , 11--1,1 , . . , Q,,: , ,,-N_!Nqk' yz i: , - . ,, , - 0 _;_,:e " 4- , 5 M$ ',_ '. I " _ , , -, , 1; ,) l,, Y..., ,- ..-. - -n ..

-,f , - , , -, - -, " ., 'I".1% .;-;;, 1;% I il ,, . , , , w-_: 4,V,. 1 - , , - ": , ._,e e, , -_ 1,3 , " ,-,, _ 1,
, ',- , - x " __ -". _14 " -Al, , ,

' -,,&,
"

- , .

'1

K !,
.- .2.- -4,P,

11

J,
,-, - , ,, " ,_ , , '. , . . - . . .,. . ,I:,, , " , ', ,,'_7, . , 'I"'.. .- , - - 11 " - I .11-5 7' ,4 " .,? , 1:1"L 111 _0 - . , -,

! , .-, -, : w ,, - 'I , , ,,T ', 41M' ., ' , _ , ,-, I ' -, :-'-Y.;_-X. , 1 - , . -Jl .z . .1 , ", 11 " -, - ,'.-.,: " 3"

, k ;' ,

i '.. .:. ,.'.

l-,", I, 1, - - - .. ' 1, ,.- , , - ,i_, ,-'. . .- -,
.7 , ,- -&-

- ,
-, - - ,zi o-; ' J*

: t! . _ f -,, , ,;' """ , . ,..-I,.
- .. "

-'. -
Z ..

,. - .: _, ', -"J? " " q;. , , ,, , .; -, 44-1i '7 ,,,,,

v I" I

I*,-'..
i 1;:Y _f IJI I ,

'$ L'I ;_,
.

i .2%

",

I - ' - g- _ . - I: , 'I ,n'_ , , , l.41- ', ,,,,+ , , , "," .

, , I ,-- , _ - , - , - .. '; ' Y - , , "

'. I I , 1.1;" J r _ , " , ,.- .'-- - ",I' . , I.". .. -. 111, ._ _ t-1, , - - "Tt _ , 4 11':* -11

I

.
,

-.1
- ""

-A
t , 11:,

J,",
.

y
".7LM.t'P.",,I-

l

R

m
;

. , ,1 , - . , -.. '. "'.. . - 41 I , '
" . , ,:"* , , Z" .. ,:,: ,', ,1 "', -,, .' , . I -

',, , _jv ;-,"'-, , , q, .. 11". - - - 1, -1 .1, - -. 1, "Z-1. , '-.1 . .. , - _Zj " , , ', 'j" I -j '. !,- _

J, -" - l- ",-; - ' "''. _ , - k!, -. -1. 1. ;I _1,4 ' , _; ' I I.,
-11 I I 'r': , , .". ,; _ , . " '1* L %'_ :,., -11 , - 11 I," _,_', _ ., , , ;,;r - 5 -,

A

,

,_, " ,_",
'I - . , . -,.,,

.,- -
- " . , 1

' " ,I!:-"
_-:'-

': ,._-'
, ', , - i4.

-, L I, ,

-%In.0 , , ,, ;.W,. , -. ,', .. , 1' I , I.: I " l - , 1, -. _- '' " . , - , , " - - 1 1 I I 11.V . .4 -

., , ., ,", , I . . ,:,:,;, , ..,.:,%,,, " . - mp , '' ., - , ,' - . , , "r A, , ,_, ; , " ; "

-
.

.

,
,

, .
,;,

4,

- .,,,,

il- , ,-, ,, , .,r: !" . - : . " , . ", " _ , __ ' ;,- ,-Y, , -y " .#I ""',.,
. - " ,, , ,, - , , , '<,, ,. , -i; .,,, ;--,-. ,,, -,,- - , I I . . . ,,, ..:.. , .!_'.;, . _, WI , 11" , , ', _n _",.,.,;"-:;_ ', ,,w..' I I

, -.. , - , - , " , 1, - . - .14.! _,:_- , - ,. - I
, ,', -'.',

-,, , Y'4, .p ,.' -L

, ,,

, ;" '' , L.

- .A

, , ,f. I- ,, , , , 4 2. ,". ,. I ," ..- ; . ', " . ' , j ,41 11 Z ', ., I ld I . 1' I 6.1. I " - - r " ;.,,,, -, ,, ,',- - . , , ., _. , , 1 1 ,-,.' '.1 " ', -ee d * , J. .-.

,

I lv '_ ', , , .- -,

r
. -

-, k" '"I - ", , - _, 4 ?Z- i- . t .'!, , , ,-,-,-,-- - _; , ., , - I " ,, ,

zl!j' , _ ; 4, . - *1 - '. , " '4_", . , - I - ,:,F, ., , , . - . I ,

-

,

...
I I ,

. , ',

.,

-, 1 , 11 , , I 'i __ - , . , " - . ", ., - ., . . , , A . -
I il I

" .. ,.' ,' ,

-

,*,"' , *' I I'll , .1- " " ,
11 4; ...

i, . , " I l, -
.

,

4. -. '. 1, Z _ ., , . " , ", " 14;. "; , .. .

", ,,' , " - ... 1 ', , ,, J. _- , - ,! , 4, - ,

, I

. , ., , ,. , ,

1, . I -, , . I, 1, I'II;. I , '_ , t:._, , I., v 1< _ ,,
1'4,:f'. ,A,_. -1. - , ,*. ,,.',,'-'--I,,,,, ,, -,,' ,:- --,* -, , ,,-. . - - 4 , ., , - t", . - t, - ',- q - , , , . - ,,

" ..6, ., , - _ _1 . - . - , , , - , - ., I- ,

1, I - + . . 1- II , .. " , "-,
, - - -1

:
, , .

1 - , " ,;' -,,'.
_ "4

, -.. - .- - ' . - IY ...''

,7 - ,,, ;i+ , - - -1 i ' r , ,- ,- -l- , . . , . _:, ,". : I - -, : - t 'a , 4, Z-t 1, -, -, I w I 111 I . -. ,

11
. 11 . I . I - i S , ,' 11 I 12-

4 , ,kl 1, - "' . " ,,' , . ' -, j 1, I- , I ,;.

, -
, . 11

+ 11

. K - '- " ., '. , 4, , , , , , , - , .1 , I . . - I 1; 2'' , , , , - i , - I . , .

I . I. _ . .11 , -. ,. , 1 , , . I I , I , . I ,.,, I . , , i I -- i , .". - , ! .Q P ,:_, ,, I., .

, 1; _Lj,, ., , - 1. ''I - , I 11 - '4' - " IV
'_

f, , - ,, .L

, I
I I , . " - ,,, ,,, ,,,, ,; - : ", 1111$.,' '- ,,: , _;g, ",

I ", ", 2 - -,o -,..' ,, . , " " , - , ", - I I -
- 11 I'l- I I , . .;I' , , . "

,

.

:

,
".

t

.,

-
-',

,,,
, --:

4T q. . , . %, I , f, I .
-< .1 '. ,: - : L _- 1_ -_ , I-

- , . , "':., , '?, - - w"!;k - , - ."
. ", -

.- I -_ 'i ;- '_;., , ,,, " -,_',' - ,, c- , , , ', '. k.'4, , . . " , , T ej _., ,"*, _ - "* I

;, . , . , , ,".
:

,,,

-. , -,-,-Z -- , -i !,,,, ,I - .1 .,. . 4 " .1

t;,- - -, . , . :, r, , .. . :l ,. - , , ,- _. , -, L ;, - , - - , , ;- -.

,e , ,
. I 4. TI-, , - . . , ,,,

': ,,
,

I-
, ,

11 1_1

11+11
-

, .I.

,. ,4 -1 1,01 . i , ,f, .W I , , I .. 11, 5
. - .""."', - --. I. , ,v- ,., - ;, I I.,. .I ..6 " , , I , , 4_,:i I.+.,

, -- - ,, 3, " ,,' A" ,Y. .,:_' ",, - , .
. _', - " , , , , ""' " , ,. I .

- -

'.
.

." I _:,
I

:
:1, 1.

- -

*
",

, , ,

,,-,
_, ,*,

i -;
.,Z,

.f.
-,,A

; ,'.f

- ,, , - %, ': , . . .11 ... II . , -, 1 11 li ,_, ,. _,

-1 I 1, , ,'_, . ;.:
I , I , I! .1 I , ., ". ,. I _:,.I 1: ; , , - 1 ., , , ! 1,, .. , , ' , ,, , " -', , -... ", '. ;

,_
11 I I Ir L I -

, , , , " , , - - ' 1 1, , . ; "I'l . 1 , ! ., , I, 1. ; -, ", ',' ,'- , *4 1 -; * ,
- : - , -,, , , , ,,_ _., - - - I . - I - 11- - 4. - ;-,.

"t A . - 1. . _ 17- - ,$j' ".-,-L : --. , ., -,. , :''- , , I I - -- I f .

- , , , , , -

", " , '"'

- . - , ,: -, ,, ,'! , ,,, " : - . , " -,. - - 11 - .

-r,: 'r . j, .+ : V, 'W; !, , , , I - , , " -- , I L' " I 11 - , , ,
. , I I - - - I _ :Ill4 : , 4 I I 1,

,
. , -

, , ,
"'

"

-L . , , - '. '. - z-- , 'ti -,- " - I" ,. , _. - . I 1.1-1 _. I -_; I I q . - - A v ;, ,I 1, ,. , .1 -_4 ""', ., , _'4 '- ;7, " ,-4i. t"ll :,,' P ,_, .,Ilt'V ?,- .1. v ', ,- ,- , I ' - , ,._ ,V : - - , - - ,
_t

.. . , - -_ I- 4 ,

, , ,. " , - e , - - c :. ,1:
- m l. :V tll-- I - ,

-

." 11'.11: , ! , I I "I , , I-Q,

, . "", ,, I '. ,: ,- ., - i - - ,,, , :,... ', ':' I -
11

". ., ,-. , 1
- - I ,_ I ;,

, :i

. ,
- I - - - - - .: , ,TS ,- 3, ".3:".-,,

I. , .. I , . , .: " '' I I , " , , t -"+)
- - .1 -0 , . , -: N. 1,4 , ,.' 1. ,

,.

, - ',' ; ".. _ I". -- ',q' 11" - , , . . -
,

.. 11 1 I

j "

" "
'

,;

,

,I

;,
,.L."f

;
,

' ,

"I
"_

,
,

,
,

.
.

',
,

4 ,,-

:,""

,
.

.
_ ",

.
,

,

:"

,
,.

-

-

,

I
.

.

--

_,
-

-
*

, , ,.,.,., , 4 1 , , , . _ . _, , , : - I . :t '_

X , , A-I;' I 4 I i- , , , :1 ,; . , . , I - , '. - , :

,,
, , i'l,

,:;1"
"'

1
"'

I -, ,
- " ,I.

-
""'.

1,
, +

o - , - ..
, , I . " - . 11 , , _t , , rII

,o 'c . ', A'' - ! ,4 .z _ " , A , . . 1. Il- ;' " 1, -

;- '- tA c ,X %,; - , _; - , - -, t- 1-4 -- ,, - .' , , . ;
- 11,.- Ii , _ ,

,

, . . - , " ; ,, I __t - A I-j - ""I, ", 1. ; . > , , , , .

.

.:, !:.

, I I - ". " 4-." -1 .'' , , , " , . - I I . I I I . - , I . 1; , 1. I Ii,
-. 11 ,. , ,4 1 . " I . ,:- :: . ..

, - ;I
I

-- ; ,;,, ,: ,
I I , - , ' - 1. .- I .1 . - I ,. ' ,, 1,' : -_ ,Z '. .'! -, 11 .

I -1 L - -

I . 11 " '-, v . .+; li 11,; _:. _4 : , -
I I ' - I . I -1 a ,

1. .1, , I - I. " I , - " , !* ""t " -. ,-,. ", .1
_Ll ,. - _ 1, 1

I

,
I.- i,

-,-, - ;
, , , . -,.

" ,
.

, , , . L -
I

I
I

. I :.,

j- , " j , -4, ,, ,5,-;,4, , .,-, , _ , , . " ., . , .
- 2 , . ,I!Kw :--

!, ". , "

... ? ' _ ' ', ',,
, ,

I

-Z '. - I , ._ -, .-
, , i,

I'- .
,.,

. .4 ".

. I , -, -, , ,, ,,!,- ' -- _ ,-L' vf ,'-,, , - ', _ , - . __ , - - ,. , . , - , I :. -f, I I - -- - -. 1, .K , ., , , .

,-- , ,, , ,, , -, ' .L , ', - , - _, -" l" ., -4 -_ ,,, .. , , ,,;, , , , I I I I . . 1, .
_ ,, ,' _- ' ;,' " 1, . , . 1. i, ": ; ,. ,, , ;f -,-.' , "', , , . I . , I _ -_ "'; ,

.'I - 'kll 7' 1 .- io-, , .r, ;, .1 - _, ': , -, , , .

d ': -, ", - , . " '. , - , ".." Aw ?, . , , ,, . ". 11 t- ,. I -.' " I I I I I I _ _ L ,,, ,,

,

.I , - ,
- , , -1,

, ,'

- I -

I ,

_"

'- .7 , '-:.',
,

-

I

I
"

,
. ,,!

.,

. , ,l, ,
) , , I .L , ."'., ' ". -, . I , :,: '. . o', .. _ A , ,

- 11 I . ,;I.

I .

,V -; ,,..- " - , '- - ., , 'i -;; ; -, I , , , . , ; I .i ; - I . I - ; I ,,, . ,i '. __ . "_ , , ,

., f , - , -, . . - , C.- 411 ' Zv' ,;, . ,, ! * _ -, 1, I . . -!" " r, _ " .

--
'

- " . , -, "a.

1.) - N
. . ,

.
, .

_ . ,

. I ".. , , .
_, , - - ,. _0

,,C 7", , , " jll .. I -. " .- ',A , 4;_ ': '_ r '_, I , 7, . . - . , . -1 - . I, -

-
- -

,

).
, .. , .

, t, . ,-_!,'-,

.

I I.
,

: ,-;
, ,

, ,
11 ,

;." ,
", -'.

1

;_
,.4

*,.I:
"

11. ., , , .. . -
,

- .. .
,

.

. .

, ,

- . f

, "_ ' , ,- - I ., .- ... ,, _ , , - , ,
I

, ,,
3-s-6 - ., , , ,, ". 'o , ,,, . , " , 1 . ,. '. o, , - - .. -1

,;. w'.,
. , , , . . , - - ., ,;

.11
, ; ,"_ ,

", ' ,.- "t j , , ,.. , -
-

;

.,, , .., I ". :4 - - - , ., - , ,;A ,, ',' _ :.- , . . ,, - k 11 "I

1 ,- ,.+4- , . :,.
7'.,'t , 1 _ ,-, ,.' - , ",,,', ,' , ,j,-,.,,_.% ,_ , Y_, -4 , , , , : . - , -i -, ,,, - ', ' 1,: ': _ I I

.,.e. ., .", . ' , 1 _t",.! 'w_ l, ." , I I - -Ij;-- -- : , __ -111: ,_ ."_w , , I , , ,- q, 1, - , , . - - . - '. . 11 0 1 I ': I",
, ,

,V,
" ;, . " . .- , ,

I ,,.; , ; " i ; . -w
,,,,,

- I I

- -V
- I;, 1)

-
I , , - ;, '.-tAtz-,, , -, ; _, ,,' . , " ," , . i , , - - 1, " " . 11, - - :;', " , , , ,,, , 1. , .1 . . I .; , 1. I I I .

- , ..- ,
- 4,,, ,; , .-.

I , v, - ,, , ,I

, _ , , ;,,, - _',; ,t,,I -. 4,x ,,, .K , "' . . ,
:

I , V , , , ., j ,.-L, " , , , , . - , : "" I - , ! , ., 1 , ,:, ,
, ,: -_ ,., , *,,tm - _ _-'% -,J . Z ', ,;, - " * , -," , % , , '. , '. ',.,, , '! - .- , I I .. I

. ; , ,' , -", - , " , ,, .: --,
. , '. , " , , : , - ', " . 1

2 X -,, - 1 l _36!z .1 '.1 .1 ..- - , , -.- L ,_, , ,. I - . . i -, , , , 1 1 1 1 '.. - lv , + _ . Y _ .J.'

-.- -:, ,;s " .A ,',,,k , -, ;;,. -' ; . , I m. I j , ..
- , ,: - , - !i' '4 . . ,,_ -;!

- , !, 7 , J-. - I*- . , ;. . I , . ,I I t_ . , _', .,. . ..

4_Zml ,,, . . ,,- , ", , , , . :. , - , . - - -11 I I. '- ," , , " & , , , , . , 4 " 11 -I-,-

,
", , "_I.

, 4 ,:-', , ")

,., I

, _, I I 'll"

., . ., ,;: .. J, , .- W . , " , I "
, . 1 1 -, ...

11 117 , , , 1, . ,,: ,.,,t. . ,,_ ' '_ , ' L , "' , , r 1 - , _ 'I, +, , I 11 , 1' , . I - .11. . .. I I _ , .. 1.1, - - . ",
"- I - , . - , - , ,4; 7 t' f, , ',' ,;, ,,- - , . . 4lllj ,,l., ,. ., - . -- 1 ," I _, - , . - ",

,_
-1

,
- ,,,

:

, F 01, - . , _j '.. ? , . - L, ' , ,
, I ,, , _ _ ,'7 ' " - !'-' - , _' ,l 1,1,

., I -' 'I , ", -'I _A , 1 ,-, ,., ' ' ' , "' :. " "' .. I L,, , " " ' ;_ ' ' . L - +,,j.

' ' 7,- ;. , ' , .._ -; i ",i , , "" _ 'j 4" f ,,j . " - , '- '-, ,,. - L"- " ".",V ; , . A ,'r .1 .

,-t -'., , , - , , , :'], , : ", - , ; , - -1 I - I , __

l- , ?,g I ,- ;' ;. _, , - . , ', ', ,.',' . _ ", -, , , .

, , _ - , '. " - , "'; , " .., '_ . , ,, ,,,
, ,','j,_. , I , ,,., ", , '-,; ,, ;,, ,:-.. :'-p, - I. I l -., ,* I'. ,

- q -
, ,

, "", 1" I '. ."

.°.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGL (Whim DeatEnt_ __d)i

REPORT DOCUMENTATION PAGE BEFRED UsLTRuIN nORs
1. RZPCIT NUmI4UN 2. GOVT ACCISSION NO. I. RECIPIENT'S CATALOG NUMB[R

RADC-TR-82-175 -P'Xz _____._, !/I7I
C. TITLE (end Sublitle) S." TYfyRJOTGfRO OEE

JOVIAL (373) TO ADA TRANSLATOR Jun 1981 - March 1982
a. PERFORMING QOG. REPORT NUMBER

-,__N/A
7, AUTHOR(a) 6. CONTRACT ON GRANT NUMISERI*)

Mark Neiman F30602-81-C-0217
S. PERFORMING ORGANIZATION NAME ANO AOORESS 10. PROGRAM ErLMENT. PROJECT. TASK

A RA a O UNIT NUMBERS
proprietary Software Systems, Inc.
9911West Pico Blvd, Penthouse K 55811917
Los Angeles CA 90035 55811917

It. CONTROLLING OFFICE NAM ANO AOOCRSS 12. REPORT OATE

June 1982
Rome Air Development Center (COES) I3. NUMBER OF PAGES

Griffiss AFB NY 13441 122
14. MONITORING AGENCY NAME & AOORESS(If difa mmin Ima Ceavo*in Office) IS. SECURITY CLASS. (of .l "Pport)

Same UNCLASSIFIED

ISaa OCLASSIFICATONIOOWNGRAOING

__N/A SCEDULE
IS. OISTRIBUTION STATEMENT (of thle RoPaW)

Approved for public release; distribution unlimited

'17. OISTRIIBIUTION STATEMENT (of the abotrct eftered In Block 2*. It dofferegt fie Repoe)

Same

I. SUPPLEMENTARY NOTES

RADC Project Engineer: Elizabeth S. Kean (COES)

is. KIEY WOROS (Cowinue am fevfwo side of neoe*a , ad Id.MR*I, 7b We dnufi w)

JoVIAL
Ada
Translator
Compiler
Front-end

0. ABSTRACT (Cefoinue n everose ido if necaesar emd IE tdop I" block nNr)
_--. This document contains the functional description and system/subsystem

specifications for a JOVIAL J73/Ada translator, and guidelines for 373
prograsmers who anticipate their programs will be converted to Ada at a
later date. The functional description specifies the maximum JOVIAL 373
subset that can be converted to Ada. Techniques for the optimum automatic
translation of the source code are specified. The 373 constructs that
cannot be automatically translated are identified. The system/subsystem

T0 FI i 65 isOsI~

DO ,AM 7) 1473 gasON OP IN@. ,5 OOSOLEV, UNCLASSIFIED
SECURITY CI.ASSICATION 00 THIS PAGE (Wh m DINe mee

UNCLASSIFIED

SCgUmTY CLAMaPICATION OF YWIS PAGMhiM 0408 go#W*M.

specification provides a more detailed breakdown of the proposed

translator.

