——

AD-R120 472 JOVIAL (J73) TO ADAR TRANSLATOR(U) PROPRIETARY SOF TWARE
INC LOS ﬂNGELES CR M J NEIMARN JUN 82 RADC-TR-82-175
F38602-81-C-8.

UNCLASSIFIED F/G 9/2

172

e W E T

NN AE LN S PURY SRR S

10 i b
TR
L

ml I 25

§
il=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

g b &
RS-

T

MICROCOPY RESOLUTION TEST CHART
NATIONAL B¢M.EAU OF STANDARDS-1963-A

e .

t

um'm
L0 & =
=|ﬂ:mh
|WJL”W
=

Ul

22 Rt

.E

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A -

L5 pis gus %
=— .
b
MICROCOPY RESOLUTION TEST CHART §
NATIONAL BUREAU OF STANDARDS-1963-A -
b 4
¥ t_‘;{*“"‘“ " . ~ -

EEE
N

. EEEE

FEEEE

2

ng 8

FEEEEE

10 b K
o £
=) |.

W%m.na

4+
rd

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

- em

AD A12g4 72

RADC-TR-82-173
Final Technical Report

June 1982
JOVIAL (J73) T0 ADA TRANSLATOR
Proprietary Software Systems, Inc.
DT]
Mark Nelman sELEC%
OCT 19 g2 1
F
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED
a
O
O
=5
u.— ROME AIR DEVELOPMENT CENTER
S Air Force Systems Command
£ Griffiss Alr Force Base, NY 13441
82 10 15 g

v 'r,——rv_r-_r;yv—-vﬂ "m’ DT

ML S 4 §

MR At auine o JuRd acanes

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dacs Entered)
REPORT DOCUMENTATION PAGE BEROEE oot e s
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
RADC-TR-82-175 . "
4. TITLE (and Subutle) Fina f qr ”:Té gfeﬁlgs ocxg'\:/tuo

JOVIAL (J73) TO ADA TRANSLATOR Jun 1981 - March 1982

S. PERFORMING OXG. REPORT NUMBER

e ————————————————
10. PlOGlAM ﬂ.tu(u? PNOJ!CT TASK
& WORK UNIT NUM

9. PERFORMING QRGANIZATION NAME AND ADDRESS
Proprietary Software Systems, Inc.

N/A
oo T ZoRTRACT OR SRART Roas R
Mark Neiman F30602-81-C-0217

9911 West Pico Blvd, Penthouse K gg;gigu
Los Angeles CA 90035
11. CONTROLLING OFFICE NAME AND ADDRESS 12. AEPORT DATE
June 1982
Rome Air Development Center (COES) [T3 ~umeER oF PAGES
Griffiss AFB NY 13441 122
TT WONITORING AGENCY NAME & ADDRESS(I{ different frem Contrelling Office) | 18, SECURITY CLASS. (of thia report)
UNCLASSIFIED
Sama ¥e DEC ATFICATIONTOWNGRAGING
N;,Agc!’fknl'j:l‘ﬂCAﬂON OOWNGRADING

. .
18. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the abeiract entered in Block 20, It ditfarent (com Repert)

Same

10. SUPPLEMENTARY NOTES

RADC Project Engineer: Elizabeth S. Kean (COES)

19. KLY WORDS (Continue on reverse side il y and identity by bleck number)
JOVIAL

Ada

Translator

Compiler

[20. AGSTRACT (Centinue on reverse side il and 1 ty by bleck

| This document contains the functional description and system/subsystem
specifications for a JOVIAL J73/Ada translator, and guidelines for J73
programmers who anticipate their programs will be converted to Ada at a
later date. The functional description specifies the maximum JOVIAL J73
subset that can be converted to Ada. Techniques for the optimum automatic
translation of the source code are specified. The J73 constructs that
cannot be automatically translated are identified. The system/subsystem

DD , 5%, 1473 coimion oF t nov 6813 ossoLETR UNCLASSIFIED
SECURITY CLATSIFICATION OF THIT PAGT (When Date Entered)

et}

Boa it

[§

.

F Acce;s'ig;'i;j’:_‘g
- "NTIS GRARI .

o DTIC TAB a

) . Unannounced |9

. :. J.zsuncauon,_‘-—-—:
X -

» pistribution/ _____ |
b Avallability Codes
‘. -~ Avail ana/or

¥ st . Special

? ‘ A |

:'

.

.........................

UNCLASSIFIED

SECYURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

translator. £ -

specification provides a more detailed breakdown of the proposed

FIED
SECURITY CLASSIFICATION OF Tu'® BAGEWhen Date Entered)

1

A

A .

FUNCTIONAL DESCRIPTION
for the
JOVIAL (J73) TO ADA TRANSLATOR

Prerared bvy!

Mark J. Neiman

F-1

o

-
~ 4
T

B e

o]

PP

TABLE OF CONTENTS

Parasrarh Pase

SECTION GENERAL

-1 Pureose of the Functional Descriertion.... F-
.2 Project ReferencesS..cccccessesssnsanssnsns F-
.3

TQPml .hd AbbPCVﬂtfionS--..-.....-------. F-

WN -

SECTION SYSTEM SUMMARY

Backe#round..ececsevrecsssscsssncsenssccnes F-
obj.cttv.’.ll.lll..ll..lll'l.lI-nIl--llno F-
Exi‘tin’ MchOdl .hd PPOCOGUPOS-..--.-... F-

1
2
3
4 Prorosed Methods and Procedures...ccceoes. F-
4
4
-]

AT
e

VrPTTe—
'AJ’...'.’.'-

N -

summary of ImProvementS..ccsasccssccnsnas F—
Summary of IMPRCtSccccscesscscsanssnssnne P—
Assumrtions and Constraints....cccvceccees F-

COCOCEAPDE

SECTION DETAILED CHARACTERISTICS
Srecific Performance Reauirements........ F-
Accuracy and Validitviceoevenaosonoaannee F-
Timin. .ﬂd c.PlCitY...-o.-........-...... F-
Srstem Functions.ccceccecncosncccssssasnsae F=
Prosram Structur@iccecccscesassnsasansssss F=
Modularitys Compools and Packases.....c... F-
Context-Derendent Declarations...sccesees F-11
1 Procedure Srecification.cccscccescccssess F-12
.2 Ext'rn.".........'..'....'.'."........- F-l‘
sunMrY...'.............'....'.........--. F-lb
Trres and DeclarationS...ccccnccascsscncss F—18
Predefined TyPeS.cccsccscsssasscasssncess F-18
Trre and ObJect DeclarationS..cccscncsnse F=22
Scalar TYPe@S.icecccctsssscnncnnssenssnsees F—22
T.b‘.'.......'..'........................ F-z‘
Pointers.ccccccccssassncccssncsscnsenssee F-28
Other DeclarationSeccccccecscccnessacsacss F=-30
Executable Constructs.cccccecsssoscvennsannes F-32
Exmrressions and Assisnments....ccscvcueee. F=32
Local Control Statements..cccccvcccasaces F=-34
Call and Return Constructs.csccencccsasass F=~40
DirectivesS.cccneersssnsccsnccssnscsccansee F—48
Intrin.ic Functiohian.........---.-o-.--. F-‘b

L]
N -

DODNNN

OO;J'-‘

NNNNN=-

NNP)!\)!O!O!JMNNNNNNNNNNNN»M&
ﬂ&?@?@!\)NNNNNN-‘wnhﬂn
@ N -

WRWRROVWWWNRVWRDRWRIDRWDWDY NNNNNNNN

F-1114

—

SN SE S S 1N PPN PO SO

L

.\w,wj“,,
q .
N . . s

(R A o —
£ S e
. R

' @

[

Y T —
(I IR

Table of Contents - Continued

3.2.

NINNN s e e

WN -

W N

W W w Q@OQQUQQO?

G&QQ@O?QQWONN

S 2o o g T

Miscellaneous Functions.....cceeveccces.. F-47
N‘m.’..-----.---n..n.no.-.o.oo--on-oo-.-- F-47
Comm.ntl....---.........--...-.......-... F—-49%
Prettyerintin®.ccciiescerccsscacsacenseas F-50
InPutl—OutPUtl.--.......-....----..-..... F-32
Ineut D‘t.-n----Q.----..---.----u.-----.n F-52
User Command tn'ut-----.---oa-n------n..- F-52
J73 Source InPUt........-}....-....-..... F-52
Translation Parameter InPut..ccvccveccnces F-52
Outrut Producedeicveccncescsnsccrcsassnse F-53
Translated Ada Module OutPut...cvvccceass F-53
GOHQPlfQG Ada H0d010 OUtPUt-----..-----.- F-33
PPOOPCM DictioanY OutPUt-.-----.------.- F-53
Dﬂtl ch.r.ct.ri’tic’---onc-n--u-n-ou-o..c F-s‘
F.i‘ur. contiRQCnCiCS.-.----...-...-.--.. F-54

APPENDIX 1t Summary of Problematical Constructs...cceceese.. F-A1
APPENDIX 21 "IL-STD-1589B CPO!S RCf.P.hCQ---..----.-------. F-Az

AN B

L-;‘A._.AA_.;JA

| STITOVONP

P S AR

NSRS B SRR

-

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

) Ce . N
. .

PR .
LA . .
Abd nd L i

Y,

RIERNN. SRR
1

SECTION 1. GENERAL
1.1 PURPOSE OF FUNCTIONAL DESCRIPTION

P L
et Do dondidh.

This Functional Descristion for the JOVIAL (J73) to Ada Translator)
Investisation (F30602-81-C-0217) is written to rrovide? o]

. The system resuirements to be satisfied which will serve
as a basis for mutual understandins between eotential
users and develorers of a J73 to Ada Translator.

b. Information on merformance rewnuirements, preliminary
desion, user imracts, and costs.

C. A basis for the develorment of svystem tests.

v Sans ol a0 e TP T - "
PR . . ' P
. A

R P
y 7
A A

IR |

!

Py

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

1.2 ProlJect References

b.

Ce.

d.

Statement of Work,. contract F30402-81-C-0127, RADC/PSS,
June 1981.

Technical Prorosal in resronse to RFP F30602~-81~R-0058,
RADC/PSS, January 1981%1.

*Translation of CMS-2 Prosrams to Ada:" by Gilman,
Crocker, Tavlior, usc Information Sciences Inst..,
February 1960.

"Source—-to-Source Translationt Ada to Pascal and Pascal
to Ada," ACM SIGPLAN Svymrosium Proceedines, 1980,

MIL-STD-16815 - Reference Manual for the Ada Prosrammins
Lansuase, December 1980.

Ecoscasnina_in_Ada, by J. G. P. Barnes, 1981.

Broscameins._.with__Qdai__An__lotroduction._bx.__Means._of
Graduatead_Exangles. by P. Wenser, 1982.

"Sel f-Assessment Procedure VII1," ACM Comm. Vol. 24, no.
10, by P. Wenser.

Commuter, June, 1961.
"Prooéumnino Manual for JOVIAL (J73)", Softech.

*Software Ensineerins Exchanse,® IBM FSD. October 1980,
Vol. 3» no. 1.

"Rationale for Desisn of the Ada Lansuase."” ACM SIGPLAN
Notices, Vol. 14, no. &, Part B.

DIANO. Rafsrencs_Manual, by Goos & Wulf, March 1981.

Computer Prosram Develomrment Serecifications, by T.1. and
Intermetrics (Commiler/Environment): March 1981 Drafts.

MIL-STD-1589B - JOVIAL (J73).

F.C.5.C. Conversion Products/Aids Surveyvy, Rerort
GSA/FCSC-81/004,

JOVIAL . LJZ3) . _to._Qda.-Icanslator.__Sxatem, by R. L.
Brozovicy, Master’s Thesis (AFIT), December 1980,

1.4_14_.

_

LA o e e ———y Eadirgh duie oot SMECI N R D Pl T . o . o o . RPN) . R
L A T A e e N0t S ~ L NI S . -) - .
."y‘-'- -te e PR : N - °

A JOVIAL TO ADA TRANSLATOR INVESTIGATION {
N FUNCTIONAL DESCRIPTION R

1.3 Terms and Abbreviations

The followine terms and abbreviations will be used throushout this
Functional Descrimtiont

Erroneous A . hish order lansuase rrosram which contains
one or more violations of lansuase semantics
which are not detected by a comriler. "
Erroneocus rrosrams have unerredictable run—time $

results.

-y

External A errovram element that is referenced bvy :
modules which are comriled serarately from the -
module in which the element is declared. .

J73 The rrosramming lansuase JOVIAL (J73) as
specified by MIL-STD-1389B.

&j Module A prortion of a J73 or Ada rrosram which is
M losically distinct from the rest of |its
- Prosram and which may be comriled or
- translated serarately.

i Prosram A1l of the modules of a J73 or Ada rrosram: as

E orposed to an individual commilation unit. .
TPF Transiation Parameter File - a user accessibile 7

L file which srecifies which transiation omtions "

N will be used for a run of the Translator.]

Translator The rrorosed JOVIAL (J73) to Ada translator.

-
e sl

LLETLINAONL P |

Phal

F-3

e Ao ghte S amnr o 4

T
NN

Pr———
P

L

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

SECTION 2. SYSTEM SUMMARY
2.1 Backsround

The Demartment of Defense is currently enmased in a lons term effort
toe define and develor a new hish order erosrammine lansuase, Ada. Ada
is to be used as the standard immrlementation tool for embedded
commsuter svstems. Standardized and validated Ada commrilers and
environments will not be available for another vear or two$ moreover,
many new and onsoine® Air Force pProJects are usines the rresent standard
lansuase, JOVIAL (J73), for implementation of real—-time software
svystems. The need for a JOVIAL (J73) to Ada Translator is driven by

two maJjor problems:?

a. Existine software written in J73 wild
eventually be used in Ada-based srystems.

b. Software develored during the Ada develorment
period (1980-1984) cannot use Ada exclusively
and therefore must be written in J73.

A Translator would enable J73 erosrams to be converted to the new
standard lansuase so that the advantases of maintainability and
universality of Ada mavy be exprloited. The translator will be needed
not only durine the Ada develorment meriod. but also afterwardt future
maintainers of embedded svystems will be exmerts in the use of Ada and
the Ada Proorammine Sueport Environment (APSE) rather than JOVIAL.
These maintainers will benefit oreatly from havins a J73 to Ada
Translator as a rart of the APSE.

2.2 Objectives

The objective of the rrormosed JOVIAL (J73) to Ada Translator is the
automatic ¢translation of J73 source prosrams to eauivalent Ada source
mrosrams. Because some J73 constructs cannot be automatically
translated to Ada, the Translator must detect and flas anvy constructs
which it does not translate.

Another wsocal of the Translator is flexibility. A number of J73
constructs have two (or many) rpossible Ada transiations. The user mavy
wish to control some or all of the choices made by the Translator.

This will reauire rarameterization of the transltation options, with a
user~accessible file for the rarameter values.

F-4

-

P O

< eas oo
g g

el

[

- TO ADA TRANSLATOR INVESTIGATION
[ONAL DESCRIPTION

rpical J73 rrosram consists of manvy serarately comriled modules
share data smecifications wusines the DEF, REF, and COMPOOL
‘ycts. Translation of individual J73 modules into Ada modules
rreserve the semantics of J73 compools and externals, while

tinse in well structured Ada Prrosrams., is a major desisn
tive.

ush the Translator is desisned as a stand-alone eraduct, it is
iloned as a part of the Ada Prosrammine Support Environment. With
el of compilers, text editors, file manasers, and other APSE
» the Translator will eprovide sisnificant (thoush not total)
ttion of the conversion of J73 erosrams for use in the Ada
nment.

ixisting Methods and FProcedures

are no existin® imelementations of a Translator which satisfy
sbiectives described in the rreceedins rarasrarh. Many automatic
lators exist for simrler lansuases such as COBOL., FORTRAN., RPG,
yumerous assembly lansuases, but at rresent, the only methed of
ving eproduction «quality translation of J73 to Ada is manuval
iation.

se Ada compilers and environments do not vet exist in comelete,
ited implementations, one may assume that very little manual
lation of J73 to Ada bhas been rerformed. However, if manual
ration is to be rerformed:, two maJor insredients are resauired.
First is a set of rules, which may be as formal as a lansuase
¢ specification or as informal as a set of rules and eprocedures,
specifvy the marrins of J73 onto Ada. The second is & erosrammer
‘our of Prosrammers who are exmerts in both lansuaves. While the
) insredient is somewhat rare, the first is probably nonexistent.
lation of larse prosrams (i.e., several hundred modules) would be
ritively exmensive, even if both insredients were acauired.
rer, a manual translation of a larse realtime svstem would be
it to much human error and inconsistencyt the final eroduct would
e "flvable" without very extensive redesion to remove :the
‘able transliation errors.

‘rorosed Methods and Procedures

‘ranslator erorosed in this document is intended to automate the
ation of J73 to Ada to the larsest extent eractical. Althoush
automation mavy be immossible, it is anticimated that 80-95% of
‘fort invoived in manual translation will be removed. In addition
anslatine nearly all of a J73 erosram to esuivalent Ada, the
ator will detect untransiatable code and will senerate stub
's for additional Ada code reauired by the translated rrosram.

F-5

| S

"

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

2.4.1 Summary of Imerovements

The imerovements of automatic translation over manual ctranslation are
summarized below:?

a. Vastly increased throushput.
b. Greater consistency.
Ce The Translator will be quite thorouesh, either

translatine or flassine evervthine in the J73 prosram. A
human transltator misht inadvertantly omit a mart of the

mrosram.
d. Greater flexibility, If a certain asrpect of the
translation aPpears unacceptable, a different

translation could be obtained by chansins rarameters and
re-runnine the Translator. This would be unfeasable €for

manual translation.

e. Reduced cost. The cost of automatic translation of J73
modules would arrroximately equal the cost of commiline
the modules. The additional costs involved in completins
the translation of a erosram (manually translatine or
rerrosrammine the untranslatable rortions) would be much
less than the time and monevy saved by automatins the
bulk of the translation mrocess.

2.4.2 Summary of Imeacts

Since there are no onsoins J73 to Ada translation rrojects, there are
assumed to be no immracts on equirment, software, orsanizations, or
orerations. The Translator would be develored on an existine
medium—to-larse scale comruter svstem, and its installation would be
similar to that of anvy other stand-alone software svstem.

2.9 Assumetions and Constraints

The Translator described in this document is assumed to erocess
correct J73 erosrams and to outeut correct Ada rrosrams. The sense in
which the inrut and ocutrut are considered to be "correct" is discussed
in rarasrarhs 3.1.1 and 3.3.1.2.

-

Al

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTZONAL DESCRIPTION

SECTION 3. DETAILED CHARACTERISTICS

3.1 Srecific Performance Renuirements

This rarasrarh describes the rerformance reauirements to be satisfied
by the Translator with resard to accuracy, validity, timine and
caracity.

3.1.1 Accuracy and Validity

The translations prerformed by the Translator will be accurate in the
sense that the resultins Ada rrosrams will be semantically emuivalent
to the J73 erosrams from which they were derived to the larsest extent
rossible. Excert for certain untranslated constructs, which will be
clearly flassed in the outrut, the Ada rroduced by the Translator will
be a valid Ada erosram in that

a. It will contain no svyntax errorst

b. Any missine code that is rewuired for execution of the
erosram will be clearly identified!?

C. It will be comrilable in a standard Ada environment
without modifications (such as reormanizine statements

and declarations »r renamine modules or variables)t

d. It will conform to seneral standards foi' readable, well
structured erosrammine.

In eeneral, two versions of a rrosram cannot be suaranteed to have
absolutely identical run—-time behavior in two different environments.
even if the versions were senerated from the same source code (e.9.: a
J73 erosram comriled for two different tarsets). Therefore, the
Translator cannot be reauired to produce a "merfect" translation of a
non-trivial erosram. However, it will be reauired to rreserve the
orisinal errosram semantics wherever rossible, at the exmrense of some
run—-time efficiency 1if necessaryy, and to inform the user of anv
rossible deviations from J73 semantics that are introduced by the
translation.

3.1.2 Timins and Caracity

Althoush prortions of a errosram may resvire rereated translation to
resolve various translation eroblems, the overall translation erocess
will be a one-time task. Hish rerformance with resmect to throushrut
isy» therefore, not esiven a hish erriority. The Translator should
prrocess J73 source code at about the same sreed as a comriler, roushly
100-1000 source lines mer CPU second on a tveical mainframe host
system.

]

.- AR
PO AP

alemaaioam A

-
v

P

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

The Translator and its host environment must have the caracity to
store and Process an entire J73 prosram at one time. This tyrically
means a caracity on the order of 1000 modules of 50-200 source lines
each for a larse flisht software svystem.

3.2 Svstem Functions

This rarasrarh describes the smecific functions to be rerformed by the
Translator. These functions can be considered to comerise an informal
specification of a marrine of the J73 lansuase onto the Ada lansuase.
The marPine is described in six rarts:

a. Prosram Structure

b. Tvres and Object Declarations
Ce. Executable Constructs

d. Directives

e. Intrinsic Functions

F. Miscellaneous lIssues

The followine subrarasrarhs describe each of these fupctions by
Pprovidine a rationale for the marticular marprines selected.

