AD=Al20 343 DAVID w TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE=-=ETC F/6 13/4
CARGO LOADING=-=A PROPOSED APPROACH FOR MAXIMIZING SPACE UTILIZA=-ETC(U)
SEP 82 G GERSTEL

UNCLASSIFIED DTNSRDC-82/099

- NL
| o 2
ana
12G342

\ S _

UNCLASSIFIED g

SECUNTY CLASSIFICATION OF THIS PAGE (When Date Entered))
REPORT DOCUMENTATION PAGE BEF%fQ%DC%‘S;Eg%’;}g"SORM
1. REPOAT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
DTNSRDC-82/099)0-M 12 © 33
4 TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
CARGO LOADING--A PROPOSED APPROACH FOR
MAXIMIZING SPACE UTILIZATION OF Final
CONTAINERS LOADED WITH 6. PERFORMING ORG. REPORT NUMBER
PALLETIZED LOADS

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s) \

Gerald Gerstel

$. PERFOAMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
David W. Taylor Naval Ship Research
and Development Center (See reverse side) i
Bethesda, Maryland 20084 ;
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
David W. Taylor Naval Ship Research September 1982
and Development Center 3. NUMBER OF PAGES
Bethesda, Maryland 20084 (Code 187) 169
14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Otfice) 18. SECURITY CLASS. (of this repogt)
H. Lieberman UNCLASSIFIED
Code SUP033 5a. DECL ASSIFICATION/ DOWNGRADING i
SCHEDULE

18. DISTRIBUTION STATEMENT (of this Report) |
+

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1 different from Report)

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and identily by block number)

Containerization
Cargo Containers
Palletized Loads
Packing

20. ABSTRACT (Continue on reverse side {f neceseary and identily by block number) |

<——""”“7?>An in~depth analysis of space utilization in cargo containers to be
loaded with palletized loads and shipped by barge indicates that space i
utilization can be significantly improved. This report describes a load-)
ing procedure which uses analytic techniques to precisely define the
amount and arrangement of loads at the three different loading levels in-
volved. Development of a computer program to implement the results of the

study is recommended. 4]

Y

DD , 5™, 1473 eoimion oF 1 ybv 68 1s OBsOLETE
1A 72 EoITIoN oF LY UNCLASSIFIED
SECURITY CLASSIFICATIGN OF THIS FAGE (When Data Bntered)

e S e e i Ak b S o

e, o = Rl

e a Cacies

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(Block 10)

Program Element 62760N
Task Area TF 60 531 005
Work Unit 1800-007

Accession For

_Ejsty;bution/
Av~ilabilityv Codes

NTIS GRA&I

DTIC TAB

Unannounced O
Justification]
By__.

ﬁAvnil nni/or
Dist | Special

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

e 8 i et R

TS

TABLE OF CONTENTS

. Page

LIST OF FIGURES «vcveeecossocnsessossssssossanssessassessssssonsoanssssnssanse V
LIST OF TABLES «ueeoseacncceasoncssencososasssosssasssassassonsonssoassssssces Vi
ADMINISTRATIVE INFORMATION «eoeocooccccsoncscocosonsssasasascnssnasasssonssses 1 !

INTRODUCTION G C OB EPLL0PENG ISRV ENNORIORLEOONNNNB00P00000NNN0EENENCOIORNINOIORTSES 3 *

ALTERNATIVE APPROACHES TO AUTWATED LOADING 0000000000000 0088 R0000000OSRNOIRSITLTS
FIXED pATTERN APPROACH © 000 0000000000000 000000 008000000 CVRCROICIOROAATCIIRECEOIEEOIONIONOITE
ANALYTIC FORHULATIONS 0000000 P 0000000000 RN000E0C00000000P NG0SRI ETEDS 7

PROPOSED APPROACH svevceccrncccacoccroncnassncscossvasecssssssssscscncsscscsssce 11
OVERVIEW ccocccescosscssccancosocrosonssnsasescocsnsososossosssssscscsssnsosnss 11
GUIDELINES FOR SOLUTION STRATEGY seeccocccscsacosssscs-csoesscessossscsssos 12
INPUT REQUIREMENTS AND PRELIMINARY LOAD DATA ANALYSIS cecceccscssccsccoscss 25

. ‘ PALLET wADING 00 000D P P0 SRS NV PO OOROIPOPOOOO RIS EOERSOOORPRSIOEIROSEOERNOS 28
Pattetn Formation eeceesccssscccscocccnsssvessssscsescssnssnsossssccnsncnse 28
Stacking © €0 00000000 000000000000 3000000000 000000 000000 O0IO0CCESERRORIOERPR0TOTS 47

™ Completion PO P 00000 CIPRLRRILELIL000000000000080000000P0C00000000C0CRIRDILS 57

CONTAINER LOADING 00000 N0R00000 0000000000 00000000S00000300000000CC0RRGCRIOBRIOGSTS 59
BARGE LOADING S 000 0000080000000 000 00000000 00000000000000003 0800000000008 00000 61 !

ORGANIZATION AND FUNCTIONAL DESCRIPTION OF PROPOSED
PR(X;RAH IAOABER G000 LPENCONNOPNENCOPIN0RI00008000000N0PNEIRNRORRRSIRIIRIOESITDRDS 63

SMLE PROBLEH 600000200000 000 10600000600 0000 0000000000000 000000080RRCDRIIGEOIOREOEBTRCRTDY 65
STATmENT OF PROBLEM..onooo-ou.ooolco.o.o.-.ono.ooo.oo.ooo.oo.oo.-n-uo..ooo 65

o st 1

soLmIoN G 00 A 000800000 IBPROOPBD OO PIINCOBORNERPIORNRPRPOOEOLAOPBENEDROOERSSIBOERDS 67 ji.,

Aﬂsumptions and ReStricCtionsg cescececscecscccvvseccscsscocecsessscscrsonse 67

Ptelimiﬂﬂty Load Data Aﬂalysis 000000000000 000000 ORCIOIROIROIIIEOIROIIOIOIROOROODS 68

Pallet Loading 00 00 P00 L0000 E0NEIINONIREe0ENNTEeeNORINROIROOSIEORIGIEIROTORRTDES 70

Gtoug 1 Proceasigg © 0000000000008 0000000000000080 0000000000 CCROOIONINRRDRDOES 71

GrOuE 2 Procg.‘ins ® 00 00000000 0E0 0000000000000 0000c003000800RCIIRIROTRES 73

» Gtoug 3 Proce"iﬂs 200 0000000000000 000000000000000000000C0CORRRRRRSTDRES 78
Groug 4 Proce"i!‘ 0000 PeE0000000 0080000000000 000RCRIROIOGOEOOIOIOIOEOROROITSEOEDS 81
Grouesproc‘..ig OGO PO OOOSBPONOENNOCNOEOCONOENOIOOERSOEDNOIIOSOROSRPROIOGEOEDROIBDBOOSOETBDTETES 86
Grou! 6 Proces.iﬂg © 0000000000000 000000000080000000 000000 CRYOROITSRROGINRTGERES 85
Gto“! 7 Proce..in‘ € 05 000000000 00000000000000000000008008000000000O0C0OS 86
Gtoug 8 Proce.'ins © 00 0000000000000 000000000000 00008000000000CO0O00CO0C0ODRTSTDS 87

Reminder Gto“e Proce"im 85000067000 0600000000000000080 0000000000000 88)

i1

it VA e bt o G At A AR Bk e % B - e T S b € At 3 VA T 1 RN I8 Yol B s 4 Y B b % w0 L m e b

MW“,

e

staCkins and conpletion A0 0000 EP000 000000000 ENONE0RB 00PN SIRNBNIOIOERRTITS 89 [4
Contlinet '1 G080 000 000000000000 RREL0RR000R000000080000 8000000000000 90
Fin.l stlck '1 0 0000000000000 0000000C000000086000000800OCPESIISENIDPOESGOEEOETS 94 4
Fin‘l st‘ck ‘2 0000000000000 080E0S000000N0RER0008RCRR000000CCTCICTNRNITETY 95 "
Contlinet '2 @080 08P 0NP0TN 00000000000V RLR00PSSGINOOIGOIROOIOISIOIOIISBREOS 96 '
Iuitial st.ck '1 S 00 G RGN B OO0 POIINONO0VNOIVENCERPEENEEODNOLROOIOIQRIIEITOETITISITPODS 97
Initi&l stack ‘2 0000000000000 PRINOORNNRNORENPN0POR0ERNEROOOOIBNISERIPIORNTIOIITS 99

14
Containet Loadins 200000 000000000000 PNINNNNORONENCREN0IRIORIRIROLOENEOIRORIOTSTS 102 J
DISCUSSION OF RESULTS S e P00 LRGN0 CPT00ON0N00RERN0ROERPR0000CR0OC0OSOROISICOREOEOEOCETET 102

RECOHHENDATIONS AND CONCLUSIONS S C 0000800000 00080300000000000000050000800 000000 105

ACKNOHLEDGMENTS G0 0000 0RCLOINREINROE00C0000C0ROIDNRENOIORRIBOEOOROELITOINSPDROIDBDAIOIOES 109

RBFERENCES PG 000000000 00000000 RRERRRRPRTROTRI000OCERTREOCROernssssssnenstsssrnine 111

APPENDIX A -~ INDEX CHART FOR PALLET PATTERN DETERMINATION ¢ccscecccssssococsce 113
APPEND1X B - PALLET PATTERNS ON 40" X 48" PALLETS .ccvecsoccccccccacnscsssscoss 117