Accessios F~ew

YTIS GRA&I

DTIC TABUrannounced 0]

Distilbutio / -

Avsilbi3.ity Codes

* Avail and/or

iv-tt ISpecial

tRWI!1AMTWTRTn

SZCUN-TY CLASSIPICATIO OF r PAOfftmi Daa nte.ed)

t

FUNCTIONAL DESCRIPTION

for the

JOVIAL (J7l3) TO ADA TRANSLATOR

Prepared byE

Mark J. Ntiman

F-i

TABLE OF CONTENTS

Paravraph Pao*

SECTION 1 GENERAL
1.1 Purpose of the Functional Description.... F- I
1.2 ProJect References F- 2
1.3 Terms and Abbreviations.5.....0... F- 3

SECTION 2SYSTEM SUMMARY

22 Sajcround F- 4

2.3 Existinv Methods and Procedures.,oe...... F- 5
2.4 Proposed Methods and Procedures....... ... F- 5
2.4.1 Summary of Jmprovementss.e....,....... F- 6
2.4.2 summary of Impacts............ F- 6
2.5 Assumptions and Constraints F- 6

SECTION 3 DETAILED CHARACTERISTICS
3.1 Specific Performance Requirements...... F- 7
3.1.1 Accuracy and Validity.6608sess........... F- 7
3.1.2 Timino and Caaiy...........F- 7
3.*2 System Functions. F- S
3.2.1 Prowram Structur~ee................. F-S6

*3.2.1.1 Modularityl Compools and Packas..... em F- S
3.2.1.2 Context-Dependent Declarations...........o F-11
3.2.1.2.1 Procedure Specification...... .. F-12
3.2. 1.*2.2 Etrls F-14

3.2.2 Types and Declarationsses................ F-IS
3.2.2.1 Predefined Tye... F-IS
3.2.2.2 Typ* and ObJect Declarations.o.sseessss,. F-22
3.2.2.2.1 Scalar Tps................. F-22
3.2.2.2.2 Tables..... *.................. F-24
3.*2.2.2.3 Pitr............... £C S F-28
3.2.2.2.4 Other Declarations.... F-30
3.2.3 Executable Constructspe..... F-32
3.2.3.1 Expressions and Assisnments F-32
3.2.3.2 Local Control Steet........ F-34
3.2.3.3 Call and Return Constructsee......s.. . F-40
3. 2.4 Directives F-45
3.2.5 Intrinsic Functions.ss........ F-46

* *. .- ; -.. '.-. -- 07

Tab)* of Contents -Continued

3.2.6 Miscellaneous Functions F-47

3.2.6.2 Comments... F-49
3.2.6.3 Pttrntn.*.... .. *..........F-5O

3.3 Inputs-Outputs. F-52

3.3.11 Uero an Input..Data............. F-52
3.3.1.2 J73 Source Input..... F-52
3.3.1.3 Translation Parameter Input F-52
3.3.2 Output Produced. e........ F-53-
3.3.2.1 Translated Ada Module Output F-53

*3.3.2.2 Generated Ada Module Output F-53
3.3.2.3 Prowram Dictionary Output..e.en..enes.. F-53
3.4 Data Characteristics..... s..ese...... F-54
3.5 Failure Contingencies F-54

APPENDIX 11 Summary of Problematical Constructs.se....... F-Al
APPENDIX 21 MIL-STD-1599B Cross Referenc*..eewe............ F-A2

1w,1

JOVIAL TO ADA TRANSLATOR INVESTIGATION
* FUNCTIONAL DESCRIPTION

SECTION 1. GENERAL

* 161 PURPOSE OF FUNCT IONAL DESCRI PT ION

This Functional Description for the JOVIAL WJ73) to Ada Translator
* Investivation (F30602-81-C-0217) is written to providel

a. The system renuirements to be satisfied which will seiv*
as a basis for mutual understandino between Potential
users and developers of a J73 to Ada Translator.

b. Information on Performance requirements, Preliminary
desivnq user impacts, and costs.

ca A basis for the development of system tests.

F-1

JOVIAL TO ADA TRANSLATOR INVEST IGATION
FUNCTIONAL DESCR IPT ION

* 1.2 ProJect Reference.

a. Statement of Work* contract F30602-181-C-01279 RADC/PSSv
June 1991.

b. Technical Proposal in response to RFP F30602-81-R-0058,
RADC/PSS, January 1981.

c. "Translation of CtlS-2 Provrams to Adav" by Oilman,
Crockerv Taylor, USC Information Sciences Inst.,
February 1900.

d. "Source-to-Source Translations Ada to Pascal and Pascal
to Ada," ACM SIOPLAN Symposium Proceedings, 1980,

e. MIL-STD-1915 - Reference Manual for the Ada Proorammino
Lancuaoe, December 1980.

f. Btancaminu...±nAda, by J. 0. P. Barnesv 1981.

Gzaduaked-Examnlas, by P. Wenoer, 1982.

h. "Self-Assessment Procedure V111911 ACM Comm. Vol. 24, no.
10, by P. denser.

i. Ccmmukazv June, 1981.

J. "Programming Manual for JOVIAL (J73)1", Softech.

k. "Software Engineering Exchange," IBM FSD, October 1980,
Vol. 3, no. 1.

1. "ORationale for Design of the Ada Language," ACM SIOPLAN
Notices, Vol. 14, no. 6, Part B.

m. X*M~a~cene..anulby Goo& & Wulf, March 1981.

no Computer Proeram Development Specifications, by T.I. and
Intermetrics (Compiler/Environment), March 1981 Drafts.

on MIL-STD-159B - JOVIAL (J73).

pe F.C.S.C. Conversion Products/Aids Survey, Report
OSA/FCSC-81 /004.

q6 JOIL...LZX.---..Aa...haaao....xkm by R. L.
Drozovict Masterls Thesis (AFIT), December 1980.

F-2

* ~ 72
U JOVIAL TO ADA TRANSLATOR INVESTIOATION

FUNCTIONAL DESCRIPTION

1.3 Terms and Abbreviations

The following terms and abbreviations will be used throughout this
Functional Description,

Erroeou m.ih order vilatngg Pora wanhic semntaics
Err~oneo Ar hiorervoaiso languag semamwhchcntins

which are not detected by a compiler.
ErroeousPrograms have unpredictable run-time

External A Program element that is referenced by
modules which are compiled separately from the
module in which the element is declared.

*J73 The Programming language JOVIAL (J73) as
specified by MIL-STD-159.

Module A Portion of a J73 or Ada Program which is
logically distinct from the rest of its
Program and which may be compiled or
translated separately.

*Program All of the modules of a J73 or Ada program, as
opposed to an individual compilation unit.

TPF Translation Parameter File - a user accessible
wille uchsefs awruno translator.pton
fill e whchsefr whicf he Translatorpton

Translator The Proposed JOVIAL (J73) to Ada translator.

F-3

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

SECTION 2. SYSTEM SUMMARY

2.1 Background

The Department of Defense is currently engaged in a lons term effort
to define and develop a new high order Programming language, Ada. Ada
is to be used as the standard implementation tool for embedded
computer systems. Standardized and validated Ada compilers and
environments will not be available for another Year or two; moreover,
many new and ongoing Air Force Projects are using the Present standard
language, JOVIAL (J73), for implementation of real-time software
systems. The need for a JOVIAL (J73) to Ada Translator is driven by

*two major Problems:

a. Existing software written in J73 will
eventually be used in Ada-based systems.

b. Software developed during the Ada development
period (1980-1984) cannot use Ada exclusively
and therefore must be written in J73.

A Translator would enable J73 programs to be converted to the new
standard language so that the advantases of maintainability and

not only during the Ada development Period, but also afterwardl future

maintainers of embedded systems will be experts in the use of Ada and
the Ada Programming Support Environment (APSE) rather than JOVIAL.
These maintainers will benefit greatly from having a J73 to Ada
Translator as part of the APSE.

2.2 Objectives

The objective of the Proposed JOVIAL (J73) to Ada Translator is the
automatic translation of J73 source Programs to equivalent Ada source
Programs. Because some J73 constructs cannot be automatically
translated to Ada, the Translator must detect and flag any constructs
which it does not translate.

Another goal of the Translator is flexibility. A number of J73
constructs have two (or manY) Possible Ada translations. The user may
wish to control some or all of the choices made by the Translator.
This will require Parameterization of the translation options, with a
user-accessible file for the Parameter values.

W

F-4

TO ADA TRANSLATOR INVESTIGATION
[ONAL DESCRIPTION

Pical J73 Prosram consists of many separately compiled modules
share data specifications using the DEF, REF, and COMPOOL

-ucts. Translation of individual J73 modules into Ad& modules
Preserve the semantics of J73 compools and externals, while

ting in well structured Ada Programs, is a major design
tive.

jgh the Translator is designed as a stand-alone product, it is
Loned as a Part of the Ada Prosramminv SuPport Environment. With
ielP of compilers, text editors, file managers, and other APSE
, the Translator will Provide significant (though not total)
Ltion of the conversion of J73 Proorams for use in the Ada
)nment.

Existing Methods and Procedures

are no existins implmentations of a Translator which satisfy
)bJectives described in the Preceeding Paragraph. Many automatic
lators exist for simpler languases such as COBOL, FORTRAN, RPG,
iumerous assembly languages, but at Present, the only method of
eing Production quality translation of J73 to Ada is manual
lation.

ie Ada compilers and environments do not vet exist in complete,
Lted implementations, one may assume that very little manual
lation of J73 to Ada has been Performed. However, if manual
,ation is to be Performed, two major invredients are required.
First is a set of rules, which may be as formal as a lanouave
c specification or as informal as a set of rules and Procedures,
specify the mappins of J73 onto Ada. The second is a Proorammer
"oup of Prosrammers who are experts in both lansuages. While the
I invredient is somewhat rare, the first is Probably nonexistent.
lation of laree Prourams (i.e., several hundred modules) would be
oitivelY expensive, even if both invredients were acquired.
,er, a manual translation of a larve realtime system would be
:t to much human error and inconsistencYl the final Product would
1e "flyable" without very extensive redesivn to remove 'he
,able translation errors.

roposed Methods and Procedures

ranslator proposed in this document is intended to automate the
ation of J73 to Ada to the larrest extent Practical. Althoush
automation may be impossible, it is anticipated that 80-95X of
fort involved in manual translation will be removed. In addition

anslating nearly all of a J73 Prooram to equivalent Ada, the
ator will detect untranslatable code and will venerate stub
,s for additional Ada code required bY the translated Program.

F-5

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

2.4.1 Summary of Improvements

The improvements of automatic translation over manual rranslation are
summarized belowt

a. Vastly increased throughput.

b. Greater consistency.

c. The Translator will be quite thorough, either
translating or flaggin, everything in the J73 Program. A
human translator might inadvertantly omit a part of the
Program.

d. Greater flexibility. If a certain aspect of the
translation appears unacceptable, a different
translation could be obtained by changing Parameters and
re-running the Translator. This would be unfeasable for
manual translation.

e. Reduced cost. The cost of automatic translation of J73
modules would approximately equal the cost of compiling
the modules. The additional costs involved in completing
the translation of a Program (manually translating or
reProgramming the untranslatable Portions) would be much
less than the time and money saved by automating the
bulk of the translation Process.

2.4.2 Summary of Impacts

Since there are no ongoing J73 to Ada translation Projects, there are
assumed to be no impacts on equipment, software, organizations, or
operations. The Translator would be developed on an existing
medium-to-large scale computer system, and its installation would be
similar to that of any other stand-alone software system.

2.5 Assumptions and Constraints

The Translator described in this document is assumed to Process
correct J73 Programs and to output correct Ada Programs. The sense in
which the input and output are considered to be "correct" is discussed
in Paragraphs 3.1.1 and 3.3.1.2.

F-6

. • .. - .j
JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCT:ONAL DESCRIPTION

SECTION 3. DETAILED CHARACTERISTICS

3.1 Specific Performance Requirements

This Paragraph describes the Performance requirements to be satisfied
by the Translator with regard to accuracy, validity, timinw and
capacity.

3.1.1 Accuracy and Validity

The translations Performed by the Translator will be accurate in the
sense that the resulting Ad& Programs will be semantically equivalent
to the J73 Programs from which they were derived to the laruest extent
Possible. Except for certain untranslated constructs, which will be
clearly flagged in the output, the Ada Produced by the Translator will
be a valid Ad& Program in that

a. It will contain no syntax errors;

b. Any missing code that is required for execution of the
Proeram will be clearly identified;

C. It will be comPilable in a standard Ad& environment
without modifications (such as reorganizing statements
and declarations or renaming modules or variables);

d. It will conform to general standards for readable, well
structured Programming.

In general, two versions of a Program cannot be guaranteed to have
absolutely identical run-time behavior in two different environments,
even if the versions were generated from the same source code (e.g., a
J73 Program compiled for two different targets). Therefore, the
Translator cannot be required to Produce a "Perfect" translation of a
non-trivial Program. However, it will be required to Preserve the
original Program semantics wherever Possible, at the expense of some
run-time efficiency if necessary, and to inform the user of anY
Possible deviations from J73 semantics that are introduced by the
translation.

3.1.2 Timing and Capacity

Although Portions of a Program may require repeated translation to
q resolve various translation Problems, the overall translation Process

will be a one-time task. High Performance with respect to throughPut
is, therefore, not given a high Priority. The Translator should
Process J73 source code at about the same speed as a compiler, roughly
100-1000 source lines Per CPU second on a typical mainframe host
system.

F-7

I
JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

The Translator and its host environment must have the capacity to
store and Process an entire J73 Program at one time. This typically
means a capacitY on the order of 1000 modules of 50-200 source lines
each for a large flight software system.

3.2 System Functions

This Paragraph describes the specific functions to be Performed by the
Translator. These functions can be considered to comprise an informal
specification of a mapping of the J73 language onto the Ada language.
The mapping is described in six parts,

a. Program Structure
b. TYPes and ObJect Declarations
c. Executable Constructs
d. Directives
e. Intrinsic Functions
f. Miscellaneous Issues

The following subparauraphs describe each of these functions by
Providing a rationale for the Particular maPpings selected.

3.2.1 Program Structure

This subparagraph describes translation functions which are related to
Program structure, including modules, externals, and Procedure
specifications.

IM3.2.1.1 Modularityl ComPools and Packages

J73 Programs are written as separately compiled modules. Typically, an
individual module will consist of either a compool or a small A
Procedure, either of which may include external comPool references.
The Translator must be compatible with this kind of Program structure, .

F permitting both global compool references and efficient translation of
small modules. These goals are not obviously in aureement1 global data
referencing implies knowledge of many modules during a single module's
compilation. The JOVIAL environment satisfies these goals by creating
compool output files when compiling compools. Small modules which
reference compools are compiled separately and efficiently by reading
the (Previously created) comPool output files. Unfortunately, there is
no "standard compool output file" format -- each compiler has its own 7.
Private format. Satisfying the goals mentioned above, therefore,
Presents a maJor Problem for the Translator.

F-8

w _ • ." , -• . , .[i I lI i iI i 1I l l l l

u JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Individual J73 compool modules will be translated to Ada Package
specifications. This will Permit other modules to use the resources of
separately compiled (and separately translated) comiool modules using
a WITH clause. For example, a compool module

START
COMPOOL slobalvariablesl~BEGIN
EIN"sequence of declarations"

END
TERM

will be translated to

PACKAGE globalvariables IS
-- sequence of declarations

END olobalvariablest

A compool directive

!COMPOOL olobalvariablesl

will become

WITH slobalvariablesl

making the sequence of declarations in "olobalvariables" available to
the module containing the WITH clause. This translation Precisely
reflects the J73 semantics of compool usage, includine the order of
compilations the compool/packaee must be compiled before it may be
referenced, and the content of the compool/packaoe must be Part of the
compilation/translation environment. If these conditions are met, then
the Translator will satisfy the goal of Preserving a J73 program's
modular structure while translatine it to Ada.

A more detailed example will illustrate how this translation Process
handles multiple and Partial compool use. Two compools

START
COMPOOL compli
BEGIN

"declarations of variables AA* BBN
END
TERM

START
COMPOOL comP21
BEGIN

"declarations of variables CCDD"
END
TERM

F-9

*JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCT IONAL DESCRI PT ION

will become the Packcave5

PACKAGE compi IS
-- declarations of variables AAIPBD

END compli

PACKAGE comup2 IS
-declarations of variables CCvDD

END comp2I

Another compilation unit which us** compl and Part of comP2

!CONPOOL compli

!COMPOOL comP2 CC;

"references to AAvBCC"

will be translated to

WITH compi, comp2;
USE compi, comp2l

*-- references to AAvD3,CC

The USE clause makes the variables declared in compt and comP2
directly visible in the Ad& module. If the USE clause were omittedv
those variables would need to be qualified with their correspondins
rackave names m

WITH compi, comp2

-references to compl.AA, compl.DB, comP2.CC

The dotted notation will be used for names which are imported by a
Partial compool directive. This will avoid ambivuity in case the same
name was declared (but not imported from) another compool. For namesI
imported by a complete compool directives there will be no ambisuity
in recards to which Packae a variable belonosv and the dotted
notation may be avoided by includinv a USE clause in the Packay* or
Procedur* specification.j

1F-1

Uv JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

A J73 Prooram which contains declarations of the same name in more
than one compool is erroneous. The J73 compiler will not necessrily
detect this error (but the linker would). It is interesting to note
that iuch a program, after beinw translated to Ada in the manner

*described above, would always be dianosed it compile time. This is
true because Ada requires disambisuation of all references durine
compilation, while J73 does not.

, 4

* Another interestiny aspect of this translation technique is that the
distinction between a complete compool directive and a partial compool
directive is removed. Partial compools are specified in J73 as an aid
to efficient compilationi the compiler knows that it need not bother
reading all of the compool file into its symbol table. and may read
only what is needed. A module will have the same meanins as if it had

" requested the entire compool, but will comPile faster and in less
space. The Translator will ignore this distinction for two reasonse

(1) There is no straightforward Ada version of a Partial
compool directive - Packaves are used only in entirety.

(2) The Translator will model the Ad& environment in the
sense that it will have global knowledge of global and
external obJects durin translation, and will not need
to input compool data on a module-by-module basis. This
is discussed further in Paravraph 3.2.1.3.

3.2.1.2 Context-Dependent Declarations

J73 Permits the Prourammer to make obJects either static or externally
visible on an explicit, declaration-by-declaration basis. Examplesi

ITEM eternal STATIC St
DEF ITEM external So

These items are either statically allocated or externally'visible
resardless of the context in which the declarations appear. This
concept does not exist in Ada. ObJects are "allocated" or
"externalized" in Ada accordine to context. A variable, for example,
will be static only if it is declared outside of any kind of local -

structure, such as a procedure or functiono it will be externaly
visible only if it is declared in a Packave specification or Procedure
specification. Translation of procedures containins explicit STATIC
and DEF declarations, therefore, is really a Provram structure issue,
and is discussed in the next two paragraphs.

F-1l

q. aau s Imm ~md d

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPT ION

__ 3.2.1.2.1 Procedure Specification

In their simplest forms, J73 procedures and functions may be
translated directly to Ada procedures and functions. For example, the
J73 procedure

START
COMPOOL compl;

DEF PROC prod;i
BEOIN
"local declarations and executable statements"
END
TERM

becomes the very similar Ada procedure

WITH compli
PROCEDURE Procl IS
BEGIN

-local declarations and executable statements
END prod;s

This straishtforward translation is correct only if the "local
declarations" included no instances of the J73 "1DEF"1 or "STATIC"
constructs. For example, if

START
DEF PROC Proc2l
BEG IN

ITEM xx STATIC So
"...the rest of the procedure"

END
* TERM

were translated as in the Preceedins example, the variable xx could
not be made static. Ada has no explicit construct for declarins local
static data% anythine declared inside a procedure body is implicitly
automatic, existiny only when the procedure is invoked. What is needed
is an Ada structure which provides locality Chidine the declaration
from other procedures) while also wrovidins permanent existence for
the data beiny declared. This is accomplished by the Ada package
declarine the variable inside a Packase body but outside the procedure
body will make the variable static and local. The only complication is

* the name of the Packaoe. The procedure "Proc2" may be translated to

F- 12

uJOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

PACKAGE proc2_pack IS
PROCEDURE proc2; -- specification of Proc2

END proc2_packs -- end of packaoe specification

PACKAGE BODY proc2_pack IS
xxtINTEOER; -- inside packase body but outside proc body
PROCEDURE proc2 IS -- body of proc2
BEGIN

-- the rest of the procedure
END Proc2;

END proc2_pack; -- end of packave body

In this translation, xx is local to the Packase proc2_pack, but since
proc2_pack contains nothinv but the procedure proc2, xx is effectively
local to proc2. However, the declaration of xx outside of the
procedure body ensures that storave will be allocated for the life of
the package, rather than merely for the life of an invocation of
proc2. Since Packases are inherently static, xx will be static. (Notes
an Ada construct that is inherently dynamic rather than static is the

- task. This construct does not appear to be necessary for
representation of J73 programs.) The Packase makes the name'"proc2"
visible to other compilation units by includins a specification of

*, Proc2 in the Packaoe specification. Both xx and the body of ptoc2 are
hidden from other compilation units, Preservinm the semantics of the
orisinal J73 version.