3.2.1 Prosram Structure

This subrarasrarh describes translation functions which are related to

Prosram structure, includine modules, externals, and errocedure
specifications.

3.2.1.1 Modularityt Comrools and Packases

J73 eroerams are written as serarately comriled modules. Tyrpically, an
individual module will consist of either a comrool or a smll
procedure, either of which mav include external comerool references.
The Translator must be compatible with this kind of rrosram structure.
rermittine both slobal comrool references and efficient translation of
small modules. These soals are not obviously in asreements slobal data
referencine immplies knowledse of many modules durine a sinwle module’s
comrpilation. The JOVIAL environment satisfies these soals by creatins
comrpool outeyt files when commilins comrools. Smal) modules which
reference compools are comriled serarately and efficiently by readine
the (rreviously created) commool outerut files. Unfortunately, there is
no "standard comrool outmut file" format —— each comriler has its own
private format. Satisfvine the wsoals mentioned above, therefore,
Presents a major rroblem for the Translator. '

e

-

~d

-

PP EPERP IS

r
Py

Q)

~T

.wvvvvﬂ' -
AP

T——

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Individual J73 comrool modules will be translated to Ada rackase
specifications. This will mermit other modules to use the resources of
separately comriled (and serarately translated) comrmool modules usins
a WITH clause. For examrle, a compool module

START
COMPOOL slobalvariabless
BEGIN
"seaquence of declarations”
END
TERM

will be translated to

PACKAGE slobalvariables IS
—— sewmuence of declarations
END globalvariables?t

A comrool directive
ICOMPOCL ®lcobalvariablest

will become
WITH =lobalvariabless

making the seauence of declarations in "slobalvariables” available to
the module containine the WITH clause. This translation rrecisely
reflects the J73 semantics of comeool usase: includines the order of
compilationt the comrool/mackase must be comriled before it mav be
referenced, and the content of the comrool/mackase must be rart of the
comrilation/translation environment. If these conditions are met, then
the Translator will satisfvy the soal of ereservine a J73 erosram’s
modular structure while translatine it to Ada.

A more detailed examrple will illustrate how this translation erocess
handles multirle and rartial comeool use. Two comeools

START
COMPOOL comels
BEGIN
“"declarations of variables AA:. BB"
END
TERM

START
COMPOOL come2t
BEGIN

*"declarations of variables CC,DD"
END
TERM

F-9

.~ A e e e e

i

e TNy Ty rer v
LR R e) At
o PO I T ot e s e LT

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

will become the rackases

PACKAGE comrt IS
—= declarations of variables AA.BB
END comelis

PACKAGE commr2 1S
-=- declarations of variables CC.,DD
END come2s

Another comrilation unit which uses comrl and rart of come2

1ICOMPOOL comels
'COMPOOL comer2 CC3

“"references to AA,BB.CC"
will be translated to

WITH commrl, comm2$
USE comel, comp2$
-- references to AA,BB,CC

The USE clause makes the variables declared in comerl and come2
directly visible in the Ada module. If the USE clause were omitted.
those variables would need to be qualified with their corresrondine
rackase namest

WITH comels come2

-- references to comel,AA,» comri.BB, comer2.CC

The dotted notation will be used for names which are imrorted br a
rartial comrool directive. This will avoid ambisuity in case the same
name was declared (but not imrorted from) another comrool. For names
imrorted by a comrlete comrool directives there will be no ambisuity
in rewards to which rackase a variable belonss, and the dotted
notation mavy be avoided by includine a USE clause in the rackave or
rrocedure srecification.

F-10

Ao [P P A - .)

cEvoo ol

0
3
h
1~ ~
-

adth

e = T

-vr‘."".
9% :

4

r—

s B M are 42 a2 S B 4

i A am an 2

T W i - -

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

A J73 erosram which contains declarations of the same name in more
than one comprool is erroneous. The J73 comriler will not necessarily
detect this error (but the linker would). It is interestins to note
that 8such a errosram, after beins translated to Ada in the manner
described above, would alwavs be diasnosed i¢ comrile time. This is
true because Ada rewuires disambisuvation of all references durine
compilation, while J73 does not.

Another interestine asrect of this translation technisue is that the
distinction between a commrlete commool directive and a rartial comrool
directive 1s removed. Partial comeools are srecified in J73 as an aid
to efficient comeilationt the comriler knows that it need not bother
readins all of the commool file into its svmbol table: and mavy read
only what is needed. A module will have the same meanin® as if it had

requested the entire comeool, but will comerile faster and in less

srpace. The Translator will isnore this distinction for two reasonst

(1) There is no straishtforward Ada version of a rartial
compool directive — rackases are used only in entirety.

(2) The Translator will model the Ada environment in the
sense that it will have slobal knowledwe of sliobal and
external objects durins translation, and wil) not need
to input comeocol data on a module—~bv-module basis,. This
is discussed further in rarasrarh 3.2.1.3.

3.2.1.2 Context-Derendent Declarations

J73 mermits the erosrammer to make obJects either static or externally
visible on an exmlicit, declaration~bv-declaration basis. Examrlest

ITEM eternal STATIC S
DEF ITEM external $S%

These items are either statically allocated or externally’ visible
resardless of the context in which the declarations arrear. This
concemt does not exist in Ada. ObJects are ‘"allocated"” or
"externalized” in Ada accordine to context. A variable: for examrle,
will be static only if it is declared outside of any kind of local
structure, such as a rprocedure or functiont it will be externally
visible only if it is declared in a rackase srecification or eroceducre
specification. Translation of erocedures containins exmlicit STATIC
and DEF declarations, therefore, is really a rrosram structure issue,
and is discussed in the next two rarasrarhs.

F-11

SR

- d

PIPT SR ENCRON

1 i
IO
Lt

if

—

Pl (Y BRI
v .. .]
. « o,

-y

¥

- oy
e S

. . |

) . . !

LON Atk At 2a SN (At Sus AN San orn o 4

Frr
LT
L
o

e

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

3.2.1.2.1 Procedure Srecification

In . their sinplést forms, J73 erocedures and functions mavy be
translated directly to Ada rrocedures and functions. For examrle, the
J73 erocedure

START

ICOMPOOL commit

DEF PROC sroctit

BEGIN

E;;cnl declarations and executable statements"
TERM

becomes the very similar Ada rrocedure

WITH compit
PROCEDURE eroct IS
BEGIN
—-- Jocal declarations and executable statements
END rroclt

This straishtforward translation is correct only if the "local
declarations” 1included no instances of the J73 “DEF" or "“STATIC"

constructs. For exammrle, if

START
DEF PROC proc2s
BEGIN
ITEM xx STATIC S
".eathe rest of the rrocedure”
END
TERM

were translated as in the preceedins examrle, the variable xx could
not be made static. Ada has no exmlicit construct for declarins local
static datat anvthine declared inside a procedure body is imelicitly
automatic, existine only when the rrocedure is invoked. What is needed
is an Ada structure which provides locality (hidins the declaration
from other pmrocedures) while also rrovidineg rermanent existence for
the data beins declared. This is accomrlished by the Ada rackase!
declarins the variable inside a rackase body but outside the rrocedure

body wil) make the variable static and local. The only commliication is

the name of the rackase. The rrocedure "rroc2" mavy be transliated to

F-12

Saae o ~ K . o re - PV R ey § e P I —

A W W

PR W T L

P

UM

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

PACKAGE rroc2_rack IS

PROCEDURE rroc2t —-- specification of rroc2
END rroc2_rack? ~— end of rackase srecification

PACKAGE BODY eroc2-rack IS
xx: INTEGERS -~ inside rackase body but outside proc body
PROCEDURE rroc2 IS -~ body of mroc2
BEGIN
-— the rest of the rrocedure
END proc2s
END eroc2_racks -- end of rackase bodvy

In this translation, xx is local to the rackave proc2_rack, but since
rroc2_rack contains nothins but the rrocedure rroc2, xx is effectively
local to emroc2. However, the declaration of xx outside of the
procedure body ensures that storase will be allocated for the Vife of
the mrackavse:; rather than merely for the 1ife of an invocation of
rroc2. Since rackases are inherentlvy static, xx wil)l be static. (Note:
an Ada construct that is inherently dvnamic cather than static is the
task. This construct does not arrear to be necessary for
rerresentation of J73 erosrams.) The rackase makes the name “rroc2*
visible to other comrilation units by includine a srecification of
rroc2 in the rackase srecification. Both xx and the bodvy of mroc2 are
hidden from other comrilation units, rreservine the semantics of the
orisinal J73 version.

The “overhead” involved in the creation of a rackase for a rrocedure
with static local data is further Justified by the fact that the
rackase structure solves another major translation eroblem -~ that of
external declarations., discussed in the next rarasrarh.

The main rrosram module will be translated to a rrocedure or a rackase
usine the same techniaues as for an ordinary erocedure modulel Ada
does not reauire a svntactic distinction between main and subordinate
modules. Procedures and functions mavy be nested in Ada, Just as in
J73, with no chanse in erosram semantics. A1l Ada subrrosrams are
comriled to be reentrant and recursive, so that the Translator ravy
isnore the RENT and REC attributes in a rrocedure declaration,

A module containine multirlie DEF PROC’Ss (i.e.v non—-nested mrocedures
and functions) will be transltated to a rackase which contains multirle
errocedure or rackase declarations. For examrle, a module such as

F-13

-

> . . '

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

START
"declarations slobal to AAA and BBB"
DEF PROC AAA3 "procedure with some DEF items"

BEGIN

END 1
DEF PROC BBBY "procedure with no DEF or static data"® j
BEGIN .

. |

L] 1

END
TERM

would become a rackagse srecification whose name is derived from the
two DEF PROC’s!

PACKAGE AAA_BBB._mack IS
declarations slobal to AAA and BBB
PACKAGE AAA_rack 1S
PROCEDURE AAA...

AR

}

END AAA_packs
PROCEDURE BBB 1S

END BéBl
END BBB3
END AAA_BBB_mack!?

T

Machine srecific functions and srocedures are not coded in J73. and
o therefore will not be rrocessed by the Translator. The user mavy code
g machine srecific routines in Ada usins the techniaue described in
: Section 13.8 of the Ada Reference Manual.

3.2.1.2.2 Externals

_ The J73 REF and DEF constructs specify declarations that are used
. externally. As previously stated; Ada externals must be declared in a
rackase srecification. The only Ada construct that resemdles the J73
REF is the WITH clause, which was shown to be eauivalent to the J73
comroo)l directive. The WITH clause may be used to translate J73 REF
declarations in a similar manner.

F-14

N |

4

—

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION .

A J73 module containins one or more declarations that are to be made
available to external modules (e.#.. DEF ITEM, DEF TABLE, etc.) will
be translated into an Ada rackase. The smecification of the rackase
will contain all declarations which are DEF‘ed in the J73 version. If
the module is a DEF PROC, the rackase srecification will include a
declaration of the errocedure itsalf., If the module is a commool, in
which evervthinse is DEF‘edy we have the situation discussed in

3.2.1.1t the whole module becomes a rackase srecification with no
bodvy.

With all DEF‘’ed objects declared in rackase srecifications, other
modules can REF the objects by usins a WITH clause. In seneral, a J73
procedure of the form

START

DEF PROC errocnames

BEGIN
“local declarations which are DEF’ed"”
"other local declarations"

“the rest of the rrocedure bodvy”
END

TERM
will be translated to an Ada rackase of the form

PACKAGE erocname.rmack IS
PROCEDURE rrocname!
~= local declarations which were DEF’ed
END procname_rackt ~— end of rackase srecification

PACKAGE BODY erocname_rack IS
—-= gtatic local declarations
PROCEDURE mrocname IS

PEGIN
-= remainine local declarations
-~= rest of procedure body
END procname’ -- end of erocedure body
END eprocname-rackt -—-— end of rackase body

so that &)l obJjects which were DEF’ed can be accessed externally
(REF7ed) usine "WITH rrocname.rack”.

F-15

v

IC

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

A prroblem arises when REF declarations are used in comeools. REF
PROC’s, REF ITEMS, etc., are sometimes included in comrools as a means
of comevins the REF declarations into other modules. If commrool REF
declarations were translated ¢to WITH clauses, the resultine Ada
erosram would contain many circular comeilation dermendencies. For
examrle, a compool Ffull of REF PROC s mavy be imeported by all modules
which contain erocedure calls, resultine in

WITH Fi, P2, P3... -- REF‘’s to each procedure
PACKAGE refeproccommrool IS

END refproccommools

for the compool and

WITH refeproccommools -—— imrorts the compool
PACKAGE PN_rack IS

END IN_packs

for each procedure. This is unhaccemtable, 3ince the mutual WITH
clauses prreclude anvy rossible order of comerilation (AR module must be
comrpiled after all modules whose names arrear in its WITH clause).
This eroblem is solved by e,lacine the REF PROC in the module that
actually needs it, rather then in the comrool from which the REF PROC
is imrorted. Thus, a emrocedure which reads 1in a REF PROC from a
compool will wet a WITH clause for the REF PROC, For examele, if
rrocedure P22 reads in (from a comrool) a REF of rrocedure P44, then
P22 will set the "WITH F44" clause: the comrool will not. In seneral,
REF declarations in compools will result in WITH ciauses for the
comroo]l {tself only if the REF is to another comrools otherwise, the
REF declarations will simeliy be removed from the comecol and rlaced.
in the form of WITH clauses, in modules which imrort the comeool.

3.2.1.3 Summary

The functions rerformed bry the Translator with resrect to
rrosram/module structure are summarized below.

a. Comrools will be translated to rackase srecifications
with no rackase body,

b. Comroo)l directives wil)l be translated to WITH clauses of
the form “WITH comrool-name".

F-16

I e A A A A A A AP A A S AT G S |

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

C. Procedures and functions which contain no static or DEF
declarations will be transliated into Ada rrocedure and
function bodies.

d. Procedures and functions which contain static or DEF
declarations will be translated into Ada rackases with
the followins characteristics:

- the name of the rackase will be of the form
“procedure_name.rack"”.

- the rackase srecification will contain all
declarations which are DEF‘ed.

- the rackase body will contain the Procedure or
function body, with non-static declarations inside
the rrocedure (function) body and static

declarations outside the erocedure (function) body.

e. Modules containine REF declarations will be translated
to modules that use WITH clauses to access externally
DEF’ed obJects. For each module whose external
declarations are needed (REF‘ed)» a clause of the form

“WITH name_of_rackase_containins_the_orisinal_declaration”
will be emlaced before the module headine (i.e.» before
the rackase or rrocedure or function declaration). This
will remove the need for an exmplicit declaration in
rlace of the REF! the declaration will be immorted from
the module that orisinally included it.

f. In the case of REF declarations in comeools which refer
to non-comrool modules, the WITH clause senerated by the
REF will arrear in the modules that imeort the commool,
rather than in the comeocol~rackase itself.

A maJor immlication of these functions is that the Translator must
rrovide a mechanism for determinine the slobal context of names. For
examprle: the Translator must know in what rackase an obiect is DEF“ed
in order to translate a REF o€ that obJect. This slcbal knowledse of
name context is analosous to the Ada environment itself. The J73
environment maintains elobal knowledse only of comrool declarationss
externals are not resolved until the comriled modules are linked.
Creatines a slobal data base durins comrilation/translation of the
srosram involves some overhead in both time and srace for the
comreiler/translator, but the extra resources reauired are considered
worthwhile for two reasonst

F-17

Y

e

'Ala)

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

a. There is no other way to translate J73 external
references to cleanlvy—comrilable Ada code.

b. The Ada FProsramns resultine from the translation
techniques described in this rarasrarh will not only be
"ecorrect” in the sense of accurately reflectine J73
semantirs: they will also be ‘“well-structured Ada,"
usine the concemts of mackawine, data hidins,» and name
visibility in precisely the manner that would be used by

a wood Ada rrosrammer.

The efficient imrlementation of the slobal data base for name context
determination is discussed in a later rerort.

3.2.2 Tvyres and Declarations

This earasrarh describes translation functions which are related to
declaration and use of tvymes, variables. and constants.

3.2.2.1 Predefined Tvres

Both J73 and Ada feature erredefined tyvres that may be used in a
declaration alone with ranse and merecision specifiers. J73 syntax for
numerical and strins tyres feature a kind of shorthand notation, such
as

TYPE unsisned Ut "fullword unsisned inteser"

TYPE halfint S 83 "eisht bit sisned inteser"

ITEM sixchar C 63 "six brte character strins”

ITEM wholefrac A 0,313 "fixed moint number with no scale
bits and 31 fraction bits”

in which pPrecisions ranse, or size of a tvre is siven in terms of the
number of bits or brtes needed to rerresent values of the tvre. In
Ada» these attributes are srecified 1in terms of exelicit ranse
constraints, fixed moint "delta" and floatins point “disits" for
numerical tvmes, and by arravs for strine tyres. The J73 predefined
tvyres (U,S,AF,CyB) will be translated to Ada tvyre names such as

J73 TYFPE NAME ADA TYPE NAME
u U_trre
us US_tvymre
s 31 S31_tvre
A 5,26 AS. 26 tvre
A 14 Al4__tvyre
F 27 F27_tvre
Cc 10 Cl10_tvre
B 18 Bi8_tvre

F-18

N .

o 4 aa

PRGN B S

-

TO ADA TRANSLATOR INVESTIGATION
INARL DESCRIPTION

on, For each uniasue Ada tvyme name senerated in this manner,» the
itor will senerate a declaration which will 90 into a mackase
"J73_Predefined_prackave." The contents of this

tor~senerated prackase will be output upon user reauest (see
:)l

tiones in J73_eredefined_mackase for integser tvres will be
translations of size to rangse. Exameles:?

ITYPE U_tvyme IS INTEGER RANGE O..INTEGER’LAST:
ITYPE US_tvree IS INTEGER RANGE O..311
ITYPE S31_tvee IS INTEGER RANGE —2##31..(2%%31)-1%

.ne these tvypes as subtvres of the predefined tvyre INTEGER will
that imeplicit tvype conversion will be made between any two
tvyPes, as in J73. If new tvres were declared, rather than
'8y immelicit conversions would not occurt: Ada treats distinctly
'd tymes as non—-matchin® trvres, even if the tvyres are declared
allv.

oint tvees reauire a srmecification of "delta”", the error bound,
is ewual to 2%x(-F) for a J73 fraction size of F. Thus, a
n size of 4 will vield a delta of 1/16% a fraction size of -8
eld 2 delta of 2546. The ranse of a fixed moint tvyme is comeputed
‘1y to that of sisned intesers. Exammiest

AS_26_tyre 1S DELTA 1.0/2%##26 RANGE ~2##5. . (2#85)-(1.0/2%%#26)%
s better coded as

~5.261 CONSTANT t= §,0/2#%2(
'E AS_26_tvyre IS DELTA del1.5_.26 RANGE -32..32-del_35.263

examprlet

~14__1 CONSTANT 1= 1,.0/2##(WORD_LENGTH-15)}
E Al4__tvyre IS DELTA del_14__ RANGE -2##14,,2%%14-del_14__%

e scale and fraction srecifiers are handled in the same manner.
vyre "A ~-6,37" will vield

6.37: CONSTANT: = 1.0/2#837%
Anb_37 1S DELTA del_nb.37 RANGE -1.0/2##6,.1.0/2#%b6-de)_nb_371

declares a fixed roint fraction tvme whose values are between
nd (about) 1/64 with 31 bits of errecision.

F-19

i

Py

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Unfortunately, there can be no mpredefined fixed moint tyme from which
all needed tvyres can be “"subtvmped", as with intevers. The reason for
this is the rule that the values of all subtvres must be subsets of
the values of the rarent tyre. The values of all rossible fixed moint
tvres are not subsets of any Ada-definable tvyrme. Therefore, fixed
rpoint tvyrpes will be distinct ¢tvres, and any J73 imelicit tvyre
conversions will be translated to exmlicit Ada tvre conversions.

Floatine pPoint tvres resuire accuracy sprecification in terms of the
number of decimal disits. For B bits of errecision in the mantissa., the
number of decimal disits needed for emual rrecision is

*
B/l1as 10
2

Exameples of floatine point tvyee declarations:

SUBTYPE F_-tyre IS FLOATS
SUBTYPE F27_tvre 1S FLOAT DIGITS 83

An Ada compriler wil)l senerate floatine point code with at least the
rrecision smrecified in the tvyre declarationst this is identical to J73
semantics for floatine roint arithmetic. Imelicit tvme conversions
between obJjects of floatines roint tvres will work the same wayvy as
Prreviously described for inteser tvres.

A1l of ¢the rreceedins examrles assume a two’/s-comriement tarset
machine. The ranse smecification needed for intesers and fixed moint
numbers would be different for a one’s-comrliement (or sisn—-masnitude)
tarvet in that the lower bound is one "error bound” closer to zero. In
general, for a rrecision or scale size of B bits, the lower bounds of
sisned intevser and fixed rpoint tvres are

sisned inteser fixed moint
two’s comrlementt - (2##B) ~{(2#8#B)
one’s come/sisn mast ~(2#%B)+1 -(2%#%4B)+del ta

The urrer ranse bounds are the same for either rerresentation
((2##B-1) for sisned inteser, (2#xB-delta) for fixed moint). The
Translator will select 1lower bounds based on a TPF entry for the
desired tarset machine rerresentation.