APPENDIX C - FLOWCHARTS OF PROPOSED PROGRAM LOADER cecvccssesssvovccoscascssns i2l

iv

L et v

- —

LIST OF FIGURES

Page

1 ~ Difficulty of Mixing Box Sizes Using Fixed Patterns sceccesessccccecscces 6
.} 2 ~ Pictorial Overview of Proposed Approach ci.cesseeeseoscccesssccssscsccnss 13
3 ~ Example Of Cluster TYpPe8 .ceceosscesassscoscscosvrssssssonsossosscssrsassosss 3c
4 - Type 1 Configuration eceescossssscescssscscscasccscsssscccasssssassscscocs 36 |
5 - Type 2 Configuration eceoesecsccscscecscsscsssccnsvcccsossssascscscosansons 38 ‘
6 - Type 3 Configuration ececsessecscsssacesosesacssesssssscsscscssssscasscsn 40
7 - Type 4 Configuration seecessceceesosccoscssccscocssscososrossosssssosssnss 43
8 - Pattern Completion by Nesting of Type 3 and Type &
ConfigQUrations cesecesescssccccesossccccossosncsssssscsossssssssvsscssssses 45 '
9 - Alternative Pallet Loads Spanning Identical Stack Height .eceverecccecons 50 1i
10 - Improvement of Pallet Load Stabilily eceeceacscecsssseosssssscsesoes ansos 60 ;
. 11 ~ Example of Pattern Completion by Synthesizing Group Height eececocecccces 107 ?
12 - Generalization of Row, Column Construction Techniques ccsceseccsceccscces 107 ;
. 13 - Main Program LOATER, Flowchart ccesecsoccccsssnsccocsscsstsossssccsssscsccs 121 i
14 - Subroutine INPUT, FlowChart e.sescecsscsceccsnssteccsosccsssosocscssscscsns 122
15 - Subroutine ANALYZ, FloWChArt «covessccsscesscsscssscssossasesssnncsnsnsonse 123
| 16 - Subroutine PATRNS, Flowchart seeeececssccscsscsssccenscssssccssssncsesses 124 :
‘ 17 - Subroutine STRING, FLOWCHATL eeceeevacssesssosscssesscessossocssssssonaes 130]
E 18 - Subroutine TYPEl, FlowChart ccsececcccscscrosesescsssccossssssrencssssosnsse 133 ;
19 - Subroutine TYPE2, FLOWCHATT teeuveccensenccsensseannnsssnsassasensssscens 134
| 20 - Subroutine TYPE3, FloWChArt ececeecececvcssssscsscoscccssssascsscnsnsncese 135
» 21 - Subroutine TYPE4, FLOWChATL ccsevccoccccccccssrosrnsscscssecesscsssssssncncs 138 %
i
)

S L R

|
i
i
|
i
1
|
|

i

22
23
24
25
26
27
28
29
30
31

32

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine

STACKS, Flowchart ceeccsvveccesccsccssscsocvscacsacscossccnns
STATE, Flowchart cvcecsesccssccssncesovsccssssssonrsscsccssssss
PILES, Flowchart ecesceccccecsesscecosseccssvecsccoccoccnsoe
PALLETS, FlowChArt sesecscsecsessceassoscvascccansorscssssne
STAKER, Flowchart cscesescesecsccccsccscccsccscscsscescessas
SUPPLY, Flowchart ccesssccecccsccsccssscosvsossssscosssconncs
UNLOAD, Flowchart cecsccecescccsscsssssassssosscssscccossesne
FILL, Flowchert ccecesccccscsevscccncscccsossscssnsssoscoscne
TRADE, Flowchart ccecoscesescsesccscsssaccsscscssssscscsseas
CNTNER, Flowchart eccceessscessscnsssnscescccsnssscssscssnnsesan

BARGE, Flowchart eceoccecececocsscscssscscsacscssonssocssnccsas

LIST OF TABLES

System State Definitions ..eeceescvccsccccssccsosscrsosscsccscsssocssssne

State Transition MatrixX cceecceccccosccscorcscencscssossscssscccsscsnas

Sample Problem Load Population DAata seecevcscsassossocsccscescssssonsscnce

vi

Page
140
145
146
148
150
155
156
157
158
159

160

52
52

69

£==y= g eeprenn

¢
Mv-s?\.wrmm— B U o e e e L e s

ABSTRACT

An in-depth analysis of space utilization in cargo containers
to be loaded with palletized loede and shipped by barge indicates
that space utilizalicn can be significantly improved. This report
' describes a loading procedure which uses analytic techniques to
precisely define the amount and arrangement of loads at the three
different loading levels involved. Development of a computer
program to implement the results of the study is recommended.

ADMINISTRATIVE INFORMATION

This research was performed for the Logistics Division, Code 187, of the
Computation, Mathematics and Logistics Department, Code 18. The author was on the

staff of the Computer Aided Design and Manufacturing Division, Code 185. The

work was sponsored by the Naval Supply Systems Command, Code 043 as a subtask of
Work Request WR-09012, Program Element 62760N, Task Area TF 60 531 005, and

. Work Unit 1800-008.

B T

INTRODUCTION

One of the foremost problems in the field of containerization is the
need for improving the use of cubic capacity of cargo containers. Both

*
Tabak1 and NAVSEASYSCOM2 mention the significance of the cube limitation

problem and the inefficient manner in which storage space is used.

The importance of the problem and the economic savings to be realized
if a successful solution could be obtained led to a study of space utili-
zation in cargo containers to be loaded with palletized loads. Loading

takes place at the three different levels, and each level affects the

overall efficiency of space utilization. The three levels are:
(] loading of boxes onto pallets
° loading of pallets into containers
. . loading of containers onto a barge.
] . The results of the study, reported here, include the development of

an automated loading procedure that precisely defines the amount and

arrangement of loads at each level of loading.

. *A complete listing of references is given on page 111.

3 I FFOGEISNS DB MANK-T FILED

- ———— R b v — |

o

ALTERNATIVE APPROACHES TO AUTOMATED LOADING

FIXED PATTERN APPROACH 9

MIL-STD—147B3 describes and illustrates the practices and procedures
for palletizing unit loads. Appendixes C and D of the standard, included
in this report as Appendixes A and B, provide an important step in the

direction of automated loading. The first appendix is an index chart

for pallet pattern decermination. The chart covers box sizes ranging in
length from 6 to 52 inches in increments of half an inch, and in width
from 6 to 43 inches in increments of half an inch. A pattern number reac
from the chart for a box of specified length and width corresponds to a
pattern in the second appendix. Each of the 124 pallet patterns provides
for efficient use of at least 80 percent of the pallet surface. However,
there are numerous box sizes for which no pattern is provided (for
example, 15"W X 18"L), and generally a pattern can be relied upon only if
all boxes are the same size. For example, uniform loads of boxes 17-1/2"W
X 34"L or of boxes 21-1/2"W X 28"L can be loaded on a 40" X 48" pallet
using Pattern 1 as shown in Figures 1A and 1B. However, if the sizes are
mixed as shown in Figure 1C, the pattern is not suitable, since the maxi-
mum allowable load width is 52 inches. If the boxes are arranged as shown
in Figure 1D, the pattern is acceptable.

The idea of using previously developed, efficient, fixed patterns

for selected box sizes is simple and logical, but has several limitations:

-

21
17% 28
28
3 34
7y 215 |21y
175

Figure la - Acceptable loading of Figure 1lb - Acceptable loading of
17%" x 34" boxes using 21%" x 28" boxes using
pattern 1 pattern 1

Exceeds maximum
allowable width
28
17% 21
34
28 34
21% |17 17%
17% 34

Figure lc - Unacceptable loading of Figure 1d - Acceptable loading of
2 sizes of boxes using . 2 sizes of boxes using

pattern 1 pattemn 1

Figure 1 ~ Difficulty of Mixing Box Sizes Using Fixed Patterns

. If the number of permissible box sizes
is large, the number of pre-developed
fixed patterns becomes large; if mixing
of sizes is permitted, determining the
large number of mixed patterns becomes
infeasible.

] There is no correspondence between the
actual frequency of use of certain sizes
and the frequency with which the sizes
occur in the fixed patterns.

. There is no mechanism for improving space

utilization efficiency; if a fixed pattern

is selected with a reasonable amount of

waste, a more efficient pattern might

be easily found but is never sought.

. If the allowable load widths or lengths

are changed, or if the maximum permissible

dimensions are variable, then considerable

rework may be needed to expand or alter

the fixed patterns. The same difficulties

would apply if the permissible box sizes

were altered.
ANALYTIC FORMULATIONS

A more general approach than using fixed patterns would be to
allow for linear combinations of box sizes and more general types of
permissible pattern variations. Gilmore and Gomory,4 Herz5 and Christo-
fides and Hhitlock6 reported work of this nature but in a different
context.
Gilmore and Gomory4 consider multi-stage cutting stock problems of

two and more dimensions. In the two-dimensional cutting stock problem

a supply of stock rectangles of width W and length L is used to fill

a demand for Ni rectangles of width w, and length li’ i=1,2,...m¢ The

L armtek L

T T R RN T TR TV T gy e W

problem is to cut the stock rectangles into smaller demand rectangles
using as few stock rectangles as possible. In the cargo loading problem,
the fixed size pallet corresponds to the stock rectangle of the cutting
stock problem and the width and length of the box correspond to the demand
rectangle dimensions. The number of boxes of each size corresponds to

the Ni rectangles and the number of different size boxes corresponds to
the m rectangles. In both problems, the objective is to minimize waste.
In the three-dimensional problem, a rectangular parallelepiped is used
instead of a rectangle, and its height becomes the third dimension.