The 'overhead" involved in the creation of a rackase for a procedure
with static local data is further Justified by the fact that the
package structure solves another maJor translation problem - that of
external declarations, discussed in the next paragraph.

The main program module will be translated to a procedure or a Packave
using the same techniques as for an ordinary procedure modulel Ada
does not require a syntactic distinction between main and subordinate
modules. Procedures and functions may be nested in Ada, Just as in
J73, with no change in prooram semantics. All Ada subprovrams are

, compiled to be reentrant and recursive, so that the Translator may
*; isnore the RENT and REC attributes in a procedure declaration.

A module containino multiple DEF PROC's (i.e., non-nested procedures
and functions) will be translated to a Packaye which contains multiple
procedure or packave declarations. For example, a module such as

F-13

JOVIAL TO ADA TRANSLATOR INVESTIGATIONVFUNCTIONAL DESCRIPTION

START
"declarations global to AAA and BBB"
DEF PROC AAA$ "Procedure with some DEF items"
BEGIN

END
DEF PROC BBB "procedure with no DEF or static data"
BEGIN

EN;
TERM

would become a Packave specification whose name is derived from the
two DEF PROC'st

PACKAGE AAABBBpack IS
declarations global to AAA and BBB

PACKAGE AAApack IS
PROCEDURE AAA...

END AAA-pack;
PROCEDURE BBB IS

ENID 939;
END BBB;

END AAA-BBBpack;

Machine specific functions and procedures are not coded in J73, and
therefore will not be Processed by the Translator. The user may code

* machine specific routines in Ada usins the technique described in
Section 13.8 of the Ada Reference Manual.

3.2.1.2.2 Exter!-als

The J73 REF and DEF constructs specify declarations that are used
* externally. As Previously stated, Ada externals must be declared in a

Package specification. The only Ada construct that resembles the J73
REF is the WITH clause, which was shown to be equivalent to the J73
compool directive. The WITH clause may be used to translate J73 REF
declarations in a similar manner.

F-14

V

UJOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

A J73 module containins one or mor* declarations that are to be made
available to external modules (@.9., DEF ITEM, DEF TABLE, etc.) will

* be translated into an Ada packave. The specification of the Packav*
* will contain all declarations which are DEFed in the J73 version. If

the module is a DEF PROC, the Packave specification will include a
declaration of the Procedure itself. If the module is a compool, in
which *verythine is DEFIedv we have the situation discussed in
3.2.1.11 the whole module becomes a Packase specification with no
body.

With all DEFed objects declared in Packave specifications, other
modules can REF the obJects by usine a WITH clause. In Yeneral, a J73
Procedur* of the form

START
DEF PROC Procnamel
BEG IN

*local declarations which are DEFed'
"other local declarations"
"the rest of the Procedure body"

END
TERN

will be translated to an Ada Packave of the form

PACKAGE Procnamo-.pack IS
PROCEDURE Pr ocname;
-- local declarations which were DEFed

END procnam*-packs -- end of Packave specification

PACKAGE BODY Procname-rack IS
-static local declarations

PROCEDURE Procnam* IS
BEGIN

-remainine local declarations
-rest of Procedure body

END Procnamel -- nd of Procedure body
END Procnamo-.packv -- nd of Packav* body

so that all obJects which were DEFIed can be accessed externally
(REFed) usine "WITH Procname,.Pack".

F-I5

• -'I

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

A problem arises when REF declarations are used in compools. REF
PROC's, REF ITEMS, etc., are sometimes included in compools as a means
of copyinv the REF declarations into other modules. If compool REF
declarations were translated to WITH clauses, the resultinv Ada
prowram would contain many circular compilation dependencies. For
example, a compool full of REF PROC's may be imported by all modules
which contain procedure calls, resultine in

WITH P1, P2, P3... -- REF's to each procedure
PACKAGE refproccompool IS

END refproccompool;

for the compool and

WITH refproccompool; -- imports the compool
PACKAGE PN-pack IS

END IN-packi

for each procedure. This is unacceptable, since the mutual WITH
clauses preclude any possible order of compilation (A module must be
compiled after all modules whose names appear in its WITH clause).
This problem is solved by placin, the REF PROC in the module that
actually needs it, rather then in the compool from which the REF PROC
is imported. Thus, a procedure which reads in a REF PROC from a
compool will oet a WITH clause for the REF PROC. For example, if
procedure P22 reads in (from a compool) a REF of procedure P44, then
P22 will 9et the "WITH P44" clause; the compool will not. In general,
REF declarations in compools will result in WITH clauses for the
compool itself only if the REF is to another comoooll otherwise, the
REF declarations will simply be removed from the compool and placed,
in the form of WITH clauses, in modules which import the compool.

UP

3.2.1.3 Summary

The functions performed by the Translator with respect to
Profram/module structure are summarized below.

a. Compools will be translated to Packave specifications
with no Peckave body.

b. Compool directives will be translated to WITH clauses of
the form "WITH compool-name".

-

F-16

U JOVIAL TO ADA TRANSLATOR INVESTIOATION
FUNCT IONAL DESCRIPT ION

c. Procedures and functions which contain no static or DEF
declarations will be translated into Ada procedure and
function bodies.

d. Procedures and functions which contain static or DEF
declarations will be translated into Ada packaies with
the followino characteristics'

the name of the package will be of the form
"procedurname_pack".

the Packave specification will contain all
declarations which are DEFIed.

the Packave body will contain the procedure or
function body, with non-static declarations inside
the procedure (function) body and static
declarations outside the procedure (function) body.

e. Modules containine REF declarations will be translated
to modules that use WITH clauses to access externally
DEFed objects. For each module whose external
declarations are needed (REF'ed), a clause of the form

*WITH name.of-packae.econtainin-the.oriinal-declaration"
will be Placed before the module headine (i.e., before
the rackaie or procedure or function declaration). This
will remove the need for an explicit declaration in
place of the REF. the declaration will be imported from
the module that orivinally included it.

f. In the case of REF declarations in compools which refer
to non-compool modules, the WITH clause wenerated by the
REF will appear in the modules that import the compool, 7
rather than in the compool-package itself.

A maJor implication of these functions is that the Translator must
Provide a mechanism for determinine the elobal context of names. F.r
example, the Translator must know in what Packave an obJect is DEFIed
in order to translate a REF of that object. This vlobal knowledge of
name context is analovous to the Ada environment itself. The J73
environment maintains vlobal knowlede only of compool declarationsi
externals are not resolved until the compiled modules are linked.
Creatinv a vlobal data base durin compilation/translation of the
prooram involves some overhead in both time and space for the
compiler/translator, but the extra resources required are considered
worthwhile for two reasons:

F-17

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

a. There is no other way to translate J73 external
references to cleanlv-compilable Ada code.

b. The Ada Proorams resultinv from the translation
techniques described in this Paravraph will not only be
"correct" in the sense of accurately reflectins J73
semantivrs; they will also be 'well-structured Ada,"

4 using the concerts of rackavine, data hidine, and name
visibility in preci-sely the manner that would be used by
a wood Ada proorammer.

The efficient implementation of the slobal data base for name context
determination is discussed in a later report.

3.2.2 Typos and Declarations

This Paravraph describes translation functions which are related to
declaration and use of typos, variables, and constants.

3.2.2.1 Predefined Typos

Both J73 and Ada feature redtfined typos that may be used in a
* declaration alone with ranee and Precision specifiers. J73 syntax for

numerical and strinv typos feature a kind of shorthand notation, such
as

TYPE unsisned UW "fullword unsluned integer"
TYPE halfint S 81 "eivht bit sivned inteer'
ITEM sixchar C 61 "six byte character string"
ITEM wholefrac A 0,311 "fixed Point number with no scale

bits and 31 fraction bits"

in which precision, raLnge, or size of a typo is viven in terms of the
number of bits or bytes needed to represent values of the type. In
Ada, these attributes are sPecified in terms of exPlicit ranee

w constraints, fixed Point "delta" and floatins Point "divits" for
numerical typos, and by arrays for strine types. The J73 Predefined
types (U,S,A,F,C,D) will be translated to Ada tYpe names such as

J73 TYPE NAME ADA TYPE NAME

WU U..typ*
U 5 US..typ*
S 31 S31-typ*
A 5,26 A5-.2-tvpe
A 14 A14--..typt
F 27 F27-.tvpe
C 10 C1O-typ*
B 18 O18-tvp*

F- 18

TO ADA TRANSLATOR INVESTIGATION
INAL DESCRIPTION

on. For each unique Ad& type name generated in this manner, the
Ltor will 9enerate a declaration which will so into a Packav#

"J73-.predefined..packas*." The contents of this
tor-generated Packave will be output upon user request (see

Ltions in J73-.prdfindPackav# for integer types will be
translations of size to range. Examples:

OTYPE U..tvpe IS INTEGER RANGE 0.. INTEGERILAST;
ITYPE U5-.type IS INTEGER RANGE 0-.31;
ITYPE S31-.type IS INTEGER RANGE -2**31..(2**31)-11

.ng these types as subtypes of the Predefined type INTEGER will
that implicit type conversion will be made between any two
*types, as in J73. If new types were declared, rather than

'S7 implicit conversions would not occurs Ada treats distinctly
?d types as non-matching types, even if the types art declared
all1y.

,oint types require a specification of "delta", the error bound,
is equal to 2**(-F) for a J73 fraction size of F. Thus, a
in size of 4 will Yield a delta of 1/161 a fraction size, of -8
old a delta of 256. The ranse of a fixed Point type is computed
ly to that of sivned integers. Examples:

A5-.2-typt IS DELTA 1.0/2**26 RANGE -2**5..*(2**5)-(1.0/2**26)1

s better coded as

-.5-..26s CONSTANT 1- 1.0/2**2,1
E A5-.26.typ* IS DELTA d*l..5.26 RANGE -32..32-d*..5-.261

examples

14--1 CONSTANT I- 1.0/2**(WORD-.LENOTH-15),
,E A14...tvpe IS DELTA del..14... RANGE -2**14..2**14-dl-.14--1

'scale and fraction specifiers are handled in the same manner. --

ypt "A -6,37"1 will yield

6-.37s CONSTANT: - 1.0/2**371
An6-.37 IS DELTA del-.n6-.37 RANGE -1.0/2*6..1./2**-dl.n6371

declares a fixed Point fraction type whose values are between
nd (about) 1/64 with 31 bits of Precision. ~

F- 19

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPT ION

Unfortunately, there can be no Predefined fixed Point type from which
all needed types can be "subtyped"t as with integers. The reason for
this is the rule that the values of all subtypes must be subsets of
the values of the Parent type. The values of all Possible fixed Point
typos are not subsets of any Ada-definable type. Therefore, fixed
Point types will be distinct types, and any J73 implicit type
conversions will be translated to explicit Ada type conversions.

Floating Point types require accuracy specification in terms of the
number of decimal digits. For B bits of Precision in the mantissa, the
number of decimal digits needed for equal Precision is

B/log 10
2

Examples of floating Point type declarations:

SUBTYPE F...type IS FLOATI
SUBTYPE F27-.typ* IS FLOAT DIGITS 8;

An Ada compiler will generate floating Point code with at least the
Precision specified in the type declarationso this is identical to J73
semantics for floating Point arithmetic. Implicit type conversions
between objects of floating Point types will work the same way as
Previously described for integer types.

All of the Proceeding examples assume a tw'-op~~ttarget
machine. The range specification needed for integers and fixed Point
numbers would be different for a onels-complement (or sign-magnitude)
target in that the lower bound is one "error bound" closer to zero. In
general, for a Precision or scale size of B bits, the lower bounds of
signed integer and fixed Point types are

signed inteuer fixed Point

two's complements -(2**B) (*B
one' s comp/sion magi -C2**B)+1 -(2**B)+delta

The upper range bounds are the same for either representation
((2**B19-) for signed integer, (2**B-delta) for fixed Point). The
Translator will select lower bounds based on a TPF entry for the
desired target machine representation.

The actual number of digits will, of course, be the least integer
greater than this quantity.

F-20

U JOVIAL TO ADA TRANSLATOR INVESTIGATION

FUNCTIONAL DESCRIPTION

J73 character tYPes may be represented as Ada string types, such as

SUBTYPE C-1O-tYpe IS STRING(l..1O);
SUBTYPE C-type IS STRING(I..1);

so that objects of character type will be accessible as arrays. This
permits both access to the entire object and access to a substrins of
the obJect (using a slicel its name followed by a range
specification), allowing straiehtfoward translations of J73 type
conversions and byte operations.

The remaining J73 predefined type, bit type, is the most
problematical. Ada includes a boolean tyPe which corresponds to the
J73 type, "B 1", but contains nothing equivalent to a bit string type.
Two Possible translations involve the use of integer types and array
types.

ObJects of inteuer type are unsuitable for representation of bit
strings for two reasons. First, the maximum allowed size of an integer
in i typical Ada implementation will be one or two target words (16-64
bith), while J73 bit strings may be dozens of target words in length.
Thus, Ions bit strings such as "B 256" would be unmaPPable into Ada
integers. The second problem involves boolean operations. Since Ada
permits only boolean arguments to operators such as "and", "or",
"not", and "xor", performing such operations on integers would require
the equivalent of overloadine of the operators for the types in
question. Conversion of integer types to boolean or array types is
illegall the implementation of boolean operations on integers would be
awkward and inefficient.

A workable translation of J73 bit types uses arrays of booleans.

J73_predefinedpackage will include the declaration

TYPE bit-strinu IS ARRAY (INTEGER RANGE < >) OF BOOLEAN;

to establish a parent type for specific subtypes such as

SUBTYPE B_18-tYpe IS bit-strins (0..17)1
SUBTYPE B256_type IS bit-string (0..255);

and, for consistency,

W SUBTYPE Dltype IS bit-strins (0.0)1

F-21

JOVIAL TO ADA TRANSLATOR INVESTIOATION
FUNCTIONAL DESCRIPTION

This maPPing will Permit bit strings to be accessed in the same manner
as character strings, using 'slice" references for tyPe conversion%
and substrinv operations (e.g., the J73 "bit" operator). The Ada
boolean operators are directly applicable to boolean array types, so
that no inefficiency will be incurred in Performing boolean
operations. The only remaining Problem is/storage efficiency; J73 bit
strings are always Packed, while Ada arrtys are not. This Problem is
solved by including

PRAOPA PACK (bit-string);

in J73_redefinedpackage, which requests the Ada compiler to Pack all
arrays of type bittring to minimize space.

3.2.2.2 Type and ObJect Declarations

Translation of type, variable, and constant declarations in J73 will
be translated to Ada declarations using the Predefined types discussed
in the Preceedins Paragraph whenever Possible. Declarations which
cannot make use of the Predefined types will use distinct tYPe
definitions as necessary. The following Paragraphs discuss the
translation of each kind of J73 type and obJect declaration in the
order givenl

a. Scalar (numeric, string, and enumeration) tYPes
b. Tables
c. Pointers
d. Other (blocks, defines, etc.)

3.2.2.2.1 Scalar Types

Declarations of types and obJects of numeric or string tyPes will be
translated using the Predefined types declared in
J73_predefinedpackage.

U
Exampls I

ITEM speed U 101
CONSTANT ITEM Pi A 2,15 - 3.14159;
TYPE name C 13;
ITEM mask STATIC B 36 - 4B'"O0000000'

q

F-22

qI

U JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION *

will be translated to

speeds UIO.typ*1
Pit CONSTANT A2-.15-.typtlm3. 14159;
SUBTYPE name. IS C13-.type;
masks B36_tyP*1i(O>TRUE, 1. .35in>FALSE),

The translations of the first three of these declarations are
straishtfoward uses of types (subtypes) declared In 2
J73-.predefined-packaue. The fourth declaration involves two additional
features$ the STATIC specifier and a Pr*set value. Translation of
static declarations involves the context of the declarations, as
described in 3.2.1.2.1. Translation of the Preset of the bit string
requires convertine a J73 bit constant to a correspondine Ad&
aggregate. In this example, the J73 literal whose first bit is a "1"
and whose remainine bits are "0" becomes an aver*9ate whose zero
Position has a value of TRUE and who*e first throush 35th Positions

U have vtalues of FALSE. This aserewat# has the effect of initializine
each component of the 34 component array, Just as the literal,
49800000000'%, initialized each bit of the 36 bit item in the J73

* version. The avqre9ate could be written equivalently as' (Oin)TRUE,
OTHERS->FALSE), with exactly the same effect.

Round-or-truncate attributes in numerical declarations, will not affect
the translation of the declarations themselves. However, conversions
to intecer and fixed Point types, as well as assionments to floating ,

* Point types will, if required, venerate function calls to user
supplied routines which will Perform the desired roundinv or
truncation. These function calls may be suppressed usine a TPF entry.

Enumeration types are easily translated. For example, the declarations

TYPE color STATUS (V(red), V(amber), V(vr**n))
ITEM signal color;
CONSTANT ITEM stoplight color - V(red)v

will be translated to

TYPE color IS (redv amber, oreen)I
signal' color;
stoplishtt CONSTANT colort-red;

U Removal of the letter "V" and the Parentheses from status constants
*may cause ambivuity in the resulting translation. Since other

identifier* in the module containino the declaration of "color* may be
spelled the same way as "red", "vreen', or 'amber", dotted notation

* (e.g., color.red) will be used to translate references to these
values.

F-23

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCT IONAL DESCRIPTIONj

Item declarations which includ* a status list definition, such as

ITEM condition STATUS (Y(vood), V(bad));

will be broken into two declarations:

TYPE condition-.type IS (yood,bad);
conditions condition-tvpes

This is necessary because an Ada object declaration must contain a
type (subtvp*) name* rather than a typ* (subtype) definition.

Status type declarations with specified representation attributes will
be translated using Ada representation specifications. A declaration
such as

TYPE Points STATUS 3(1 V(pointafter), 2 V(safety),
3 V~fieldooal), 6 V(touchdown));

will Yield a basic typ* declaration and two reprtsentation
specificationst

TYPE Points IS (pointafter, safety, fieldvoal, touchdown);
FOR Points'SlZE USE 3;
FOR Points USE (pointafter->19 safety->2,

fiel dgoal ->3, touchdownn>6);

* This techniqu* will assure proper rePresentation of values of the
* status type.

* 3.2.2.2.2 Tables

A J73 table is an assrciate data object. The simplest form of a table
declaration includes a name, a dimension list, and an item t~p*
description, such as

TABLE *mplovees (99) C 151

F-24

S,,JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

which declares an array of 100 character string elements (indexed 0
throueh 99). This is equivalent to

employeesl ARRAY (0..99) OF C15-tyPe;

Tables bodies correspond to records. A serial table will be translated
in two Parts* First, a record type will be declared to match the table
body. Second, an array of record type will be declared to match the
table name and dimension list. For example, a table containinv
eployee information declared as

TABLE employees (99)1
BEOIN

ITEM name C 15;
ITEM rank ranktype; "ranktype is declared elsewhere"
ITEM serialnumber US

END

will be translated to

TYPE employees.type IS
RECORD --declares the type of the table body

namel C15_tyPe
rankc ranktvyp.
serialnumberi U-tYPe;

END RECORD;

employees; ARRAY (0..99) OF employees.type; --declares the table

The translation is done in two Parts because an Ada array declaration

must use a tyPe name rather than a type description. Tables with more
than one dimension will become arrays of more than one dimensions

TABLE multidim (22, 141114, 511)...

becomes

multidims ARRAY (0..22,14..114,0..511)...