The actual number of disits will, of course, be the least inteser
sreater than this suantitvy.

F-20

1

PP EY v

-

e

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

J73 character tvres may be rerresented as Ada strins tvres, such as

SUBTYPE C_10_tvyre IS STRING(1..10)%
SUBTYPE C_tvre IS STRING(1..1)3

so0 that obJdects of character tyre will be accessible as arravs. This
rermits both access to the entire obiect and access to a substrins of
the obiect (usinse a slice! its name followed by a ranse

specification), allowins straishtfoward translations of J7&3 tvee
conversions and bvte orerations.

The remainins J73 predefined tvre, bit tvyre, is the most
rroblematical. Ada includes a boolean tvyme which corresronds to the
J73 tvyre, "B 1", but contains nothins eauivalent to a bit strine tvre.
Two rossible translations involve the use of inteser tvres and arravy
tvres.

Objects of inteser tvre are unsuitable for rerresentation of bit
strinss for two reasons. First, the maximum allowed size of an inteser
in ¢ tvymical Ada imrpiementation will be one or two tarset words (146-64
bity)» while J73 bit strines mavy be dozens of tarset words in lensth.
Thus, lon® bit strinss such as "B 254" would be unmarrable into Ada
intesers. The second erroblem involves boolean orerations. Since Ada
rermits only boolean arsuments to omrerators such as "and", "or",
"not", and "xor", rerformins such orerations on intesers would rewsuire
the esnuivalent of overloadine of the orerators for the tvres in
aquestion. Conversion of inteser tvyres to boolean or array tvyres is
illevwals the imrlementation of boolean orPerations on intesers would be

awkward and inefficient.

A workable translation of J73 bit tvymes uses arrars of booleans.
J73_rredefined_rackase will include the declaration

TYPE bit_strine IS ARRAY (INTEGER RANGE < >) OF BOOLEANS
to establish a rarent tvyme for smecific subtvymes such as

SUBTYPE B_18_tvyre 1S bit_strine (0..17)%
SUBTYPE B2%5é6_tvyre IS bit._strine (0..255)%

and, for consistency,

SUBTYPE Bi_tvere IS bDit_strins (0,..0)8

F-21

‘J

e

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

This marprine will rermit bit strinss to be accessed in the same manner
as character strinss, usine "slice" references for tvre conversions
and substrine omrerations (e.®.» the J73 "bit" orerator). The Ada
boolean orerators are directiy armplicable to boolean array trres., so
that no inefficiency will be incurred in rerformine boolean
orerations. The only remainine eroblem is 'storase efficiencys J73 bit
strinss are alwavys racked, while Ada crr‘vs are not. This eroblem is
solved by includine

PRAGMA PACK (bit_strine)s

in J73_mrredefined_rackave. which reauests the Ada commpiler to rack all

arravs of tvyme bit_strine to minimize srace.
3.2.2.2 Tvre and Object Declarations f
v Translation of tvyee, variable, and constant declarations in J73 wil) - d
be translated to Ada declarations usins the rredefined tvyrmes discussed
¢ in the rreceedins rarasrarh whenever rossible. Declarations which
- cannot make use of the rredefined tvres will use distinct tvre
{ definitions as necessary. The followine parasrarhs discuss the
- translation of each kind of J73 tvre and oblect declaration in the
order sivent .
[;: a. Scalar (numeric, strins, and enumeration) tvres
b) b. T‘b‘.'
- c. Pointers
- d. Other (blocks, defines, etc.)
r! 3.2.2.2.1 Scalar Tyres -1
3 Declarations of tvyres and obiects of numeric or strine tvres will be
translated usins the rredefined tymes declared in
J73_,rredefined_rackase.
&
Y Examrlest -
{ ITEM sreed U 103
o CONSTANT ITEM ri A 2+15 = 3,141598% _
& TYPE name C 133]
o ITEM mask STATIC B 36 = 4B 800000000 1
r,, L |
-
P.
&
F-22
L J
| }
|
4
h. . .

L

w

7 B

-}

R e

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

will be translated to

speedt UL0_tvyres

it CONSTANT A2_1S_tvret=3, 141593
SUBTYPE name IS Ci3_tvres

masks B34 .tvreim{0=>TRUE, 1..35=OFALSE)!S

The translations of the €first three of these declarations are
straishtfoward uses of tyres (subtvees) declared in
J73_rredefined_rackase. The fourth declaratisn involves two additional
featurest the STATIC srecifier and a rreset value. Translation of
static declarations involves the context of the declarations, as
described in 3.2.1.2.1. Translation of the rreset of the bit strine
remuires convertine & J73 bit constant to a corresrondine Ada
assrevate. In this examele, the J73 literal whose first bit is a "1*
and whose remainine bits are "O" becomes an assrevate whose zero
rosition has a value of TRUE and whose first throush 35th rositions
have values of FALSE. This assresate has the effect of initializine
each comronent of the 36 comeonent arravy, Just as the 1iteral,
4B/800000000/, initialized each bit of the 36 bit ftem in the J73
version. The assresate could be written eauivalentliy as (0=DTRUE,
OTHERS=>FALSE)» with exactly the same effect.

Round-or—-truncate attributes in numerical declarations will not affect
the translation of the declarations themselves. However, conversions
to inteser and fixed moint tvyres, as well as assionments to €loatins
roint tvyres will, if rewnuired, venerate function calls to user
surplied routines which will rerform the desired roundine or

truncation. These function calls mar be surrressed usins a TPF entrv.
Enumeration tvyres are easily translated. For examrle, the declarations

TYPE color STATUS (V(red), V(amber)., V(sreen))s
ITEM sisnal colory

CONSTANT ITEM storligsht color = Vired)!
will be translated to

TYPE color IS (red, amber., sreen)s
sisnal? colors

stomlishtt CONSTANT colort=reds

Removal of the letter "V" and the parentheses from status constants
may cause ambiwuity in ¢the resultins translation. Since other
identifiers in the module containine the declaration of "color™ mar be
srelled the same wavy as "red", "sreen", or “"amber", dotted notation
(e.9.+ color.red) will be used ¢to translate references to these
values.

F-23

-

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Item declarations which include a status list definition, such as
ITEM condition STATUS (V(sood), V(bad))s

will be broken into two declarations:

TYPE condition_tvyre 1S (wood,bad)?
conditiont condition_tvres

This is necessary because an Ada object declaration must contain a
tvme (subtvyee) name rather than a tvyee (subtvyme) definition.

Status tvyre declarations with specified remrresentation attributes will
be translated usins Ada rerresentation smecifications. A declaration
such as

TYPE roints STATUS 3(1 V(mointafter), 2 Visafety).
3 V(fieldooal), & V(touchdouwn))s

will vield a basic tvyre declaration and two rerresentation
specificationst

TYFPE moints 1S (mpointafter, safety, fieldwoal, touchdown)t
FOR points’SIZE USE 38
FOR moints USE (mointafters=d>1, safetvy=>2,

fieldooal=>3, touchdown=>4)}

This technisue will assure erorer representation of values of the
status tvyee.

3.2.2.2.2 Tables

A J73 table is an assresate data object. The simmpiest form of a table
declaration includes a name, a dimension 1list. and an item t\m»e

descrimtion, such as

TABLE emrlovees (99) C 1953

F-24

J
PPN §

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

which declares an arcay of 100 character strine elements (indexed O
throush 99). This is esuivalent to

emrloveest! ARRAY (0..99) OF CiS_tvrret

Tables bodies corresrond to records. A serial table will be translated
in two rarts, First, a record tvre will be declared to match the table
bodvy. Second, an arrayvy of record tvyre will be declared to match the
table name and dimension 1list. For examrle, a table containins
emrPlovee information declared as

TABLE emplovees (99)%
BEGIN

ITEM name C 15t

ITEM rank ranktvres "ranktvre is declared elsewhere”
ITEM serialnumber Ut

END
will be translated to

TYPE emplovees_tvre IS

RECORD -—declares the tvre of the table body
name! CiS_tvymel
rank: ranktymes
serjialnumbert U_tvrel

END RECORDS$

empriovees! ARRAY (0..99) OF emrlovees_tvre!l --~declares the table
The translation is done in two marts because an Ada array declaration
must use a tvyre name rather than a tvere descrirtion. Tables with more
than one dimension will become arravs of more than one dimension:
TABLE multidim (22, 141114, 511)...
becomes
mu‘tidim. ARRAY (09022! 1‘- [114'0- 0511,-]
Packins srecifiers, words-—rer—-entry, and location smecifiers will be

transiated by means of rerresentation seecifications. If the table
"emrlovees” were declared as a srecified table,

F-25

Akodons

v iatom aaa B e aak

" @

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

TABLE emmlovees (99) W 43
BEGIN
ITEM name C 15 POS(8,0)1
ITEM rank ranktvyee POS(0,4)%
ITEM serialnumber U POS(1,5)s
END

its translation will consist of the record and array declarations
siven earlier and the rerresentation smecification

FOR emmrlovees USE
RECORD AT MOD &#words -—gix words rer entrvy
name AT O*word RANGE 8..127% ~--ranse extends to adjacent
-—words
rank AT 4xword RANGE O..31%
serialnumber AT S#word RANGE 1..31t
END RECORD?

"word" is a constant emual to the number of storase units rer
tarset word. A variable-lensth—entrvy specified table will vield the
alisnment clauses "AT MOD 1% word”. Ordinarvy tables with medium or
dense mackine will be translated usine the locations of each comronent
selected to conform to J73 semantics of the rackine smecifiers used.
Tieht tables will be effected by use of the rrasma. “"rack".

where

The ereceedine discussion has described the translation of serial
tables to arravs of records. A rarallel! table will be translated to a
record of arravs. The tvyre of each of these arrayvys will be a record
that is rreviously declared to include table item declarations sroumsed
accordine to entry word. The seneral format of this translation is
siven as followst a rarallie) table declaration

TABLE tt (44) PARALLEL...

BEGIN
“"declarations of items rositioned in word O"
“declarations of items positicned in word 1"

END

will be translated to the followinw declarations:?

F-26

|
-ty

PR Sy

-

PrTRErW LR

"1

,.".

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

TYPE tt_word._O_tvre IS
RECORD

~=declarations of obJects positioned in word O
END RECORD3

TYPE tt_word_i_tvyre 1S
RECORD

-=declarations of oblJects mositioned in word 1§
END RECORD:

TYPE tt_tvyre 1S --a “"precord-of-arravs" tvere
RECORD .
tt.word.Ot ARRAY(O..44) OF tt_word_O_tvre!$
tt_word_1t ARRAY(O0..44) OF tt_word_i_tvmes

END RECORDs
ttitt_tvres --declares a record object

Grouyrine the objects of each entry word in a serarate record mermits
translation of rarallel tables with srecified entries usine
rerresentation srecifications for each record» includine the
rositionins of several items rer entrvy word. An ordinary table with
rarallel structure will not rewuire these serarate record tvme

declarations for each entry wordl it is commeletely described by a
sinsle record. For exammle, the table -

TABLE ordinary (44) PARALLEL?

BEGIN
ITEM aa A 0,31
ITEM db S
ITEM cc C 43
END

will become

TYPE eordinarv_tvyre IS

RECORD
aatARRAY (0..44) OF AO_.31_tvmes
bbtARRAY (0..44) OF S_tvyee!
ccl1ARRAY (0..44) OF C4_tvpretl

END RECORDS

ordinarvyt ordinarv_tvees

F-27

L.

1. .

|

PR SR

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Table emresets and table item prresets will be translated usins
assresate values as described for strins mresets in 3.2.2.2.1. The
“l1ike" ortion will result in records which include reference to
rreviously declared records as arerrorriate. Star~bound tables will be
declared usins unconstrained arravs ("ARRAY({O)"),

There is a srecial case in which srecified table declarations will not
be commletely translated. J73 table items may overlar in bit mosition
within a table entry. This prosrammine techniaue is sometimes used to
define mask fields and substrinss of table data. Under the transiation
outlined in this wmarasrarh,y, overlarpring table items would be
translated to incorrect Ada code, since locations smecified by a
representation specification within a record must not overlar. The
excemrtion to this rule is that storase for distinct variants of a
record may overlar. However, this resuires that the discriminants be
static, emrohibitine dvynamic selection of variant obJects. Thus,
variant reczords will not be used, nor does anvy other Ada construct
appear adequate for this maerines. The Translator will detect table
item overlarps, translate them as (illesally) srecified records. and
outrut a warnine messase to inform the user of the need to rerrosram.

3.2.2.2.3 Pointers

J73 pointer tvyrPes will be translated to Ada access tvres. The
translation is suite simele for tvyred rointers.

TYPE link P cells
becomes
TYPE link IS ACCESS cells
and
ITEM svymetr P symtabs
is translated to the mair of declarations,

TYPE svymptr_tvyme 1S ACCESS svmtabs
symetr: symptr_tvypres

This rermits an access of a rointed—-to variable such as
"variable@svymetr" to be transliated to "svymetr.variable".

F-28

.

i |
Y

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Transtation of untvymped Ppointers is more difficult, because Ada does
not mrermit anonvmous access tvres. The Translator must rer-form a
slobal analvsis of the srosram to determine the types of all objiects
to which the mointer may roint. If the mointer is used for obiects of
only one tvyres the Translator will simely “"tvme” the Pointer in its
declaration. For examerlie, a table containins an untyped pointer

TABLE cell (49)s
BEGIN

ITEM value val_tvpe:

ITEM next P3 "next is used to Point to other cells"
END

will be transiated to

TYPE cell_tvpes ——incommlete tvre declaration
TYPE next_trre IS ACCESS celli_tvpe!
TYPE cell_tvype IS
RECORD
value! val_trpes
next: next_tvype!
ENLDL RECORD:

Ak

p———

v nso

JGVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

cellt ARRAY(0..49) OF cell_ tvrme:

If the rointer is used for oblJects of several tvres, the Translator
will select a tvyre for the mointer accordine to freauency of use. For
examrle, if an item declared as an untveed pPointer is most often used
to roint to obijects of tvyre "cellZ_tyrpe", then

ITEM rointanvwhere P3 "usually points to celiZ_tvpe”

will be translated to

TYPE epointanvwhere_tvme 1S ACCESS cellZ._tvypes
pointanvwhere? rointanvwhere_tvyre!

with an incomplete declaration of cellzZ_tvype included (if necessary)
before the declaration of Ppointanvwhere_tvre. References ¢to
pointanvwhere will need tvyre conversions only if the tarset tvrpe is
not cell2._tvmes conversions to cell2_tvrPe wil) be deleted by the
Translator, since they are unnecessarvy.

3.2.2.2.4 0ther Declarations

Block declarations are used to declare sroups of items, tables, and
other blocks which are to be stored contisucusly. Althoush no Ada
construct provides contisuous storase allocation, blocks will be
transliated to records, providing access to blocks (includine erarameter
passing) in a manner which is semantically similar to J73. In general,
a4 block declaration of the form

' .
A caiaaesoa

= g

~1g

.y

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

BLOCK datasroumss
BEGIN
“sequence of declarations"”

END
will be transiated to

TYPE datasroup_tvyre IS
RECORD

—-—sequence of declarations
END RECORD3

datasrourt datasroums_tvymes

alony with a warnins messase to inform the user that the objects
declared in the block/record mavy not have caontigsuous storase
allocation.

Statement name declarations are used to declare labels which are to be
used as formal rarameters. Since the Translator will not tranc=late

1abel rarameters, these declarations will not be translated (see
3.2.3.3).

Define declarations are used to achieve parameterized commile-time
strins substitution (i.e.; macro—exransion). Define declarations which

corresrond to simerle constants will be translated to constant
declarations. For exammele,

DEFINE ueperbound "2##15-~1"3
will be translated to
urperboundt CONSTANTI= 2Z2##15-1%

Other define declarations, in seneral:. have no Ada ewuivalent. The
Translator will simely exrand define calls in the J72 module before
translation. The wuser may reaquest a summary of define exmransions
rerformed as a translation omrtion.

Althoush Ada contains no construct for overlavine data, an Ada
imrlementation may erovide a rmrasma for this purpose. The overlay
declaration will be translated usine this mrasma if it is availables
otherwise, overlay declarations will not be translated.

J73 allows null declarations whose svntactic form is either a

semicolon or an emepty BEGIN-END bracket. These declarations will be
translated to the Ada construct, NULL.

F-31

Adca

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

L‘, 3.2.3 Executable Constructs

- This rarasrarh describes the translation functions associated with
formulas, exrressions, and statements. The discussion is siven in
three rarts:

a. Exrressions, formulas, and assignment statements.

b. Local control statements.

C. Procedure and function call statements and return
statements.

Srecial executable constructs known as intrinsic functions are
discussed in 3.2.5.

‘3}2,3.1 Exrressions and Assisnments

In weeneral, arithmetic formulas such as ((AA*BB-CC)I#%2) will be

. unchansed by the Translator. Each arithmetic orerater of J73 has an
i Ada eauivalent with the same form and precedence. Ada distinsuishes
' between binarvy and unu¥ry_ uses of the orerators "+" and "-", givins

hisher rrecedence to unary otcurrences, but in eractice this does not
- affect the results of an arithmetic _formula. (J72 treats unary "+" and

=" as "sions" rather than oprerators, so that exeressions such as

(5--3) must be written as (5-(-3)), removiii® the need for a precedence
E distinction.) Tvre awualifiers wiil be inserted into fixed Point
! exrressions when needed, as discussed in 3.2.2.1.

Status., table, character, and pointer formulas do not involve
oreratorsy and will not be chansed by the Translator. Bit formulas in
r J73 are reauired to include rarentheses whenever more than one kind of
!! omrerator is wused. so that precedence is irrelevant. The EQV orerator
P - will be translated ¢to "=", which 1is overloaded in Ada to include
] boolean exrressions. The AND and OR operators, when used in boolean
formulas (bit formulas of tvyre Bil), wil) be translated to the short
; circuit forms, AND THEN and OR ELSE, correspondine to the .73
1 semantics for boolean formulasst bit formulas of size osreater than cne
L] will use the standard AND and OR forms.

[Relational orerators are exuivalent in 72 and Ada. The "not eaual”
orerator in J73 ("CO%) will be converted to its Ada eauivalent, “/=",
. A1) relational orerators have ewual rrecedence in both lansuases.

- Tyre conversions in Ada are rermitted only between closely related
tvyres, so that conversions of numeric tvyrpes to numeric tvpes, bit
tvyres to bit tvymes, character tvymes to character tyres, and table
tvyrmes to table tvyres mavy be transliated directliv. For example,

F-32

O ADA TRANSLATOR INVESTIGATION
{AL DESCRIPTION

linteger(xx) "xx is a halfword inteser”
5:26 #)vy Yvy is tvyre A 0,31"

translated to

lintewer (xx)
2o_tvre(vyy)

ions between unrelated tvres (such as character to inteser) and
ions involvine prointers, status obJects, and the REP function
be rerformed directly in Ada. The only Ada construct available
ich conversions is the rredefined seneric function,
ID_.CONVERSION. Instantiations of this seneric will armear in
fefined_rackase for each kind of conversion which has no direct
ivalent. The J73 conversions

8#) name "name is of tvyee C 1*
'xXYz) "xvz is of tvre F"
le2(@point) "moint is of tvre P tablel”

ause the followine instantiations to be included 1in
lefined_rackase!

;TION Ci_tvyrpe_conversion IS NEW UNCHECKED.CONVERSION (Cl_tvre)!
TION F__tvme_conversion IS NEW UNCHECKED_CONVERSION (F_tvyme)}$
TION tablei_tvyre_conversion 1S NEW UNCHECKED_CONVERSION

el _tvre)s

the tvyre conversions may be translated to the function calls

'vyre_conversion{name)
'‘Pe_conversion(xvrz)
el_tvyme_conversion(moint.all)

anslation techniaque will work correctiy only if the Ada
tation beins used rmermits the unchecked conversions senerated

Translator. In J73, conversions betw.en unrelated trres ace
ned by commile—-time rules, while Ada does not srecify what
111 be used by a comriler in merformine ‘(or rejectine) such
ons. For any unchecked conversion which is not allowed by the
mriler, the user must rerlace the instantiation of
D_CONVERSION with a customized function that emulates the
ndine J73 rules for the conversion.

F-33

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION »

Assianment statements will be translated by rerlacine the "=" with its
Ada c~auivalent, "r=", Assignments to more than one variable in a
sinale statement, such as .

varl,varZ,var3 = varz + 643
will be broken into serarate assianments.,

tempi= varz + 43
varit= teme$
varz:= temp;
vard:= temps

usineg a temporary variable to conform to the J72 rule that the risht
hand side be evaluated only once.