Gilmore and Gomoryb discuss a linear programming formulation and
consider the computational difficulties which arise from the immense
number of columns that can occur in the matrix. For the one-dimensional
cutting stock problem, the computational difficulty can be reduced by
transforming the problem and solving it as a knapsack problem. Unfor-
tunately, for two dimensions, the analagous transformation from the linear
programming problem into a generalized knapsack problem results in a
problem for which no practical means of solution is known. The difficulty
increases if the three-dimensional problem is considered.

HerzS considers the two-dimensional cutting stock problem. The
Gilmore-Gomory solution technique involves an iterative algorithm, but
the Herz algorithm is recursive and its author claims that, when imple-
mented, it results in higher computational speeds in the solution of the
cutting-stock problem. Herz gives some computational results for a pro-

gram which was written in PL/1 and executed on an IBM computer.

Christofides and Whitlock present a tree-search algorithm in which the maximum
number of each type of plece produced is constrained. A dynamic programming so~-
lution technique is used. The results of a program developed for the CDC-7600
computer indicate that the algorithm is effective in solving cutting-stock problems
of moderate size. When ten pileces are to be cut from the stock rectangles, the so-
lution time is approximately 15 seconds. When the number of pieces is increased to
twenty, the solution time is increased to 1 minute. For a larger number of pieces,
the number of nodes in the tree and computational times become so large as to be

impractical.

PROPOSED APPROACH

OVERVIEW

The approach proposed here uses analytic procedures to generalize
the fixed pattern approach and to take into account the specific loading
constraints associated with the cargo loading problem. This approach
necessitates the development of a computer program which permits the
three-dimensional cargo loading problem to be attacked from a more
realistic point of view. The key concepts involve:

° Iteration to improve space utilization to

within acceptable tolerances; implicit
exclusion of unwarranted iterations.

g e L

° Generation of load clusters.

° Generation of configuration types dependent
on priorities and on frequency of box size :
occurrence within the load population. [

, (] Pattern completion by integer linear com-
bination and nesting of clusters.

] Generation of load stacks.

° Stack filling for crude but rapid utiliza-
tion of space.

zation.

° Automatic insertion of pallets into load

i o Load trading for refinement of space utili-
stacks for adjustment of pallet load heights.

i

i

13
3

Rt st

° Automatic determination of arrangement of
'~ pallets in containers and containers in barges.

° Automatic monitoring of load weights.

° Automatic placement of loads for improved
load stability.

° Ability to allow for variability in avail-
able box sizes, pallet sizes, containers
sizes, barge types, and wasted space
required for load accessibility.

. Ability to trade off space utilization
efficiency versus computer costs.

' Provision for complete computer bookkeeping
and output reporting, including space
utilization efficiency, at all loading
levels.
Although these concepts have been listed separately, many of them are
interdependent and receive simultaneous consideration in the development

of the problem solution. A pictorial overview of the proposed approach

appears in Figure 2.

GUIDELINES FOR SOLUTION STRATEGY

A number of basic criteria and mathematical operations must be stated
or developed in order to understand the solution strategy. These funda-
mental ideas provide the basis for the decision rules that deal with
important questions frequently raised in the loading process, such

questions as:

12

e -

; Figure 2 - Pictorial Overview of Proposed Approach

1. Group boxes on basis of box heights

' L l

. T H,

Group 1 Group 2 f
All boxes of All boxes of
height H in range height H in range !
8" <H 10" 10"<H<12"

2. Generate box clusters within each group

L |

H

T |

ey Y

Various clusters i

o ————— wmm
b N ' ‘ i
.

e ———————— - —

Figure 2 {(Continued)

3. Form patterns by combining clusters

._L_ WASTE
_]r.

Pattern

4. Assign patterns to tiers; and insert shims to level tiers;
generate load stacks by stacking tiers into preliminary piles

Individual

£ ///:iiii///

Pile *

Pile
1

Shims

Stack #1

\ ..l-'vvw— 4WM‘ - o

Figure 2 (Continued)

ack #1 refined and palletized

Stack Stack]
#/JA/

Stack

ange stacks in container
/Sr.ack a
#1

#2
o

15

] In what sequence should the bor=s be selected
from the load population?

° How should loading patterns be formed and
what measure should be used to compare their
effectiveness in space utilization?

. How can a current loading pattern be devel-
oped that gives consideration to enhance-
ment of the load pattern opportunities for
the remaining load population?

° If wasted space exists, what types of
modifications should be allowed in altering
the configuration and composition of a
given subset of the load population to
improve space utilization?

The first guideline to be introduced is associated with the utility
or value of a loading pattern and the contributing worth of each of its
components. Ideally, it would be desirable to have a precise quantitative
measure of each of these factors, but unfortunately none is available.
For a small load population, trial and error or possibly the use of
dynamic programming might provide the best overall utilization of space
and, a posteriori, assign the highest value of utility to this result.for
a large population, this approach is not practical.

Intuitively, anyone concerned with a loading problem is inclined to
place greater value on the satisfactory piacement of a large object than a
small one. This could be justified on the basis that a larger object, by
definition, requires more space than a smaller one. It is iaportant to

maximize the opportunities for placement of a larger object; the number of

opportunities is greater without the space limitations resulting from

16

prior placement of smaller objects. Alternatively, if a large object is

placed first, the likelihood of finding an acceptable place for a follow-
on object would be greater if the follow-on object were smaller. This
intuitive idea is used for establishing the precedence guideline that,
all other factors being equal, a larger box will always be selected and
scheduled before a smaller one. The phrase, '"all other factors being
equal," is important. For example, if in certain instances it could be
determined that selection of a smaller box in lieu of a larger one would
ultimately result in less wasted space, then in this case, all other
factors are not equal and the precedence relationship could be reversed.
1f, however, it could not be determined, a priori, which size selection
would result in best overall s ace utilization, then the precedence
guideline would be applicable and larger sizes would be assumed to have
higher box size values.

Space utilization can be measured in terms of space utilization

efficiency, which is defined as:

Volume of Space Utilized X 100%

Space Utilization Efficiency = VoTume of Available Space

Although the objective is to maximize the space utilization efficiency at
each phase of the loading process, sometimes it may be necessary to trade
off space utilization efficiency against the value of the box sizes

contained in a particular loading pattern. It may be advantageous to use

for a large box a pattern having relatively high waste with the

expectation of finding for a smaller size box a more efficient pattern

which will give greater space utilization efficiency for the complete
load.

In order to trade off box size value versus space utilization
efficiency, a tolerance must be specified to denote the amount of space
acceptable as waste, provided that sufficient box size value is achieved.

A mathematical technique, known as the integer linear combination
technique, has been developed which combines the box size value and
space utilization concepts. This technique can be used to accelerate
and make decisions concerning the load solution process. In applying
the technique, it is assumed that the precedence guideline always applies
to the first box size to be selected. After selection of the largest
box, successive selections will still pick the same size box if it is
still available. Therefore, it becomes advantageous to determine first
the maximum number of the largest size box that will fit in the available
space and at the same time produce an acceptable configuration with
respect to minimum waste. The remaining load population is then checked
to determine whether the quantity is available, and, if so, all boxes of
that size are simultaneously selected. If either the configuration
or size availability precludes the maximum quantity assignment, then the
assignment is reduced to the maximum available quantity that produces an
acceptable configuration.

The technique can be used to solve two problem versions which depend
on whether two sizes of a box X and x, are known or if only box size X

is known, and the other size x, is unknown. The integer combination

18

L s P 1 e

applies to a one-dimensional space, since the items to be combined will
always have a common dimension, and their combination will always be
sought in the remaining one-dimensional space.

Problem Version A

A one-dimensional space of magnitude X is to be filled within toler-
ance TOL by integer linear combination of specified size x, and unknown
size x,. The availability of X and x, is given by constants D) AVAIL and

and n Find maximum n, that satisfies:

2AVAIL®

X - TOL S_nlx1 + n,X, <X

%y S RpavALL

0y £ DyuvAIL

n,,n, integer

Problem Version B

A one-dimensional space of magnitude X is to be filled within toler-
ance TOL by integer linear combination of specified sizes x, and x,. The

availability of X, and x, is given by constants D AVAIL and D) AVAIL®

19

ey

——— R ik i A B o Ve

b Find maximum n, that satisfies:
X - 'I‘OLSnlx1 + “2"25’(

0y S MavarL

ny < MoavalL

nl,n2 integer

Integer Linear Combination Technique

Problem Version A is solved:

. = = 1 5
Step 1: Set n, = 0 and n; = min {[xl]’ nlAVAIL}

where notation [] denotes smallest integer < number in brackets.

Step 2: Test if n, satisfies X - TOL S_nlx1 £ X.

n,,n, are optimum. Otherwise, go to Step

If relation holds, then

3.

L —

Step 3: Let X)SMALL denote smallest available size of X,

If is void, go to Step 8.

X9SMALL

Otherwise, set n, = n, + 1 and go to Step 4.

2 2

Step 4: Test if n, n, satisfy

X - nlx1 < x
2SMALL

——

Ry

where XZSMALL denotes smallest available size.

If this relation holds, go to Step 7.
Otherwise, go to Step 5.
Step 5: Solve for X LOWER and X, UPPER

where

X - XTOL - n.x

X9LOWER = 11
By
and
.) X - nlx1
2UPPER
Ry

21

Let {xz‘ denote set of available sizes which satisfy ,

*LOWER ~ *2 £ X2uppER. . ,

1f {xZ} is void, go to Step 3.

Otherwise, go to Step 6.

Step 6: Test 1if n, S-“ZAVAIL where M) AVAIL denotes cumulative

quantity of all members of {xz}. !