Packing specifiers, words-per-entry, and location specifiers will be
translated by means of rePresentation specifications. If the table
"employees" were declared as a specified table,

F

F-25

-JOVIAL TO ADA TRANSLATOR INVEST IGAT ION
FUNCTIONAL DESCRIPTION

TABLE employees (99) W 6;
BEG IN

ITEM name C 15 POS(890)1
ITEM rank ranktype POS(0,4)v
ITEM serialnumber U POS(1,5)s

END

its translation will consist of the record and array declarations
viven earlier and the representation specification

FOR employees USE
RECORD AT MOD 64lwords --six words Per entry -

name AT 0*word RANGE G..1271 --ranv* extends to adjacent
--words

rank AT 4*word RANGE 0_311
serialnumber AT 5*word RANGE 1..31;

END RECORD$

where 'wrd is a constant equal to the number of storaise units Per
target word. A variable-length-entry specified table will Yield the
alisnment clauses "AT MOD 1* word". Ordinary tables with medium or
dense Packinv will be translated usinv the locations of each component
selected to conform to J73 semantics of the Packinv specifiers used.
Tivht tables will be effected by use of the Praima, "Pack".

The Preceedinv discussion has described the translation of serial
tables to arrays of records. A Parallel table will be translated to a
record of arrays. The type of each of these arrays will be-a record
that is Previously declared to include table item declarations vrouped
accordins to entry word. The 9eneral format of this translation is
given as followsl a Parallel table declaration

TABLE tt (44) PARALLEL...
BEG IN

"declarations of items Positioned in word 0"
"declarations of items Positioned in word 1"

END

will be translated to the followinv declarationst

1W

F-26

1W JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIJONAL DESCRIPTION

TYPE tt-.word-.O-.type IS
RECORD

-dclaratioms of obJects Positioned In word 0
END RECORDS

TYPE tt-.word-.1-.typ* IS
RECORD

--declarations of obJects Positioned in word I
END RECORDI

TYP)E tt..tvpe IS --a "record-of-arrays" type
RECORD

* ~~tt-.word-09O ARRAYCO..44) OF tt-word-O-.type;
tt..word-13 ARRAY(O..44) OF tt...word...I.type;

VEND RECORD;

tt'tt.type; --declares a record obJect

Grouping the obJects of each entry word in a 9*parat* record Permits
*translation of Parallel tables with specified entries using

representation specifications for each record, including the
Positioning of several items Per *ntry word. An ordinary table with
Parallel structure will not req4uire these separatt record type
declarations for each entry wordi it is complotelv described by a
sinvle record. For example, the table

TABLE ordinary (44) PARALLEL;
BEG IN

ITEM &a A 0,311
ITEM bb S
ITEM cc C 41

END

will become

TYPE erdinary-type IS
RECORD

aauARRAY (O..44) OF AO...3typ*1
bbIARRAY (O..44) OF S-.tvpe!

*cc1ARRAY (O..44) OF C4-typel
END RECORD;

ordinaryi ordinary-type;

F-27

-JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Table Presets and table item presets will be translated usine
aeoreat* values as described for strine Presets in 3.2.2.2.1. The
malj 5 *mm option will result in records which include reference to
Previously declared records as appropriate. Star-bound tables will be
declared usins unconstrained arrays ("ARRAY(<>)").

There is a special case in which specified table declarations will not
be completely translated. J73 table items may overlap in bit Position
within a table entry. This Prooramminv technique is sometimes used to
define mask fields and substrings of table data. Under the translation
outlined in this paragraph, overlappinv table items would be
translated to incorrect Ada code, since locations specified by a
representation specification within a record must not overlap. The
exception to this rule is that storav* for distinct variants of a
record may overlap. However, this requires that the discriminants be
static, Prohibitine dynamic selection of variant obJects. Thus,
variant records will not be used, nor does any other Ada construct
appear adequate for this mapping. The Translator will detect table
item overlaps, translate them as (illevally) specified records, and
output a warnins messag* to inform the user of the need to reprogram.

3.2.2.2.3 Pointers

J73 Pointer types will be translated to Ada access types. The
translation is quite simple for typed Pointers.

TYPE link P cell;

becomes

TYPE link IS ACCESS cell;

and

ITEM symptr P symtab;

* is translated to the Pair of declarations,

TYPE symptr-.type IS ACCESS symtab;
symptr: symptr..type;

This Permits an access of a pointed-to variable such as

1P "variabletsymptr" to be translated to "symptr.variabl*'.

F-28

U JOVIAL TO ADA TRANSLATOR INVESTIGATIONFUNCTIONAL DESCRIPTION

Translation of untyped Pointers is more difficult, because Ada doesnot Permit anonymous access types. The Translator must perform aelobal analysis of the Prosram to determine the types of all objectsto which the Pointer may Point. If the Pointer is used for objects ofonly one type, the Translator will simply "type" the Pointer in itsdeclaration. For example, a table containing an untYPed Pointer

TABLE cell (49);
BEGIN

ITEM Value vai..typts
ITEM next P, "next is used to Point to other cells"

END

will be translated to

TYPE cell...type; --incomplete type declaration
TYPE next-type IS ACCESS cll-type;
TYPE celltYpe IS
RECORD

U value: val-type;
next: next-type;

END RECORD;

F
I

F-29

JOVIAL TO ADA TRANSLATOR INVESTIGATION

FUNCTIONAL DESCRIPTION

cells ARRAY(O..49) OF cell-tYpeI

If the pointer is used for obJects of several types, the Translator
will select a tYPe for the Pointer according to frequency of use. For
example, if an item declared as an untYped pointer is most often used
to Point to objects of type "ce112_type", then

ITEM pointanYwhere P1 "usually points to ce112_type"

will be translated to

TYPE pointanywhere.type IS ACCESS cell2_tYpe
pointanywherel pointanywhere-typel

with an incomplete declaration of ce112_type included (if necessary)
before the declaration of PointanYwhere.type. References to
pointanywhero will need type conversions only if the target type is
not cell2_typel conversions to ce112-tYpe will be deleted by the
Translator, since they are unnecessary.

3.2.2.2.4 Other Declarations

Block declarations are used to declare groups of items, tables, and
other blocks which are to be stored contiguously. Although no Ada

-construct provides contiguous storage allocation, blocks will be
translated to records, Providing access to blocks (including parameter
Passing) in a manner which is semantically similar to J73. In general,
a block declaration of the form

F

U

F-3

U'.

U JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

BLOCK datasroup;
BEGIN

"sequence of declarations"
END

will be translated to

TYPE datagroup-type IS
RECORD
-- sequence of declarations

END RECORD;
datavroupi datagroup.tYpe;

alone with a warning messase to inform the user that the objects
declared in the block/record may not have contiguous storage
allocation.

Statement name declarations are used to declare labels which are to be
used as formal parameters. Since the Translator will not translate

U1 label parameters, these declarations will not be translated (see
3.2.3.3).

Define declarations are used to achieve parameterized compile-time
string substitution (i.e., macro-expansion). Define declarations which
correspond to simple constants will be translated to constant
declarations. For example,

DEFINE uPPerbound "2*15-1";

* will be translated to

upperbounds CONSTANT:- 2**15-I;

Other define declarations, in general, have no Ada equivalent. The
Translator will simply expand define calls in the J73 module before
translation. The user may request a summary of define expansions
performed as a translation option.

Although Ada contains no construct for overlaying data, an Ada
implementation may Provide a Prawma for this Purpose. The overlay
declaration will be translated using this Pragma if it is available1
otherwise, overlay declarations will not be translated.

J73 allows null declarations whose syntactic form is either a
semicolon or an empty BEGIN-END bracket. These declarations will be
translated to the Ada construct, NULL.

F-31

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

3.2.3 Executable Constructs

This Paraeraph describes the translation functions associated with
formulas, expressions, and statements. The discussion is given in
three parts:

a. Expressions, formulas, and assignment statements.
b. Local control statements.
c. Procedure and function call statements and return

statements.

Special executable constructs known as intrinsic functions are
discussed in 3.2.5.

' .. 3.1 Expressions and Assignments

In general, arithmetic formulas such as ((AA*BB-CC)**2) will be
unchanged by the Translator. Each arithmetic operator of J73 has an
Ada equivalent with the same form and precedence. Ada distinguishes
between binary and unh4.'v uses of the operators "+" and "-", giving
higher precedence to unary occurrences, but in practice this does not
affect the results of an arithmetic -formula. (J73 treats unary "+" and
"-" as "signs" rather than operators, so that expressions such as
(5--3) must be written as (5-(-3)), removin the need for a precedence
distinction.) TYpe qualifiers will be inserted into fixed point
expressions when needed, as discussed in 3.2.2.1.

Status, table, character, and pointer formulas do not involve
operators, and will not be changed by the Translator. Bit formulas in
J73 are required to include Parentheses whenever more than one kind of
operator is used. so that Precedence is irrelevant. The EQV operator
will be translated to "-", which is overloaded in Ada to include
boolean expressions. The AND and OR operators, when used in boolean
formulas (bit formulas of type BI), will be translated to the short
circuit forms, AND THEN and OR ELSE, corresponding to the J73
semantics for boolean formulas; bit formulas of size greater than c-ne

u will use the standard AND and OR forms.

Relational operators are equivalent in J73 and Ada. The "not equal"
operator in J73 ("1>") will be converted to its Ada equivalent, 1I/-I1.
All relational operators have equal Precedence in both languages.

* Type conversions in Ada are Permitted only between closely related
types, so that conversions of numeric types to numeric types, bit
types to bit types, character types to character types, and table
types to table types may be translated directly. For example,

F-32

ro ADA TRANSLATOR INVESTIGATION
IAL DESCRIPTION

integer(xx) "1xx is a halfword integer"
5,26 *)yy "vY is type A 0,31"1

translated to

lintecer (xx)
!6-type (vy)

ions between unrelated types (such as character to inteser) and
Lofl5 involvins Pointers, status obJects, and the REP function
be Performed directly in Ada. The only Ada construct available
ich conversions is the Predefined generic function,
M-CONVERSION. Instantiations of this generic will appear in
Iefjned..packase for each kind of conversion which has no direct
Lvalent. The J73 conversions

8*)name "name is of type C 1"8
:xyz) "xyz is of typ* F"1
1*2(troint) "Point is of type P tablel"1

:&Us* the followins instantiations to be included in
of ined-package I

TMON Cl-type-conversion IS NEW UNCHECKED-.CONVERSION (Cl-type)l
.TION F-.tvpe...convrsion IS NEW UNCHECKED-.CONVERSION (F-.type)l
"TION tablei-yp...converston IS NEW UNCHECKED-..CONVERSION

the type conversions may be translated to the function calls

vwe..convers ion (name)
'pe...convers ion (xyz)
ei..type..convrsion(point.all)

anslation technimtu* will work correctly only if the Ada
tation being used Permits the unchecked conversions 9enerated
Translator. In J739 conversions betwien unrelated types ae

ned by compile-tim* rules, while Ada does not specify what
ill be used by a compiler in P*rformins*(or reJectins) such
ons. For any unchecked conversion which is not allowed by the
mpiler, the user must replace the instantiation of
D-.CONVERSION with a customized function that emulates the
nding J73 rules for the conversion.

F-33

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Assignment statements will be translated by replacing the "=" with its
Ada -quivalent, ":=". Assignments to more than one variable in a
single statement, such as

varl,var2,var3 = var2 + 6;

will be broken into separate assignments,

tamp:= var2 + 6;
varl:= temp;
var2:= temp'
var3:= temp;

using a temporary variable to conform to the J73 rule that the right
hand side be evaluated only once.

To a small extent, J73 Programs may rely on the side effects of the
order of evaluation of expressions and assignments. The language
guarantees that the right-hand side of an assignment statement will be
evaluated before the left-hand side, and that function arguments and
table indices will be evaluated left-to-right before any expressions
or assignments are performed. Dependence on side effects of these
evaluations, while generally considered poor programming practice, is
possible in J73. However, Ada gives no such suarantees regarding order
of evaluation; a program which contains such side effect dependencies
may be translated to an erroneous Ada program. The user is responsible
for detecting and removing these dependencies.

3.2.3.2 Local Control Statements

This Paragraph describes the translation of statements which affect a
program's flow of control on a local basis. Global control constructs
(call and return) are discussed in the following paragraph.

The syntax of J73 loop statements is relatively complex. A loop
statement may contain, in addition to a loop parameter and a while
clause, a by-phrase, a then-phrase, and an initial value. Futhermore,
the loop Parameter may be either a global Program variable or an
implicitly declared object which is local to the loop and unaccessible
outside of the loop. By comparison, Ada loops are quite simple. They
may contain an implicitly declared loop parameter, a discrete range
for the parameter, and a while-clause; global loop parameters and
explicit by- or then-clauses are not permitted. Translation of loop
statements is a rare instance of mapping a complex J73 structure onto
a simpler Ada structure.

F-34

U " .JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Loop statements with no loop Parameter are easily translated. In

general, a loop of the form

WHILE booleanformulal
BEGIN

END

will be translated to

WHILE booleanformula

LOOP

END LOOP;

A loop with an implicitly declared loop parameter (a "control-letter")
will be translated using an iteration clause (FOR loopparameter IN
rane) whenever the by-clause or then-clause corresponds to a loop
parameter increment of +1 or -1. For example,

FOR i:O BY I WHILE i<1001

becomes

FOR i IN 0..99
LOOP

END LOOP;

and

FOR is22 THEN (i-1) WHILE i>-O1

becomes

FOR i IN REVERSE 0..2Z •
LOOP

.

END LOOPS

F-35

U JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

A loop with a control letter but no by-clause, then-clauses or
while-claus* can be translated without an iteration clause%

FOR ill;
BEG IN

END

will be translated to an Ada block with a declarative Part

DECLARE --block fop loop statement
i: INTEGERs=I;

BEGIN
LOOP

END LOOPI
ENDS --block for loop statement

ensurins that the loop Parameter is local to the loop statement. A
similar loop with a olobal variable rather than a control letter, such
as

FOR ev~ntcounte v(first~vont)l
BEG IN

LIP, END

will be translated, without a block or declarative Part, to

eventcount1-ifirstevent1
LOOP

END LOOP;

since the loop Parameter is already declared slobal to the loop
statement.

F-36

* JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Loop statements with global variable loop Parameters and by-clauses,
then-clauses, or while-clauses, as well as loops with control letters
and increments not equal to +1 or -1, will be translated to Ada
structures consisting of assiunment statements and while-loops. For
example, the loop

FOR aalbb BY cc WHILE dd>ee; "aabb,cc,ddee are global"

BEGIN

END

will be translated to

aal bbi
WHILE dd>*e
LOOP

Sq a

ats=a+ccl
END LOOP;

which is not only semantically identical to the J73 form, but should
* also run just as efficiently. Another examples

FOR ilbb BY cc WHILE i<>O; "i is a control letter"
BEGIN

END

is translated to a block with a local declaration of ii

DECLARE -- block for loop statement
is INTEGERI-bbi

BEGIN
WHILE i/-O
LOOP

i;=i+ccl
END LOOP:
END# --block for loop statement

F-37

U JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

The exit statement in J73 is directly mappabl* to Ada. In 9eneral,
exit statements will be unchanved by the Translator. A construct such
as

WHILE conditioni
BEG IN

IF condition2i
EXIT;

END

may be translated to

WHILE conditioni
LOOP

IF condition2 THEN
EXIT;

END [F;

END LOOP;

or, more cleanly,

WHILE conditioni

LOOP

EXIT WHEN condition2l

END LOOP;

Selection of the latter translation technique is an optimization that
may be requested by the user as an option.

.J73 IF statements translate straishtforwardly, differine from Ada IF
statements in that the reserved word "THEN" must Preced* the body of
the statement. Therefore,

F -38

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPT ION

IF conditiong
"any statement"

is translated to

IF condition THEN
-sequence of statements

END IF,,

A complex IF statement such as

IF conditioni

BEG IN

END

ELSE IF condition2l

EL-4

will be translated usinv the ELSIF construct to

IF conditioni THEN

t7! ELSIF condition2 THEN

ELSE

END IF;

Case statements are also quite easily translated, with the construct
"(cas*-index,...)1" replaced by "WHEN cas*-indexl...->". For example,

F-39

S JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

CASE expression-
BEGIN

(0,1)1 "statementi"
(214,8): "statement2"
(5)Z 'statement3"
(DEFAULT): "statement4"
(9,11)3 "statement5"

END

is translated to

CASE expression IS
WHEN O..1=> -- statementl
WHEN 2..418-> -- statement2
WHEN 5I> -- statement3
WHEN 9111-> -- statement5
WHEN OTHERS -> -- statement4

END CASE1

The default case alternative is moved to the end of the statement, as
is required in Ada. The FALLTHRU construct, which causes case
alternatives to be executed sequentially, has no Ada equivalent; each
appearance of FALLTHRU will cause the statements of the following case
alternative to be duplicated at the end of the case alternative which
contained the FALLTHRU.

The final statement discussed in this Paragraph, the GOTO statement,
will be unchanged by the translator. The resulting Ada program will be
correct as lone as none of the GOTO's cause a transfer of control into
an if statement or a case statement. J73 Permits such transfers, while
Ada does not. The Translator will detect and flag such GOTO's,
informing the user of the need to restructure the module.

3.2.3.3 Call and Return Constructs

Procedure and function calls in J73 are syntactically similar to their
' Ada equivalents. Parameter Passing mechanisms are semantically

different: J73 specifies the way an argument will be passed to and
used by a subroutine, while Ada specifies only the effect a subroutine
may have on an argument. The difference between these two approaches
involves the coPyine of actual Parameter values.

J73 semantics for value binding and result binding require that a coPy
of the Parameter is used by the subroutine. Ada provides two Parameter
modes, IN and IN OUT, which require copies of scalar and access type
arguments, but not of composite (record or array type) arguments. To
ensure that composite areuments are Passed by copying, the Translator
must generate explicit assignment statements to copy composite
parameters into and out of temporary locations whenever value or

q result bindine is used for blocks and tables.

F-40

S JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

In general. J73 input parameters will be translated to Ada IN
parameters, and J73 output parameters will be translated to Ada IN OUT
parameters. For example, the procedure declarations

PROC swap (zaa,bb)1 "aa and bb are integer output arg's"

PROC update (newvaluel buffer); "newvalue is floating,
buffer is a table"

PROC tablecopy (BYVAL tablel); "tablel is an input value are"

will be translated to

PROCEDURE swap (aa,bblIN OUT inteser); -- value result binding

PROCEDURE update (newvaluez IN F_tYpe! buffer: IN OUT
buffer-type);
-- value binding for newvalue, reference binding for buffer

PROCEDURE tablecopy (tablell IN tableL_type);
--value binding

tab leltemp:=tablel;
--ensures that a copy of the argument is used

--references to tablel.temp rather than tablel

Explicit copying of value or result bound composite parameters, as in
the third example, may be suppressed bY the user if desired. Arguments
of functions will be translated the same way as procedure arguments.
Reference binding, which is used in J73 by default for tables and
blocks, will be translated to IN or IN OUT parameter binding in the
hope that the Ada implementation to be used will use a referer.:e
mechanism for such parameters. If the implementation uses a copying
mechanism, then the subroutine may have an undesired effect if its
context is changed during a run-time interrupt. However, it would
appear unlikely that an implementation would ever use a copying
mechanism for composite parameters, since reference mechanisms are
generally much more efficient.

q

~F-4 I

-JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Subroutine name parameters will be translated to enumeration obJects.

For example, the procedure

DEF PROC P1 (tobecalled);

PROC to oe calledi

in which the formal parameter "1tobecalled" may assume the actual
values 11p51, 11p6#1, or Op79, will become the package

WITH pS...packase, p6.packave, p7-.packag~t
PACKAGE pL..package IS

TYPE tobecalled-tyPt IS (p5, p6, P7)1
PROCEDURE P1 (tobecalled: IN tobecalled-tvpe)i

Using this translation, a call to the formal parameter is tr~anslated

to a case statement:

tobocalledv "call to the procedure associated with

the formal parameter"

becomes

CASE tobecalled IS -- which proc to call?
WHEN P5 => p5; --call P5
WHEN P6 => P61 --call P6

WHEN P7 => P7; --call P7
END CASE!

Win which the procedure names 1p5'1 "P61' and "Ip7" art ove loaded by

enumeration literals with identically spelled names. ohus, the,

'consitr uc t

WHEN P5 -> P51

mearnso "when the value of the parameter "tobecalled" is the

enumeration literal "P511, call the procedure named "p5" (declared in

p5-.pacakge)."l The overloading of the procedure names will be

unambiguously resolved by the Ada compiler.

P-427

* JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

• ABORT Phrases and ABORT statements are similar to Ada exception
handlers and RAISE statements in that they result in termination of a
subroutine without binding the values of output parameters. However,
there is a crucial difference between ABORT*s and RAISE's: Raising an
e>ception causes control to be transferred to a special section of
code (an exception handler) at the end of a block or Procedure body,
ard ma not transfer control (GOTO) back into any other Place in the
block or Procedure. In contrast to this well-structured method of
Prematurely terminating a Procedure in Ada, the J73 ABORT causes a
virtually unrestricted GOTO (to any Part of a calling Procedure) which
cannot be effected using an exception mechanism. Therefore, ABORT
Phrases and statements will not be Processed by the Translator. The
user may restructure the calling routine so that it can use an

1e>::ception mechanism; usually, this will not be difficult to do by
hand. Similarly, statement name Parameters and GOTO statements with
formal statement name Parameter targets, which are special cases of
the ABORT mechanism, will not be automatically translated.