To a small extent, J73 programs may rely on the side effects of the
order of evaluation of expressions and assignments. The languasge
auarantees that the risht—-hand side of an assionment statement will be
evaluyated before the left-hand side, and that functien arsuments and
table indices will be evaluated left-to-right before anvy exepressions
or assisnments are performed. Derpendence on side effects of these
evaluations, while senerally considered poor prosrammine practice, is
possible in J72. HMowever, Ada gives no such suarantees resardine order
of -evaluations a eprogsram which contains such side effect derendencies
may be transiated to an erroneocus Ada eroeram. The user is responsible
for detectine and removine these derpendencies.

2.2.3.2 Local Control Statements

This earasrarh describes the translation of statements which affect a
progsram’s flow of control on a local basis. Global control constructs
(call and return) are discussed in the followine pParasramh,.

The svntax of J73 loome statements is relatively comeplex. A looe
statement mavy contain, in addition to a loom Parameter and a wh.le
clause» a bv—-mhrase, a then—-rhrase, and an initial value. Futhermore,
the Jloor marameter mavy be either a =olobal eprosram variable or an
immplicitly declared obJject which is local to the l1oor and unaccessible
outside of the loom, By commarison, Ada loors are auvite simple. Thev
may contain an imelicitly declared loor Parameter, a discrete ranse
for the rarameter, and a while-clause’ olobal l1oor marameters and
exmplicit by~ or then—clauses are not eermitted. Translation of looe
statements is a rare instance of mapeines a commlex J73 structure onto
a simmler Ada structure.

F-34

e as ma. ke

T
'

———— — 73 DA e T
“)) : .
i .

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIDNAL DESCRIPTION

Loor statements with no Joor Parameter are easily translated. In
seneral, a loop of the form

WHILE booleanformulas
BEGIN

END
will be translated to

WHILE booleanformula
LooP

END LOOP3

A loor with an imelicitly declared loor Parameter (a "control-letter")
will be ¢transiated usine an iteration clause (FOR loomr_rarameter IN
ranve) whenever the bv—-clause or then-clayse corresponds to a loor
rarameter increment of +1 or -1. For exammle,

FOR i20 BY 1 WHILE i<100%

becomes

FOR i IN 0,.99
L DOP

END LOOPS
and

FOR 1122 THEN (i~1) WHILE i>=O0s

becomes

FOR i IN REVERSE 0..27 -
LOOP

END LOOPY

F-3%

- omte- st aaalhh Soomtie 2ot - atui A

-

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

A looe with a control letter but no bvy-clause, then-clause, or
while-clause can be translated without an iteration clause?

FOR i35
BEGIN

END
will be transiated to an Ada block with a declarative part

DECLARE —=block for loorp statement
it INTEGER: =1

BEGIN

LOOP

END LOOPS
ENDs -=block for loorp statement

ensurins that the loor rarameter is local to the loop statement. A
similar loom with a slobal variable rather than a control tetter, such

as

FOR eventcount! v(firstevent)s
BEGIN

END
will be transiated, without a block or declarative part, to

eventcountisfirstevent:
LOOP

END LOOPS

since the loor parameter is already declared alobal to the looe
statement.

F-36

N

7

)

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Loor statements with slobal varisble 1oor pParameters and br-clauses,
then—-clauses, or while—-clauses, as well as loors with control letters
and increments not esual to +1 or -1, will be translated to Ada

structures consistine of assisnment statements and while—-loors. For
exammple, the loor

FOR aatbb BY cc WHILE dd>eet "aa.bb,.cc.dd.ee are slobal”
BEGIN

END
will be translated to

aal=bbs
WHILE ddDee
LOOP

aad=aatccs
END LOOPS

which is not only semantically identical to the J73 form» but should
also run Jjust as efficiently. Another examprlie!

FOR isbb BY cc WHILE i<»05 "i is a control letter”
BEGIN

END
is translated to a block with a 1ocal declaration of it

DECLARE ——block for loor statement
it INTEGER:=bb}

BEGIN

WHILE i/=0

LOOP

it=i+cces
END LOOP$
END3 --block for loor statement

A . A L . A

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

The
exit
as

exit

statement in
statements will be unchansed by the Translator,

WHILE conditioni}

BEGIN

IF condition2s

EXITs

END

may

be translated to

WHILE conditioni

LOOP

IF condition2 THEN

EXIT?
END IFs

END LOOP3

ors

more cleanly,

WHILE conditioni

LOoOP

EXIT WHEN condition2s

END LOOP3

Selection

J73 is directly marrable to Ada.

mavy be rewuested by the user as an omtion.

J73 IF
statements in
the statement.

that the reserved word
Therefore,

F-38

statements translate straishtforwardlv,

n T’EN L1}

differine from Ada

must erecede the bodvy

In seneral,
A construct such

of the latter translation technimue is an ortimization that

1F
of

TTTYT R — w—— ———y

Py

AT

T vr_vyr‘ v
7Y :

A 9

Y
4

il

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

IF condition? -
"any statement”

is translated to

IF condition THEN

--seauence of statements .
END IF:

A comrPlex IF statement such as

IF conditionis S
BEGIN w-d

END
ELSE IF condition2s

will be translated usine the ELSIF construct to .

IF conditionl THEN

ELSIF condition2 THEN -1

END 1Fs

Case statements are also suite easily translated, with the construct
"(case—indexir...)1" remlaced by "WHEN case—index!...=>", For exammle,

F-39

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

CASE exerressions

BEGIN
(0,1)¢ "statementi®
(2:14,8): “statement2"
(S5): "statement3"
(DEFAULT): "statementsd"®
(9,11): "statements"
END

is translated to

CASE exreression IS

WHEN O..1=> --statementl

WHEN 2..4!8=)> ~—statement2

WHEN Ss=> -—statement

WHEN 92!11=)> --statementS

WHEN OTHERS => -—statementsd
END CASE?s

The default case alternative is moved to the end of the statement, as
is reeuired in Ada. The FALLTHRU construct, which causes case
alternatives to be executed sewmuentially, has no Ada esmuivalents each
armpearance of FALLTHRU will cause the statements of the followine® case
alternative to be durlicated at the end of the case alternative which
contained the FALLTHRLU.

The final statement discussed in this rarasrarh, the GOTO statement.
will be unchansed by the transiator. The resultins Ada eprogsram will be
correct as l1one as none of the GOTO’s cause a transfer of control into
an if statement or a case statement. J73 permits such transfers, while
Ada does not. The Translator will detect and flas such GOTO’s,
informine the user of the need to restructure the module.

3.2.3.3 Call and Return Constructs

Procedure and function calls in J73 are svntactically similar to their
Ada emuivalents. Parameter massine mechanisms are semantically
differentt J73 specifies the wavy an areument will be rassed to and
used bv a subroutine, while Ada srecifies only the effect a subroutine
may have on an arsument. The difference between these twce areproaches
involves the corvine of actual rarameter values.

J73 semantics for value bindine and result bindine reauire that a comvy
of the rarameter is used by the subroutine. Ada rrovides two rarameter
modes, IN and IN OUT, which require cories of scalar and access tvpe
arsuments, but not of commasite (record or arrayvy tyme) arsuments. To
ensure that comrosite arsuments are massed by comrvrine, the Translator
must senerate exmrlicit assisnment statements to comvy commosite
rarameters into and out of temmporary locations whenever value or
result bindine is used for blocks and tables.

F-40

e A e % A A e m om e a m = 0 e .

[o—

-

‘"r"
i Y

4

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

In seneral, J73 inmrut rarameters will be translated to Ada IN
carameters, and J73 ocuterut rarameters will be translated to Ada IN OUT
rarameters. For examrle, the pProcedure declarations

PROC swar {(taa,bb)$ “aa and bb are inteser output are’s"

PROC urdate (newvaluet! buffer): "newvalue is floating,
buffer is a table"

PROC tablecory (BYVAL tablel)s "tablel is an input value are"

will be translated to

PROCEDURE swar (aa bbiIN OUT integer)’ —-value result bindins

PROCEDURE umdate (newvalue! IN F_tvrel buffer: IN OUT
buffer_tvyre)s

~-value bindine for newvalue, reference bindine for buffer

PROCEDURE tablecory (tablel: IN tablel_tvme)s
--value bindine

tablel. .temp:=tablels
-—ensures that a copy of the arsument is used

-—references to tablei.temr rather than tablel

Explicit coepvine of value or result bound composite mrarameters, as in
the third examrler» may be surpressed by the user if desired. Arsuments
of functions will be translated the same way as procedure arsuments.
Reference bindine, which is wused in J73 by default for tables and
blocks, will be translated to IN or IN OUT Parameter bindine in the
hore that <the Ada implementation ¢to be used will use a referer:e
mechanism for such pParameters. If the implementation uses a copving
mechanism, then the subroutine mavy have an undesired effect if its
context 1is chansed durine a run—-time interrumt. However, it would
aprpear unlikelvy that an imelementation would ever use a copvins
mechanism §for composite pParameters, since reference mechanisms are
generallv much more efficient.

S

- -3

e

PP ¢

e a a A A . .

PE———

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

Subroutine name Parameters will be translated to enumeration obJjects.
For example, the procedure

DEF FROC p1 (tobecalled)s

FPROC to be calledt

in which the formal prarameter "tobecalled” mavy assume the actual
valyes "pS", "pé&", or "m7," will become the package

WITH pS_packase, pP&_mackave., P7_packiges

PACKAGE pl_packase IS
TYPE tobecalled_tvyrpe IS (PS. P&, P7)1

PROCEDURE e1 (tobecalled: IN tobecalled_tvre):

Usine this translation, a call to the formal rarameter is translated
to a case statement:

tobecalleds "call to the procedure associated with
the formal parameter"

becomes

CASE tobecalled 1S -~— which proc to call?
WHEN S => P53 ~—call m5
WHEN p& =2 pb3 ~—call emé
WHEN 7 =2> p7; ~-call e7

END CASES

.. in which the eprocedure names "pS5" "pé" and "»7" are ove ‘loaded by
3 enumeration literals with identically smelled names. ‘hus, the
construct

& WHEN 5 => PSS

- means, "when the value of the pParameter ‘"tobecalled” is the
b enumeration literal "p5", call the procedure named "p5" (declared in
PS_pacakge)." The overloadine of the procedure names will De

unambisuously resolved by the Ada compiler.

4T d

LB s s cctaa ane s a4

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

ABNRT prhrases and ABJRT statements are similar to Ada excertion
handlers and RAISE statements in that thev result in termination of a
subroutine without bindine the values of output Parameters. However.
there is a crucial difference between ARORT s and RAISE“s: Raisina an
evception causes control to be transferred to a special section of
code (an excertion handler) at the end of a blouck or Procedure body,
and mavy not transfer control (GOTO) back into anv other Place in the
blaock or pProcedure, In contrast to this well—-structured method of
prematurely terminatine a procedure in Ada, the J73 ABORT causes a
virtually unrestricted GOTO (to anv Part of a calline procedure) which
cannot be effected usineg an excerption mechanism. Therefore, ABORT
phrases and statements will not be pProcessed by the Translator. The
yser mav restructure the calling routine so that it can use an
excertion mechanismy usually, this will not be difficult to do bvy
hand. Similarlv, statement name rarameters and GOTO statements with
formal statement name pParameter tarsets, which are special cases of
the ABORT mechanism, will net be automatically transiated.

Frocedure calls and function calls will be translated usins emositional
svnta», as in J73, so that calls will be unchansed by the Translator.
The only exception is that calls to rarameterless functions, such as

currenttime = svstemclocks "call to function with no are“s"
will use empty Parentheses,

currenttimei=svstemclock()s

as 18 re«auired in Ada. Return statements in erocedures will be
unchangsed by the Translator, consistine simely of the reserved word
RETURN. Functions will use the followine translation techniwue:

a. ascsienments to the function name will be translated to
assionments to a dummvy variable.

b. "RETURN" will be translated to "RETURN dummv_variable'.
For example, the function

FROC cubercot (fnumber) A 10,21% "mumber is tvre A 13,18"
BEGIN

cuberont = expressions
RETLIRNS
END

Py

emma

¥ — WA o .- o annsntuasmtauslamuinemitummadasatmae i

el

-
i

B

P—

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

will be translated to

FUNCTION cubercot (number: IN OQOUT A13_8_tvyre.) RETURN
A10_21_tvpe IS

cuberocot_result: AL10_21_tvpes
BEGIN

cubercot_result:=exrressions
RETLIRN cuberocot_results
END cuberoots

This techniaue will be used to translate each function—name assisnment
and each return statement occurrine within a function. FProcedures and
functions declared as INLINE will result in the insertion of the
Pprasma, "INLINE erocedure_name", into the proeram at the moint of

declaration.

The two remainine tvypes of J732 statements, storp statements and null
statements, are translated as RAISE system_stoes and NULLS

respectively. The former statement will raise an excertion called
"srystem_.stoe” which is user supplied (or may be sumrplied by an

implementation). If an integer formula is included, such as

STOP 223%

the Translator will senerate an assisnment to ¢the variable
system.stopr_value before raisines the exception:

svystem_stopP.valuet=223
RAISE svystem_stops

The semantics of the value associated with the storp statement are

imerlementation derendent in both lansuases. Declarations of this
exception and variable will be included in JU73_rredefined_mackaswe.

F-44

v—r—v—w

——

T

pp———————

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

2.2.4 Directives

J73 provides 22 directives. Ten of these directives will be
translated: the others have no Ada emuivalents.

The compool directive (!'COMPOOL) 1s translated as described in
3.2.1.1. The copy directive ('COPY) will be translated tn PRAGMA
INCLUDE, havineg the identical effect of incorporatine an external file
intoe the erogram text at the textual location of the directive. The
skiPp directive ('SKIF), alone with its delimiters ('BEGIN and !'END),
will cause the Translator to insert comment delimiters ("——") before
each line of text in the J72 module between the besin and end
directives. The translated module will then include the non—-translated
J73 code as comments. alon® with a messase informine the user of the
rresence of the skip directive.

The linkage directive ('LINKAGE) will be translated to the interface
Prasma, "FRAGMA INTERFACE (lanauase_name. syberroesram_name)", where
lansuagse_name is provided by a TPF entry and suberosram_name is the
name of the procedure or function which used the linkase directive.
The 1listing directives., 'ILIST and 'NOLIST, will be translated to
"PRAGMA LIST (ON)" and “PRAGMA LIST (OFF)"% the eiject directive,
'EJECT, will be translated ¢to the form feed svmbol used by the
Translator“s host environment (unless the Ada immriementation to be
used features an eject pPrasma, in which case that prasma will be
used). The initialize directive, 'INITIALIZE, has no Ada eauivalent,
but will be effected by seneratin® a mrreset of zeroces for all static
data declared in the score of the directive. That is, ":=Q" or ":=0.0"
or "(0,.99=>0.0)", etc., will be inserted into the declaration of each
static object.

Nine of the J73 directives (!'TRACE. !'INTERFERENCE, 'REDUCIBLE., !'BASE.
'DROP, 'ISBASE, 'LEFTRIGHT, 'REARRANGE., and 'ORDER) have no predefined
Ada eauivalent. However, a particular Ada environment will erobably
include features which are identical (or at least similar to) manvy of
these directives. The Translator will use any such features which are
available via TPF entries for each directive. In the absence’of a T
entry, the directive will not be translated.

The remainine directives, 'LISTINV,. 'LISTEXP, and 'LISTBOTH, will be

discarded by the Translator; define substitutions are not translated
Per se (see 3.2.2.2.4), s0 that these directives are not meaninsful.

F-45

(|
-

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

2.2.5 Intrinsic Functions

Most J732 intrinsic functions have Ada equivalents. Translation of
these intrinsics is summarized as follows?

J73 Ada
LOC(tablel) tablel "ADDRESS
BIT(mask1,5,3) maskl (5..12)
BYTE{name.0O,1) name{(0,,.0)
ARS(climbrate) ABS(climbrate)
BITSIZE(tablel) tablel_tvre“SIZE
BYTESIZE (name) name_tvre’SIZE/BITSINBYTE
WORDSIZE(maski) maskli_type’SIZE/BITSINWORLD
LEQUND(tablel.,2) tablei_tvrPe’FIRST(2)
IUIBOUND(tablel) tablel_tvre ' LAST
NWDSEN(tablel) tablel_ _tyre SIZE/BITSINWORD
FIRST(Points) rpoints_tvyre FIRST
LAST(color) color_tvre’LAST

In the exampPles above, the BIT and BYTE functions are translated to
slice notation as discussed in 3.2.2. Many of the intrinsic functions
invoivine obJject size or position are translated ¢to pPredefined
attributes of the objects” tvpes.

The remainine 473 intrinsics, NEXT, SHIFT, and SGN, will be translated
to svntactically eauivalent calls to pPredefined functions (except for
NEXT(status_trvprpe_variabile), which translates directliy to
enumeration_tvre/SUCC(variable)).

The function NEXT will be declared in J73_predefined_rpackaoe as

GENERIC
TYFE enum 1S ({>)3
FUNCTION next (nametenumsnumbertinteser) RETURN enum IS
BEGIN
IF (number>0) THEN
FOR i IN 1..number LOOP
name := enum SUICC(name)s
END LOOP3
ELSE -—- number is =0
number = --numbers:
FOR i IN 1..number LOOF
name := enum’PRED(name);
END LOOPS
RETURN names
END nexts

Py

TO ADA TRANSLATOR INVESTIGATION
NAL DESCRIPTION

a function call such as
T(color, 2) "second successor of color"
translated to a generic function call
T(color,2) ——same as J73 version
udine the instantiation

ICTION next_.color IS NEW next(color_tvrre)s

translation of the module, A similar seneric must be suprlied
user to overload NEXT for access tvres (in an imelementation
nt manner) if the NEXT function is used on mointers, The SHIFT
OGN functions will be rrovided by the Translator in
defined_rPackase as generics similar to NEXT, so that exrression

as SHIFTR(xX%,3) and SGN(aa) can be translated usins
iations such as

ICTION shiftr_xx IS NEW shiftr (xx_tvre)!

CTION sen_aa IS NEW s9n (aa_tvype)!

Miscellaneous Functions

araeraprh includes a discussion of several issues which have not
xPlicitly covered by previous rarasrarts, includine translation

es and comments, output listine format of the transliated Ada
and translation warnine messases.

Names

vhich are not Ada reserved words and which do not contain the
characters "’f or "$" will be unchansed by the Translator. The
e """ will have a derault translation of "_"§ "$', amrrearins

first character of a name, will be transiated to "S_ "3 a “e°
i in a name wil)l have a default translation of "_S_". Names
ire identical to Ada reserved words will be chansed to include

ision “_user”., Labels will be delimited by <<...>>, as rewuired
Some examples of name translaticn are siven below!

I e A A A A

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FLUNCTIONAL DESCRIPTION

J732 name Ada name
airspeed airspreed
dot'product dot_product
$status S_status
main$cvcle main_S_cvcle
joop loop. .user
statementlabel <<statementlabel>>>

Names of status constants will be translated by removins the "v" and
the pParentheses, so that “v(red)" becomes simply "red". The status
constant name will also be subiect to the rules described above for
special characters and reserved words, and will be aualified with a
tvre name if necessary, as discussed in Z.2.2.2.1.

Each of ¢the rules for name translation (except label bracketine) mav
be oaverridden by the user, if desired. This is accompliished with TPF
entries for each rule. For example, the user may wish to translate the

"$" ta "_w_"y, reserved words such as "lJoop" to “user_loopr", or a
status constant to "v.red". The user mavy prefer "proci_packase" to
"pracli_pack" or "tablel_record" to "tablet_tvre". These pPreferences

can be indicated with TPF entries.

The Translator is responsible for detectinms name conflicts for all
names, whether user senerated or Translator—senerated. For exammele, if
the module beine translated contains the names "ranse" and
"range ‘user", a conflict will occur: both names will be transliated to
“range_user", The Translator must inform the user of the need to
change either one of the names” srelline or to modify the TPF entry
four one of the two cases (translation of """ or translation of Ada
reserved words).

JA72 imelementations normally pPermit lower case letters to be used (the
basic character set is upmer case). Ada also uses urPPer case as its
basic character set, and will Presumably allow lower case in most
implementations. In both lan®suases, correspondine ueprer and lower case
characters are considered eauivalent (excert in character literal.,
where thevy are distinct). The Translator will use both cases, as in
the exameples of code 9iven throushout this document, unless the user
wishes otherwise. A TPF entry is provided for this purmpose.

—

—ry

PPy
- .

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

2.2.6.2 Comnments

Althoush comments have no semantic effect on a prosram, the Translator
will attemet to ereserve all comments arrearing in the module beins
translated. In most cases, a sinsle J73 statement with a comment will
translate to a sinsle Ada statement with a comment. Source lines
consistine of nothing but comments are also easily handled:

"This is a comment
that uses three lines
of the prosram"

becomes

—~this is a comment
~-—that uses three lines
-—-0of the Prosram

However, comments may be embedded within a statement or declaration,
such as

IF (aa<1&8.5) "below threshold" AND (bb>0)3

Since Ada comments alwavs extend to the end of the line, an embedded
comment will either be moved to the end of the line

IF (aa<18.5) AND (bb>0)s ~—below threshold

or wil)l be left in Pplace while the remainder of the statement is moved
to the next line:

IF (aa<18.%) -~below thresholuy
AND (bb>0O)s

Selection of which technieue is used is left as a user ortion. Another
rroblem occurs when a sinsle J73 statement or declaration is
translated to more than one Ada statement or declaration. An examrle
given in 3.2.3.2y for examrle, mars a for statement into two
assionment statements and a while statement. In this case, the comment
will be mlaced with the "kev" statement of the Ada translationt?