If relation holds, ny and n, are optimum and largest sizes

belonging to *XZ} are to be used.

Otherwise, go to Step 3.
Step 7: Set n, =, - 1

and

If n, = 0, go to Step 8.

l Otherwise, go to Step 4.

Step 8: STOP! Problem has no solution.

22

Problem Version B is solved:

. X
Step 1: Set n, = 0, n, = min [',q] ' "lavalL

X
"2MAX = min ['i;] , "2AVAIL
Step 2: Test if X - TOL _S_nlx1 < X. If it is, then ny and n, are

optimum, Otherwise, go to Step 3.

Step 3: Set n, = n, + 1. ;

e e

Test if n, > Moy If it is, go to Step 5.

Otherwise, go to Step 4.

Step 4: Test if X - n Xy < nyX, < TOL.

If relation holds, then n, and n, are optimum.
Otherwise, go to Step 3. a

Step 5: Set n =n - 1 and n, = 0. i

é 1f n, = 0, go to Step 6. f

Otherwise, go to Step 3. |

Step 6: Stop! Problem has no solution. ,

23

The solution procedure ensures that unnecessary iterations are
implicitly excluded when size availability becomes limited. For both
problem versions, the iteration proceeds by initially allocating the
maximum quantity to n, and the minimum to n,. The procedure guarantees
that n, and n, are integers.

In the process of generating and evaluating various loading pat-
terns, criteria are needed to limit the types of loading patterns
permitted. With sufficient time and financial expenditure, complicated,
unusual loading patterns might be found to reduce wasted space; these
solutions are ignored on the basis of practical considerations. The
loading patterns sought are to be built up in a logical sequence of steps
which favor uniformity of box size and regularity of configuration. The
use of one size box is subject to its availability in the population or
population subset, and also to the degree of success to be realized in
the economical use of space. When it becomes necessary to mix sizes,
usually a mix of only two sizes is permitted to keep the solution
procedure simple and practical.

Regularity of configuration refers to configurations with parallel

rows of boxes, parallel columns of boxes, and clusters of boxes.

T A ety AN Y. . H D

i
:

INPUT REQUIREMENTS AND PRELIMINARY LOAD DATA ANALYSIS

To start the analysis, the user will input data on container size,
pallet size, permissible pallet overhang, maximum allowable pallet
loading height, batch size, barge type, various tolerances for different
kinds of acceptable waste space, and, if applicable, reduced stack height
for load accessibility.

The container size may be standard or non-standard. The solution
technique will, in general, require that the user select the container
size if more than one container size is available. The program will also
be useful as a tool for selecting the container size by analytical
repetitior of the solution technique for various container sizes. The
most efficient container size or sizes for the particular load on hand
will be selected.

The pallet may be the normal 40-inch by 48-inch size or any other
size. The permissible pallet overhang could extend the load size to as
much as 43 inches by 52 inches for the normal pallet size. The program
will have a stored table of overhang data extracted from MIL-STD-147B.3

The maximum allowable pallet loading height (including the pallet
height) may be optionally specified by the user. Default values of 43
inches for SEAVAN and 41 inches for MILVAN as specified by MIL-STD-147B

will be used.

25

e

et ey

The batch size is the maximum number of cargo boxes to be analyzed
and schedul~d for loading by the program. Before actual program develop-
ment, it is difficult to estimate what range of batch sizes should be
specified to obtain both economical program execution and favorable space
utilization. Tests will be required after program development to deter-—
mine optimum batch size for specific loading problems.

The barge type is specified to identify the quantity and arrangement
of available space for cargo stowage. The program will contain stored
data for the LASH and SEABARGE to characterize the available space. All
available space will be subdivided or, where necessary, approximated in
terms of rectangular parallelepipeds. For barges other than LASH or
SEABARGE, the user will be responsible for describing the available space.

The initial data will be followed by input which describes in detail
the characteristics of the load. It is assumed that the load will consist
of boxes of random sizes. The diversity of available sizes is exhibited
in the Federal Supply Catalog.7 For each box, the following information
is needed:

. identification

) dimensions (specification of box cube
instead of edge dimensions is unacceptable)

26

e R

. permissible orientation
° weight

° destination

° special value {optional)

The last characteristic will be used by the program to alter the
sequence in which the load scheduling steps occur.

Preliminary load data analysis is performed to arrange the data in
the most convenient form for carrying out the loading process. Rearrange-
ment of the data can reduce the number of iterations required to reach a
solution and can also reduce computer execution costs. Additional
advantages will become evident as the loading procedure progresses.

Each batch of data is categorized by box heights. A list of box
groups is generated so that all boxes in a group will have a common
height, or heights which are judged to be close enough on the basis of
an acceptable tolerance. For a group in which all boxes do not have the
same height, it is assumed that shims will be used and the group height
will be considered the largest box height in the group.

The list of box groups is rearranged so that the groups are ordered
by decreasing group heights. When boxes in different groups are compared,

the value of any member of one group is considered to be proportional to

27

the group height, that is, a group of large height has greater value

than one of a smaller height. Since all members within each group have, i
by definition, a common (or common within tolerance) height, area "

becomes the measure of value of a box and a decreasing sequence of box

cross—-sectional areas provides the yardstick for determining the next

available box of maximum value.

PALLET LOADING
After preliminary load data analysis, the next step in problem

solution is to load pallets with minimum waste. Pallet loading progresses

in three stages. The first stage, pattern formation, is fundamental and
is concerned with automatically forming efficient patterns for loading

tiers of boxes. The stacking stage consists of analytically determining .

the sequence in which tiers are to be stacked. The completion stage
involves automatic insertion of pallets into the stacks, additional .
checks and adjustments resulting from weight and stability considerations,

and generation of pallet loading reports,

Pattern Formation

The difficulties of working with fixed patterns have already been
noted. The development which follows attempts to provide flexibility in
pattern formation and to correlate the remaining box populations in a

batch with the types of patterns to be used.

28

The basic building blocks in pattern formation are referred to as
clusters. A cluster is a particular configuration of boxes considered
beneficial for pattern building. Each cluster is developed from the box
of highest value consistent with the available space constraints. This
box is referred to as the box seed, or just the seed. The following
definitions differentiate among the types of clusters to be used. For
brevity, parentheses denote additional definitions. Examples of various

cluster types are given in Figure 3.

A row (column) cluster, or just a row (column), has boxes arranged

in the form of a row {(column).

A complete row (column) is one which can be placed on a pallet,

parallel to a side, so that any resultant wasted space is small, that is,
within tolerance. The width (height) of a complete row (column) must be
equal to or only slightly less than the pallet widtb (height).

An incomplete row (column) is one having width (height) not within

tolerance requirements for completeness.

A partial row (column) is one which fills within tolerance an

available row (column) space of smaller width (length) than the pallet.
The width (height) of a partial row (column) is too small for the row

(column) to be designated as complete.

Acceptable Unacceptable
WASTE WASTE
4 ’
COMPLETE ROW COMPLETE ROW INCOMPLETE ROW
UNIFORM TYPE 1 ROW UNIFORM TYPE 2 ROW
NON-UNIFORM TYPE 1 ROW NON~UNIFORM TYPE 2 ROW
Acceptable
WASTE ‘~\\k
COMPLETE COLUMN NON-UNIFORM TYPE 2-COLUMN
/Partial Row
»
—
WASTE
WASTE
SYMMETRIC MODULAR ASYMMETRIC MODULAR REPEATED MODULAR
CLUSTER CLUSTER CLUSTER

Figure 3 - Example of Cluster Types

30

rm —— T

A uniform row (column) is constructed from boxes of only one size.

A non-uniform row (column) is constructed from boxes of two sizes.

A type 1 row (column) is one in which each box has a dimension which

fills the height.(width) of the row (column).

A type 2 row (column) is one in which at least one portion of the row

(column) is completed by combining boxes to fill the height (width) of the
row (column) within tolerance.

A modular cluster, or module, is a cluster obtained by combining

partial rows and columns.

A symmetric modular cluster is a modular cluster having a symmetric

arrangenent of rows and columns, an exterior rectangular boundary, and

an interior space, if any, which is rectangular.

A repeated symmetric modular cluster, or repeated cluster, is a

cluster obtained by repetition of a symmetric modular cluster.

. An asymmetric modular cluster is a modular cluster having a non-

symmetric arrangement of rows and columns, no interior space, and an
exterior boundary which is rectangular except for the possible presence
of a corner rectangular space.

A cluster seed is a cluster which is considered to have the highest
value of all clusters to be combined in the formation of a particular

configuration.

31

I

Pattern formation progresses in an orderly sequence of steps. Al-
though patterns are not fixed with respect to box dimensions, the types of
configurations to be included in a pattern are fixed. Each pattern is
constructed by beginning with box seeds and developing clusters. Cluster
seeds are then combined with other clusters, according to predetermined
rules, to form specific types of configurations. Patterns of simpler
configuration are sought first, and if they cannot be used, more elaborate
types are considered. Once again, specific rules will be enforced to
limit the amount of work expended in seeking the desired result and also
to eliminate unwarranted iterations. Pattern formation for all boxes in
the loading population is not guaranteed. When failure occurs, the task
will be returned to the analyst for further consideration.

Before even simple patterns are formed, complete rows and columns
must be generated. The procedure for generating complete rows relies

extensively on the integer linear combination technique already discussed.

Row Completion Procedure

Step 1: Select as the seed box the next remaining box of maximum value;
let its side dimensions be a and b where a > b.