Procedure calls and function calls will be translated using Positional
U syntax, as in J73, so that calls will be unchanged by the Translator.

The only e><cePtion is that calls to Parameterless functions, such as

currenttime = systemclock; "call to function with no args's"

will use empty Parentheses,

cur-renttime:=systemclock);

as is required in Ada. Return statements in Procedures will be
unchanged by the Translator, consisting simply of the reserved word
RETURN. Functions will use the following translation technique:

La. assignments to the function name will be translated to
assignments to a dummy variable.

b. "RETURN" will be translated to "RETURN dummy.variable".

For example, the function

PRlC cuberoot (:number) A 10,21; "number is type A 13,18"
BEOIN

cuberoot = expression;
RETURN;

END

F-43

.JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

will be translated to

FUNCTION cuberoot (number: IN OUT A13_8_tYpe_) RETURN
A10_21_tYpe IS

cuberoot-result: A10_21_tYpel

BEGIN
4i

cuberoot.result:=expression;
RETURN cuberoot-result;

END cuberoot;

This technique will be used to translate each function-name assignment
and each return statement occurring within a function. Procedures and
functions declared as INLINE will result in the insertion of the
Pragma, "INLINE procedurtname", into the Program at the point of
declaration.

The two remaining types of J73 statements, stop statements and null
statements, are translated as RAISE system-stopi and NULL!
respectively. The former statement will raise an exception called
"systemstop" which is user supplied (or may be supplied by an
implementation). If an integer formula is included, such as

STOP 22;

the Translator will senerate an assignment to the variable
system-stop.value before raising the exception:

systemstop-value:=221
RAISE system-stop;

The semantics of the value associated with the stop statement are
implementation dependent in both languages. Declarations of this
exception and variable will be included in J73_predefined-packave.

F

F-44

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

3.2.4 Directives

J73 Provides 22 directives. Ten of these directives will be
translated; the others have no Ada equivalents.

The compool directive (!COMPOOL) is translated as described in
3.2.1.1. The copy directive (!COPY) will be translated to PRAGMA
INCLUDE, having the identical effect of incorporating an external file
into the Program text at the textual location of the directive. The
skip directive (!SKIP), along with its delimiters (!BEGIN and !END),
will cause the Translator to insert comment delimiters ("--") before
each line of text in the J73 module between the begin and end
directives. The translated module will then include the non-translated
J73 code as comments, alone with a message informing the user of the
Presence of the skip directive.

The linkage directive (!LINKAGE) will be translated to the interface
Pragma, "PRAGMA INTERFACE (languagename, subproramname)", where
language*name is Provided by a TPF entry and subprovram-name is the
name of the Procedure or function which used the linkage directive.
The listing directives, 'LIST and !NOLIST, will be translated to
"PRAGMA LIST (ON)" and "PRAGMA LIST (OFF)"; the eject directive,
!EJECT, will be translated to the form feed symbol used by the
Translator's host environment (unless the Ada implementation to be
used features an eJect pragma, in which case that pragma will be
used). The initialize directive, !INITIALIZE, has no Ada equivalent,
but will be effected by generating a Preset of zeroes for all static
data declared in the scope of the directive. That is, ":=Oi or ":=0.0"
or "(0..99=>0.0)", etc., will be inserted into the declaration of each
static object.

Nine of the J73 directives (!TRACE, !INTERFERENCE, !REDUCIBLE, !BASE,
!DROP, !ISBASE, !LEFTRIGHT, !REARRANGE, and !ORDER) have no Predefined
Ada equivalent. However, a Particular Ada environment will Probably
include features which are identical (or at least similar to) many of
these directives. The Translator will use any such features which are
available via TPF entries for each directive. In the absenc.'of a 15F
entry, the directive will not be translated.

The remaining directives, !LISTINV, !LISTEXP, and !LISTBOTH, will be
discarded by the Translator; define substitutions are not translated
Per se (see 3.2.2.2.4), so that these directives are not meaningful.

FI

F-45

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

3.2.5 Intrinsic Functions

Most J73 intrinsic functions have Ada equivalents. Translation of
these intrinsics is summarized as follows:

J73 Ada

LOC(tablel) tabltl'ADDRESS
BIT(maskl,5,8) maskl(5..12)
BYTE(namtO,1) namo(O..C')
ABS(cl imbratt) ABS(cl imbrate)
BITSIZE(tabltl) tablol-typt'SIZE
BYTESIZE(namt) name-tvpeSIZE/BITSINBYTE
WORDSIZE(maskl) maskl..tve'eSIZE/BITSINWORD
LBOUND(tabl*l,2) tabltl..tvpe'FIRST(2)
IBOUND(tablel) tableL-tvpe'LAST
NWDSEN(tablol) tablel-typt'SIZE/BITSINWORD
FIRST(Points) Points-type'FIRST
LAST(color) color...typeLAST

In the examples above, the BIT and BYTE functions art translated to
slice notation as discussed in 3.2.2. Many of the intrinsic functions
involving object size or Position are translated to Predefined
attributes of the objects' types.

The remaining J73 intrinsics, NEXT, SHIFT, and SON, will be translated
to syntactically equivalent calls to Predefined functions (except for
NEXT(status-typ..variable). which translates directly to

* .*numeration-.type'SUCC(variable)).

The function NEXT will be declared in J73..predefined-.package as

* GENERIC
TYPE tnum IS (<>)I

FUNCTION next (nam*zenum;number:integer) RETURN enum IS
BEGIN

IF (number>O) THEN
FOR i IN 1..number LOOP

name s- enum'SUCC(name);
END LOOP;

ELSE -- number is =<O
number := -number;
FOR i IN 1..numbor LOOP

name := enum'PRED(name);
END LOOP;
RETURN name;

END next;

Lw

F-46

TO ADA TRANSLATOR INVESTIGATION
iNAL DESCRIPTION

a function call such as

T(color, 2) "'second successor of color"

translated to a generic function call

T(color,2) --same as J73 version

udins the instantiation

ICTION next-..color IS NEW next(color..tvpe)l

translation of the module. A similar 9eneric must be supplied
user to overload NEXT for access types (in an implementation

nt manner) if the NEXT function is used on pointers. The SHIFT
GN functions will be provided by the Translator in
defined-package as generics similar to NEXT, so that *xpression
as SHIFTR(xx,5) and SGN(aa) can be translated usins
iations such as

ICTION shiftrxx IS NEW shiftr (xx...tvpe)l

fTION sgn-.aa IS NEW sgn (aa..Aype)l

Miscellaneous Functions

aragraph includes a discussion of several issues which have not
xplicitly covered by previous Paragraptaz, includinv translation
es and comments, output listing format of the translated Ada
and translation warning messages.

Names

ahich are not Ada reserved words and which do not contain the
characters ""or "I$" will be unchansed by the Translator. The

"'*" -I will have a default translation of "-.."1 01$41 appearine
first character of a name, will be tran-slated to 'IS-."$ a 'I$"
1in a name will have a default translation of ".5...". Names

krf identical to Ada reserved words will be chanved to include
sion "-user'. Labels will be delimited by <<... >>, as required
Some *xamples of name translati..n are given below

F-47

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

.73 name Ada name

airspeed airspeed
dot-'Product dotPproduct
$status S.status
main$cycle mainS-cYcle
loop looP-user
statementlabel <<statementlabel>>

Names of status constants will be translated bY removing the "v" and
the Parentheses, so that "v(red)" becomes simply "red". The status
constant name will also be subject to the rules described above for
special characters and reserved words, and will be qualified with a
type name if necessary, as discussed in 3.2.2.2.1.

Each of the rules for name translation (except label bracketing) may
be overridden by the user, if desired. This is accomplished with TPF
entries for each rule. For example, the user may wish to translate the
"$" to "X×_", reserved words such as "loop" to "user-loop", or a
status constant to "vred". The user may Prefer "proclpackage" to
"Proc1_pack" or "tablel-record" to "tablet-type". These preferences
can be indicated with TPF entries.

The Translator is responsible for detecting name conflicts for all
names, whether user generated or Translator-generated. For example, if
the module being translated contains the names "range" and
"range'user", a conflict will occur: both names will be translated to
"1range-user". The Translator must inform the user of the need to
change either one of the names' spelling or to modify the TPF entry
for one of the two cases (translation of "'" or translation of Ada
reserved words).

J73 implementations normally Permit lower case letters to be used (the
basic character set is upper case). Ada also uses upper case as its
basic character set, and will presumably allow lower case in most
implementations. In both languages, corresponding upper and lower case
characters are considered equivalent (except in character literal.,
where they are distinct). The Translator will use both cases, as in
the examples of code given throughout this document, unless the user
wishes otherwise. A TPF entry is provided for this Purpose.

F-48

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

r 3.2.6.2 Comments

Although comments have no semantic effect on a program, the Translator
will attempt to preserve all comments aPpearing in the module being
translated. In most cases, a single J73 statement with a comment will
translate to a single Ada statement with a comment. Source lines
ccnsistins of nothing but comments are also easily handled:

"This is a comment
that uses three lines
of the Program"

becomes

-- this is a comment
-- that uses three lines
-- of the Program

However, comments may be embedded within a statement or declaration,

such as

IF (aa<18.5) "below threshold" AND (bb>O)v

Since Ada comments always extend to the end of the line, an embedded
comment will either be moved to the end of the line

IF (ea<l8.5) AND (bb>O); -- below threshold

or will be left in place while the remainder of the statement is moved
to the next lines

IF (a&<18.5) -- below thresho1i
AND (bb>O);

Selection of which technique is used is left as a user option. Another
Problem occurs when a single J73 statement or declaration is
translated to more than one Ada statement or declaration. An exam,.1*
given in 3.2.3.2, for example, maps a for statement into two

* assignment statements and a while statement. In this case, the comment
will be placed with the "key" statement of the Ada translation'

FOR aa:bb BY cc WHILE dd>33; "loop through all entries"

will be translated to

a&q-bb;

WHILE dd>ee -- loop through all entries
LOOP

4l

&a; aa+bbi
END LOOP;

F-49

JOVIAL TO ADA TRANSLATOR INVESTIGATION

FUNCTIONAL DESCRIPTION

The Translator will also create comments for Ada code which is
Translator-generated. For example,

TABLE employees (99); "Personnil records"
BEGIN

END

will result in

TYPE employees.type IS
RECORD -- describes body of table "employees"

END RECORD;
employeesl ARRAY (0..99) OF employee-type; -- personnel records

The Translator will also eeneratt comments to inform the user of the
purpose of a with clause:

WITH compl; -- includes items aa,bb
--and tables tab1, tab2

The u'.r may optionally suppress either original comments or
Translator-generated comments.

3.2.6.3 Prettyprinting

The Ada modules output by the Translator will be printed in a format
which corresponds to commonly accepted style for high order language
programming. Statements within logical blocks such as Procedures,
loops, and records will be indented one tab stop (three spaces)
relative to the enclosine block. Sinele spaces will be insert-d

* between names, operators, and reserved words. The user may select
either upper or lower case letters to be used for either reserved
words or names. In general, the code will be formatted like the
examples given throughout this Functional Description.

Warning messages will be inserted into the output text as necessary.
The messaces will correspond to three levels of severity. Level 1
warnings inform the user that the Translator has made some assumption
(Presumably a valid assumption) about the programming environment. For
example, when translating an assignment to a floating Point tyPe
variable which was declared with a rounding option, the message

--**Llwarnines assumes Presence of a rounding procedure**

F-50

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

will be inserted as the line following the call to the rounding
procedure. Level 1 warnings are informational and may be suppressed by
the user if desired.

A translation which introduces a possible syntactic or semantic error
will be accompanied by a Level 2 warning message. Examples:

-- **L2warninst record component overlap is illegal**
--**L2warningl target of soto is inside a compound statement**

Untranslated constructs will be flagged by Level 3 warning messages,
such as

--**L3warning: define declaration not translated**
--**L3warninvt order directive not translated**

Warning messages are printed as Ada comments so that the module may be
compiled, if desired, without modification.

F

* 4

F-51

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

3.3 Inputs-Outputs

This Paragraph describes the input and output requirements of the
Translator.

3.3.1 Input Data

Three kinds of data are required as input to the Translator: user
commands, J73 source, and translation Parameters.

3.3.1.1 User Command Input

Users of the Translator must Provide whatever host-dependent commands
are required to invoke the Translator and sPecify input and output
data file names.

W 3.3.1.2 J73 Source Input

The J73 source to be input for a single run of the Translator may be
any Portion of the Program that is separately compilable by a J73
compiler, ranging from a single compool, Procedure, or function to the
entire program. All J73 code must be syntactically correct, which
implies that it has been Previously checked by either a compiler or a

- code auditor. Previous compilation or auditing of the J73 source code
is not manditorY; however, because the Translator will not Perform
syntax checking, reliable translation will result only from input that
is absolutely free of syntax errors. Input which is syntatically
correct but erroneous will, in general, have unpredictable results.
Some specific instances of erroneous program translation have been

1 discussed in Previous sections.

3.3.1.3 Translation Parameter File

The Translation Parameter File (TPF) will be used by the Translator zo
guide the translation of J73 constructs whose mappine to Ada is either
arbitrary or indefinite. Examples of such cases are variable names
containing the "$" or "" characters, variable and constant names
which may be optionally qualified twith a Packave or tYPe name,
optional insertion of constraint specifications and exception

* handlers, and selection of subroutine argument-passing modes. The TPF
will be user accessible and may oPtionally be included as Part of the

. Translator's output listing (alone with the Ada Program itself).
Certain TPF entries may be overridden by user command inputs so that a
single module can be translated in a special manner without modifying
the TPF.

F-52

I m

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

3.3.2 Output Produced

The Translator will produce three kinds of outputs translated Ada
modules, generated Ada modules, and a Prosram dictionary.

3.3.2.1 Translated Ada Module Output

The major output of the Translator will be a listins of the Ada module
Produced by a run of the Translator. This listinv will be
appropriately formatted ("prettyprinted") to conform to standard
programming Practices, including indentation to exhibit nesting,
alignment of "begins" and "ends", and form feeds for modular units
(i.e., a new Procedure sets a new Page). Comments from the input J73
program will be included in the Ada listing if requested by the user.
Warning messages will clearly delimit any missing Ada cod.
corresponding to untranslated J73. The listing may be olitput to either
a hard copy device (printer) for human inspection or to a file (disk
or tape) for storage.

3.3.2.2 Generated Ada Module Output

Predefined types and intrinsic functions in J73 which have no exact
Ada equivalent will require the generation of special modules. These
modules will be Ada Packases which specify Predefined types unique to
J73, as well as Packages which either implement or at least specify
.J73 intrinsic functions. In the latter case, intrinsics whose
implementation is tarset dependent rather than lansuave dependent will
be represented by a package specification with a body stub. This will
Permit the user to implement the function at a later date while
ensuring syntactically correct references to the function immediately.
The use of the "generated packaes" will render the translated Ada
program readable, since the resultine Ada syntax will be identical to
the original J73 syntax for -edefined/intrinsic constructs. In
addition to clarity, efficient I flexibility will be maintainedl
the packaes generated by the Tranb..tor may be chaneed or replaced -Y
the user with no syntactic impact on any of the translated modules.

- 4

3.3.2.3 Prosram Dictionary Output

For translation Purposes, the Translator must keep an internal
dictionary of the names of all modules and externals used in the
program being translated. A listing of this dictionary may be output
upon request of the user. It will contain the name of each library
unit in the Ada translation, as well as external names listed
accordine to which library unit contains either a definition of or a
reference to each external.

F-53

-JOVIAL TO ADA TRANSLATOR INVESTIGATION

FUNCTIONAL DESCRIPTION

3.4 Data Characteristics

The storase and characteristics of the data elements used by the
Translator are summarized in the table below.

File Description Mode Format Recommended Device Type

J73 Source input character sequential or direct access

Translation
Parameter File input character direct access
(TPF)

List of J73
Modules by
File Name input character direct access

Workspace internal binary direct access

Dictionary output character hard copy

Ada Modules output character sequential, direct access
or hard copy

The sizes of these elements are entirely dependent on the size of the
J73 source Provram being translated (excePt for the TFF, which will
require a fixed storave size of about 1K words).

3.5 Failure Contingencies

No failure continvencies are rsquired for this system.

F

F-54

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

iAPPENDIX I

SUMMARY OF PROBLEMATICAL CONSTRUCTS

Construct Problem Discussed in Paragraph

Specified tables with Illegal in Ada. 3.2.2.2.2
overlappinv items

Contiguous storage Contiguous storage is 3.2.2.2.4
allocation (Blocks) not suaranteedl over-
and overlays laYed storage may not

be provided in an Ada
implementation.

Statement name No similar Ada 3.2.2.2.4
declarations construct.

Define declarations Define's are *xpanded 3.2.2.2.4
rather than translated.

Expressions with side Side effects are not 3.2.3.1
effects guaranteed.

Label parameters and No similar Ada 3.2.3.3
abort statements construct.

Directives Certain directives may 3.2.4
not be provided in an
Ada implementation.

F-Al

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

APPENDIX 2

MIL-STD-1589B CROSS REFERENCE

This appendix provides a cross-reference for J73 constructs according
to the sections of MIL-STD-1589B. For each section or group of related
sections of 1589B, the subparagraph of this Functional Description
which is applicable is given in the right column.

1589B Section Discussed in Paragraph

1.1 Complete Program 3.2.1
1.2.1 Compool Modules 3.2.1.1
1.2.2 Procedure Modules 3.2.1.2.1
1.2.3 Main Program Module 3.2.1.2.1
1.2.4 Conditional Compilation 3.2.4
1.3 Scope of Names 3.2.1.2, 3.2.6.1
1.4 Implementation Parameters 3.2.2
2.0 Declarations 3.2.2
2.1 Data Declarations 3.2.2.2
2.1.1 Item Declarations 3.2.2.2.1
2.1.1-6 TYpe Descriptions 3.2.2.1, 3.2.2.2.1
2.1.7 Pointer Type Descriptions 3.2.2.2.3
2.1.2 Table Declarations 3.2.2.2.2
2.1.2.1-4 Table Dimensions,

Structure, Entries 3.2.2.2.2
2.1.3 Constant Declarations 3.2.2.2.1
2.1.4 Block Declarations 3.2.2.2.4
2.1.5 Allocation of Data Objects 3.2.1.2
2.1.6 Initialization of Data

ObJects 3.2.2
2.2 Type Declarations 3.2.2.2
2.3 Statement Name Declarations 3.2.2.2.4
2.4 Define Declarations 3.2.2.2.4
2.4.1 Define Calls 3.2.2.2.4
2.5 External Declarations 3.2.1.2.2
2.6 Overlay Declarations 3.2.2.2.4
2.7 Null Declarations 3.2.2.2.4
3.0 Procedures and Functions 3.2.1.2.1
3.1 Procedures 3.2.1.2.1, 3.2.3.3
3.2 Functions 3.2.1.2.1, 3.2.3.3
3.3 Parameters 3.2.3.3
3.4 Inline Procedures and Functions 3.2.3.3
3.5 Machine Specific Procedures 3.2.1.2.1

C

F-A2

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Appendix 2 - MIL-STD-1589B Cross Reference - Continued

1589B Section Discussed in Paragraph

4.0 Statements 3.2.3
4.1 Assignment Statements 3.2.3.1
4.2 Loop Statements 3.2.3.2

3 4.3 If Statements 3.2.3.2
4.4 Case Statements 3.2.3.2
4.5 Procedure Call Statements 3.2.3.2
4.6 Return Statements 3.2.3.3
4.7 Goto Statements 3.2.3.2
4.8 Exit Statements 3.2.3.2
4.9 Stop Statements 3.2.3.2
4.10 Abort Statements 3.2.3.1
5.0 Formulas 3.2.3.1
6.0 Data References 3.2.1, 3.2.2, 3.2.6.1
6.1 Variables 3.2.2.2
6.2 Named Constants 3.2.2.2.1
6.3 Function Calls 3.2.3.3
6.3.1-11 Intrinsic Functions 3.2.5
7.0 Type Matching and Conversions 3.2.2.1, 3.2.3.1
8.1 Characters 3.2.6.1
8.2 Symbols 3.2.6.1
8.3 Literals 3.2.2.1, 3.2.2.2.1
8.4 Comments 3.2.6.2
8.5 Blanks 3.2.6.3
9.0 Directives 3.2.4

F-A3

SYSTEM/SUBSYSTEM SPEC IF ICAT ION

JOVIAL WJ73) TO ADA TRANSLATOR

Prtparod byl

Mark J. Noiman

s-i.