FOK aatbb BY cc WHILE dd>333 “loor throush all entries”
will be transiated to

aat=hb;
WHILE dd>ee ——loom throush all entries
LOOP

aai=aa+bbs
END LOOPY

F~49

Al nd

Lt 2Bl o

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

The Translator will _also create comments for Ada code which is
Translator—generated. For examrle,

TABLE emplovees (99)3 "mersonnel records”
BEGIN

END
will result in

TYPE empPlovees_tvype IS
RECORD ~~—describes body of table "empPlovees"

END RECORD:
empioveest ARRAY (0..99) OF emplovee_tyrpes -—personnel records

The Translator will alsoc generate comments to inform the user of the
purrPose of a with clayse:

WITH comels -—includes items aa,bb
-—and tables tabl, tab2

The u-epr may optionally surpPress either orisinal comments or
Translavor—generated comments.

3.2.6.2 PFPrettverintine

The Ada modules cutrput by the Transltator will be printed in a format
which corresponds ¢to commonly accemted stvlie for hish order lansuase
rrosrammine., Statements within losical blocks such as procedures,
loors, and records will be indented one tab stor (three sraces)
relative to the enclosine block. Sinvle spaces will be insert.d
between names., orerators, and reserved words. The user mavy select
either urpPer or lower case Jetters to be used for either reserved
words or names. In weneral, the code will be formatted like the
exampPples siven throushout this Functional Descrimrtion.

Warning messases will be inserted into the ocuteut text as necessarvy.
The messaves will corresmond to three levels of severity. Level 1
warnings inform the user that the Transiator has made some assumption
(Presumably a valid assumption) about the prosrammine environment. For
examrle, when translatine an assisnment ¢to a floatine esoint tvyre
variable which was declared with a roundine option, the messase

——##_lwarnine: assumes pPresence of a roundin® procedure##

e

T

—

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

will be inserted as the line followine the call to the roundins

rrocedure. Level 1 warnines are informational and mavy be suppressed bvy
the user if desired.

A translation which introduces a rossible svntactic or semantic error
will be accomranied by a Level 2 warnine messase. Exammles:?

——#%l2warninat record component overlar is illesal#**
-=##L2warninet tarset of goto is inside a comrpound statement**

Untranslated constructs will be flaseed by Level 2 warnine messasges,
such as

-~##L3warninet define declaration not translated##
-—##L3warnine: order directive not translated»»

Warnin®s messages are printed as Ada comments so that the module mavy be
compiled, if desired, without modification.

F-51

A

PN

.....

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

3.3 Inputs—Qutruts

This rarasrarh describes the input and ocutrut remuirements of the
Translator.

3.3.1 Input Data

Three kinds of data are reauired as ineut to the Translator: user
commands, J73 source, and translation rarameters.

3.3.1.1 User Command Ineut

Users of the Translator must erovide whatever host—-derendent commands
are reauired to invoke the Translator and specify ineut and outeut
data file names.

3.3.1.2 J73 Source Ineut

The J73 source to be inmut for a sinele run of the Translator mav be
any portion of the eprosram that is serarately comeilablie by a J73
comeiler, ran9ine from a single comeool, procedure, or function to the
entire eProsram. A1l J73 code must be svntactically correct, which
implies that it has been rreviously checked by either a comriler or a
code auditor. Previous compilation or auditine of the J73 source code
is not manditorvy3 however, because the Translator will not rerform
svyntax checkine, reliable transiation will result only from inmrut that
is absolutely free of svyntax errors. Input which is syntatically
correct but erroneous will, in seneral, have unepredictable results.
Some sprecific instances of erroneous prosram translation have been
discussed in eprevioys sections.

3.2.1.3 Translation Farameter File

The Translation Parameter File (TPF) will be used by the Transiator :o
suide the translation of J73 constructs whose marepins to Ada is either
arbitrary or indefinite. Exammles of such cases are variable names
containing the "$" or """ characters, variable and constant names
which wmay be opPticonally «ualified with a mackase or tyre name,
optional insertion of constraint smpecifications and excertion
handiers, and selection of subroutine arsument—rassins modes. The TPF
will be user accessible and mavy ortionally be included as mart of the
Translator’s output 1Tistins (alony with the Ada rrosram itself).
Certain TPF entries mav be overridden by user command inmruts so that a
sinsle module can be translated in a smecial manner without modifvrine
the TPF.

F-52

— b e

T

—

e |

~ 1

e .

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

3.3.2 O0Quteput Produced

The Translator will produce three kinds of outmytt transiated Ada
modules, @enerated Ada modules., and a mrosram dictionary.

2.Z2.2.1 Translated Ada Module Cuteut

The ma.jor outeut of the Translator will be a listins of the Ada module
produced by a run of the Translator. This listine will be
areropriately formatted (“"prettvyerinted”) to conform to standard
prosrammine practices, includine indentation to exhibit nestine,
alisnment of "besins" and “"ends", and form feeds for modular units
(i.e.» a new procedure sets a new rase). Comments from the inerut U732
program will be included in the Ada listine if reequested by the user.
Warnine messagses will clearly delimit anvy missine Ada code
correseondine to untransiated J73. The listin® mavy be ~uteut to either
a hard coev device (printer) for human inspection or to a file (disk
or tare) for storage.

2.%.2.2 Generated Ada Module CQutput

Fredefined tvepes and intrinsic functions in J73 which have no exact
Ada eauivalent will rewsuire the seneration of smecial modules. These
modules will be Ada packames which sprecify predefined twres unique to
J72, as well as mackases which either imepiement or at least srecify
73 intrinsic functions., In the latter case, intrinsics whose
imelementation is tareet demendent rather than lansuave derendent will
be rerresented by a mackawe specification with a body stub. This will
permit the user to imeplement the function at a later date while
ensurine svntactically correct references to the function immediatelv.
The use of the '"senerated mackases" will render the translated Ada
rrovram reacdables since the resultine Ada svyntax will be identical to
the oriesinal J72 svyntax for ‘edefined/intringic constructs. In
addition to clarity, efficient 4 flexibility will be maintaineds
the mackaves senerated by the Trans._.tor mavy be chansed or remlaced .v
the user with mo svyntactic imemact on any of the translated modules.

3.3.2.3 Proesram Dictionary Outeut

For translation wsurmoses: the Translator must keer an internal
dictionary of the names of all modules and externals used in the
rrosram beine transiated. A listine of this dictionary may be outmrut
uron revuest of the user. It wil) contain the name of each library
unit in the Ada translation, as well as external names listed
accordine ¢to which library unit contains either a definition of or a
reference to each external.

F~33

PO ST

p———

o 4

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

2.4 Data Characteristics

The storase and

characteristics of
Translator are summarized in the table

the data elements used by the
below.

File Description Mode Format Recommended Device Tvpe
J73 Source inmerut character seauential or direct access
Translation
Farameter File inpsut character direct access

(TPF)
List of J73
Modultes bvw
File Name ineut character direct access
Workseace internal binary direct access
Dictionary ocutrut chara-ter hard comy
Ada Modunles outeut character sequential, direct access

or hard copy

The sizes of these 2lements are sntirely derendent on the size of the
J73 source prosram beins trinslated (excempt for the TFF, which will
require a fixed storase size of about 1K words).

3.5 Failure Continsencies

No failure continsencies are r¢euired for this svsten.

F~54

|

d -

JOVIAL TO ADA TRANSLATOR INVESTIGATION

FUNCTIONAL DESCRIPTION

SUMMARY OF PROBLEMATICAL CONSTRUCTS

Construct

APPENDIX 1

Problem

Discussed in FParasrarh

Specified tables with
overlamrping items

Contisuous storase
allocation (Blocks)
and overlavrs

Statement name
declarations

Define declarations
ExPressions with side
effects

Label rarameters and
abort statements

Directives

I1leval in Ada.

Contisuous storase is
not suaranteeds over-—
laved storase may not
be Provided in an Ada
implementation.

No similar Ada
construct.

Define’s are exranded

rather than translated.

Side effects are not
suaranteed.

No similar Ada
construct.

Certain directives may

not be mrovided in an
Ada imelementation.

F-A1

3.2.2.2.2

3.2.2.2.4

3-2.2.2-4

3.2.2.2.4

A it

—— e e & o

JOVIAL TO ADA TRANSLATOR INVESTIGATION
FUNCTIONAL DESCRIPTION

APPENDIX 2
MIL-STD-1589B CROSS REFERENCE

This arrendix eprovides a cross—reference for J73 constructs accordine
to the sections of MIL-STD~1589B. For each section or sroup of related
sections of 1589B, the subrarasrarh of this Functional Description
which is areplicable is siven in the rigsht column.

1589B Section Discussed in Parasraph

Intine Procedures and Functions
Machine Specific Frocedures

1.1 Comrlete Froosram 3.2.1
1.2.1 Compool Modules 3.2.1.1
1.2.2 Frocedure Modules 3.2.1.2.1
1.2.3 Main Prosram Module 3.2.1.2.1
1.2.4 Conditiona) Compilation 3.2.4
1.3 Score of Names 3.2.3.2, 2.2.6.1
1.4 Imrlementation Parameters 3.2.2
2.0 Declarations 3.2.2
2.1 Data Declarations 3.2.2.2
2.1.1 Item Declarations 3.2.2.2.1
2.1.1-6 Tvre Descriptions 3.2.2.1, 3.2.2.2.1
2.1.7 Pointer Tvyre Descrimtions 3.2.2.2.3R
2.1.2 Table Declarations 3.2.2.2.2
2.1.2.1-4 Table Dimensions,
Structure, Entries 3.2.2.2.2
2.1.3 Constant Declarations 3.2.2.2.1
2.1.4 Block Declarations 3.2.2.2.4
2.1.5 Allocation of Data Obiects 2.2.1.2
2.1.6 Initialization of Data
ObJjects 3.2.2
2.2 Tvyre Declarations 3.2.2.2
2.3 Statement Name Declarations 3.2.2.2.4
2.4 Define Declarations 3.2.2.2.4
2.4.1 Define Calls 3.2.2.2.4
2.5 External Declarations 3.2.1.2.2
2.6 Overlay Declarations 3.2.2.2.4
2.7 Null Declarations 3.2.2.2.4
3.0 Procedures and Functions 3.2.1.2.1
3.1 Frocedures F.2.1.2.1, 2.2.3.3
3.2 Functions 3.2.1.2.1, 3.2.3.3
3.3 Parameters e 2.3.3
3.4 2.2.2.3
3.5 2.2.1.2

L]
. =
L]
L]
.
Pt

F-Az

2 VPR P W P P e s A s

e d

MR IR

Tt

ey
1"

-

JOVIAL TO ADA TRANSLATOR LNVESTIGATION
FUNCTIONAL DESCRIPTION

Arpendix 2 - MIL-STD-1589B Cross Reference - Continued

1589B Section Discussed in Parasrarh

Statements

Assisnment Statements
Loor Statements

If Statements

Case Statements
Procedure Call Statements
Return Statements
Goto Statements

Exit Statements

Stop Statements

Abort Statements
Formulas

Data References
Variables

Named Constants
Function Calls
Intrinsic Functions
Trme Matchine and Conversions
Characters

Svmbols

Literals

Comments

Blanks

Directives

CAPRYNQWWNOO»IYONCTCARPUON=O

== NNNONNNN -

o]

3-2.2' 3-206-1

-

U!\)N
[N

#D@NO‘O‘NGWNN”?UQU&WGQWNO@

.
.
[
[
-
[

3.2.3.1

L]
s
-

2.2.2.1

e @ []
PJNPNNNNNNNN!\)NNNNNNNNNNNN
« ¢ 8
QN e s g
[A]

OCOWCOODW\IO“ODO*.O*M##&#D&O&#&‘PI
INEANNEAEARAEANANNEANARAEARARANANANARARARARNANARA

F-A3

PP Y S S A I 1

d

A

'_Yr'.
th

SYSTEM/SUBSYSTEM SPECIFICATION
for the

JOVIAL (J73) TO ADA TRANSLATOR

Prerared byt

Mark J., Neiman

|]
TABLE 0OF CONTENTS
T
Parasrarh

d

—

) Sttt et

Py

SECTION

SECTION

NRN N~

WK -

SECTION

N re

SECTION

. «a & & a2 & ¢ & =
- » e N:.

QQUW@!\)NNM'—“*“#P‘H

Dol WWNWDNWWDONWWVWWWWN = e

b&’«hb&b&bbh&bbh&&bb?bhbbb-hb-hb WWWw NNNNNRN

ONCARADPWN =

APPENDIX

& WN »-

GENERAL

Purmose of the Svystem/Subsvstem Srec....
Project References...ccceecocasscnnnanss
Terms and AbbreviationS.csceccccrccsnncs

SUMMARY OF REQUIREMENTS

Svstem/Subsystem Descrimtion..ccscescsecs
Svystem/Subsrstem Functions..cececcescnes
Accuracy and ValidityY.oaaceneoonavsncncan

Timin'IIl-.'l'l-IIl.llll..l.ll!llll.!lll

F'QXibi]ifY...--....o.---.--.-.-------.-

ENVIRONMENT
Eauirment Environment...ccoccscccccnnnen
Sueport Software Environment....cccvusee.

DESIGN DETAILS

General Oreratin® Procedures....c.cvcaeae
Initializin® the Translator.c.cccescceen
Translatine Modules to Ada...ccecacacsnes
Svystem Lovical FloWeseecoovooveasannensans
SYSt.m D.t.ll.l.ll..ll'll.lll.l..'.ll...
InputSI.lII.l.llllI-..llllll.l...l.ll.!.
Command InPut....cievecnanvenaenscsancsanase
J73 Sourc. In'utllI......II..-‘M.OI.....I
"odu‘. Li'tlillllllICIIII.I'IIQI.I‘.I.I.
Translation Parameters....cccvececccasnes
out'uts...llllllI.Il‘..l.ll..l!!l.l.'l-l
Translated Ada SoUPrC@®.ccscvareroscscanonsse
Generated Ada SOUPCe.ccvcanscssncnsansace
Diction&rY..ccceeevsasvcsnsscsncnsnscannnase
D.t‘ B".Illl.-.l..l'll..lllllll'..l.l!.
MOdU‘. T.b‘.ll‘ll..lllll.ll.l...ll.lllll
J73 Module Rerresentation..ccceccccccnscs
Intermediate Lansuawe...ccccvecccscnsasas
Other Data Base Elements..ccccceicecccnns
Prosram Descrimtions.cccccecsnscnsnnnsas
ExEctllll'-.llll..Illll.lllllll.l.l.l..l
IN!T-------.--------------.-.-.--...oc-.
ANALYZE!Illl.llIlClllllll.lI..III.I....l
TRM..'ll'..l.I.l.ll'.llll.lllll.....ll.
SPECIl.lll.l.l..llll..llll...ll..ll.-...
BODY.I'l.l!....IIlll...llll'l..l.ll.lll!
GENI..lll.l..l.l..I.lll.ll.l..'..ll..'l'

LISTI....I..ll'll'..l...l'....l...lIIIl.

Contents of the Translation
Parameter File.iccecicccsacnesossnssnnsne

S-1114

Pase

S- 1
G-
&~

-

S-
S-
S-
S-
S—-

VYD W

$-10
$-10

c-11
S-11
s-11
€-12
S-14
s-14
S-14
s-14
§-15
$-15
S-195
s-16
S-146
S-16
S-16
S-17
S-17
s-18
S$-18
S-18
S$-19
s-21
$-23
S-246
$-28
S-29
S5~29
§~29

S-Al

pon

A

s oA

B A e an 2o ma o 4

Fisure

2-1
2-2
4-1
4-2
4-3
4-4
4-5
4-5

LIST OF FIGURES

Title

Software Conversion CvCleé.iciceasceacoseas
Translator Structural Comronents....ce..
Logic‘] Flom.-------.----------------.--

ExEC..I-ll.I.lIl'lll.ll.llll.lll..l.l'.l

lNIT.-nitll.l.lll.llnu-!lc'lﬂla--l-lclcn

ANALYZE.IIIIIllUIIIIlIlIllIlIlIIIIIIIII.
Syntactic Analvysis....ceeensncnccnsancsee

TRAN-.-..I.---'I'.-.IIIllll.llllllll.lll

S~1iv

Page

S- 4
S~ 5
S-13
5-20
S-22
S-24
&-25
S-27

.
e e i & o N IS VY . 4 ket i ma
-——ad s .

- IR

AL TO ADA TRANSLATOR INVESTIGATION
‘EM/SUBSYSTEM SPECIFICATION

"ION 1. GENERAL
Purmose of the System/Subsvstem Seecification

Svystem/Subsvystem Sprecification for the JOVIAL (J73) to Ada
slator Investimation (F30602-81-C-0127) is written to Fulfill
followine obJectives:

a. To mrovide definition of a Prrorosed svystem to
translate JOVIAL (J73) erowrams to Ada erograms.

b. To communicate details of the on-soine analvsis

between erotential users and potential develorment
rersonnel.

Project References

rietary Software Svystems is under contract to the Rome Air
rTorment Center to investisate the automatic translation of
AL (J73) to Ada. The system prorosed in this document is
inded to rrovide eproduction =auality translation of JOVIAL
}) Prosrams to Ada in accordance with the Functional
rimtion (10 Januvary 1982) and the Statement of Work (PR No.
'3289) for the prroject., In addition to these documents,
rences listed in Section 1.2 of the Functional Descrimtion

also mertinent to the rroject and will be cited within this
ment.

Terms and Abbreviations

followine terms and abbreviations will be used throushout
Svystem/Subsvstem Srecification:

1A Descrirtive Intermediate Attributed Notation
for Ada.
neous A hish order lansuase rmrosram which contains

one or more violations of lansuase semantics
which are not detected by a comriler.
Erroneous rrosrams have unprredictable run-time
results.

rnal A rrosram element that is referenced by
modules which are comriled serarately from the
module in which the element is declared.

The rrosramminsg lansuase JOVIAL (J73) as
srecified by MIL-STD-19589B.

PSP

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

Module

Parse Tree

Proesram

TPF

Translator

A prortion of a J73 or Ada rrosram which is
losically distinct ¢from the rest of its
Prosram and which may be comriled or
translated serarately,

A data structure which rerresents the abstract
svyntax of a hish order lansuase erosram or
module.

A1l of the modules of a J73 or Ada Prosram, as
orposed to an individual compilation unit.

Translation Parameter File - a user accessible
file which srecifies which translation omtions
will be used for a run of the Translator.

The prorosed JOVIAL (J73) to Ada translator.

RPN IPY S 1

T edea

e

aboabh,

.

I (I

-

o

-y

JOVIAL TO AT 'RANSLATOR INVESTIGATION
SYSTEM/SUBRSYSTEM SPECIFICATION

SECTION 2. SLUMMARY OF RECLIIREMENTS
Z.1 Svestem/Subsvstem Descrirption

The Transzlater rconsists of a computer Program and related data
needed to automatically translate a J72 prosram to an eauivalent
Ada erosram. The erimary inputs to the Translator are 1732 scurce
modules and the Translation Parameter File (TPF). The Translator
eroduces two kinds of ocuteut listinest Ada source modules (with
dJiagncostics) and a prooram dictionary.

The pPurepose of the Transiator 1is to provide a hish desree of
automation to the Process of convertine a correct J73 erosram to
an e¢auivalent Ada eproaram. The J73% proeoram must be correct in the
sense that it contains no svntactic or semantic errors (i.e.,» it
is a “"debuaaed" proaram)., Fiaure 2-1 illustrates the use of the
Translator in the software conversion erocesss Fisure 2-2 shows
the major Ffunctional components of the Translator itself.

VTP T

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

BEGIN
v
. J73 .
. SOURCE .
. MODULES.

€ om e o -

O e e e e e i e et S B e G S e S e S B

V73 SOURCE
! CORRECTIONS

Translation errors

—— . e e o i T T i S ke Skt e . U . S et e S bk St o

. ADA .

« SOURCE .Translation Errors

« MODULES. —

- " m aw == o= 8

v

{ Ada Comepiler

Fisure

2-13

Ada Source

1
L
! Corrections

Software Conversion Cvcle
with Automatic J73-to-Ada Translation

S-4

=
]
¢
]
1
1
1

oY

el b

T

{r'va...

4

9 v-rA-w-

YTV Y

T v Y

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SFPECIFICATION

{ EXEC |
VOINIT ! i TRAN | VLIST |
! ANALYZE | !
y SPEC ! ! BODVY ! ! GEN

- - — ——— — ——— — —— Y - - — o ——

EXEC : MAIN EXECUTIVE

INIT : GLOBAL ANALYSIS INITIALIZARTION

TRAN : EXECUTIVE FOR MODULE TRANSLATION
ANALYZE : MODULE ANALYZER

SPEC s J72-TO-IL FOR PACKAGE SPECIFICATION
BODY : J73~TO-1L FOR PACKAGE EODY

GEN : GENERATE ADA FROM IL

LIST : QUTPUT LISTINGS

Fisure 2~2¢t Translator Structural Comeonents

FE U A PP

4 mba 1

Yo

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIF ICATION

2.2 Svystem/Subsvstem Functions

The functions of the Translator are summarized in this parasrarh.
A complete description of these functions, includine details,
examples, and exceptions, arpears in the Functional Description.