Step 2: Try to generate uniform complete rows.
a. Attempt to form a type 1 uniform complete row of height a,

using an integer linear combination of b. If unsuccessful,

32

R ke E

and a and b have not been interchanged, then interchange
them and repeat Step 2a; otherwise restore the original
values of a and b and go to Step 2b.

Attempt to form a type 2 uniform complete row of height a
by first obtaining an integer linear combination of b to
generate columns within tolerance of height a and, if
successful, taking integer linear combinations of a and b
to complete the row. If unsuccessful, and a and b have not
been interchanged in Step 2b, then interchange them and
repeat Step 2b; otherwise restore the original values of a

and b and go to Step 3.

Step 3: Try to generate non-uniform complete rows.

a.

Attempt to form a type 1 non-uniform complete row of height
a using an integer linear combination of dimensions b and d
of two different boxes; dimension b is that of the seed box
having known lateral dimensions a x b and d is unknown and
belongs to a box having lateral dimensions a x d where

d < b. If unsuccessful, and a and b have not been inter-
changed, interchange them and repeat Step 3a; otherwise

restore the original values of a and b and go to Step 3b.

33

e, 4T

Step 4:

Attempt to form a type 2 non-uniform complete row of
height a by first obtaining an integer linear combina-
tion of ¢, where ¢ is unknown and ¢ < a, to generate
columns within tolerance of height a and, if success ul,
taking integer linear combinations of two dimensions;
dimension b is that of the seed box having dimensions

a x b and dimension d is that of a box having dimensions

¢ x d for which columns of height a have been successfully
generated. If unsuccessful, and a and b have not been
interchanged in Step 3b, then interchange them and repeat
Step 3b; otherwise, restore the original values of a and b

and go to Step 4.

Flag failure; a complete row cannot be constructed for box seed

of size a x b.

The generation of complete columns is analagous to that for complete

rows with row and column dimensions reversed. A list of complete rows and

a separate list of complete columns is generated with its members arranged

in decreasing sequence of -ow heights and column widths.

Patterns are characterized as simple or complex, depending on the

types of configurations from which they are constructed. (Configuration

types differ from the previously defined row types.) Patterns synthesized

34

from a type 1 or type 2 configuration are simple; patterns derived from
type 3, type 4, or combinations of these types are considered to be
complex.

A type 1 configuration is developed by integer linear combination

of either all complete rows or all complete columns. If the configura-
tion has only complete rows, it is called type 1A, and if it consists of
only complete columns, it is called type 1B. (If a configuration is
identified as type 1A, it will be so designated and it will be immaterial
whether that configuration simultaneously satisfies the criteria for

type 1B.) The type 1 configuration is the first to be sought. Examples
of a type 1 configuration are given in Figure 4,

The procedure for generating a type 1 configuration is almost
identical to that previously described for the row completion procedure
and that inferred for the column completion procedure. A type lA con-
figuration can be looked upon as a complete column derived by integer
linear combination of boxes having width equal to the complete row
width. The seed is the row having the largest row height. A type 1B
configuration can be considered as an integer linear combination of
boxes having length equal to the complete column height. The seed is

the column having the largest column width.

iYPE 1A Configuration obtained
by LINEAR combination of complete
rows

TYPE 1B Configuration obtained by
LINEAR combination of complete
columns

Figure 4 - Type 1 Configuration

36

Type 1 Configuration Formation Procedure

Step 1: Attempt to exhaust the list of complete rows by formation of
type lA configurations using integer linear combinations.

Step 2: Attempt to exhaust the list of complete columns by formation
of type 1B configurations using integer linear combinations.

Step 3: Make any remaining complete rows or columns available for
subsequent type 2 configuration analysis.

A type 2 configuration is developed by either complete rows or

complete columns followed by refinements for improving space utilization.,

A type 2A configuration is derived from complete columns. Examples of the

type 2 configuration are given in Figure 5. The formation of the type 2
configuration places greater value on complete row and complete column
clusters than on boxes which are not clustered. This priority of values
helps to further reduce the number of unused complete rows and columns

remaining after the type 1 configurations have been formed.

Type 2 Configuration Formation Procedure

Step 1: Use the list of unused complete rows and select in succes-
sion as many rows as possible without overfilling the avail-
able space.

Step 2: Try to reduce the unused pattern space by trading the next
available unused complete row for any previously selected row,

other than the seed row, having lesser height.

Acceptable
waste

Type 2A configuration obtained by
sequential access of complete row list

Type 2B configuration obtained by sequential
access of complete column list

Figure 5 - Type 2 Configuration

38

o

¢ ———TE W s e b

- e s

T

Step 3: Repeat Step 2 twice if necessary. At this point, if the cluster

seed has not generated an acceptable type 2A configuration, this

type of configuration need no longer be pursued with the same
seed.

Step 4: Repeat Steps 1 through 3 to obtain as many type 2A configura-
tions as possible.

Step 5: Repeat Steps 1 through 4 using complete columns instead of
complete rows to obtain as many type 2B configurations as
possible.

The type 2 configuration formation procedure is followed by the type
3 configuration formation procedure, which attempts to synthesize an
asymmetric modular cluster. The type 3A configuration is generated by
exhausting the list of unused rows and alternately filling the remaining
space with partial columns and rows. This type of configuration is
illustrated in Figure 6.

In the previous type 1 and type 2 configuration formation proce-
dures, a configuration was considered successful when it filled the
available pallet space within tolerance. In that case, the configuration
produced a complete pattern; for both types 1 and 2, it was advantageous

to repeat the procedures to obtain as many complete patterns as possible.

39

T
!

Tl L s s e en

e wa——

Complete row

Partial
column

V_,_Partial row

‘#’,¢WASTE

Type 3A configuration
obtained by alternate
filling of rows fol-
lowed by columns
//Partial row

Complete
column "~

v 4

Partial

’/column

WASTE

Type 3B configuration
obtained by alternate
filling of columns fol-
lowed by rows

Figure 6 - Type 3 Configuration

In the type 3 configuration formation procedure success does not

necessarily imply full use of the available space. Rather, a promising
configuration is further analyzed and possibly combined with other
configurations to synthesize a pattern which produces efficient
utilization of the available space. If a type 3 configuration is not
within tolerance, the major portion of the wasted space will always be

in one corner of the pattern. That corner space should be filled with a
type 4 configuration before returning to a type 3 configuration procedure
for further improvement or for beginning a new pattern. Type 3A and type
3B configurations are generated in an identical manner except that the
type 3A formation begins by considering unused column space, and the

type 3B first considers unused row space,

Type 3 Configuration Formation Procedure

Step 1: Exhaust any remaining complete rows (columns). If none, go
to type 4 procedure; otherwise choose next available box
seed that fits into remaining available space and go to
Step 2 (Step 3).

Step 2: Try to form as many partial columns as possible to reduce
waste width. If successful (that is, at least one partial
column is found) and both corner waste and pattern waste are
within tolerance, stop. If successful and corner waste is out

of tolerance, go to Step 3; otherwise, go to Step 4.

41

a

U ——

Step 3: Try to form as many partial rows as pussible to reduce waste
tajght. If successful (that is, at least one partial row is
found) and both corner waste and pattern waste are within
tolerance, stop. If successful and co.ner waste is out of
tolerance, go to Step 2; otherwise go to Step 4.

Step 4: If at least one success is achieved for type 3 (in either Step
2 or Step 3), flag the next box seed for type 4 as variable.

If no success is achieved for type 3, flag the seed selected in
Step 1 for retention; attempt further completion of the pattern
by going to the type 4 configuration procedure.

The type 4 configuration, the most intricate type of configuration

to be sought, is characterized by the presence of a symmetric modular

cluster. There are three subtypes of this configuration. The first is
formed by a symmetric integer linear combination of two sizes of boxes.

An example of this subtype, type 4A, is given in Figure 7A. This type of
combination represents two distinct linear combinations, one for each of
the two dimensions of the available space. In this type of combination,
both the height and width of the available space must be decreased and any
resultant waste space must be confined to the interior of the original
available space. If the resulting waste space is not within tolerance,
then an attempt is made to further reduce the waste by returning to the

type 3 configuration procedure and trying to insert a type 3 configuration

42

o A Bl v . O PR . At .~ 4 o %

o e ik

WASTE

Type 4A configuration fills outer
portion of space in 2 dimensions

WASTE

WASTE

Type 4F configuration fills avail-
able swace in only 1 dimension

WASTE]

WASTE

Type 4C configuration does not fill
available space in either dimension

Figure 7 - Type 4 Configuration

43

into the wasted space. An example of such nesting of type 3 and type 4
configurations is given in Figure 8.

The second subtype is similar to the first subtype except that, as
a result of the symmetric integer linear combination, a symmetric modular
cluster is obtained which reduces only one of the dimensions of the
original available space. The second dimension is reduced by repetition,
if possible, of this modular cluster. An example of this second subtype,
type 4B, is shown without repetition in Figure 7B. The resultant waste
space consists of an interior hole and a remainder wasted space. Filling
of these spaces is attempted, once again, by a type 3 configuration.

The third subtype, a further generalization in configuration forma-
tion, is formed as a result of symmetric integer combination of two box
sizes which does not fill either the height or width of the original
available space. This type .f configuration includes a further restric-
tion that the resultant interior waste space must be so small that no
additional interior fill is needed. Repetition of the modular cluster
formed by this combination is sought in two dimensions to reduce the
available space. Two rectangular remainder spaces may result, each
parallel to an edge of the original space. An example of this subtype,
type 4C without repetition, is given in Figure 7C.

Type 4 Configuration Formation Procedure

Step 1: Choose next suitable box seed.