TABLE OF CONTENTS

Paragraph Pave

SECTION 1 GENERAL
1.1 Purpos* of the System/Subsystom Spec S- 1
1.2 ProJect References S- I
1.3 Terms and Abbrviations S- I

SECTION 2 SUMMARY OF REQUIREMENTS
2.1 System/Subsystem Description S- 3
2.2 System/Subsvstem Functions 0..6..... S- 6
2.2.1 Accuracy and alidit S- 8
2.2.2 Timing.................. 0...... s- 9
2.2.3 Flexibilityo.................. 5- 9

SECTION 3 ENVIRONMENT
3.1 Equipment Environm~nt S-10
3.2 Support Software Environment............. S-10

SECTION 4 DESIGN DETAILS
4.1 General Operatine Procedures............. S-11
4.1.1 Initializing the Translator S-11
4.1.2 Translating Modules to Ada S-11
4.2 System Logical Flow.#.....*......... S-12
4.3 System Data S 1

4.3.1.1 Command Input se*S-14

4.3.1.2 J73 Source nu.......,,.... S-14 *
4. 3. 1.3 Mod ul1 Li st. *. . . . S-i 5
4.3.1.4 Translation Parameters S-15
4.3.2 Outputs*.......a. S-15
4.3.2.1 Translated Ada Source....... S-16
4.3.2.2 Generated Ada Sourc* 0.. S-16
4.3.2.3 Dictionary 0..6-.6. S-16
4.3.3 Data Base... *a S-16

4.3.3.1 Module Table... S-17
4.3.3.2 J73 Module Representation.......... S-17
4.3o3.3 Intermediate Languavo S-18
4.3.3.4 Other Data Base Elements S-18
4.4 Program Descriptions..................... S-l8
4.4.1 EXEC o so.... S-19

4.4.3 ANALYZE...... S-23

APPENDIX Contents of the Translation
Parameter File..... ft S-Al

s-ill

LIST OF FIGURES

Figure Title Pase

2-1 Software Conversion Cycle S- 4
2-2 Translator Structural Components S- 5
4-1 Losical Flow S-13
4-2 EXEC S-20
4-3 INIT S-22
4-4 ANALYZE S-24
4-5 Syntactic Analysis........... S-25
4-6 TRAN S-27

I

I

AL TO ADA TRANSLATOR INVESTIGATION
EM/SUBSYSTEM SPEC IF ICAT ION

'ION 1. GENERAL

Purpose of the System/Subsystem Specification

System/Subsystem Specification for the JOVIAL (J73) to Ada
islator Investigation (F30602-81-C-0127) is written to fulfill
following objectives'

a. To Provide definition of a Proposed system to
translate JOVIAL (J73) Programs to Ada Programs.

b. To communicate details of the on-going analysis
between Potential users and Potential developmtnt
Personnel.

ProJect References

'rietary Software Systems is under contract to the Rome Air
Plopment Center to investigate the autcomatic translation of
:AL (J73) to Ada. The system Proposed in this document is
nded to Provide Production quality translation of JOVIAL
1) Programs to Ada in accordance with the Functional
ription (10 January 1982) and the Statement of Work (PR No.
-3289) for the project. In addition to these documents,
rences listed in Section 1.2 of the Functional Description
also Pertinent to the Project and will be cited within this

iment.

Terms and Abbreviations

following terms and abbreviations will be used throughout
System/Subsystem Specificationi

1A Descriptive Intermediate Attributed Notation
for Ada.

neous A high order language Program which contains
one or more violations of language semantics
which are not dtected by a compiler.
Erroneous Programs have unpredictable run-time
resul ts.

rnal A Program element that is referenced by
modules which are compiled separately from the
module in which the element Is declared.

The Programming language JOVIAL (J73) as
specified bNy MIL-STD-1589B.

S-1

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

Module A portion of a J73 or Ada Program which is
logically distinct from the rest of its
Program and which may be compiled or
translated separately.

Parse Tree A data structure which represents the abstract
syntax of a high order language Program or
module.

Program All of the modules of a J73 or Ada prowram, as
opposed to an individual compilation unit.

TPF Translation Parameter File - a user accessible
file which specifies which translation options
will be used for a run of the Translator.

Translator The Proposed JOVIAL (J73) to Ada translator.

S-2

S.JOVIAL TO Ar 'RANSLATOR INVESTIGATION
SYE;TEM/SUBSYSTEM SPEC IFICAT ION

" ECTION 2. SUMMARY OF REQUIREMENTS

2.1 System/$ ubsystem Description

The Tr-ar,5lator. consists of a computer program and related data
rcieded to automatically translate a J73 Program to an equivalent
Ada program. The Primary inputs to the Translator are J73 source

- modules and the Translation Parameter File (TPF). The Translator
produces two kinds of output l istings: Ada source modules (with
diagnostics) and a Program dictionary.

The Purpose of the Translator is to provide a high degree of
automation to thie Process of converting a correct J73 Program to
an equivalent Ada Program. The J73 program must be correct in the
sense that it contains no syntactic or semantic errors (i.e., it
is a "debugged" Program). Figure 2-1 illustrates the use of the
Translator in the software conversion Process' Figure 2-2 shows
the major functional components of the Translator itself.

L

I

$-3

U IJOVIAL TO ADA TRANSLATOR INVESTIGATION

SYSTEM/SUBSYSTEM SPECIFICATION

BEGIN

v

j73
SOURCE
.MODULES.

1 173 SOURCE
----- CORRECTIONS

V V

1 INIT TRAN
I Translation errors

I a

i TRANSLATOR
a I

UI

V
v

• ADA

. SOURCE .Translation Errors
MODULES.-----------------------

V

1 Ada Source
Corrections C---

a a

---------------------------------- a

* I Ada Compiler I

I Test/Integrate -

END

• Fivure 2-11 Software Conversion Cycle
with Automatic J73-to-Ada Translation

S-4

V JOVIAL TO ADA TRANSLATOR INVESTIGATION

SYSTEM/SUBSYSTEM SPECIFICATION

EXEC

a. I IINIT TRAN ILIST

; ANALYZE :
--- - - - - -

5 SPEC 1 BODY 1 GEN

EXEC MAIN EXECUTIVE
INIT GLOBAL ANALYSIS INITIALIZATION
TRAN EXECUTIVE FOR MODULE TRANSLATION

ANALYZE : MODULE ANALYZER
* SPEC J73-TO-IL FOR PACKAGE SPECIFICATION

BODY J J73-TO-IL FOR PACKAGE BODY
GEN GENERATE ADA FROM IL
LIST OUTPUT LISTINGS

I

Fivur* 2-29 Translator- Structural Components

S-5

JOVIAL TO ADA TRANSLATnR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

2.2 System/Subsystem Functions

The functions of the Translator are summarized in this Paragraph.
A complete description of these functions, including details,
examples, and exceptions, appears in the Functional Description.

In translating a J73 program to Ada, the Translator will preserve
the modular structure of the Program. This is accomplished by
translating compools and Procedures to Packages. The J73
constructs which reference separately compiled modules, the REF
and the comPool directive, are translated to Ada WITH clauses. A
J73 Procedure "P1" containing compool directives, REF
declarations, DEF declarations, and local declarations will
become an Ada Package with the general form:

WITH ... - names of other Packages containing
-- compools and declarations of REF'ed objects

PACKAGE Plpackage IS
PROCEDURE P1 ; -- specification of P1

-- declarations of other DEF'ed objects
END Pi.package; -- end of Package specification

PACKAGE BODY Pl-package IS
-- declarations of local STATIC objects

PROCEDURE P1 IS -- body of P1
BEGIN

-- remaining local declarations
-- rest of the Procedure body

END P1 ; -- end of P1 body
END PI-package; -- end of Package body

This translation technique is valid for all compools arid
Procedures except compools containing REF declarations and
Procedures containing Partial comPool inputs. The translations
Performed in these cases are discussed in the Functional
Description.

The predefined types of J73 (signed and unsigned integer, fixed
and floating Point, character, and bit types) will be defined in
a Translator-generated Package called "J73_predefined.package."
Declarations which use these tYPes will be translated to Ada
declarations which use similar type names (such as A14_1_type for
A 14,1) and Preserve all the attributes and type matching
properties defined bY J73 semantics. Bit and character types are
implemented as arrays, sri that the "slice" and "aggregate"
notations are used to denote objects cf bit or character type.
Status types translate straightforwardly to enumeration types.
Serial tables are translated to arrays of records, where each
record is an entry of the table; Parallel tables become
individual records, in which each record component is an *rra-y.

w

* JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

Specified representation attributes of status types and table
types will be achieved using Ada's representation specification
constructs. Pointer types are translated to access typeso block
types will become record types. Declarations which are not
Perfectly translated include specified tables with overlapping
item positions, statement name declarations, and overlay

v declarations. Define calls are expanded inline, so that define
declarations are not translated Per so.

Executable constructs are similar in J73 and Ada. Arithmetic and
logical operations in the two languages have matching operators
and Precedernces, so that translations will not require extra
Parentheses or special functions. Tyre conversions between
closel-' related types are also straightforward, but conversions
between unrelated types and conversions involving pointers,
status objects, and the REP function are translated to calls to
the generic function, UNCHECKED-CONVERSION. Assignment statements
translate directly, with assignments to several variables in a
single statement translated to several separate assignments. Side
effects of expression evaluation order and assignment evaluation
order will not be Preserved by the Translator. Control statements
(FOR, IF, and CASE) translate to the corresponding Ada
statements, with major restructuring required on certain classes
of FOR statements and minor restructuring of some CASE
statements.

Procedures and function calls are translated to syntactically
similar Ada calls, with input Parameters passed in IN mode and
output parameters passed in IN OUT mode. Code that explicitly
copies value or result bound Parameters is generated by the
Translator for cases in which Ada does not guarantee the
necessary value or result binding mechanisms. Label parameters,
subroutine name Parameters, and abort statements are not
translated; they must be hand coded using, for example, an
exception mechanism.

Ten of the 22 directives provided by J73 have simple Aoa
equivalents. The three directives related to define expansions
are not needed; the remaining directives (!TRACE, !INTERFERENCE,
'REDLIUCIBLE, 'BASE, !DROP, !ISBASE, !LEFTRIOHT, !REARRANGE, and
'ORDER) will be translated only If the Ada implementation to be
used Provides corresponding constructs, since no such constructs
are Pre'efined in the language.

uW Ada pr.ovides Predefined attributes of types which are used for
translation :f most ,J7.3 intrinsic function calls. The BIT and

F BYTE functions are translated to slice notation. The NEXT, SHIFT,
and SON intrinsics will be translated to generic functions
,:ie,=laroed in J73_predefined-package.

S-7K.

-JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPEC IFICAT ION

The Translator will process names in a highly flexible manner.
The lser ma'. control the translation of rames containing the "$"
and " characters, as well as the names of Translator-generated
objects. using TPF entries. The Translator will detect any naming
conflicts or violations; it will also preserve the original
,-omments and create comments for TranIslator-generated code.

Diagn.stics will be embedded in the output listing to inform the
user :f assumptions or inaccuracies in the translation of a
rm',duI e. The output l isting will conform to normal standards for

structured programminso with regard to format, indentation, etc.

2.2.1 Accuracy and Val iditv

The t.r, slations performed bY the Translator will be accurate in
the sense that the resulting Ada Programs will be semantically
4eqivalent to the J73 Programs from which they were derived to
the largest extent Possible. Except for certain untranslated

corstructs, which will be clearly flagged in the output, the Ada
Produced by the Translator- will be a valid Ada program in that

a. it will contain ro syntax er-rors;

b. Any missing code that is required for execution of

the Program will be clearly identified;

,. It will be compilable in a standard Ada environment
without modifications (such as reorganizing

statements and declarations or renaming modules or
variables);

d. It will conform to general standards for readable,
well structured Programming.

in saeneral, two versions of a program cannot be guaranteed to
have absolutely identical run-time behavior in two different
ervirormerts, even if the versions were generated from the sam.

g source code (e.g-., a J73 Program compiled for two different
tar-gets). Therefore, the Translator cannot be required to produce
a "perfect" translation of a non-trivial program. However, it
will be required to preserve the original Program semantics
wherever possible, at the expense of some run-time efficiency if

necessary, and to inform the user of any possible deviations from
J73 semantics that are introduced by the translation.

W

5-8

i l w- l i i i i i I i I l

JOVIAL TO ADA TRANSLATOR INVESTIGATION

SYSTEM/SUBSYSTEM SPECIFICATION

2.2.2 Timing

Although Portions of a program may require repeated translationto resolve various translation Problems, the overall translationProcess will be a one-time task. High Performance with respect tothroughput is, therefore, not given a high Priority. TheV Translator should Process J73 source code at about the same speedas a compiler, roughly 100 source lines Per CPU minute on a fast
mainframe host system.

2.2.3 Flexibility

Flexibility in the Translator is provided by use of the
ranslation Parameter File, which is discussed in Section 4.3.1.

U

q

I'

S-9

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

SECTION 3. ENVIRONMENT

3.1 Equipment Environment

A general purpose, medium scale mainframe computer will be needed
to support the Translator and its associated data. The host
environment must include enough direct access memory to store the
Translator, the J73 Program being translated, and all related
data, such as symool tables, intermediate representations of the

0modules under translation, and output data. A host environment
which is capable of supporting storage and compilation of a given
J73 Program will be adequate for. support of the translation to
Ada of that program; no new Processors, memories, or input/output
devices will be required.

3.2 Support Software Environment

g The Translator will operate under control of a general purpose
operating system. Invocation of the Translator, specification of
input and output files, and modification of J73 code for
re-translation (as shown in Figure 2-1) will require the Job
control, file management, and text editing capabilities which are
provided by a typical operating system on a medium scale
computer. No new support software should be necessary. The
Translator could be integrated into an Ada Programming Support
Environment (APSE), but this is not an inherent requirement. For
example, if the Translator were implemented in Ada, an APSE would
be necessary for maintenance and run-time support; however, if it
were implemented in J73, a J73 compiler (and linker) would be
needed -- an APSE would be unnecessary.

1

*1

w

U JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

SECTION 4. DESIGN DETAILS

4.1 General Operating Procedures

To translate a J73 program to Ada, the user must successfully
complete two sets of tasks. First, the translation process must
be initialized; second, individual modules can be translated to
Ada modules.

4.1.1 Initializing the Translator

The translation Process is begun by invoking the Translator in
INIT mode. The inputs required in this mode are the TPF, the
Program module list, and all of the source files of the J73
program to be translated (see Section 4.3.1 for detailed
discussion of these inputs). When the Translator runs in INIT
mode, it will use the TPF and the module list to perform a global
analysis of the J73 program. The initialization process muat be
repeated if a fatal error is detected during the global analysis,
or if the user changes either the modular structure of the
Program (requiring a corresponding change in the module list) or
the TPF. After obtaining an INIT run with no fatal errors,
translation of individual modules may begin.

4.1.2 Translating Modules to Ada

One module may be translated to Ada Per run of the Translator.
When invoking the Translator in TRAN mode, the inputs required
are the J73 module to be translated and the TPF. The global
analysis performed during INIT will be updated if necessary, and
an Ada translation will be output (with diagrostics). The user "

may re-translate a module for any of the following reasons:

a. The module was modified to correct a translation

error,'

b. The module was modified for- algorithmic reasonst

c. The module references another- module which was re-
translated since the current module was last
translated;

d. The user requires a repeat of an earlier
translation to obtain additional output listings.

S-11

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

The Translator will issue diagnostics which advise the user of
needed re-translations for cases a. and c. In some cases,
modification of an individual module ma-- require reinitialization
(for example, when adding or deleting compool directives from a
rmodule).

4.2 System Logical Flow

The Translator system's logical flow is described by the Software
Conversion Cycle (Figure 2-1) and by the chart of Figure 4-1.
Further details are Presented in Section 4.4.

S

$-1

I
JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

INVOKE TRANSLATOR

INITIALIZE 1I TRANSLATE 1
THE :--- MODE? --- I A I

1 TRANSLATION 1 MODULE I

ANALYZE UPDATE
EACH MODULE
MODULE ANALYSIS

(IF NECESSARY)

OUTPUT
DIAGNOSTICS TRANSLATE

A
* MODULE TO
a ADA

OUTPUT
DICTIONARY OUTPUT ADA

LISTING

* EXIT

Figure 4-1: LOGICAL FLOW

S- 13

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.3 System Data

The following ParagraPhs describe the inputs, outputs, and
internal data used by the Translator.

4.3.1 Inputs

Four types of inputs are required by the Translator: command
input, J73 source modulesr a J73 module list, and the translation
parameters.

4.3.1.1 Command Input

A user of the Translator must supply command input to specify the
following items:

a. Mode (INIT or TRAN)
b. Options (output listing; analyze/translate)
c. File names or device names of inputs and outputs.

The options that may be requested include dictionary listings,
listings of Ada source generated by the Translator (see 4.3.2.2),
and diagnostic suppression. When invoking TRAN mode, the user may
specify analysis only (for diagnostics), translation only (for
translating a module which has not been modified since it was
last analyzed), or both (default). The user must inform the
Translator (via the operating system) of the (host-dependent)
file or device names needed for a run of the Translator,
including the names of the files/devices to be used for input and
output J73 and Ada modules, the TPF, the module list, and the
dictionary.

4.3.1.2 J73 Source Input

To initialize the Translator, the user must Provide the source
code of the entire J73 Program to be translated. To translate n

* individual module, the user must Provide the source code for any
Portion of the Program that is separately compilable by a J73
compiler (i.e., a single file whose first line is START and whose
last line is TERM).

All J73 code must be syntactically correct, which implies that it
has been Previously checked by either a compiler or a code
auditor. Previous compilation or auditing of the J73 source code
is not mandatory; however, because the Translator will not
Process syntactically incorrect input, reliable translation will
result only from input that is absolutely free of syntax errcrs.
Input which is syntactically correct but erroneous will, in
general, have unpredicabl* results. Some specific instances of

W erroneous Program translation arce discussed in the Functional
Description.

S-14

VIAL TO ADA TRANSLATOR INVESTIGATION
STEM/SUBSYSTEM SPECIFICATION

3.1.3 Module List Input

order to Perform the global analysis of the J73 Program during
IT mode, the Translator must have a means of identifying the
urce files of the Program accordin9 to module tyPe (cc'mpo'ol,
osram, procedure, or copy). This information is input using the
dule List. The Module List is a text file consisting of one
cord (i.e., card image) for each J73 source file to t'e
anslated. Each record has the the format

(filename> <type>

ere the filename is a host-dependent identifier and the type is
ther "compool", "program", or "procedure", if the file contains
ParatelY compilable J73 source, or "copy", if it contains text
ich is input by one or more modules using a COPY directive. The
dule List enables the Translator to perform a top-down analysis

the Program without requiring the user to submit the
idividual modules in J73 "compilation order".

3.1.4 Translation Parameter Input

e Translation Parameter File (TPF) is used to euide the
anslation of J73 constructs whose mapping to Ada is either
bitrary or indefinite. The content of the TPF is described in
Pendix 1. The TPF is a user-accessible text file; it may be
dified before initialization of the Translator (see 4.1.1) ani
Y be listed or copied anytime.

tries in the TPF for the control of lic,'ing formats and comment
ocessing may be overridden by user command inputs for
dividual Translator runs; other translation parameters must
main constant throughout the translation of a Program.

3.2 Outputs

* Translator Produces three types of outputs: Ada source cooe
anslated from J73, Ada source code generated by the Translator,
d a Program dictionary. Each of these outputs may either be
ored in a file or sent to a device such as a terminal or
inter..

S-15

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.3.2.1 Translated Ada Module Output

The major output of the Translator will be a listing of the Ada
module Produced by a run of the Translator. This listing will be
appropriately formatted ("prettyprinted") to conform to standard
Programming Practices, including indentation to exhibit nesting,
matching of "begins" and "ends", and form feeds for modular units
(i.e., a new Procedure wets a new page). Comments from the input
J73 Program will be included in the Ada listing if requested by
the user. Warning messages will clearly delimit any missing Ada
code corresponding to untranslated J73. The listing may be output
to either a hard cop- device (printer) for human inspection or to
a file (disk or tape) for storage.

4.3.2.2 Generated Ada Module Output

A number of J73 constructs, including predefined types, certain
intrinsic functions, and certain type converisons, have no exact
Ada equivalent. Each such construct is translated to a type or
function which is declared in a special Ada packawe called
"j73_predefined-package". This Package is derived by the
Translator during INIT mode, updated as necessary during TRAN
mode, and output as Ada source code upon user command. The
rationale For the generation of J73_predefined-packa.ge is
discussed in section 3.2.2.1 of the Functional Description; the
specific contents of the Packaee are described in sections 3.2.2,
:3.2.3.1, and 3.2.5 of the Functional Description.