In translatine a J73 progsram to Ada, the Translator will preserve
the modular structure of the prosram. This is accomplished by
translatine compools and pProcedures to packases. The (73
constructs which reference separately compiled modules, the REF
and the comrool directive. are translated to Ada WITH clauses. A
J73 pProcedure “prv containing compoal directives, REF
declarations, DEF declarations, and 1local declarations will
become an Ada packasgse with the seneral form:

WITH ... -— names of other rackases containine

esse == compPocls and declarations of REF“ed obiects
FACKAGE Fi_rackase 1S

PROCEDURE P11 -—— specification of F1

cue —-— declarations of other DEF“ed obiects
END Pl_rackages -— end of package specification

PACKAGE BODY F1_packase IS

ces - declarations of local STATIC objects
PROCEDURE Pl IS -—— bodvy of Pi
BEGIN
cas —-— remainine® local declarations
coe —— rest of the procedure bodvy
END P11 s -— end of P{ bodvy
END Pl_rpackases —— end of pPackase body
This translation technigque is valid for all compools and

procedures except compools containing REF declarations and
procedures containine partial compool inputs. The translations
rer-formed in these cases are discussed in ¢the Functianal
Description.

The predefined tvees of J73 (sisned and unsianed inteeser., fixed
and floatine point, character, and bit tvepes) will be defined in
a Translator-generated pPackase called "J72._Predefined_package."
Declarations which use these tvrPes will be translated to Ada
declarations which use similar tvpe names (such as Al4_1_tvee for
A 14,1) and pPreserve all the attributes and tvee matchine
prorPerties defined bv J72 semantics. Bit and character tvepes are
implemented as arravrs, s that the "slice” and "assresate"
noctations are wsed to denote objects of bit or character tvyre.
Status tvpes translate straishtforwardliy to enumeration tvees.
Serial tables are translated to arravs of recaords, where each
record is an entrv of the tables paraliel tables become
individual records, in which each recard component is an arrav.

(1))
!
o~

-4

=

r
LA

i

Yy Y

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

Srpecified representation attributes of status tvres and table
tvres will be achieved usin® Ada“‘s rerresentation sepecification
constructs., Pointer tvyres are translated to access tvrest block
tvpes will become record tvees. Declarations which are not
rpertectly translated include srecified tables with overlarrine
item positions, statement name declarations, and overlavy
declarations. Lefine calls are exmanded inline, so that define
dJeclarations are not translated rPer se.

Executable constructs are similar in J73 and Ada. Arithmetic and
logical crerations in the two lansuases have matchins orerators
and eprecedences, s0 that transtations will not reauire extra
parentheses or special functions. Tyere conversions between
closely related twrpes are also straishtforward, but conversions
between unrelated tvpes and conversions involvine wmointers,
status ohiects, and the REP function are translated to calls to
the generic function, UNCHECKED.CONVERSION. Assisnment statements
translate directly, with assisnments to several variables in a
sinale statement translated to several semarate assiosnments. Side
effects of expression evaluation order and assisnment evaluation
order will not be Preserved by the Translator. Control statements
(FOR. IF, and CASE) translate to <the correspondins Ada
statements, with major restructurine reauired on certain classes
of FOR statements and miner restructurins of some CASE
statements.

Frocedures and function ialls are translated to svntactically
similar Ada calls, with inerut rarameters rassed in IN mode and
outrut pParameters passed in IN OUT mode. Code that exelicitly
corpies value or result bound pParameters is senerated by the
Trangslator for cases in which Ada does not suarantee the
necessary value or result bindine mechanisms. Label marameters,
subroutine name rarameters, and abort statements are not
translateds thev must be hand coded usine, for examprle, an
exceprtion mechanism.

Ten of the 22 directives wmrovided by J73 have simele Aoca
equivalents, The three directives related to define expansions
are not neededs the remainine directives (!TRACE, !'INTERFERENCE.,
'REDUCIBLE, 'BASE, 'DROF, 'ISBASE, 'LEFTRIGHT, 'REARRANGE., and
'ORDER) will be translated only if the Ada imPlementation to be
used pProvides correspondine constructs, since no such constructs
are pradefined in the lansuage.

Ada pProvides predefined attributes of types which are used for

transiation of most 173 intrinsic function calls. The RIT and
BYTE functions are translated to slice notation. The NEXT, SHIFT,
and SGN intrinsics will be translated to 9eneric functions

vieclared in 723 _predefined_rpackagse.

. 4na g

A

™ et
[] j

v

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

The Transiator will Process names in a highly flexible manner.
The wuser mav control the translatioen of names containine the "8
and ““" characters. as well as the names of Transiator—-generated
chiecta. usina TPF entries. The Translator will detect anv namine
conflicts or vieolationss it wiil alse preserve the original
comments and create comments for Translator—asenerated code.
[liasnonstics will be embedded in the outeput listina to inform the
Jyser of assymfrtions or inaccuracies in the translation of a
module. The output listine will canform to normal standards for
structured procrammine with resard to format, indentation. etc.

Ze2el Accuracy and Validitw

The translations performed by the Transtlator will be accurate in
the sense that the resultineg Ada prosrams will be semantically
zagivalent to the 72 prosrams from which thev were derived tao
the lareest extent possible. Except for certain untransiated

constructs, which will be clearly flasged in the cutput, the Ada
produced bv the Tramslator will be a valid Ada prosram in that

a. It will contain no syntax errorss

ke Any missing code that is reauired for execution of
the proeram will be cliearly identifieds

c. It will be compilable in a standard Ada environment
without modifications (such as reorsanizing
statements and declarations or renamine modules or
variables)s

d. It will conform to seneral standards for readable,
well structured programming.

In general, two versions of a eroaram cannot be suaranteed to
have absclutely identical run-time behavior in two different
environments, even 1if¥ the versions were senerated from the sam

source code (e.2.. a J7% ercoaram compiled for two different
targets)., Therefore, the Translater cannot be reauired to produce
a "perfect"” translation of a non—trivial eproeram. However, it

wil) be rexuired to preserve the oriainal proesram semantics
wherevzr pPussible, at the exPense of some run—time efficiency if
necessary, and to inform the user of anvy passible deviations from
173 semantics that are introduced by the translatian,

POy WP S

——— - w—— W % .

S

1P~ R e SR e

———————
a - H

P—Y

Las s o o o

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

2.2.2 Timine

Althoush eortions of a Prosram mav reauire repeated translation
to resolve various translation eroblems, the overall translation
Process will be a one-time task. Hish Performance with respect to
throushput is: therefore, not eiven a bhigh eriority. The
Translator should process J73 source code at about the same speed

as a compiler, roushly 100 source Vines Per CPU minute on a fast
mainframe host svstem.

2.2,2 Flexibility

Flexibility in the Translator is provided by use of the
‘ranslation Parameter File, which is discussed in Section 4.3.1.

r'd-vav
.‘J

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

SECTION 2. ENVIRONMENT
3.1 Eauipment Environment

A seneral purpose, medium scale mainframe compPuter will be needed
to support the Translator and its associated data. The host
environment must include enough direct access memory ta store the
Translator, the J73 prosram being translated,. and ail related
data, such as svmool tables, intermediate representations of the
modules under translation, and cuteut data. A host environment
which is carpable of supportine storagse and compilation of a eiven
J73 erosram wild be adeauate for support of the translation to
Ada of that program’ no new Processars, memories, aor ineput/auteput
devices will be reauired.

2.2 Support Software Environment

The Translator wild operate under control of a 2eneral purpose
orperatine svstem. Invocation of the Translator, spPecification of
inPut and output files, and modification of J72 code for
re-translation (as shown in Figure 2-1) will resuire the Jjok
control, file managsement, and text editine carabilities which are
provided by a tvypical opPerating svstem an a medium scale
comeputer., No new support software should be necessarvy. The
Translator could be intesrated intse an Ada Prosrammina Support
Environment (APSE). but this is not an inherent requirement. For
examrle, if the Translator were implemented in Ada, an APSE would
be necessarvy for maintenance and run—time supports however, if it
were imelemented in J73, a J73 compiler (and linker) wauld be
needed —— an AFSE would be unnecessarvy.

S-10

N SN S AP - e

—~

v—vT
¥
i

 Aat et an o AEEEL LSRR e 0l g

y— o

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

SECTION 4. DESIGN DETAILS

4.1 General Operatine Procedures

To translate a J73 prosram to Ada, the user must successfully
complete two sets of tasks. First, the translation process must

be initializedt second, individual modules can be translated to
Ada modules.

4.1.1 Initializine the Translator

The translation rrocess 1is besoun by invokine the Translator in
INIT mode. The inputs reauired in this mode are the TPF, the
program module list, and all of the source files of the J73
Program to be translated (see Section 4.3.1 for detailed
discussion of these inmuts). When the Translator runs in INIT
mode, it will use the TFPF and the module list to perform a 9lobal
analvsis of the J73 prosram. The initialization process muzt be
rereated if a fatal error is detected durins the a2lcbal analvsis,
or if the user chanses either the modular structure of the
rrogram (reauirine® a corresrponding chanese in the module list) or
the TPF. After obtainine an INIT run with no fatal errors.,
translation of individual modules may bewin.

4.1.2 Translatines Modules to Ada

One module mav be translated to Ada rer run of the Transiator.
When invokine the Translator in TRAN mode. the inrPuts reauired
are the J73 module to be translated and the TPF. The slobal
analvsis prerformed durin® INIT will bhe urdated if necessary, and
an Ada translation will be output (with diasrostics). The user
may re—translate a module for anvy of the followine reasans:

a. The module was modified to correct a translation
errars

b. The module was modified for alscrithmic reasonss

C. The module references another madule which was re-

translated since the current module was last
translateds

d. The user reauvires a rercat of an earlier
translation to obtain additional cutrut listines.

S-11

S

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

The Translator will issue diasnostics which advise the user of
needed re—-translations for cases a. and c. In some cases.,
modification of an individual module mar reauire reinitialization
(for example, when addines or deleting compool directives from a
module).

4.2 Svstem Logical Flow
The Translator svystem’s logical flow is described by the Software

Conversion Cvcle (Fisure 2-1) and by the chart of Fisure 4-1.
Further details are presented in Section 4.4.

f-12

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

INVOKE TRANSLATCOR

i INITIALIZE ! !
—— THE t-—- MODE? -—-!
! ! TRANSLATION ! :

ANALYZE

EACH

MODULE

OUTPUT

DIAGNOSTICS

QuUTFUT
DICTIONARY

. —— ————— T o ‘o iy o T o g ol T o7 D Tl A WS gy et .

Fisure 4-1: LOGICAL

(2]
i
-
W

TRANSLATE !
A e
MODULE ! :
UPDATE
MODULE
ANALYSIS

(IF NECESSARY)

TRANSLATE
A

MOGDULE TO
ADA

QUTPUT ADA
LISTING

FLOW

e e e i

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4,3 Svystem Data

The following prarasrarhs describe the inputs, outeuts, and
internal data used by the Translator.

4.3.1 Inputs

Four tymes of inpPuts are required by the Translator: command
input, J73 source modules: a J73 module list, and the translation
Parameters.

4,3.1.1 Command Input

A user of the Translator must supply command input to sepecifvy the
foliowing items:

a. Mode (INIT or TRAN)
b. Options (ocuteput listines analvze/transliate)
C. File names or device names of inputs and outeuts.

The options that mav be requested incltude dictionary listines,
listings of Ada source senerated by the Translator (see 4.3.2.2),
and diasnostic suepression. When invoking TRAN mode, the user mav
specifvy analvsis only (for diasnostics), translation only (for
transliating a module which has not been modified since it was
last analvzed). or both (default). The wuser must inform the
Translator (via the oreratine svstem) of the (host—derpendent)
file or device names needed for a run of the Translator,
inciudine the names of the files/devices to be used far input and
output J732 and Ada modules. the TPF, the module list, and the
dictionarvy,

4,3.1.2 J732 Source Input

To initialize the Translator, the user must provide the source
code of the entire J73 prosram to be translated. To translate .n
individual module, the user must Provide the source code for anv
portion of the pProsram that is serarately compilable by a J73
compiler (i.e.» a sinole file whose first line is START and whose

last 1ine is TERM).

A1l J73 code must be svntactically correct, which impPlies that it
has been pPreviously checked by either a compilter or a code
auditor. Previous compilation or auditing of the 172 source code
is not mandatorvy: however, because the Translator will naot
pracess svntactically incorrect input, reliable transiation wiil
result only from input that is absclutelvy free of svntax errars.
InpPut which is svyntactically correct but erroneocus will, in
general, have unpPredicable results. Some spPecific instances of
erronenus pProesram translation are Jdiscuscsed in the Functional
Descrirption.

s-14

VIAL TO ADA TRANSLATOR INVESTIGATION
STEM/SUBSYSTEM SPECIFICATION

2.1.23 Module List Ineput

+ order to pPerform the olobal analyvsis of the J72 proasram durins
IIT mode» the Translator must have a means of identifvine the
urce files of the prosram accordins to module tvpe (componl,
‘ogram. pProcedure, or coPvy), This information is inpPut usina the
dule List. The Module List is a text file consistine of one
cord (i.e.» card imase) for each J73 source fiie to be
anslated. Each record has the the format

<filename> <tvpe’

ere the filename 1s a host-—-derpendent identifier and the tvre is
ther "compool", "praogram", or "procedure', if the file cartains
parately compilable 172 source, or "copvy", if it contains text
ich is input by one or maore madules usins a CORPY directive. The
dule List enables the Translator to perform a top-down analvsis

the program without resuirins the user to submit the
idividual modules in J732 “compilation order".

2.1.4 Translation Farameter Ineut

e Translation Farameter File (TFF) is used to auide the
anslation of J72 constructs whose mapPpine to Ada is either
bitrary or indefinite. The content of the TPF is described 1n
pendix 1. The TPF is a user-accessible text files it mav te
dified before initialization of the Translator (see 4.1.1) ana
v be listed or coried anvtime.

tries in the TPF for the control of liecving formats and comment
ocessing mavy be overridden by user command inputs for
dividual Translator runss other tramsiation Parameters must
main constant throushout the translation of a proesram.

3.2 Outputs

¢ Translator pProduces three twpes of cutputs?: Ada source cude
anslated from J72, Ada source code 9generated by the Transiator,
d a4 eprogram dicticonary. Each of these ocutputs mav either be
ored in a file or sent to a device such as a terminal or
inter.

A

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.3.2.1 Translated Ada Module Cuteut

The mador output of the Translator will be a listing of the Ada
module produced by a run of the Translator. This listing will be
arppropriately formatted ("pPrettvrerinted") to conform to standard
programmineg pPractices, includine indentation to exhibit nesting,
matchine of "beoins" and "ends". and form feeds for modular units
(i.e.» a new pProcedure sets a new pPage). Comments from the inrput
J72 prosram will be included in the Ada listing if reauested by
the wuser. Warnin9g messages will clearly delimit any missine Ada
code correspondine to untransltated J73. The listine mavy be outeut
to either a hard copv device (pPrinter) for human insrection or to
a rile (disk or tare) for storase.

4,2.2.2 Generated Ada Module Quteut

A number of J72 constructs, includine predefined tvres, certain
intrinsic functions, and certain tvyre converisons, have no exact
Ada eqauivalent. Each such construct is translated to a tvepe or
function which is declared in a special Ada pPackage called
" 173 .Predefined_packace". This rackage is derived by the
Translator durineg INIT mode, updated as necessarvy durines TRAN
mode, and output as Ada source code upPon user command. The
rationale for the 9generation of J73_eredefined_packase 1is
discussed in section ZF.Z2.2.1 af the Functional Descrieptions the
specific cantents of the paclkase are described in sections 3.2.2,
2.2.3.15 and 2.2.5 of the Functional Description.

4.2.2.3 Proaram Dicticnary Quteut

For translation Purposes, the Translator must keerPp an internal
dictiocnary of the names of all modules and externals used in the
Pprosram bketn9 translated. A listine of this dicticnary mavy be
autput upen request of the user. 1t will contain the name of each
librarvy unit 1in the Ada translaticn, as well as external nameis
listed accocdineg to which library wunit contains either a
definition of or a reference to each external.

4,.2.27 Data Base

This section defines the internal data base elements used by the
Translatar. The Pprinciple structures are the Module Table (one
for the entire 473 program) and the svymbol table, parse tree, and
DIANA tree (one each for every 173 madule).

o
]
—
[x 3

Mttt ms e a

R 5

—d

7

. o

1

——

JOVIAL TGO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.3,7, Module Table

The pProgram moedule table (ModTab) is a slobal data base which is
used to store information atout modules and externals, ModTab is
initialized, wusing the user—supplied Madule List, to include an
antrv for each J73 scurce module that identifies each module as a
comPaol, Pragaram, Procedure, or function. As each module 1s
analvzed (see 4.4.73), its ModTab entrvy is filled in with the
following datas

a. Numbtier of other modules referenced (by REF‘s, copvy
directives, and componl directives)s

b. For each module REF“ed, a pointer to that module’s
ModTab entrvs

Ce For each compool which is selectively imported, a
pointer to a list of selected namess

d. A painter to the module’s symbol tables
e. A pointer to the module’s parse tree.
The informatican <antained in ModTab permits the Translator to

resolve moaule dependencies and exterral references, to manasgse
the creation and replacement of svymbol tables and rarse trees,
and to 9generate a prosram dictionarvy. The internal structure of
ModTab is implementation derpendent.

4,32.32,2 J73 Module Reprresentation

Each J72 module is internally represented by a symbol table
(SvmTab) and a marse tree. These two structures contain the
svntactic and semantic data which the Translator rexuires for the
analrsis and translation of individual J73 modules. The prarse
tree pProvides a basis for the translation to DIANA (see 4.4.3 a..d
4.4.46) that is much more efficient than the direct processing of
-ard imase source text would be. The SvmTab, alone with ModTab.,
serves as the primarvy data base used in the analvsis of J73
modules (described in 4.4,.3)% it also doubles as the
identifier—attribute portion of the DIANA tree, as described in
the next section,

$-17

UG SRR

S e e R s e m B R e T B e v e mermm T Ty T e T e Uy T . T Ty e T s e s e T W v, w W W

JOVIAL TG ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SFECIFICATION

4,2.3.2 Intermediate Lansuage

The intermediate form of the Ada module to bhe cutrput by the
Translator is a DIANA svntax tree. The DEF_ID nodes of the tree
are imeplemented as pointers inte SvmTab, so that the attributes
of each wvariable do not need to be stored redundantly in the
tree., Semantic and code attribuytes which are irrelevant to the
transliation Pprocess (such as smocontraint and cd_alignment) are
omitted. Two structural attributes have been added:
as_errar_number, which contains the identifier of a diasnostic,
and as_error_link, whose value is a pointer into the JU73 parse
tree. These attributes, whose wvalues are set to zero in the
absence of translation errors, pPermit straiahtforward seneration
o f diagnostics b SEN (see 4.4,.7). Aside from these
modifications, the TDODIANA tree conforms to the TIANA Reference
Marual (reference [ml).

4,.2.2.4 (Other Data Base Elements

The Translator ewecutive (4.4,1) creates a pParameter table
(FarmTab) based on the TPF. Because the translation parameters
are needed freaquently throushout the transliation process, ParmTab
is structured in a manner that permits vervy efficient lookue of
the pParameter values,

The J7Z_predefined_packase (4.3.2.2) is internally constructed as
a DIANA tree. The tree is expanded by SPEC (4.4.5) durine the
translation of each module, and is converted to Ada source by GEN
(4,4,7) upon user command.

Other data includes a file of diasnostic message text, a table of
J72 and Ada reserved words and sembols, the 473 Parser table, and
a file of diagnaostics 9enerated durine INIT mode.

4,4 Frooram Descriptions

The followina Paraeraprhs describe the major functicnal components
of the Translator. The hi_hest structural level is deprpicted in
Figure 2-2% the next hi2hest level is discussed in this section.
Lower levels of the program structure will derpend on the details
of an actual implementation of the Transiatoer.

S-1&

e T

i o

-—r‘ RN

P

e oo
. n‘

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.4.1 EXEC

The entrv pPoint of the Translator is called EXEC. EXEC performs
two functions: it contains all of the routines which comprise the
interface between the Translator and its host orperatinoe system
and it serves as the main executive of the rest of the prosram.
I1f the Translator is implemented usins overlavs, EXEC will
include the commands necessary to accomplish the overlavs.

The eprocessina performed by EXEC is shown in Fisure 4-2., The
rarameter table (ParmTab) is constructed from the TPF: other
variables are initialized based on user command inputs., EXEC then
calls either INIT or TRAN, based on the mode selected by the
user, and then calls LIST to complete the Translator run.