44

N

77////] TYPE 4
NN TYPE 3

WASTE

A

?
/

Figure 8 - Pattern Completion by Nesting of
Type 3 and Type 4 Configurations

45

ettt < 4 emns

Step 2:

Step 3:

Step 4:

Try to obtain type 4A configuration by a symmetric integer
linear combination of two box sizes which is as large as

both the height and width of the available space. If
successful, and within tolerance, stop. If successful, and

out of tolerance, go to type 3 procedure (omitting Step 1) to
further reduce waste; otherwise, go to Step 3.

Try to obtain type 4B configuration by a symmetric integer
linear combination of two box sizes which is as large as either
the height or width of the available space. If successful,
repeat as often as possible in the other direction. If
successful and within tolerance, stop. If successful and out
of tolerance, go to type 3 procedure (omitting Step 1) to
further reduce waste; otherwise go to Step 4.

Try to obtain type 4C configuration by a symmetric integer
linear combination of two box sizes with a small interior hole.
If successful, repeat as often as possible, to fill both the
height and width of the available space. If successful and
within tolerance, stop. 1If successful.and out of tolerance, go
to type 3 procedure (omitting Step 1) to further reduce waste;

otherwise flag failure and stop.

The four types of configurations which have been described may be

used to generate countless numbers of patterns. The actual patterns and

46

kit . _ . S

[S el

v e e, a

the specific box sizes will be governed by the available load population.
All of the patterns in Appendix B can be generated. The sequence of steps
in generating the various configurations gives priority to the formation
of patterns which are uniform, that is, all boxes in a pattern will be of
one size if sufficient numbers are available in the load population.

When a promising type 3 or type 4 configuration cannot be completed
and the cluster seed cannot be efficiently loaded, then the analyst will
be given the opportunity to intercede and possibly to improve the
incomplete pattern., The same holds for any pattern which is incomplete

and cannot be completed because the load population is exhausted.

Stacking

The stacking stage determines the sequence in which tiers of boxes,
loaded in accordance with the previously formed patterns, will be stacked.
(Refer to Figure 2, Step 4 for stacking terminology.) The height of the
space available for stacking is the interior height of the container.
The stacking sequence is subject to the following additional constraints:

° height limitation of the load on an
individual pallet

® allowance for heights of pallets to be
inserted into stack

o allowance for necessary waste to permit
accessibility

47

;
t
t

° weight limitation of the load on
an individual pallet

(] stability of the stack

The stacking procedure initially ignores the weight and stability
constraints and adjusts for them later. Since it is advantageous to keep
the number of items involved at one time as small as possible, the pro-
cedure used will develop subsequences for preliminary formation of indi-
vidual pallet piles, preferably to their maximum permissible heights.
These subsequences are then combined and modified to obtain a sequence
that spans the total effective height. In this way, a full stack is
obtained more quickly by stacking piles instead of individual tiers.

Even though the objective is to produce full preliminary pallet
piles, the initial procedure is done rapidly with no attempt at refine-
ments. Selected piles are stacked one upon the other and, when
necessary, additional tiers not included in any piles are added to the
stacks. The procedure emphasizes the formation of full stacks since, once
they are obtained, it is immaterial whether two partially loaded pallets

or a fully loaded pallet and a partially loaded pallet are used if in

48

both instances the two pallets spanned the same stack height, as shown
in Figure 9.
The following definitions will be needed in the discussion of the
stacking procedure:
HSTACK = stack height of load including pallets

HTFMAX = maximum permissible height of a full pile
including pallet height

HTPALL = pallet height
HTCONT = effective height of container (interior height
of container - waste height required for

accessibility)

TOLPIL = allowable tolerance on a full pile (minimum
height of a full pile = HTFMAX - TOLPIL.)

TOLSTK = allowable tolerance on a full stack
The minimum number of pallets, NMIN, required to span the effective

container height is, therefore:

- HTCONT
NMIN = | ATFMAX
where | | denotes next largest integer.

The easiest way to build a full stack with the minimum number of
pallets is to stack NMIN - 1 full piles and a partially loaded pallet with
a minimum height, HTPMIN, given by:

HTPMIN = HTCONT - (NMIN - 1) X (HTFMAX - TOLPIL)
provided
HTPMIN < HTFMAX - TOLPIL.

(If HTPMIN > HTFMAX - TOLPIL, simply stack NMIN full piles.)

49

{4
i
i
!

8

y//////////éw‘:/mllet . |

16

16

16

223 ¢

60" Stack Containing
1 full pallet load
1 partial pallet load

Figure 9 - Alternative Pallet Loads Spanning Identical Stack Height

o 77777

16

16

o Yz

60" Stack containing
2 partial pallet loads

50

rw——m

As many full piles as possible are formed from tiers contained in a
list of available tiers which is arranged by decreasing tier heights.

Successive tiers are selected until either the list of available tiers is T

exhausted or the addition of the next tier will cause the pile to exceed
the maximum permissible pallet height, HTFMAX. If the pile height,
HTPILE, is sufficiently high to be considered full, i.e., if

HTFMAX - .iTPALL - TOLPIL < HTPILE _<_ HTFMAX - HTPALL

|

then the sequence of tiers constituting the full pile is saved by putting ‘
it on a list of full piles and updating the total number of full piles, :
NFULL. 1If the pile is not full, then a test is made to determine whether |

HTPMIN - HTPALL < HTPILE < HTFMAX - HTPALL - TOLPIL :

If so, the sequence of tiers is saved on a list of partial piles, and the

total number of partial piles, NPART, is updated. If, however, HTPILE < ﬁ
HTPMIN - HTPALL, then the tiers are placed on a special list of unused

tiers having NUNUSE entrees. Thus, the desired lists of full piles,

partial piles, and unused tiers are generated without excessive expen- i
diture of time and money in rearranging tiers.

The process for stacking piles and unused tiers is described in terms

e

of system states which are defined on the basis of the number of entries
in each of these lists. The system states are defined by the system !
conditions given in Table 1. The state transition matrix is given in

Table 2. A check mark (./) denotes that a transfer is possible between

51

O™

TABLE 1 - SYSTEM STATE DEFINITIONS

State

System Condition

NPART > 0, NFULL > NMIN-1
NPART = 0, NFULL > NMIN
NPART > 0, 0 < NFULL < NMIN
NPART = 0, NFULL < MIN
NFULL = 0, NPART > NMIN
NFULL = 0, 0 < NPART < NMIN

NFULL = O, NPART = 0, NUNUSE

TABLE 2 - STATE TRANSITION MATRIX¥

TO

1 2 3 4 5 6 7
1 v/ / v Y Y v/ v
2 X v X v/ X X Y
3 X X X v/ v/ / "
4 X X X X X X v
5 X X X X v Y "
6 X X X X X X v/
7 X X X X X X v/

*/ denotes state transition can occur
X denotes state transition cannot occur

52

the "from" and "to" states, and an "X" denotes that a transfer is not
possible. The significance of states, state transitions, and their effect
on the stacking procedure is explained as follows:
Under the system conditions for state 1, that is, NPART > 0, NFULL >
NMIN - 1, the stack is built by stacking, in succession, the next avail-
able NMIN - 1 full piles and placing uppermost a single partially loaded
pile. At this point, because of the manner in which full and partial
piles were defined and generated, the stack must either be full
HTCONT - TOLSTK < HSTACK _S HTCONT
or overfilled
HTSTACK > HTCONT.
The height of the stack, HSTACK, is given by
NMIN - 1
HSTACK = HTPART(1) + 2, HTFULL(I) + NMIN X HTPALL
I=1
where the first term on the right is the height of the partial pile,
the second term represents the sum of the heights of the full piles, and
the last term represents the space to be occupied by pallets for support-
ing the piles, provided that the stack contains the minimum number of
pallets. At this stage of the loading process, it is convenient to set
aside space for NMIN pallets, but it must be emphasized that the hypo-
thetical stack consists only of tiers which have been tentatively grouped
into piles without their supporting pallets. The overfill height, HOVER,

is given by

PG A

HOVER = HSTACK - HTCONT

In state 1, HOVER > 0 and an unloading procedure is needed to remove
one or more tiers to make the stack height as close as possible to, but
still below, the permissible stack height. Tier removal starts at the
uppermost pile and, if an underfill condition within tolerance is not
achieved, lower piles are tested until success is attained. The Nth pile
is unloaded by removing the largest possible tier which will either
create an underfill with the least waste, or, if an underfill is
impossible, by removing the largest possible tier to create a stack with
the least overfill.

Mathematically, for all I tiers in pile N with tier heights HTTIER
(N,I), compute

HTTIER(N,I) - HOV(N)
where
HOV(N) = HOVER
and select pattern J such that, for all I,
0 < HTTIER(N,J) - HOV(N) < HTTIER(N,I) ~ HOV(N).
If J is void, then an underfill cannot be obtained.by removing just omne
tier and, therefore, a Kth tier must be temporarily removed so that:
HTTIER(N,I) - HOV(N) < HTTIER(N,K) = HOV(N) < 0

Once again tier J is sought to obtain the desired underfill, When the
Jth tier is found, test whether

HTTIER(N,J) - HOV(N) < TOLSTK.

54

If so, permanently remove the patterns selected for the desired

underfill. If the patterns to be removed do not result in an acceptable
underfill, then proceed to analyze the next lower pile. If all piles in
the stack have been analyzed without finding one that fills the reguire-
ments, then use the best possible pile for unloading, even if the result
is not within specified tolerance.

The type of logic that has been used is typical of the stacking
procedure for all states, The specific procedure depends on the number
of entries in each of the lists and the sequence in which the lists
become exhausted. If, for example, the state 1 stacking procedure is
repetitively applied and results in the exhaustion of the list of partial
piles, that is, NPART = 0, then a transition of the system state would
occur, and either state 2, 4, or 7 could result.