4.3.2.3 Program Dictionary Output

For translation Purposes, the Translator must keep an internal
dictioraryr of the names of all modules and externals used in the
Program being translated. A listing of this dictionary may be
output upon request of the user. It will contain the name of each
library unit in the Ada translation, as well as external names
listed acco,'ding to which library unit contains either a
definition of or a reference to each external.

4.3.3 Data Base

This section defines the internal data base elements used by the
Translator. The Principle structures are the Module Table (one
for the entire J73 Program) and the symbol table, Parse tree, and
DIANA tree (one each for. ever.-., .J73 module).

p-1

-JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

S4.3.3.1 Module Table

The Program module table (ModTab) is a global data base which is
used to store information about modules and externals. ModTab is
initialized, using the user-supplied Module List, to include an
entry for each J73 source module that identifies each module as a
compool, program, procedure, or function. As each module is
analyzed (see 4.4.3), its ModTab entry is filled in with the
following data:

a. Number of other modules referenced (by REF's, copy
directives, and compool directives);

b. For each module REF'ed, a Pointer to that module's
ModTab entry;

c. For each compool which is selectively imported, a
pointer to a list of selected names;

d. A pointer to the module's symbol table;

e. A pointer to the module's Parse tree.

The informatica cintained in ModTab permits the Translator to
resolve moo~le dependencies and exterral references, to manage
the creation and replacement of symbol tables and parse trees,
and to senerate a Program dictionary. The internal structure of
ModTab is implementation dependent.

4.3.3.2 J73 Module Representation

Each J73 module is internally represented by a symbol table
(SymTab) and a parse tree. These two structures contain the
syntactic and semantic data which the Translator requires for the
analysis and translation of individual J73 modules. The parse
tree provides a basis for the translation to DIANA (see 4.4.5 a.,d
4.4.6) that is much more efficient than the direct Processing of
card image source text would be. The SymTab, alonu with ModTab,
serves as the primary data base used in the analysis of J73
modules (described in 4.4.3); it also doubles as the
identifier-attribute Portion of the DIANA tree, as described in
the next section.

S-17

I1
JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/S UBSYSTEM SPEC IF I CAT ION

4.3.3.3 Intermediate Language

The intermediate form of the Ada module to be output by the
Translator is a DIANA syntax tree. The DEFID nodes of the tree
are implemented as pointers into SymTab, so that the attributes
of each variable do not need to be stored redundantly in the
tree. Semantic and code attributes which are irrelevant to the
translation process (such as sm-contraint and cdalignment) are
:mitted. Two structural attributes have been added:
as.error-number, which contains the identifier of a diagnostic,
ind aserror_link, whose value is a Pointer into the J73 parse

tree. These attributes, whose values are set to zero in the
absence of translation errors, permit straightforward generation
-f diagnostics by GEN (see 4.4.7). Aside from these
Modifications, the DIANA tree conforms to the DIANA Reference
Manual (reference Em)).

4..'_:.3.4 Other Data Base Elements

The Translator. executive (4.4.1) creates a parameter table
(ParmTab) based on the TPF. Because the translation Parameters
are needed frequently throughout the translation process, ParmTab
is structured in a manner that permits very efficient lookup of
the Parameter values.

The J73_predefinedpackage (4.3.3.2) is internally constructed as
a DIANA tree. The tree is expanded by SPEC (4.4.5) durin.g the
translation, of each module, and is converted to Ada source by GEN
(4.4.7) upon user command.

Other data includes a file of diagnostic message text, a table of
J73 and Ada reserved words and symbols, the J73 parser table, and
a file of diagnostics generated during INIT mode.

4.4 Progsram Descriptions

The following paragraphs describe the major functional components
of the Translator. The hi-hest structural level is depicted in
Fig-ure 2-2; the next highest level is discussed in this section.

Lower levels of the Program str-ucture will depend on the details
of an actual implementation of the Translator.

S-18

U

U JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.4.1 EXEC

The entry Point of the Translator is called EXEC. EXEC performs
two functions: it contains all of the routines which comprise the
interface between the Translator and its host operating system
and it serves as the main executive of the rest of the Program.
If the Translator is implemented using overlays, EXEC will
include the commands necessary to accomplish the overlays.

The Processing Performed by EXEC is shown in Figure 4-2. The
Parameter table (ParmTab) is constructed from the TPF; other
variables are initialized based on user command inputs. EXEC then
calls either INIT or TRAN, based on the mode selected by the
user, and then calls LIST to complete the Translator run.

S-19

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

Begin EXEC:

V

1 INITIALIZE
DATA a

INCLIJDING
* PARMTAB a

Vv ,

/ \
INIT / \ TRAN

--------------------/ MODE \-------------------I\ ? I a

/ a

v \/ v

INIT : a TRAN

a a:

ILIST 1

* a

v

exit

Fivuro 4-21 EXEC

w

a a--0

U JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.4.2 INIT

INIT is the main routine for controlling the Translator in INIT
mode. The Primary function of INIT is to submit individual J73
modules to ANALYZE (see 4.4.3) in an order which permits an
efficient global analysis of the J73 Program to be Performed.

In attempting to analyze a J73 module whose context may include
compool data, two approaches are Possible. The first approach is
to use a compool output file to store the results of an analysis
of the compool. The compool output file can then be imported into
the data base (i.e., symbol table) of the module which references
it, before the module itself is analyzed. This approach is
appropriate for compilation of J73 for two reasons:

a. J73 modules may be coded and compiled in the order
in which they must be analyzed by the compiler.

b. To compile # module which imports a compool, the
compiler needs access only to the appropriate
compool output files (not to the compool source).

Since these reasons are not applicable to the task of translating
a complete, previously written J73 Program to Ada, a different
approach has been devised for use by the Translator. During INIT
mode, the Translator builds a global data base by analysing each
source module in "compilation order":

a. First, "stand-alone" compools;
b. Then, compools which import other compools;
c. Finally, the Program, Procedure, and function

modules.

This approach removes the need for- compool input/output
Processing. All the source files are available to the Translator
at once durins INIT mode; using information in the module table
(ModTab), the INIT routine derives a correct order of analyfis
and Proceeds to call ANALYZE for each module, building tne
required global data base without the help of either compool
output files or of a user-controlled ordering. This is a major
advantage: it frees the user of the Translator from the task of
manually deriving an acceptable ordering (a difficult task for a
1000 module Program!) and also eliminates the time and space that
would have beer consumed by the creation and use of compool
output files.

Before submitting the .J73 source modules to ANALYZE in the
fashion described above, INIT creates ModTab from the
uesr-supplied Module List. INIT will terminate the analysis
Process when ANALYZE detects i fatal error in a module. A diasram
of INIT appears irn Figure 4-3.

S-21

U
JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

besin INIT

V

1 tREATE I
1 MODTAB 1

V

I SELECT
I A MODULE !< ----------
I FROM MODTAB

S

* V

1 ANALYZE I

I S
* I

V "
/ \/

YES / FATAL \
...... \ERRORS?/

NO* / /\

/ANY\ YES
/MODULES\ ------------

\LEFT /U \ ? /

\ /

NO
V

-------------- > Exit

Figure 4-3: INIT

w

S-22

• m~m mmm , m | -m mmmrm_____m

U JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.4.3 ANALYZE

The Purpose of the ANALYZE routine is to Perform an analysis of
an individual J73 source module in the context of the entire J73
program being translated. To do this, it is required that all
modules on which a given module depends have been Previously
analyzed (as discussed in the Preceeding section). ANALYZE may be
called during INIT mode, to Perform the initial analysis of a
module, or during TRAN mode, to update the analysis for a new
translation.

Processing in ANALYZE occurs in two Parts, as shown in Figure
4-4. The first Part is a syntactic analysis, in which the J73
source module is converted to a SYmTab and a Parse tree. The
second Part is an updating of the internal data bases related to
the module analysis.

Syntactic analysis involves three routines: a tokenizer, a
Parser, and an error detector. The tokenizer Performs a

U table-driven lexical analysis of each J73 symbol. It returns a
keyword token for each Predefined J73 symbol, and a name token
(i.e., a character string) for each user defined symbol. The name
tokens reflect the translated spellings of the user defined

symbols, Permitting detection of name conflicts during the
analysis. The Parser expands the symbol table and Parse tree to
reflect the syntactic content of the module using a conventional
bottom-up Parse algorithm. The Parser may be generated
automaticall- using a commercially available Parser-generator, as
in, [9], or- may be manually coded. In either case, the Parser will
generate simple diagnostics for any J73 syntax errors; no
extraordinary error recovery techniques are needed, since the J73
input is supposed to be syntactically correct. However, since the
J73 code may contain untranslatable constructs, the error
detector is called by the parser to detect Problematical J73
constructs (see Appendix 1 of the Functional Description) and
name conflicts, making an entry in a diagnostics file for each
error detected. The syntactic analysis is depicted in Figure 4-5.

Upon detection of an irrecoverable error, such as a missing copy
file, missing compool, or J73 syntax error, ANALYZE will delete
the erroneous SymTab and Parse tree created by the sYntatic
analysis. If no fatal errors are encountered, ModTab is searched
to ii ld the names of all modules which reference the current
module. The names of these modules and their corresponding source

* files are stored in a table for use by LIST. If ANALYZE was
called to update a module's analysis (rather than initialize it),
the final action taker, is to delete the module's Previously
created SymTab and parse tree.

S-23

S

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

Begin ANALYZE

v

1PERFORM
1SYNTACTIC
1ANALYSYS

YES /FATAL\
----------------------------- \ERRORS?/

NO1

PURGE
1 SYMTAB AND

PARSE TREE

CREATE I
DEPENDENT
MODULE
LIST

DELETE

OLD SYMTAB I
* AND PARSE

TREE

-- -- -- - -- -- -----------

exit

Fisure 4-48 ANALYZE

S-24

fo

U JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

Begin SYNTACTIC ANALYSIS

V

--

1 TOKENIZE I
1 A STATEMENT l< -----------------

HI

I
v

SPARSE THE l

I TOKEN STRING :

II

II

1 DETECT POTENTIAL 1
I TRANSLATION ERRORS 1

I

I
V

I UPDATE DIAGNOSTIC IFILE

I

Iv
Le\

/ \

/
I

/ MORE \
/STATEMENTS \---YES ---------

S-/
\ /

\ /
\ /

\ /
II

NO I

v

exi~t

Figujre 4-5: SYNTACTIC ANALYSIS

S-25

U JOVIAL TO ADA TRANSLATOR INVESTIGATION

SYSTEM/SUBSYSTEM SPECIFICATION

4.4.4 TRAN

TRAN is the routine which controls the Translator during TRAN
mode. As shown in Figure 4-6, TRAN is a simple executive whose
function is to call other routines based on the analyze/translate
option requested by the user (see Section 4.3.1.1).

The user may wish to have a module analyzed, to detect possible
translation errors or name conflicts, without needing an actual
Ada source output. This is analogous to running a module though a
compiler with a "syntax only" option; the user may obtain
"front-end" diagnostics without Paying for "back-end" processing.
In this case, TRAN will call ANALYZE and then return without an,
further processing. Conversely, the user may wish to translate a
module which has not been modified since it was last analyzed.
This situation occurs when

a. The module has not been translated or modified
since Translator initialization; or

b. The user desires additional output listings
for the existing version of a oodule.

In this case, TRAN bypasses the call to ANALYZE and calls the
routines SPEC, BODY, and GEN to Perform the translation based on
a Prior analysis of the module.

S-26

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

Begin TRAN

V
/ \

/\

----- YES ---------- /TRANSLATE\
\ ONLY ?/

I /
\ /

NO I
V

I ANALYZE I

I I

I V

I \

/ FATAL \---YES
u \ERRORS?/ I

\/ I

NO I I
v

/ \
/ \ II

/ANALYZE\ YES I
\ ONLY? ------------- >

\ /I

NO\ I I
----------------------- I I

v I

i SPEC I I

VI

q S

I BODY

* S
I S

V

i GEN i I

v

exit

Fisure 4-6: TRAN

'- -27

,qp

-JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SIUBSYSTEM SPECXIFIC:ATION

4.4.5 SPEC

SPEC is the first cf two routines which translate the J73 parse
tree created b-v ANALYZE into a DIANA tree which represents the
Ada translation of a module. The output of SPEC: is the Portion of
the DIANA tree needed to represent the specification (i.e.,
visibl,? part) ,-,f the package into which the .J73 module will be
translated. The DIANA tree is completed by BODY, which is
discussed in the r,e-:.t section.

T he translation, of the 173 parse tree to DIANA is based on a
top-down traversal of the parse tree. SPEC ignores the portions
of the Parse tree which correspond to the Ada package or
pr,:.cedure b,.d., wh-ile creating the DIANA tree for. the package
specification according to the mappings discussed in the
Furctional Description. This includes the nodes and associated
attributes for the Package's context specification (WITH and USE
clauses), as well as for the declarations which form the package
specification itself. SPEC also adds nodes to the
.J73_predfinedpackage DIANA tree as required.

4.4. 6 BODY

The second pass over the j73 Parse tree is made by BODY. For
comPo,,IIs, 1which are translated to package specifications with no
Package body, the entire DIANA tree is created by SPEC:; BODY
Produces, n,: output. I-:onversel'1 ', a procedure containing no DEF
de,-lar-ations or STATIC: declarations is Processed in entirety by
BODY, since it is translated to a Procedure body (with no Package
specification). In the general case (translation of procedures
which ma'y" include DEF or STATIC data), the two-pass Process
Perfor-med b .r SPEC: and BODY permits translation of the .173 parse
tree to DIANA in an efficient manner, a one-pass technique would
involv,? reordering of the module's declarations and statements to
separate the Pac:kage specification part from the Package body
part, r'equiring more complex tree-processir|s algorithinp.

S-28

qI

IOVIAL TO ADA TRANSLATOR INVESTIGATION
YSTEM/SUB3YSTEM SPECIFICATION

.4.7 GEN

da source code is generated from the DIANA tree by the GEN
outine. GEN is a tree-walking algorithm which creates source
ext based on the guidelines discussed in references Ed] and [m].
n Particular, each node of the DIANA tree created by SPEC and
ODY will include the ixcomments attribute as suggested in
Ppendix III of Em). The value of this attribute may be filled in
ith a reference to a Translator-generated comment in the case of

node that represents a Translator-generated statement;
therwise, the attribute will contain a reference to an original
73 source comment (possibly null). GEN -ill use the
s-errornumber and as-error.link attributes (defined in 4.3.3.3)
o generate diagnostic messages and J73 source code in positions
f the Ada source corresponding to translation errors.

he output of GEN is a text file which is used by LIST to Produce
n appropriately formatted output listing. If the user has
equested a listing of J73_predefined-package, GEN will also
reate a text file based on that package's DIANA tree.

.4.8 LIST

he listings output by the Translator are produced by LIST. Using
he diagnostic files created by ANALYZE, the dictionary
epresented by ModTab, and the Ada source files created bY GEN,
IST outputs prettyprinted reports requested by the user for each
ranslator run.

C' c.!

-R126 472 JOVIAL 0J73) TO ADA TRRNSLRTOR(U PROPRIETARY SOFTWIARE 2/2
INC LOS ANGELES CA M J NEIMAN JUN 82 RADC-TR-82-175
F3e682-gi-C-e2i7

UNCLASSIFIED F/O 9/2 N

EEEmohhommoliI*MESSERlf

IL L28 .5ii MI 2in
EJ2

U MIROOP REOLTONTETCHR

AIONL BR Fl TADAR'-| 3-

-i
1.25 . U .O1il1.5 - IIII.4 ""

lull- .Ei.-

MICROCOPY RESOLUTION TEST CHART
MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDAROS-1963-A

NATIONAL BUREAU OF STANDARDS-1963-A
.

11.25k L

MICROCOPY RESOLUTION TEST CHART
-. NATIONAL BUREAU OF STANDARDS-1963-Ar

IlMLLQ Q5 12
W I 22I

In IUIL2 W

im JQbl JL

MICROCOPY RESOLUTION TEST CHART MIOOPY BREAUO TESCARTC6-
"ATOM AL MJEAU OF STANDAAC6-1963-A NAINLBRA O47NAM16

UJOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

APPENDIX

Contents of the Translation Parameter File

The follo wine table groups the translation parameters by class
(comment translation, executable construct translation, J73
implementation parameters, control of output listings, name

K translation, and names of rravm&s) and gives a brief description of
the Purpose of each parametr. (Note; T.G. means "Translator

K generated".)

PARAMETER PARAMETER
CLASS NUMBER PURPOSE

*. COMMENTS C1 Suppress original comments
C2 Suppress T.O. comments
C3 Start new line for an embedded comment
C4 Format of comment for T.G. type

declaration

EXECUTABLE El Suppress calls to rounding routines
E2 Suppress calls to truncation routines
E3 Name of user supplied roundine function
E4 Name of user supplied truncation function
E5 Name of user suppliled UNCHECKED-.CONVERSION

function
E6 Convert IF ... EXIT to EXIT WHEN...
E7 Suppress copying of BY VAL parameters
ES Suppress copying of BY RES parameters

* IMPLEMENTATION
PARAMETERS 11 Values of J73 implementation parameters

'1 634

* LISTINGS Li Translation of tab stops
L2 Translation of form feeds
L3 Suppress upper case
L4 Suppress lower case

*L5 Include J73 source in diagnostics
L6 Suppress informational diagnostics
L7 First column for unlabeled statements
L8 Last column for code
L9 Last column for comments

S-Al

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPEC I FICATION

PARAMETER PARAMETER-
CLASS NUMBER PURPOSE

NAMES Ni Translation of
N2 Translation of embedded S
N3 Translation of leadine $
N4 Translation of names which are Ad&

reserved words
N5 Spelline of T.G. type names
N6 Spelliny of T.G. function result names
N7 Translation of status constant names
NG Maximum number of characters recosnized
N9 SPellinv of T.G. rackav* names

PRAGMAS P1 Name of PRAGMA for contisuous allocation
P2 Name of PRAGMA for overlayed allocation
P3 Name of PRAGMA for !TRACE
P4 Name of PRAGMA, for !INTERFERENCE
P5 Name of PRAGMA for !REDUCIBLE
P6 Name of PRAGIIA for !BASE
P7 Name of PRAGMA fop !ISBASE
Pe Name of PRAGIIA for !DROP
P9 Name of PRAGMA for 'LEFTRIOHT 1
P1O Name of PRAO#IA for !REARRANGE
P11 Nam* of PRAGHA f or !ORDER -

S-A2

GUIDELINES FOR TRANSLATION OF
JOVIAL (J73) PROGRAMS TO ADA

* Pr.parod by:

* Mark J. Neiman

1G i

PREFACE

This report was prepared as part of the JOVIAL (J73) to Ada
Translator Investilation [6], a research study Pepformed by
Proprietary Software Systems for the Rome Air DeveloPment Center
under contract number F30602-81-C.-0217. Two other reports were
prepared during the investigation: a Functonal Description [43,
which definos the requirements to be met by a JOVIAL (J73) to Ada
Translator, and a SYstem/SubsYstem Specification 153, which
presents a top--level desi.n for a Translator. The Present report
is intended to be read in the context of those two documents.

G-iii

*1

-. . -.- * -. - -]

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

I. INTRODUCTION

A superficial inspection suggests that the languages JOVIAL J73)

and Ada, as defined by MIL-STD 1589B C23 and MIL-STD 1815 C33, are
quite similar. Both languages feature separate compilation, strong
typing, block structure, and compulsory data declarations. The IF
statement, CASE statement, and loop constructs of the two
languages are almost identical. Each language provides operations
on fixed point and floating Point data, in addition to integer and
character operations. Ada is a much more Powerful language than

: J73, since it includes many features for Program control,
modularization, and data description that are not found in J73.
One might conclude that J73 is, in an informal sense, a functional
"subset" of Ada, and that translating J73 Program to Ada should

' be a reasonably easy task.

Unfortunately. a closer analYsis of the languages reveals a number
of fundamental differences which render the translation task
exceedingly complex. The semantics of data and type declarations
is a case in point. In J73, the storase for a variable will be
allocated statically (i.e., permanently) whenever the declaration
of the variable so specifies; in Ada, storage is allocated by
context (i.e., for the life of the module in which the variable's
declaration appears). A J73 type is defined bY a set of
attributes, so that two distinctly declared types are considered
to match if th, ir atttributes matchl two distinctly declared Ada
tYPes are always considered to be non-matching, even if their
attributes are identical. The attributes of a type, in J73, are
defined in terms of target machine representation (e.g., number of
bits, Physical record structure), while Ada requires only
alsorithmic attributes, such as range, error bounds, or logical
record structure.