S-19

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBRSYSTEM SPECIFICATION

Beain EXEC

v

{ INITIALIZE
i DATA

INCLUDING
PARMTAB

——— s e i e S S e e e s e

INIT / \ TRAN

Fisure 4-2t: EXEC

§-20

———

P i-'

oy

s o e e ans s

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.4.2 INIT

INIT is the main routine for controlline the Translator in INIT
mode. The primary function of INIT is to submit individual J73
modules to ANALYZE (see 4.4.3) in an order which permits an
efficient 9lobal analvsis of the J73 program to be pPerformed.

In attemptine to analvze a J73 module whose context may inctlude
compool data. two approaches are possible. The first approach is
to use a compool outpPut file to store the results of an analvsis
of the compool. The compool ocuteput file can then be imported into
the data base (i.e.» svymbol table) of the module which references
it before the module itsel¥ 1is analvzed. This approach is
arppropriate for comepilation of J73 for two reasons$

a. J73 modules mavy be coded and comeiled in the order
in which thev must be anaivzed br the compiler.

b. To compile @ module which imports a compools the
comrPiler needs access only to the appPropriate
compool ocutPput files (not to the compoal scaurce).

Since these reasons are not applicable to the task of translatine
a complete, previously written J73 prosram to Ada, a different
aprproach has been devised for use by the Translator. Durins INIT
mode, the Translator builds a ®lobal data base by analvsine each
source module in "compilation order":

a. First, "stand-alone" compools}

b. Then, compools which import other compoolss

C. Finally, the prosram, procedure, and function
modules.

This arproach removes the need for compoo) input/outeut
processine. A1l the source files are available to the Translator
at once during INIT mode’ usine information in the module table
(ModTab), the INIT routine derives a coarrect order of analveis
and proceeds to call ANALYZE for each module, buildina tane
reauired 9laobal data base without ¢the help of either compool
output files or of a user-controlled orderine. This is a major
advantase:? it frees the user of the Translatar from the task of
manually derivine an acreptable orderina (a difficult task for a
1000 madule prooram!) and also eliminates the time and space that
would have been consumed by the creation and use of compool
outrut files.

Before submittina the (173 saoaurce modules to ANALYZE in the
fashion described above, INIT creates ModTab from the
uesr—-supPplied Module List. INIT wilid terminate the analvsis
process when ANALYZE detects « fatal error in a module. A diasram
of INIT appears in Fisure 4-%,

o
N
-

iama —aa

oa o

' JOVIAL TO ADA TRANSLATOR INVESTIGATION
! SYSTEM/SUBSYSTEM SPECIFICATION

1: bheoin INIT

! SELECT !
! A MODULE !<——mmmmm——e
! FROM MODTAB !

[
i ANALYZE ! H
R i
' !
v H
/ \ !
i / \ '
: YES / FATAL \ '
. e —————— \ERRORS?/ !
- ' \ / H
h., ' \ / :
4 ! NO ! H
p- - Il
r' 1 v H
- ! / \ H
! / ANY \ YES '
H /MODVLESN '
' \ LEFT 7/
L4 ! N7/
[H \ /
- ' NO !
. ' v
- memmccreaaeca—- > Exit
L
L Fisure 4-3: INIT
L
[
o €22
4 4

s m Avaar.a

NI WD

-y

ey

Y

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.4.3 ANALYZIE

The pPurpPose of the ANALYZE routine is to perform an analvsis of
an individual J72 source madule in the context of the entire J73
proaram beina translated., To do this, it is reauired that all
modules on which a s9iven module derpends have been pPreviously
analvzed (as discussed in the preceedine sectiaon). ANALYZE mavy be
called durine INIT mode, to perfoarm the initial analvsis of a
module, or Jdurina TRAN modes to urpdate the analvsis for a new
transtaticon.

Frocessine in ANALYZE occurs in twe parts, as shown in Fisure
4-4, The first part is a svyntactic analvsis, in which the J7=
source module is converted to a SvmTab and a parse tree. The
second Part is an updatine of the internal data bases related to
the module analvsis,

Zvntactic analvsis involves three routines: a tokenizer, a
Parser, and an error detector. The tokenizer pPerforms a
table-driven lexical analvsis of each U172 symbol. It returns a
kevward token ¢for each predefined J73 svmbel, and a name token
(i.e.» a character strina) for each user defined symbol. The name
tokens reflect the translated speliinss of the user defined
svmbols, pPermittineg detection of name conflicts durine the
analvsis, The pParser ewrpands the svmbol table and parse tree to
reflect the svyntactic content of the module usineg a conventional
bottom—up rarse algorithm. The rParser may be aenerated
automatically usine a commercially available parser-senerator, as
in (2l or may be manualiv coded. In either case, the rarser wil)
aenerate simeple diaenostics for any 173 syntax errorss no
extracrdinary error recovery techniques are needed, since the J732
inrput is suppnsed to bte svyntactically correct. However, since the
J732 caode mavy contain untranslatable constructs, the error
detectar is called by the parser to detect problematical J73
constructs (see ArPPendix 1 of the Functional Descrietion) and
name conflicts, makine an entry in a diagsnostics file for each
error detected. The svntactic analvsis is derpicted in Fisure 4-5,

Upon detection of an irrecoverable error, such as & missinea coey
file, missing compool, ar J732 svntax error, ANALYZE will delete
the erronecus S+mTab and parse tree created by the svyntatic
analvrsis. If no fatal errors are encaountered, ModTab is searched
ta wield the names of all modules which reference the current
module., The names of these modules and their corresmponding source
files are stared in a table for use by LIST. 1f ANALYZE was
called to urdate a module s analvsis (rather than initialtlize it).,
the final actionm taken is ¢to delete the module’s mrevicusly
created SvmTab and parse tree.

5-23

PR I

A AL s _Aamais

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

3
C Besin ANALYZE

! PERFORM |
pl ! SYNTACTIC | -
- ! ANALYSYS |

9 \%4)
h‘ /7 \ ;
~ / A\
/ \
YES / FATAL \
\ERRORS?/
\ /

N/]
\ 7/

Addnind

NO

< am e |

PURGE
SYMTAB AND
PARSE TREE

)
i
!
!
!
:
t
v
)
:

v

CREATE
DEPENDENT

: MODULE

LIST

L DELETE
{ OLD SYMTAR

AND FARSE
TREE

P i T I I R S S |

Fisure 4-4: ANALYZE

|
|
3

S-24

Rea e ahon antenll ool o 4

R’ h

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

Besin SYNTACTYIC ANALYSIS

4
!
v

! TOKENIZE |
! A STATEMENT ! <-mmemm o

T o D i e et S s v e e o s

PARSE THE :
TOKEN STRING !

i DETECT POTENTIAL !
! TRANSLATION ERRORS !

€ o o

D S) s O s S e . B . S ey S D S s G A i

/ MORE \
/STATEMENTS ___YES________ S H
/

¥ WS NE om YT e v SC e fe wm e vm 2e ce ce mm em ve Se me e aw . we am v —- —— - -

Fieure 4-5: SYNTACTIC ANALYSIS

8§25

Ak

W

P

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.4.4 TRAN

TRAN is the routine which controls the Translator durina TRAN
mode. As shown in Fisure 4-6, TRAN is a simple executive whose
function is to call other routines based on the analvze/translate
option reauested by the user (see Section 4.3.1.1).

The user may wish to have a module analvzed, to detect Possible
translation errors or name conflicts, without needing an actuatl
Ada source output. This is analoaocus to runnine a module thoueh a
compiler with a "svntax onlivy" options the wuser mavy aobtain
"front—-end” diasnostics without mavina for "back-end" pProcessins.
In this case, TRAN will call ANALYZE and then return without anv
further processine. Conversely, the user mavy wish to transiate a
module which has not been modified since it was last analvzed.
This situation occurs when

a. The module has not been translated or modified
since Translator initializations or

b. The user desires additional outeut listinas
for the existineg version of a module.

In this case,» TRAN bvyrasses the call to ANALYZE and calls the

routines SPEC, BODY, and GEN to perform the translation based con
a prior analyvysis of the module.

S~24

o

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

——YES

. e B PO s an we e EUS B e Ae B PO cn e ST A ST wa P ae e e

Begin TRAN
!
v
/ \
/ \

______ /TRANSLATE\

\ ONLY ? /
\ /

——— o o v — —" O ——

/ \
/ FATAL \

YES

\ERRORS?/
\ /
\ /
NO :
v
/ \
/ \
/ANALYZEN

YES

\ ONLY? /

— et e o s i, e s Sy, by
— s

.t > . s e o S —
——— - e . e, >

Fisure 4-4t TRAN

. e mn Sw BE e ST PO am EE e WG Gy S S B G P T Bw P B A S e =

T
.

[NS

‘r“‘-vv.r

i

f
by

v

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

4.4.5 S3PEC

SPEC 18 the first of two routines which translate the (173 parse
tree created by ANALYZE into a DIANA tree which represents the
Ada translation of a module. The cutput of SPEC is the prortion of
the DIANA tree needed to represent the specification (i.e.»
visible weart) of the package into which the J72 module will be
translated. The DIANA tree 1s comprleted by BIDY, which is
discussed in the next section.

The translation of the 173 Parse tree to DIANA is based on a
top-dawn traversal of the pParse tree. SPEC ignores the portions
2f the pParse tree which correspond to the Ada eackaae or
procedure badyv, while creating the DIANA tree for the Packasgse
sPecificatiaon accardineg te the maeppines discussed in the
Furictional Description. This 1includes the nodes and assocciated
attributes for the pPackase ' s context specification (WITH and USE
-layses), as well as for the declarations which form the prackase
sPecification itself. SPEC alsa adds nodes to the
A72 predefined_rPackaae DNIANA tree as required.

The second pass aver the J73 parse tree is made by RODY. For
compaals, which are translated to pPackage specifications with no
rackage body, the entire [DIANA tree is created by SPECS BODY
produces no output., Conversely, a procedure containing no DREF
declarations or ZSTATIC declarations is pProcecssed in entirety by
BODY, since it is tramslated to a procedure body (with no Package
specification). In the general case (translation of pracedures
which mav i1nclude LDEF or STATIC data), the two-epass Process
rperformed bv SPEC and BODY permits transliation of the 173 pParse
tree to DIANA in an efficient manner’ a one—-pass techniaue would
invalve reorderina of the module’s declarations and statements to
separate the pPackage specification epart from the packase body
part, reauiring more complex tree~Processing alsoritnme.

Fa— PN

OVIAL TO ADA TRANSLATOR INVESTIGATION
YSTEM/SUBZYSTEM SPECIFICATION

+4.7 GEN

da source rcode is <eenerated €from the NIANA tree by the GEN
outine, GEN is a tree—walkineg alesorithm which creates source
ext based on the gsuidelines discussed in reterences [dl and Iml.
n particular, each node of the DIANA tree created by SPEC and
oDY wiltl include the ix_comments attribute as suggested in
prendixx III aof [ml. The value af this attribute mav be filtled in
ith a reference to a Trancslator—senerated comment in the case of

node that reprresents a Translator—-aenerated statements
therwise, the attribute will contain a reference to an orisinal
73 source comment (Possibly nutll), GEN .11 use the

s_error_number and as_.error_link attributes (defined in 4.3.32,3)
» 9enerate diagsnostic messases and 173 source code in positions

f the Ada source corresponding to translation errars.

he ocutput of GEN is a text file which is used by LIST to produce
n aepraopriately formatted oaoutput listina. If the wuser has
equested a listine of JI73_rredefrined_rackage, UGEN will also
reate a text file based an that prPackase s DIANA tree.

.4.8 LIST

he lTistinegs outeput by the Transtlator are epraduced by LIST. Usins
he diagnostic files created by ANALYZE, the dictionary
eprresented by ModTab, and the Ada source files created by GEN,
IST ocutputs prettvyprinted rerports requested by the user tor each
ranslator run.

-A4120 472 JOVIAL (J73) TO ADA TRANSLATORC(U)- PROPRIETARY SOFTWARE
INC LOS ANGELES CA M J NEIMAN JUN 82 RADC-TR-82-175
F38682-81-C-8217
UNCLASSIFIED F/G 9/2 © NL

END

O S G SRS e N N N O N O
| ! m m m
L0 £ 1 LS £
——. ™ m m ¢ - E [EX3
i | T
|l g..: “ m j ! |||||E “iw
—— " . — | 13

5
=
I
==
N
i
1=

T

; MICROCOPY RESOLUTION TEST CHART
MICROCOPY RESOLUTION VEST CHART ' NATIONAL BUREAU OF STANDARDS-1963-A
NATIONAL BUREAU OF STANDARDS-1963-A : ¢
- —_— - _,,\.,_n{.._ ——
[T*] I2.8 2.5
| O e L
— E L 22
——— & ™ L
v IS l2.o
w . ~——— -t
["1"Y~y
E |. :

l!.?.l.ua

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o] .
N T L
TR TR

e R
|

| s

MICROCOPY RESOLUTION TEST CMART
NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART
MATIONAL BUREAU OF STANDARDS-1963-A '

AN PR
% TORIUUNEARN s

~ye . 3 b 1 3 e
o e ST
Lo LTl

LA Al v_.(i""" L

e
[}

II.‘ T

aa ax

v

e

o

JOVIAL TO ADR TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

APPENDIX

Contents of the Translation Parameter File

The €followine table srours the translation earameters by class
{comment translation, executable construct translation, J73
imriementation rarameters., control of outeut listings, name
translation, and names of rrasmas) and sives a brief descrimtion of
the rurrose of each prarameter. (Note: T.6. means “Translator
senerated"”.)

PARAMETER PARAMETER
CLASS NUMBER PURPOSE
COMMENTS (09| Surrress orisinal comments
c2 Surpress T.G. comments
c32 Start new line for an embedded comment
ca Format of comment for T.G. tvre
declaration
EXECUTABLE El Surrress calls to roundine routines
E2 Surrress calls to truncation routines
E3 Name of user suppliied roundin® function
E4 Name of user supelied truncation function
ES Name of user suprlied UNCHECKED_CONVERSION
function
Eé Convert IF...EXIT to EXIT WHEN...
E?7 SurpPress compvine of BY VAL rarameters
ES Surpress copvine of BY RES marameters
IMPLEMENTATION
PARAMETERS 11 Values of J73 imelementation marameters
134
LISTINGS L1 Translation of tab stors
L2 Translation of form feeds
L3 SurPress uPPer case
L4 Sumreress lower case
LS Include J73 source in diasnostics
LS Surpress informational diasnostics
L7 First column for unlabeled statements
Le Last column for code
LY Last column for comments

S-Al

] ’
heaialacacama

La.3 ane 2

. kd ’I T
i

LB U B a e
B

A d

bt dnadd hd -

JOVIAL TO ADA TRANSLATOR INVESTIGATION
SYSTEM/SUBSYSTEM SPECIFICATION

PARAMETER PARAMETER ,
CLASS NUMBER PURPOSE

NAMES N1 Translation of ~
N2 Translation of embedded $
N3 Translation of leadins ¢
N4 Translation of names which are Ada

reserved words

NS Srelline of T.G. tvyre names
Né Srelline of T.G. function result names
N7 Translation of status constant names
NS Maximum number of characters recosnized
N9 Srelline of T.G. rackase names

PRAGMAS P1 Name of PRAGMA for contisuous allocation
P2 Name of PRAGMA for overlaved allocation
P3 Name of PRAGMA for !'TRACE
P4 Name of PRAGMA for ! INTERFERENCE
PS Name of PRAGMA for !REDUCIBLE
P6 Name of PRAGMA for '!'BASE
P7 Name of FPRAGMA for 'ISBASE
PS8 Name of PRAGMA for 'DROP
P9 Name of PRAGMA for !'LEFTRIGHT
P10 Name of PRAGMA for !REARRANGE
P11 Name of PRAGMA for 'ORDER

S-AZ2

Py

AP S

-

.................
...................

MR
L
ot

EL
]

D
ale

A DG A u e aot g d
AR A AP

GUIDELINES FOR TRANSLATION OF
JOVIAL (J73) PROGRAMS TO ADA

Prerared bvy:?

Mark J. Neiman

vy

>

R

P

Cen o

)
PO R A
-

G=1

> d T T LR R N T e LT e e R, o o
A IraC a7 RN L M i gt
it -, PR - - hd - - B . . . - N

P et o T T - - . - - . R . . .

.

h..V

)

h'.|

.

r;
b
o

1 4

b SO S S0 0 g

-l

¥

PREFACE

This report was prerpared as part of the JWIAL (J73) to Ada
Translator Investisation (41, a research study performed bv
Promrietary Software Svystems for the Rome Air Development Center
under contract number F30602-31-C-0217. Two other reports were
rrermared durina the investisation: a Functonal Descrietion [4],
which defines the reauirements to be met by a JOVIAL (J73) te Ada
Translator, and a Svstem/Subsystem Specification (53, which
presents a top-level design for a Transiator. The Present rerort
is intended to be read in the context of those twe documents,

G-1114

I

UNICTU SIS SN

R

S

.
I:_
y »
h-..
;_.

P
- s

|

Al

Ea

.................
........

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

I. INTRODUCTION

A superficial insmection sussests that the lansuases JOVIAL (J73)
and Ada, as defined by MIL-STD 1589B (2] and MIL-STD 1815 (3], are
ayite similar., Both lansuases feature serarate comrilation, strone
tvming, block structure, and compulsory data declarations., The IF
statement, CASE statement: and 1loom constructs of the two
lansuases are almost identical. Each lansuase rrovides operations
on fixed pPoint and floatins moint data, in addition to inteser and
character omerations. Ada is a much more Powerful lansuase than
J73., since it incluydes wmany features for prosram control,
modularization, and data descrirtion that are not found in J73.
One misht conclude that J73 is, in an informal sense, a functional
"sybset" of Ada, and that translatine a J723 erosram to Ada should
be 2 reasonablvy easvy task.

Unfortunately, a closer analvysis of the lansuases reveals a number
of fundamental differences which render the translation task
exceedinely complex. The semantics of data and tvee declarations
is a case in paoint. In J73, the storase for a variable will be
allocated statically (i.e.» mermanently) whenever the declaration
of the variable so seecifies? in Ada, storase is allocated by
context (i.e.» for the 1ife of the module in which the variable’s
declaration arpears)., A J723 tyre is defined by a set of
attributes, so that twe distinctiv declared tvres are considered
to match i€ thair atttributes matchs two distinctiy declared Ada
tvyres are alwavs considered to be non—-matchine, even if their
attributes are identical. The attributes of a tvyme, in J73, are
defined in terms of tarsvet machine rerresentation (e.®., number of
bits, rhysical record structure), while Ada remuvires onlvy
alesorithmic attributes, such as ranse, error bounds, or loesical
record structure.

The two tansuases contain several major differences in the
semantics of executable (run-time) constructs. J73 wrermits
conversions between any two tvypes, while Ada erohibits conversions
between anvy two tymres which are not closely related. Linkec
structures may be created in a J73 prosram usine untrred rointers
to reference named (declared) objectst Ada allows only tvyeed
sointers, which may reference only anonvymous objects. The
semantics of mrarameter prassins are defined in terms of bindine
mechanisms (value, reference, or result) in J73% Ada defines onlvy
the effect of a prarameter bindine (input or outeut), while
carefully avoidins any smecification of bindins mechanisms. A J73
procedure may be rrematurely terminated wusine one of two
constructs ("GOTO Cstatement_name_rarameterd>"” or the ABORT
statement) which are nothins but slobal GOTO’st Ada rermits onlvy a
well=-structured mechanism (the raisins of excemtions) to exit from
a rrocedure rrematurely.

"

X Do,
» ‘*

‘
DI R]

»
.

v
c‘_

-

-yl
“w
-

T —

('

s

T e

e - -

i BT

. .o VL s
iaaa R

'

5

]

 Ragce

TR TR TN,

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

The incomratibilities between J72 and Ada 90 bevond the semantic
differences betuween their individual constructs. The lanouages
have dissimilar reauirements rertainine to the order of
compilation of modules. An Ada comeiler must have access to global
knowledwe of external names. whereas 73 externals are not
resolved until link time. Both lansuaves have a macro-definition/
exmansion faciltity, but J73 allows full, text—-oriented macro
substitutions., while Ada rermits only procedure definitions
(senerics) in its macros.

The major differences between J73 and Ada are summarized in the
table below. These differences, Plus many smaller dissimilarities,
cause the translation of a J73 srosram to Ada to be exceedinsly
difficult, whether the translation is dnne manually or with the
aid of an automated svystem (a Translator). The mortion of the
translation task which can be automated is discussed in detail in
the Translator Functional Descrimtion. A discussion of the mortion
which remuires manual translation is eiven in the next tuwo
sections, followed bv a section containine some suidelines for
achievin® "cleaner" translations.

G-2

PUIERE T ST Y D S U VPR

tos

»

LIS
& .

LA T N N S

...............