When all lists are available, the procedure gives priority to
using, simultaneously, full piles and partial piles (state 1). If no
more full piles are available, the procedure uses as many partial piles
as possible before modifying the stack with individual tiers selected
from the list of unused tiers. If the partial piles are exhausted before
the full piles, then preference is given to using as many full piles as
possible before accessing the list of unused tiers. In the abseunce of
any full or partial piles (state 7) the compl~te stack is built with

individual tiers.

55

R e SO

In state 1, an overfull condition results most frequently, but in
other states this is not necessarily the case. In state 7, for instance,
individual tiers are selected and a height computation is made to ensure
that an overfill condition never results. In the other states, either an
overfill or underfill condition may initially result. If an underfill
results, then a space filling procedure is required which consists of
uging the list of unused tiers and adding as many successive tiers as
possible until the addition of the next tier causes an overfill. In other
words, the space filling procedure reduces wasted space by approaching the
acceptable full stack height from below and never exceeding the desired
result, For all states, the common goal is to fit the stack into the
available space and then reduce waste in a stepwise procedure which always
results in improvement.

An additional refinement is available which, if it can be used, will
always result in improvement. If a stack is underfilled and not within
tolerance, and the space filling procedure has failed to put the stack
within tolerance, the next available tier on the list of unused tiers is
substituted for an existing tier in the stack. If the height of the next
available tier is HNEW, and the height of an existing tier in the stack is
denoted as H(I), then any existing tier in the stack which is a candidate

for trading must satisfy the criterion

0 < HNEW - H(I) < HWASTE

HWASTE = - HOVER

The most desirable existing tier to be traded, J, satisfies the criterion {
that
0 < HNEW - H(I) < HNEW - H(J) < HWASTE.

Additional details on stacking are given in the flowcharts of ;

Appendix C. In certain states the list of unused tiers may be exhausted
or nearly exhausted but individual tiers are needed to complete the stack
under analysis. Under these circumstances, an available partial pile may
be disassembled and its constituent patterns placed on the list of unused
tiers. If no partial pile is available, an available full pile can be
disassembled and handled in like manner. If a stack is too low and
neither full piles, partial piles, or unused tiers are available, the

entire load has been stacked.

Completion

The first step in the completion stage is the insertion of pallets
into the previously formed stacks. This task is simplified by the
procedure used to form a stack. If the stack contains any full piles,
they will be at the boitom of the stack, and pallets are first inserted
beneath each full pile,

If a stack contains both partial piles and individual tiers not

assigned to any pile, the procedure could be to consolidate partial piles

57

- fogme ————

.v—.--v_.—,-,..,.__.,_.._w_.

-—

and add tiers to the remaining partial piles, or to add tiers to partial
piles and then consolidate. Since both methods have disadvantages, a
procedure was developed which represents a mixture of these methods. If
the number of full piles plus partial piles exceeds the minimum number of
pallets required to load a full stack, partial piles are consolidated
before any remaining tiers are loaded. After this initial consolidation,
any additional tiers are added to these partial piles and, if all partial
piles are exhausted, a new pile is started from the remaining tiers on
the list of unused tiers. At no time is a partial pile permitted to
become overstacked. When this list is exhausted, all piles except the
original full piles are consolidated and a pallet is inserted beneath
each remaining pile. In the rare instance in which the number of pallets
exceeds the ﬁinimum that could be used and, simultaneously, the resulting
stack height after pallet insertion is excessive, the most convenient tier
having a height which exceeds the overstack is removed and placed on
the lowest remaining stack. Each stack is then analyzed by the same
procedure until pallets have been appropriately placed into all stacks.
The weight of each pallet and its stability‘ate considered next.
The computer is ideally suited for monitoring the total weight of all
boxes on a pallet. If a pallet's weight is excessive, the situation is
remedied by removing part of its load, beginning at the topmost tier of

boxes. Any boxes so removed are rescheduled for loading on another

58

pallet. To increase the stability of a pallet, tiers placed on a pallet
are rearranged in decreasing order of size starting at the bottom of a
pallet. This ensures that upper tiers do not excessively overlap lower
tiers and also facilitates pallet load strapping and prevents load
shifting. 1In stacking tiers formed repetitively from the same pattern,
the rotation of successive tiers further stabilizes a pallet load. Figure
10 shows the improvement of pallet load stability; tier 3, with the same
pattern as tier 2, is rotated 180 degrees and tier 1, with a smaller area
than the other two tiers, is placed on top,.

Another program feature for enhancing load stability will provide
information on necessary interior supports to be placed in interior spaces
of tiers derived from patterns having interior wasted spaces; this prevents
load shifting.

The final task of the completion stage generates an output report
which describes in detail all patterns, tier sequencing on each pallet,

and the space utilization measures of each pallet and of each stack.

CONTAINER LOADING

After completion of pallet loading, an analytic procedure will
provide an efficient spatial arrangement of the stacks for each size
container, monitor the total weight of the total load in each container,
and provide for load stability. The tasks associated with this

procedure are collectively termed 'container loading."

59

Tier 3=

Tier 2 -

Tier 1-+

| J I

Original pallet load

Tier 1 ==

Tier 3 =

Tier 2 ==

I

Stabilized pallet load
obtained by rotating Tier 3
and placing Tier 1 uppermost

Figure 10 - Improvement of Pallet Load Stability

60

WL,

- vop e

All the essential features of the container loading procedure become
available as by-products of the previously developed pallet loading pro-
cedure. If all pallets are the same size and if a stack is temporarily
considered as one tall box, then determining the arrangement of stacks
is really the same problem as finding a pattern for arranging boxes
of identical size. For this purpose, the type 1 configuration formation
procedure previously described is most suitable. For the present applica-
tion, however, the procedure is more restrictive, since, if only one size
pallet is used, only uniform rows and columns are generated, and the
resulting configuration is considerably simpler.

The total weight of the load in each container is obtained by simply
summing the weights of the stacks. The stability of a container can be
improved by interchanging stacks to offset imbalance of the load
resulting, for example, when heavier stacks predominate on one side of a
container. A report of the container load describing in detail the
arrangement of stacks and the space utilization measure of each container

will also be generated.

BARGE LOADING

The procedures for arrangement of containers on a barge and for
checking weight and stability are virtually identical to the container
loading procedure. If containers of more than one size are to be loaded,

the type 1 pattern to be used for their arrangement need not necessarily

61

(R —

o e

be derived from uniform rows and columns. Each rectangular space on the
barge available for loading will be analyzed independently. A final
report will be generated denoting the arrangement of containers, the total
weight, and the overall space utilization efficiency measured with respect

to the total available space on the barge.

ORGANIZATION AND FUNCTIONAL DESCRIPTION OF PROPOSED PROGRAM LOADER

The organization of main program LOADER, its subroutines, and their inter-
relationships 18 provided in Appendix C. A flowchart of the main program is given
in Figure 13, and flowcharts for most of the subroutines appear in Figures 14 - 32.

A brief description of the function of each routine follows.

LOADER - main program; performs executive role of controlling,
sequencing, and monitoring program operations.

INPUT - reads input data and generates input data report.

ANALYZ - analyzes input data and rearranges data into most

convenient form.

PATRNS - forms patterns by generating and combining clusters;
assigns patterns to tiers.

STRING =~ generates complete row and complete column clusters.
TYPE 1 - generates type 1 configurations.
TYPE 2 - generates type 2 configurations.
TYPE 3 - generates type 3 configurations.
TYPE 4 -~ generates type 4 configurations.

SAVE - creates a file containing data describing complete
patterns.

STACKS - controls formation of stacks generated by stacking
full piles, partial piles, and unused tiers.

PILES

generates preliminary full piles and partial piles.

STATE

determines the system loading state from the avail-
able number of preliminary full piles, partial piles,
and unused tiers.

63

STAKER - forms stacks from full piles, partial piles, and
unused tiers; stacking strategy used depends upon
system loading state, \
SUPPLY - checks and makes available, if possible, a specified
minimum number of unused tiers,
! FILL - fills available wasted space in a stack by rapid
: selection of unused tiers.
!
UNLOD - removes tiers from stacks which are overloaded.
TRADE - attempts refinement of available wasted space in a
stack by trading tiers.
PALETS - forms complete pallet loads by consolidating piles, !
inserting pallets beneath piles, and making final
stack adjustments, if necessary.
WEIGHT - monitors weight constraints in stacks, containers, ;
and barges and assists in corrective action. :
STABLE - monitors stability in stacks, containers, and barges X
. and assists in corrective action. :
CNTNER -~ controls container loading operations. ﬁ
BARGE -~ controls barge loading operations. E
REPRTl ~ generates report of ~omposition of all stacks includ- ?
ing the arrangement of all boxes in each tier.

REPRT2 -~ generates report on arrangement of stacks in each
container.

REPRT3 -~ generates report on arrangement of containers in
barge.

SAMPLE PROBLEM

STATEMENT OF PROBLEM

Containers #l1 and #2 are partially loaded with cargo for destinations
A and B, respectively. Cargo for container #l is restricted to a maximum
loaded pallet height of 48 inches and for container #2 to 36 inches.