The two languages contain several maJor differences in the
semantics of executable (run-time) constructs. J73 Permits
conversions between any two types, while Ada Prohibits conversions
between anY two tYPes which are not closely related. Linke"
structures may be created in a J73 program using untYped Pointers
to reference named (declared) obJectsi Ada allows only typed
pointers, which may reference only anonymous objects. The
semantics of Parameter Passing are defined in terms of binding
mechanisms (value, reference, or result) in J731 Ada defines only
the effect of a Parameter binding (input or output), while

* carefully avoidins any specification of binding mechanisms. A J73
procedure may be Prematurely terminated usins one of two
constructs ("OOTO <statement-name.Parameter>" or the ABORT
statement) which are nothing but global GOTO'sf Ada Permits only a
well-structured mechanism (the raisins of exceptions) to exit from
a procedure prematurely.

I

'-.- -.. -n..C .

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

The incompatibilities between J73 and Ada go beyond the semantic
differences between their individual constructs. The lanquages
have dissimilar requirements Pertaining to the order of
compilation of modules. An Ada compiler must have access to slobal

2" knowledve of external names. whereas J73 externals are not
resolved until link time. Both lanouages have a macro-definition/
expansion facility, but J73 allows full, text-oriented macro -
substitutions, while Ada permits only Procedure definitions
(generics) in its macros.

The maJor differences between J73 and Ada are summarized in the
table below. These differences, Plus many smaller dissimilarities,
cause the translation of a J73 program to Ada to be exceedingly
difficult, whether the translation is done manually or with the
aid of an automated system (a Translator). The Portion of the
translation task which can be automated is discussed in detail in

* the Translator Functional Description. A discussion of the Portion
. which requires manual translation is given in the next two

sections, followed bY a section containinv some guidelines for
achieving "cleaner" translations.

..

• :i~02

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUI DEL INES FOR TRANSLAT ION

Summary of J73/Ada Incompatibilities

I FEATURE I J73 I ADA ,
-- ----------- a
arI I
I Static and external I Explicit I By context
I allocation I II" -. : I

I Type matchine I Equivalent tYpes I Distinct types do
I always match I not match, even

I i Iif equivalent. I
Attributes of types I Target machine I Alvorithm oriented I

I oriented I• " I I
I Order in which I Imposed only on I Imposed on all
I modules must be I compool dependencies I modules
I compiled III I

. I Type conversions I Permitted between I Permitted between
I any two types I two closely related I

I tYPes
a . ,

II Relationship I UntYPed Pointers, Typed Pointers, I
I between pointers I named data I anonymous data
I and Pointed-to I I objects I
I data obJects II IL II

I Macro-substitutions a Text-oriented I Procedure-oriented a
I Parameter Passinv I Defined by mechanism I Defined by effect

I Abnormal I Unstructured GOTO I Highly structured a
I termination of I and ABORT I RAISE and EXCEPTION
I Procedures aw I

I Resolution of I Link-time I Compile-time
I externals and I
I parameter matchins I I

0-3

JOVIAL TO ADA TRANSLATOR INVESTIGATION
' GUIDELINES FOR TRANSLATION

II. CLASSIFICATION OF PROBLEMATICAL CONSTRUCTS

. Despite all the fundamental differences between J73 and Ada, there
-' Is Probably no such thing as an untranslatable construct. Given

enough analysis, any J73 Program can be converted to Ada, FORTRAN,
assembly language, or virtually any lanvuaoe which is intended for
use on a conventional (von Neumann) computer. Unfortunately, the -

analysis and synthesis (i.e., rewroerammins) required to translate
certain J73 constructs to Ada automatically would be unreasonably
expensive, given the state of the art of automatic Proeramminu and
lansuage conversion. A cost effective strategy is to automate the
bulk of the translation task and to detect and identify
(automatically) Portions of Programs which require manual
translation. With this approach, a Translator system with roughly
the same complexity as a J73 comPiler would Perform most of the
translation without human assistance, while flassine the -.
constructs that it cannot handle Properly. These Problematical
constructs would then be analyzed and translated manually, using
techniques outlined in Section I1. Before discussing the
translation of specific Problematical constructs, it is useful to
define classes of constructs according to ease of translatability.

Most J73 constructs can be translated to Ada using techniques
which may be automated by the aPproach discussed in the Translator
System/Subsystem Specification. Such "class-one" constructs are
translated using the maPpings described in the Translator
Functional Description. The resulting Ada Program will be better
(more efficient and/or more readable) if the use of certain
class-one constructs is avoided or restricted (see Section IV).

. Constructs whose translation to Ada cannot be automated
cost-effectively ("Problematical" constructs) fall into two
classes. An instance of a Problematical construct which may be
replaced by a non-problematical J73 construct is described as

*: "class-two". Such a construct may be manually converted to a
class-one construct to facilitate automatic translation.

. Problematical constructs which are semantically orthogonal to thu
rest of the J73 language Present the most difficult translation
Problems. These are called "class-three" constructs. Since a
class-three construct cannot be converted to a class-one
construct, the translation requires one of the following actionsi

Al. Change the J73 Program alorithmically to avoid
using the construct;

A2. Translate the rest of the Program to Ada and change
the Ada Program alvorithmically to avoid using the
construct;

0-4

..

UJOVIAL TO ADA TRANSLATOR INVESTIGATION
* GUIDELINES FOR TRANSLATION

A3. Translate the rest of the Prooram to Ada and use a
feature (possibly a non-standard one) of the Ada
environment to accomplish the function of the

* * class-three constructt

*A4. Substitute direct code (assembly lanvuave or
machine laneuave) for the construct.

The actions listed above may, of course, be taken to translate
class-two constructs as well as class-three constructs.

The mappings of the class-on* constructs onto Ada, as discussed in
the Functional Description, are intended to be automated (see the
Translator System/Subsystem Specification), but may be performed
manually; the validity of the mappinvs is independent of the means
o~f implementation. The problematical constructs, class-two and
class-three, must be hand-translated. There are three kinds of
Problematical constructs: data-oriented constructs (table, blockv

* and overlay declarations), executable constructs (slobal GOTO's.
APORT's, arid expression side effects), and compil*-tim* functions.

G-5

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

III . TRANSLAT ION OF PROBLEMATICAL CONSTRUCTS

A. Data-Oriented Constructs

A J73 data (or data type) declaration may specify several kinds of
data overlaps. For example, a specified table may contain items
whose bit Positions (within the table entry) overlap either
Partially or completely; a block may be made to overlap another
block using an overlay declaration and an order directive; overlay
declarations may be used to Position several data objects in
overlapping Positions in memory. In attempting to translate these
kinds of constructs to Ada, one must consider the Purpose of the
construct. A Particular instance of a Problematical data
declaration may have one of several Purposes3

P1. A "true overlay", in which the same bits of
Physical memory are used by more than one named
data object.

P2. The allocation of storase for data objects in a
specified order.

P3. The allocation of contiguous storage of data
objects.

P4. The allocation of storage for data objects at a
specified memory address.

P5. A "virtual overlay", in which two or more named
data obJects are declared to occupy overlapping bit
Positions in a table or a block, but the data
structure is accessed as a variant record (i.e.,
only one of the overlapping obJects Physically
exists in each record; the obJects do not really
overlap).

A Person wishing to translate a problematical data declaration to
Ada must analyze the construct in the context of its Proeram and

*+ determine into which of these categories it falls.

A "true overlay" may be treated as a class-two construct. This is
accomPlished by using duplicate storage in lieu of overlayed
storael instead of declarine one obJect to overlay the other, one
may declare the obJects as separately stored data. In the
remainder of the Program, each statement that changes one of the
obJects must be followed by a new statement that changes the other
obJect in the same way. For example, a Program of the form

VI

" 0-6

, ,.*. ;'. .. - . .

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

ITEM iil...
ITEM ii2...
OVERLAY ii1:ii2i

iii ... "assignment to iiI also assigns ii2"

is changed to

ITEM iiI...
ITEM ii2...

iiI ... "assigns only iit"
ii2 - iil! "assigns ii2"

This technique has two major disadvantages. First, it is
V applicable only to "cleanly" overlayed objects - objects which are

Partially overlapped (such as table items) could not be recoded in
* this manner. Second, the resulting Program is highly inefficient;

twice as much storase is needed for the separately allocated
objects and twice as many assignment statement statements are

* executed during the Program. Because of these disadvantages, "true
overlay" constructs should, in most applications, be treated as
class-three constructs. An implementation of Ada may (optionally)
Provide an overlay construct, allowing action A3 to be used. If an
overlay feat,-i is not available, algorithmic changes (actions Al

." or A2) are required.

A P5 construct ("virtual overlay") can be effectively translated
using action A3. The technique is illustrated by the following
example:

TABLE building (100)... "Table of data about two kinds of
buildings' home and business...
one entry Per building"". BEGIN -

"The following items are used for all buildings:"
ITEM zipcode U 17 POS (0,0)l -
ITEM kind STATUS (v(home), v(business)) POS (17,0)]

* -"The followins item is used for business buildings only:"
V-_ ITEM name C 10 POS(0,1)1 "name of business" "1

"The followins items are used for homes onlys"
ITEM bedrooms U 3 POS(0,1)I "number of bedrooms"
ITEM baths U 2 POS(3,1)1 "number of baths"

END

0-7

TO ADA TRANSLATOR INVESTIGATION
ENES FOR TRANSLATION

is data structure, the items "bedrooms" and "baths" do not
ly overlap "m". Instead, the item "kind" is used as a
ainant to select one of two alternate structures for each
entry. This is semantically equivalent to a variant record
*If the table declaration is translated to

building-..kind IS (hom*,busintss);
buildins-tvpe (kind: building-..kind) IS
ECORD

zipcodel Ul7-type;
CASE kind IS

WHEN business ->name: CIO-..typo;
WHEN home ~>bedrooms: U3-.typtl

baths: U2-..typel
END CASE

4D RECORD;
dings ARRAY (0... 100) OF buildin...tvp*

assignments to all the items within an entry of "building"
made using aggregate r-,tation. Thus, the statements

(22) - 2;

ooms(22) - 4;

inslIated to

dinv(22) :- (home*1341194,2)1 -- Positional record aggregate

.ai va 1 n tl1 ,

dino(22) :- (kind -> home, zipcode -> 13411, baths -> 2,

bedrooms -> 4)1 -- named component aggregate

Pcord aggregate used in the assignment includes a value for
(the discriminant of the record)s whether one uses the

mnal notation or the named component notation.

Lgnmerat to an individual item

;(22) - 2;

islattd to

ling (hom*)(22) 1- 2

Lch the discriminant is given on the left hand side and a

I (rather than an aggregate) is given on the right hand

0-8

JO VIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

The use of & variant record for this kind of translation results
in A" code which is both efficient and semantically equivalent to
the original algorithm of the J73 code.

When on overlay declaration is used for purpose P4 rather than for
a "true overlay', it may be translated to an Ada address
specification. For example,

O[EMAY P06 (4FFF)s blockl I

is equivalent to

FOR blockI LOE AT 1i4FFPF 1

Overlay declarations, block declarations, and order directives
which are used for purposes P2 and P3 are not covered by the
smanticP of Ad as given by the language standard. Translation of
such constructs may be achieved by action A3 if the Ada
compiler/environment to be used offers option&l features for
overlaying or ordering of storage allocation. Otherwise, maJor
algorithmic changes will be required.

9. Executable Constructs

When an ADORT statement is executed, the J73 procedure currently
e*ecuting will terminate (return without settine any value or
result parameters), and execution Proceeds at the statement whose
label appeared in the abort-phrase of the most recent procedure
call statement which included an abort-phrase. If there were
intermediate procedure calls without abort-phrases, then those
intermediate procedures are also terminated; if no Procedure calls
included an abort-phrase, a STOP is executed. The difference
between the ABORT statement and the Ad& RAISE statement is that
the ABORT may result in a transfer to anx mant of the procedure
which handles the ABORT. The exception handler which is invoked bv
a RAISE statement must appear at the and of the procedure in which
it appearso the handler acts as a substitute for the remainder of
the calling procedure. In effect, a J73 ABORT is handled by
eecutin, an unrestricted GOTO within the calling procedure, while
Ada Permits a procedure termination to be handled only bY a
structured exit from the calling procedure.

The -173 statement name parameter is used to terminate a procedure
with an unrestricted OOTO in the same manner as the ABORT, but at
one level of procedure calls rather than any number of levels. The
statement, "GOTO <statemontnamoparamoterY' is, therefore, a
special case of the ABORT statementl the two constructs share the
same class-three incompatibility with Ada.

0-9

-J
JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

Two techniques are available for translating a Program which
contains either of these constructs. The first involves an A4
actions replace the ABORTs and global GOTOs with calls to
machine-level runtime routines, effecting the handling of
Procedure termination at the target-machine level rather than the
high-order language level. The second technique is an algorithmic
change (A2) which restructures the calling Procedure, Placing the
logic which handles the ABORT or GOTO at the end of the Procedure.
Once this restructuring has been accomplished, the abort-phrase or
statement name Parameter is replaced by an exception declarationg
the end-of-procedure logic is labeled as an exception handler; and
the ABORT or GOTO is replaced by a RAISE statement. This technique
of Processing Procedure terminations may be used for any number of
statement name Parameters or abort-phrase values, since miltiple
exceptions may be defined within the same Procedure. The
Programming of exceptions is discussed in detail in the Ada
language standard (in Particular, see Section 11.4.1); a lucid
discussion of the definition and ProPagation of exceptions may be
found in Chapter 10 of Barnes 113.

The J73 language suarantees that the right-hand side of an
assignment statement will be evaluated before the left hand side,
and that function arsuments and table indices will be evaluated,
left to right, before any expressions or assignments are
Performed. This means that the statement

xx = funcl("expression 1") + func2("expression 2")9

may have a different effect than the statement

xx = func2("expression 2") + funcl("expression 1")l

if the evaluation of expression I causes a chanve (side effect) in
the value of expression 2. A J73 Program may actually rely on this
effect! an Ada Program may not. Beside avoiding such dubious
Programming Practices, a Programmer may remove order-of-evaluation
dependencies from expressions and assionments bY breaking up t.e
expressions into separate statements. For example, if the
Preceeding assignment statement needs to have expression I
evaluated first, then

xx - funcl("expression 1");
:x= xx + func2("expression 2")1

may be substituted for the original statement. This technique may
be applied as either a J73 modification (treating it as a
class-two Problem) or as a change to the Ada translation of the
Program. In either case, the side effect dependencies must be
detected and eliminated manually.

0-10

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

C. Compile-Time Functions

Because Ada lacks a text-oriented macro-capability, the DEFINE
calls in a J73 Program must be expanded at translation time.
Therefore, the DEFINE declaration and the !LISTINV9 !LISTEXP. and i
'LISTBOTH directives are simply discarded rather than translated.
Other J73 directives which have no Ada eqtuivalents may be
translated only if the Ada environment to be used contains

* optional features which correspond to the J73 directives. In
Particular, the 'TRACE directive will be implemented, in some
form, in every Ada environment. Other directives (!REDUCIBLE,

* 'BASE, !ISBASE, 'DROP, !INTERFERENCE, !LEFTRIGHT, and !REARRANGE)
* have no runtime semantic effect; they simply aid the J73 compiler

in Performing certain code optimizations. Since these
optimizations do not change the semantics of the Program, and
since Ada compilers are expected to Perform subtle code

* optimizations without the assistance of such directives, it is
likely that the deletion of these directives from a translated
Program will have no detrimental effect.r

0-11

U JOVIAL TO ADA TRANSLATOR INVESTIGATION

GUIDELINES FOR TRANSLATION

IV. PROGRAMMING GUIDELINES

In the preceedinv sections, the translation of Problematical
constructs in existine J73 Programs was discussed. If a J73
program is to be written with translation to Ada Planned for the
future, the Program should avoid the use of all the problematical
constructs. A J73 Program containing only class-one constructs
will be (relatively!) simple to translate; in fact, it will be
automatically translatable. However, the J73 Programmer can go
beyond merely writing a non-problematical program. Thi Ada Program
that is Produced by the translation process, whether manually or
automatically, will be of significantly higher quality if the
following guidelines are observed by the J73 programmer"

1. Do not use untYped pointers. Every pointer
declaration should include a specified type, so
that translation to access types is simplified.

2. Avoid conversions between unrelated types. Ada does
not permit such conversions, except by use of the
generic function UNCHECKED-CONVERSION, which is
somewhat cumbersome to instantiate and call for
every type of conversion.

3. Do not use names containing more than one
consecutive $ or 1. This Practice will avoid the
generation of awkward names using underscores in
the Ada program. In fact, the names in the
translated Program will be much cleaner if the J73
names use either $ or 1, but not both.

4. Limit the length of names to much less than the 32
characters permitted by J73. ManY translation
functions require the generation of tyPe names
based on adding an extension to an obJect name (or
generation of Package names by adding an extension
to a Procedure name), which may result in
excessively long identifiers.

5. Do not use the FALLTHRU construct. Its translation
is both awkward and inefficient.

6. Avoid loop statements with by-clauses or
then-clauses which result in a loop increment of
other than one. Virtually any function that
requires a loop can be coded using either a FOR
loop with an increment of one or a WHILE
<condition> loop, both of which have simple and
efficient Ada translationso loops with increments
not equal to one can be translated, but not as
cleanly.

0-12

INI
JOVIAL TO ADA TRANSLATOR INVESTIGATION
OUIDELINES FOR TRANSLATION

7. Avoid elaborate DEFINE usaoe. DEFINEs will be lost
in the translation Process,

8. Declare olobal data in compools. Individual data
declared as externals in Procedures results in a

:" much more complex translation. Similarly, static

data should be declared in comPools or in the main
Program, not in Procedures.

9. Keep table structures as simple as Possible.
Provrams which use Parallel, Packed, or variable
entry tables will be much harder to translate to
Ada than Provrams which use straishtforward tables.

10. Include detailed comments about non-trivial data
structures. Tables, blocks, and the code which
accesses them can be translated much more easily
(and tested much more reliably) if the Personnel
doing the translating and testins understand the
PurPose of the data structures.

11. Include detailed comments about Pointer usage. Ada
features very Powerful instructions for dynamic
allocation and access of linked data structures.
These features may be exploited by manually
recodine Portions of a program (after translation)
in Adal a direct translation will not make
efficient use of these features. This Process will
be facilitated by the liberal use of comments.

12. Avoid GOTOs and deeply nested Procedures. This will
improve the readability and maintainability of the
Proyram in both J73 and Ada versions.

0-13

'77.

JOVIAL TO ADA TRANSLATOR INVESTIGATION
OUJOELINES FOR TRANSLATION

V.* CONCLUSIONS AND RECOMMENDAT IONS

Many embedded software systems which are currently coded (or beins
coded) in J73 are to be used and maintained in the mid 1980s and

* beyond. Such systems should be considered as candidates for
translation to Ada. The modification, *nhan4 #ments and repair of
embedded systems will be much more economical if the (predicted) _

benef its of the Ada Prooram are exploitedl the Ada Standardization
* Prooram ouarantees that these benefits will be available only for

Ada-coded systems. As shown by the Functional Description and the
System/Subsystem Specification, a Translator can be implemented to
perform the vast maJority of the conversion to Ada of a large,
realtime program. The translation Process must not be considered
to be "cookbook" in nature; even a well-designed Translator system
will be unable to produce a flyable Ada program. The translation
of problematical J73 constructs, as well as testine and
integration of the Ada program, will require highly skilled
Personnel, whether or not a Translator Is used. However, the total
labor costs of Producinv a flyable Provram will be oreatly reduced I
if such a tool is available.

Acknowledvement

The author is indebted to the followinip Persons for maJor
contributions to the Translator Investigpations Lonnie Brownell.
Joel Fleiss, Richard Oilinsky, Guy Phillips, and Dale Rankin.

* Thanks also are due to Irene Evans for editins and word Processinv
of the Functional Descriptions the System/Subsystom Specification,
and this Report.

Ref erences U

E13 J.O.P Barnesv ecancanainu..in-Adas (Pre-publication copy*

E23 Mil-Std-158993 JQ~l1QL-LJ23.19 June, 1980.

E3 Nil -Std- 18153 ea.c1nao~aQa~mamm
Lansuass, December 1980.

E43 N.J. Neiman,EucioDauko..o..b.JIILL23o
Ada..Icmansatne, February 1982.

E53 N.J. NeimanskaLusaa.ac~cko~~b.JUA
LJZ31-ka-daIanaatao, Marc 19182.

(61 Statement of Work, contract F30602-S1-C-0127, RADC/PSS9

June 1981.

0-14