JOVIAL TO ADA TRANSLATOR INVESTIGATION
OUIDELINES FOR TRANSLATION

Summary of J73/Ada Incommatibilities

FEATURE

J73

ADA

Static and external
allocation

Tvre matchine

Attributes of tvyres

Order in which
modules must be
comriled

Tvyre conversions

Relationshipe
between rointers
and pointed-to
data obijects

Macro-substitutions
Parameter massing
Abnormal
termination of
rrocedures
Resolution of

externals and
rarameter matchine

BEOD OO0 S0 TN A TR me TR Cn TE OO TT SR SO wh GF TO 4m CE G W TP O OF Sk oY TE av TE an e Ge ow = oe

Exmplicit

Eauivalent tvres
always match

Tarset machine
oriented
Imrmosed only on

comproo]l derendencies

Permitted between
any two tvres

Untvyped rointers,
named data

Text-oriented
Defined by mechanism
Unstructured GOTO
and ABORT

Link=time

TR EO ST An ST v TN A TR ow G en GE CE TR CL G TR GO TR 4w Cu TR e TR e e PO B e e e = e e e

By context

Distinct tvypres do
not match, even
if esuivalent

Alsorithm oriented

Immosed on all
modules

Permitted between
two closely related
tvres

Trred rointers,
anonvmous data
oblects
Procedure-oriented

Defined by effect

Hishly structured
RAISE and EXCEPTION

Comprile~time

SO TU VS D 0C 0h ST A4 9% Gt ww S Cr A CE ST aa TS G TN L Ne OA we TT e W TS aw TR pe ee S Be Sh am we e

o -
.....

.......

.................
...................
................

G-3

ST S

SOV I8 R

-
A

LT WTeaT e
Aok ah d At 4 .Ll

AT |

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

11. CLASSIFICATION OF PROBLEMATICAL CONSTRUCTS

Desrite all the fundamental differences between J73 and Ada, there
is e,robably no such thine as an untransliatable construct. Given
enoush analvsis. any J73 prosram can be converted to Ada, FORTRAN.
assembly lansuase, or virtually any lansuase which is intended for
use onh a cohventional (von Neumann) computer. Unfortunately, the
analvsis and svnthesis (i.e.» rerrosrammine) resuired te translate
certain J73 constructs to Ada automatically would be unreasonabdly
exrensive, siven the state of the art of autematic rrosrammine and
lansuagse conversion. A cost effective stratesy is to automate the
bulk of the translation task and to detect and identify
(automatically) rortions of rrosrams which reauire manual
transtation. With this arrroach, a Transiator system with roushly
the same complexity as a J73 comriler would rerform most of the
transtiation without human assistance., while flassine the
constructs that it cannot handle rrorerly. These rroblematical
constructs would then be analvzed and transliated manually, usine
technisues outliined in Section 1I11. Before discussine the
transtation of specific mroblematical constructs, it is useful to
define classes of constructs accordins to ease of translatability.

Most J73 constructs can be translated to Ada usins technisues
which may be automated by the amrproach discussed in the Translator
Svstem/Subsvstem Srecification. Such "class—-one” constructs are
translated using the marrines described in the Translator
Functional Descrirmtion. The resultine Ada rrosram will be better
(more efficient and/or more readable) if the use of certain
class—-one constructs is avoided or restricted (see Section IV),

Constructs whose transliation to Ada cannot be automated
cost-effectively (“"problematical® constructs) fall into two
classes. An instance of a eroblematical construct which mayvy be
rerlaced by a non—-erroblematical J73 construct is described as
"class—-two". Such a construct mavy be manually converted to a
class—one construct to faciltitate automatic transliation.
Problematical constructs which are semantically orthosonal to the
rest of the J73 lansuase rpresent the most difficult translation
rroblems. These are called "class—three" constructs. Since a
class—three construct cannot be converted to a class-one
construct, the translation reauires one of the followine actions!

Al. Chanse the J73 erosram alsorithmically to avoid
usine® the constructs

AZ. Transliate the rest of the erosram to Ada and chanve
the Ada rrowram alsorithmically to avoid usins the
constructs

R

v .
R

» JOVIAL TO ADA TRANSLATOR INVESTIGATION
e GUIDELINES FOR TRANSLATION

!; A3. Translate the rest of the rrosram to Ada and use a
feature (mossibly a non-standard cne) of the Ada
environment to accomelish the function of the

class~three constructs

A4. Substitute direct code (assembiy lansuvase or
machine lansuase) for the construct.

The actions 1listed above mav, of course, be taken to transiate %
class—two constructs as well as class-three constructs, |

The marpinas of the class—one constructs onto Adar as discussed in
the Functional Descrimrtion, are intended to be automated (see the =
Translator Svystem/Subsvstem Swmecification), but mavy be rerformed o
manually: the validity of the mamrrines is indermendent of the means
of implementation. The mroblematical constructs. class-two and
class—-three, must be hand-translated. There are three kinds of
problematical constructs: data—-oriented constructs (table, block.
and overlay declarations), executable constructs (slodbal GOTO’s» -
ABORT s, and exPression side effects), and commile—time functians.

-
PP APRVGIY S S IR S s

G-S

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

111. TRANSLATION COF PROBLEMATICAL CONSTRUCTS

A. Data-Oriented Constructs

A J73 data (or data tvee) declaration mavy smecify several kinds of

data overlarms. For examrle, a srecified table mavy contain items .

whose bit mositions (within the table entrvy) overlapr either
rartially or comeletely! a block mavy be made to overlar another
block usin® an overlay declaration and an order directive’ overlavy
declarations mavy be used to mosition several data objects in
overlarmine positions in memory. In attemetins to translate these
kinds of constrycts to Ada, one must consider the mrurpose of the
construct. A Particular instance of a pPrroblematical data
declaration mav have one of several rurroses:!

Pi. A "true overlavy", in which the same bits of
rhysical memory are used by more than one named
data obiject.

P2. The allocation of storase for data obijects in a
specified order.

P3. The allocation of contisuocus storase of data
obJjects.

F4. The allocation of storase for data obiects at a
srecified memory address.

PS5. A "virtual overlavy", in which twe or more named
data obiects are declared to occuey overlarmine bdit
rpositions in a table or a bBlocks, but the data
structure is accessed as a variant record (i.e..
only one of the overlarrine obijects phrysically
exists in each recordy the obijects do not really
overlapm),)

A prerson wishine to translate a rroblematical data declaration to
Ada must analvze the construct in the context of its mrosram and
determine into which of these catesories it falls.

A "true overlavy" may be treated as a class—-two construct. This is
accomrlished by usines durlicate storase in 1lieu of overtlaved
storavse’s instead of declarine one object to overlay the other, one
may declare the objects as serarately stored data. In the
remainder of the rrosram: each statement that chanses one of the
obijects must be followed by a new statement that chanses the other
obiect in the same wav. For examele, & rrosram of the form

«

A MAEMPENER
ST e
. S e s

e Aendi bt R e A s AR . T R A A
S Andt Jnof St Mien e i et S0 S A A S L. N A v R - T

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

ITEM iil...
ITEM ii2...
VERLAY ii1:ii2s

it = ... "assignment to iil also assigns 1i2"

is chansed to

ITEM iil...
ITEM ii2...

iil = ,.. "assisns only iit"
ii2 = iils Yassisns iiz"

This techniaue has two major disadvantases., First, it is
arprlicable only to "cleanlvy” overlaved objects - objects which are
partially overlarred (such as table items) could not be recodsd in
this manner. Second, the resultines prosram is hiehly inefficients
twice as much storase is needed for the serarately allocated
objects and twice as manvy assionment statement statements are
executed durine the prosram. Because of these disadvantases, "true
overlavy" constructs should, in most amplications, be treated as
class—three constructs. An impiementation of Ada may (oeptionally)
provide an overlay construct, allowine action A3 to be used. If an
averlay featr -9 is not available: alesorithmic chanves (actions Al
or A2) are reauired.

A PS5 construct ("virtual overlav") can be effectively translated

usine action A3. The techniaue is illustrated by the followine
example:

TABLE buildine (100)... "Table of data about two kinds of
buildinest home and business...
one entrvy mer buildine"

BEGIN

"The followine items are used for all buildines:"”
ITEM zimcode U 17 POS (0,0)3
ITEM kind STATUS (v(home), v(business)) POS (17,0)%

"The followins item is used for business buildines onivi®
ITEM name C 10 POS(0,1)3 "name of business"

"The followine items are used for homes onivi"
ITEM bedrooms U 3 POS(0,1)% "number of bedrooms"
ITEM baths U 2 POS(3,1)Y "number of baths"

el

- .
PR S

-

=

-—

TS W W, v v T T T S T Mo T T T Y TSR T T T, Ry e e

TO ADA TRANSLATOR INVESTIGATION
[NES FOR TRANSLATION

is data structure, the items "bedrooms” and "baths" do not
Iy overlar “"name". Instead, the item "kind" is used as a
pinant to select one of two alternate structures for each
entry. This is semantically eauivalent to a variant record
» 1f the table declaration is translated to

buildine_kind IS (home,business)s
buildine_tvme (kind® buildine._kind) IS
ECORD
zZiPcodet U17_tvpres
CASE kind IS
WHEN business =3 name: ClO_tvpees
WHEN home => bedrooms?: UZ_tvypes
baths: UZ_tvpres
END CASES
ND RECORD3
dine: ARRAY (0...100) OF buildines_tvres

assisnments to all the items within an entry of Ybuildine”
made usine assrevate r~tation. Thus., the statements

pde(22) = 13411}

(22) = 2%

poms(22) = 4%

anslated to

dine(22) t= (home,»13411,4,2)% ~— positional record assresate

uivalentivy,

dine(22) t= (kind => home, zirpcode => 13411, baths => 2,
bedrooms => 4)3 -—— npamed compPonent aseresate

pcord assresate used in the assisnment includes a value for
(the discriminant of the record); whether one uses the

»nal notation or the named commonent notation.

isnment to an individual item

p(22) = 23

1clated to

Jine (home)(22) t= 2%

ich the discriminant 1is esiven on the left hand side and a
] (rather than an assrevate) is siven on the risht hand

JOVIAL TO ADA TRANSLATOR INVESTIGATION
OUIDEL INES FOR TRANSLATION

The use of a variant record for this kind of translation results
in Ada code which is both efficient and semantically eauivalent to
the orisinal alsorithe of the J73 code.

When an overlay declaration is used for purrose P4 rather than for
a Y“true overlar", it mavy bdDe translated to an Ada address
specification. For examrle,

OVERLAY POS (4FFF)t blocki

is esvivalent to
FOR block]l USE AT 14684FFFH

Overlavy declarations: block declarations, and order directives
which are used for purposes P2 and P3 are not covered by the
semanticr of Ada as 9iven by the lansuase standard. Translation of
such constrycts may be achievad by action A3 {f the Ada
comeiler/environment to be used offers ortional features for
overlavine or orderins of storase allocation. Otherwise, major
alsorithmic chanves wil)l be rewnuired.

B. Executabdble Constructs

When an ABDORT statement is executed. the J73 erocedure currently
executineg will terminate (return without settine anvy value or
result rarameters). and execution sroceeds at the statement whose
label arreared in the abort-shrase of the most recent rrocedure
call statement which included an abdort-rhrase. 1€ there were
intermediate rrocedure calls without abort—-rhrases, then those
intermediate procedures are also terminatedt if no rrocedure calls
included an abdort-mhrase, & STOP is executed. The difference
between the ABORT statement and the Ada RAISE statement is that
the ABORT mavy result in a transfer to aanx mact of the rrocedure
which handles the ABORT. The excertion handler which is invoked by
a RAISE statement must arrear at the and of the rrocedure in which
it arrearst the handler acts as a substitute for the remainder of
the calline wmrocedure. 1In effect, a J73 ABORT is handled by
executine an unrestricted GOTO within the calline erocedure, while
Ada rermits a erocedure termination to be handlied only bvy &
structured exit from the callines srocedure.

The .73 statement name rarameter is used to terminate a rrocedure
with an unrestricted GOTO in the same manner as the ABORT, but at
one level of procedure calls rather than any number of levels. The
statement, "“GOTO <J<statement_name_rarameter>" is, therefore,. a
srecial case of the ABORT statementt the two constructs share the
same class~three incommatibility with Ada.

Ao g

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

Two techniaues are available for translatine a eprosram which
contains either of these constructs. The first involves an A4
action: reeplace the ABORTs and slobal GOTOs with calls to
machine—level runtime routines, efrectineg the handline of
procedure termination at the tarset-machine level rather than the
high—order lansuage level. The second techniaque is an alesorithmic
chanse (A2) which restructures the calline procedure, mlacine the
legic which handles the ABORT or GOTO at the end of the mrocedure.
Once this restructurine has been accommlished, the abort—ephrase or
statement name rarameter is rerlaced by an exception declarations
the end—-of-pProcedure logic is 1abeled as an excertion handlert and
the ABORT or GOTO is rerlaced by a RAISE statement. This technisue
of processine erocedure terminations mavy be used for any number of
statement name pParameters or abort-eshrase values, since multimle
exceptions mavy be defined within the same rrocedure. The
Proerammine of excermtions is discussed in detail in the Ada
lansuase standard (in marticular, see Section 11.4.1)% a lucid
discussion of the definition and prorasation of excertions mav be
found in Chapter 10 of Barnes (11].

The J72 lansuase suarantees that the risht-hand side of an
assignment statement will be evaluated before the left hand side,
and that function arsuments and table indices will be evaluated,
left to risht, before anvy exrressions or assisnments are
rerformed. This means that the statement

%% = funcl("exrression 1") + func2(“exrression 2")s
may have a different effect than the statement
“x = func2("exrpression 2") 4+ funcli("exerression 1")s

if the evaluation of exmrression 1 causes a chanse (side effect) in
the value of exrression 2. A J73 rrosram may actually rely on this
effect; an Ade prosram may not., DBeside avoidine such dubious
prosrammine rractices, a rrosrammer mavy remove order—of-evaluation
dJerendancies from exrressions and assisnments by breakins ur t..e
exPressions into serarate statements. For examele, if the
Preceeding assisnment statement needs to have exerression 1
evaluated first, then

xx = funcl("expression 1")s
wy = wx + funcZ("exmression 2")3

may be substituted for the orisinal statement. This technieaue mav
be arrlied as either a J723 modification (treatine it as a
class—two erroblem) or as a chanse to the Ada translation of the
Prosram. In either cases, the side effect dermendencies must be
detected and eliminated manualily,

G-10

-

. P
P R

-9

A A

oY

T,

Lk aCs

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

c. Comrilte-Time Functipns

Because Ada lacks a text-oriented macro-carability, the DEFINE
calls in a J73 erosram must be exmranded at translation time.
Therefore: the DEFINE declaration and the 'LISTINV. !LISTEXP, and
ILISTBOTH directives are simely discarded rather than translated.
Other J73 directives which have no Ada enuivalents mavy be
translated onlvy if the Ada environment to be used contains
ortional Ffeatures which corresrond to the J73 directives. In
marticular, the !TRACE directive will be imriemented, in some
forms in every Ada environment. Other directives (!REDUCIBLE.,
‘BASE, !ISBASE, !DROP, !INTERFERENCE., 'LEFTRIGHT,. and !REARRANGE)
have no runtime semantic effects thevy simeply aid the J73 compriler
in rerformine certain code ortimizations. Since these
optimizations do not chanse the semantics of the rrosram:. and
since Ada commrilers are exrected to rerform subtle code
ortimizations without the assistance of such directives., it is
likely that the deletion of these directives from a translated
rrosram will have no detrimental effect.

G-11

)

oy e

o

JOVIAL TO ADA TRANSLATOR INVESTIGATION
CUIDELINES FOR TRANSLATION

IV. PROGRAMMING GUIDELINES

In the erreceedins sections, the translation of problematical
constructs in existins J73 rrosrams was discussed. If a J73
rrosram is to be written with translation to Ada rlanned for the
future, the rrosram should aveid the use of all the eroblematical
constructs. A J73 erosram containine only class—one constructs
will be (relatively!) simele to translates in fact, it will be
automatically translatable. However, the J73 prosrammer can %o
bevond merely writine a non-eroblematical erosram. Th>» Ada eprosram
that is produced by the translation process, whether manually or
automatically, will be of significantly hisher quality if the
followine suidelines are observed by the J73 erosrammer:?

1. Do not use untvyred mpointers. Evervy pointer
declaration should include a smrecified tvre, so
that translation to access tvmes is simplified.

2. Avoid conversions between unrelated tvmes. Ada does
not mrermit such conversions, except by use of the
gseneric function UNCHECKED_CONVERSION, which is
somewhat cumbersome to instantiate and call for
every tvyepe of conversion.

3. Do not use names containin® more than one
consecutive $ or ‘. This practice will aveid the
seneration of awkward names usine underscores in
the Ada eprosram. In fact, the names in the
translated erosram will be much cleaner if the J73
names use either ¢ or “, but not both. .

4. Limit the lensth ¢f names to much less than the 32
characters rermitted by J73. Many translation
functions resuire the seneration of trre names
based on addine® an extension to an obJject name (or
seneration of rackase names by addine an extension
to a rrocedure name), which mav result in
excessively lone identifiers.

S. Do not use the FALLTHRU construct. Its translation
is both awkward and inefficient.

6. Avoid loom statements with bv-clauses or
then~-clauses which result in a loor increment of
other than one. Virtually any function that
resuires a loor can be coded usins either a FOR
loom with an increment of one or a WHILE
{condition> 1loomy both of which have simrle and
efficient Ada translationst loors with increments
not eaual ¢to one can be transiated, but not as
cleanly.

.
FYIID RPN T Y S S S .

-
>~
..'
1
LI
s

,‘ ..,‘
PR ‘.4'.-',4 O

L AR
R T S

JOVIAL TO ADA TRANSLATOR INVESTIGATION
GUIDELINES FOR TRANSLATION

8.

10.

11.

12.

Avoid elaborate DEFINE usase. DEFINEs will be lost
in the translation erocess.

Declare 9lobal data in commrools. Individual data
declared as externals in rrocedures results in a
much more comelex translation. Similarly, static
data should be declared in commrools or in the main
rrograms not in erocedures.

Keer table structures as simrle as mossible.
Prosrams which use raralliel, packed, or variable
entry tables will be much harder to transiate to
Ada than erosrams which use straishtforward tables.

Include detailed comments about non—-trivial data
structures. Tables, blocks, and the code which
accesses them can be translated much more easily
(and tested much more reliabdbly) if the rersonnel

doing the translatine and testins understand the
Prurpose of the data structures.

Include detailed comments about mointer usase. Ada
features very powerful instructions for dvnamic
allocation and access of linked data structures.
These features may be exmploited by manually
recodine wortions of a eroscam {(after translation)
in Ada?l a direct translation will not make
efficient use of these features. This erocess will
be facilitated by the liberal use of comments.

Aveoid GOTOs and deerly nested rrocedures. This will

imPprove the readability and maintainability of the
rrosram in both J73 and Ada versions.

G-13

v JOVIAL TO ADA TRANSLATOR INVESTIGATION —
F GUIDELINES FOR TRANSLATION

V. CONCLUSIONS AND RECOMMENDATIONS -

; Many embedded software svstems which are currently coded (or beine

4 coded) in J73 are to be used and maintained in the mid 19680‘s and

1 bevond. Such .svystems should be considered as candidates for

x translation to Ada. The modification, enhan~ement, and remair of N

‘ embedded svstems will be much more economical if the (erredicted) —

*; benefits of the Ada Prosram are exmloitedt the Ada Standardization o
Prosram suarantees that these benefits will be available only for .y

Ada—-coded svstems. As shown by the Functional Descrimtion and the

3 Svstem/Subsvstem Serecification, a Translator can be imrlemented to

- rerform the vast majority of the conversion to Ada of a larse.

Jg- realtime erosram. The translation rrocess must not be considered o

) to be "cookbook™ in nature’ even a well-desisned Translator svstem

will be unable to rroduce a flvable Ada rrosram. The translation .

of rroblematical J73 constructs, as well as testins and o

integration of the Ada errosram: will resuire hishly skilled :

rersonnel, whether or not a Translator is used. However, the total

labor costs of eroducine a flvable erosram will be sreatly reduced

if such a tool is availabtle.)

= Acknowledsement o4

or The author is indebted to the followins wrersons for major .
!! contributions to the Translator Investisationt Lonnie Brownell, -l

Joel Fleiss, Richard Gilinskys Guy Phillirs, and Dale Rankin. R
Thanks also are due to Irene Evans for editins and word erocessine e
of the Functional Descrimtion, the Svstem/Subsvstem Srecification,
and this Rerort.

References!

£1l] J.G.P Barnes, Brcoscanmins_in.Qda, (Pre-publication comvy,
1981).

2] Mi1-Std—-1589B: JOMIAL_LJZ31, June, 19680.

2] Mil-Std-1815: Reference_Manual_for.tha_AQda_Ecoscamains
Lansuase, December 1980,

41 M.J. Neiman, Eunctiocnal_Desceistion_foc_the_ JOVNIGL_LJZ23)_to
Ada_Icanslatac, February 1982,

{51 M.J. Neiman, SxstamiSubsxstem.Ssacification_fac_the JONIGL
LJZ3)_ta_Ada_Icanslatac, March 1982,

61 Statement of Work, contract F30602-81-C-0127, RADC/PSS.
June 1981.

. PRI P .. ! Lot Tt STt Tt .,
et A RT TR PRI e, L

G-14