Additional cargo for destination C is to be loaded completely on either

container #1 or #2. The following additional load data apply:

Pallet dimensions: 48" W X 40" L

Permissible pallet dimensions with overhang: 52" W X 43" L

Pallet height: 6"

Available space in container #1:
Effective height - 90"
Width - 90"
Length - 54"

Available space in container #2:
Effective height - 84"
Width - 90"

Length - 54"

65

Characteristics of cargo for destination C:
Box Box
Dimensions Dimensions
; (Inches) (Inches)
LXWXH Quantity LXWXH Quantity
28 X 16 X 16 2 24 X 21 X 15 2
42 X 12 X 14 1 13-1/2 X 9 X 12 8
37 X 12 X 14 2 18X 6 X 8 4
36 X 14 X 8 2 15 X 15 X 10 4 :
l‘
45 X 38 X 10 i 11 X 11 X 11 8 g
}
28 X 6 X 12 4 11 X 7-1/2 X 15~1/2 8 g
t
28 X 22 X 14 2 8 X 6 X 16 6 |
|
26 X 14 X 16 1 8 X 6 X 10 6
3
1
26 X 12 X 16 3 15 X 15 X 14 4 ’
I
22 X 11 X 10 4 14 X 12 X 18 12 1
22 X 15 X 12 4 18 X 14 X 14 2 ;
j
20 X 14 X 8 2 6X6X6 8 !
}
66

s 1

The cost of shipment by container #2 is less than for #1 and it |

is therefore preferable, if possible, to use container #2. The problem
is to determine analytically whether the cargo can be loaded in each of
the available spaces, to compare their space utilization, and to examine
the effect of the more restrictive maximum loaded pallet height in

container #2.

SOLUTION
Assumptions and Restrictions
1. Boxes must be loaded with height dimensions oriented vertically.

2. Group height tolerance for box height, h:

Height Range Tolerance (inches) g
h > 40 5
30 < h < 40 4 ;
20 < h < 30 3
10 < h < 20 2 !
h < 10 1 !

3. Cluster waste tolerances:
10% for all row and column clusters
10% for holes in symmetric modular clusters
10%Z for corner waste in asymmetric modular clusters
15% for outerfill waste of symmetric modular clusters
4, Pattern waste tolerances:

10% for simple patterns (types 1 and 2)

67

152 for complex patterns (types 3, 4, or combinations)
Stack tolerances:
3" for stack height waste

6" for preliminary full piles

Preliminary Load Data Analysis
The maximum box height is 18" and the minimum is 6", Define groups

by range of box heights, h:

Group Height Range (Inches)
1 16 <h < 18
2 14 <h <16
3 12<h< 14

[SV] &
b

™ w0 o
NN VoY
-3 o -3
In I~ IA
O e —
o (]

~J3
~J
A
=4
i
o

8 6 <h

I~

7

The load population consists of 100 boxes which will be analyzed
collectively, that is, batch size = 100, The following table is obtained
by grouping the batch data, computing the box areas and volumes, sequenc-—
ing the groups by decreasing group heights, and sequencing the boxes

within each group by decreasing areas.

68

(———

TABLE 3 - SAMPLE PROBLEM LOAD POPULATION DATA

* Box Box Area
Group Dimensions (square Box Volume
Height (inches) inches) (cubic inches) Quan-
Group (inches) LXWXH LXW LXWXH tity
1 18 14 X 12 X 18 168 3024 12
2 16 24 X 21 X 15 504 7560 2
28 X 16 X 16 448 7168 2
26 X 14 X 16 364 5824 1
26 X 12 X 16 312 4992 3
11 X 7-1/2 X 15-1/2 82.5 1279 8
8 X6X16 48 768 6
3 14 28 X 22 X 14 616 8624 2
42 X 12 X 14 504 7056 1
37 X12 X 14 444 6216 2
18 X 14 X 14 252 3528 2
15 X 15 X 14 225 3150 4
4 12 22 X 15 X 12 320 3960 4
28 X 6 X 12 168 2016 4
13-1/2 X 9 X 12 121.5 1458 8
11 X 11 X 11 121 1331 8

Group Height is maximum box height of all boxes in a group.

69

v e e

TABLE 3 (Continued)
* Box Box Area
Group Dimensions (square Box Volume
Height (inches) inches) (cubic inches) Quan-
Group (inches) LXWXH LXW LXWXH tity
5 10 45 X 38 X 10 1710 17100 1
22 X 11 X 10 242 2420 4
15 X 15X 10 225 2250 4
8 X6X10 48 480 6
6 NONE
7 8 36 X 14 X 8 504 4032 2
20 X 14 X 8 280 2240 2
18 X 6 X 8 108 864 4
8 6 6 X6 X6 36 216 8

Group Height is maximum box height of all boxes in a group.

Pallet Loading

Each group is processed independently to form patterns; intermediate

diagrams are provided for instructional purposes but are unnecessary for

carrying out any of the procedures.

Group 1 Processing

Group 1 Box List

Group Box Lateral
Height Dimensio~s L X W Quantity
(Inches) (Inches)

18 14 X 12 12

Group 1 contains only one box size, and the box seed is, therefore,
14 X 12. Apply row completion procedure.
Step 1: a =14, b = 12
Step 2: Generate uniform complete rows,.

Try to form a type 1 uniform complete row of height 14 using an
integer linear combination of 12. First iteration of integer linear
combination technique (problem version A in section entitled "Proposed
Approach") applied by considering X, = b = 12 and X, unknown, n

1AVAIL ~

12, gives n, = min %% 12 =4, n, = 0. Since complete row tolerance

2
is 10% and maximum permitted pallet load width = 52, TOL = .10(52) = 5.2.
Substituting in

X - T0L < nyx) <X

52 ~ 5.2 < 4(12) < 52

This statement is valid, n, = 4 and n, = 0 are optimum, and a successful type 1

1 2

uniform complete row is obtained.

71

12 12 12 12

14
_ row waste area _4 X 14 -
Row waste = oy e Tow area 57 X 15 X 100 = 7.6Z.

Since there are eight more boxes of the same size, two additional com—
plete rows of the same configuration may be immediately generated. There
are no remaining boxes in group 1, so proceed to pattern formation and
begin with type 1 configuration.

Step 1: '

All complete rows have the same row height, so the cluster seed has height

= 14, Try to form a type 1A configuration by integer linear combination .
(problem version A) of X = 14, Xy unknown, 0 AVAIL = 3, which immediately A t

gives n, = 3, n, = 0 and the following acceptable complete pattern is

1 2

obtained:

PATTERN NO. 1

actual load area - 12 X 168 X 100 = 90.2%

pattern efficiency = maximum pallet load area 43 X 52

Pattern waste = 100 - 90.2 = 9.8%.

Group 1 is exhausted; go to next group.

" 72

Group 2 Processing

q
Group 2 Box List i
Group Box Lateral ;
Height Dimensions L X W Quantity o
(Inches) (Inches) B
16 24 X 21 2)
28 X 16 2
26 X 14 1
26 X 12 3
11 X 7-1/2 8
8X6 6
:

The box seed is 24 X 21. Apply the row completion procedure.

1
|
Step 1: t

o
"
g
&
o
]
N
—

Step 2:

Try to generate a type 1 uniform complete row of height 24. First

e

iteration of integer linear combination technique gives ny =2, n, =0

but the row has excessive waste.

21 21

24

T e T

73

ke . - Tl eneAeates aAmmentml

11
Row waste = X 100 = 21.2%.
53

Interchanging a and b gives n =2, n = 0. The following acceptable

1 2
complete row is generated and saved on list of complete rows.

24 24

21

Row waste = X 100 = 7.69%.

L
52
The next available seed is 28 X 16. Attempts to obtain either a type 1
or type 2 uniform complete row by applying steps 1 and 2 of row comple-
tion prbcedure fail; likewise, an attempt to form a type l, non-uniform
row in step 3a fails. Step 3b gives a non-uniform row of height 28 by
selecting the 14 X 24 size box and generating a column by a combination
of l4-inch dimensions and the complete row by combination of the 16-inch
dimension of the seed and 24-inch dimension of the selected box. The

row is shown here, but its waste is excessive,

16 24 12
14
28
14
3 12
Row waste = 37 X 100 = 23.1%.

74

P I A o S S R L

Interchanging a and b, so that a = 16, b = 24, gives a successful

type 2 non-uniform complete row which is put on list of complete rows.

28 11 11 2

16

Column waste = %K X 100 = 6.25%.

Row waste = X 100 = 3.85%.

2
52
Since only one of the two available 28 X 16 boxes has been used, the
next ;vailable seed is once again 28 X 16. Sufficient 11 X 7-1/2
boxes are available for immediate repetition of the last row cluster,
and this row is placed on the list of complete rows.

Next available seed is 26 X l4. Formation of a uniform complete
row fails, but step 3a of the row-completion procedure provides an
acceptable type 1 non-uniform complete row of height 26 inches
by combining the l4-inch dimension of the seed and the 12-inch
dimension of the 26-inch X 12-inch size box selected by the integer

linear combination technique.
14 12 12 12 2

26

Row waste = %2- X 100 = 3.85%.

At At A B B 5

The box list now consists only of 8 X 6 boxes. Using a seed of
8 X 6, a uniform type 1 complete row is quickly obtained to exhaust

the box list for group 2.

Row waste = %‘-2- X 100 = 7.69%.

The row list now consists of five complete rows, rearranged by

decreasing row height as follows:

Row # Cluster Area

14 12 12

1 26 364 + 3(312) = 1300
24 24

2 21 1008
28

3 16 778

‘76

Row # Cluster Area
! 28 11 11 2
¥ 7-1/2
4 16 778
7-1/2
8 8 8 8 8 8 4
5 6 288

The row cluster seed has height 26 inches. Using the type 1 configura-

tion formation procedure gives the following combination of rows 1 and 3:

Row #
4 12 12 12 2
| 1 26
; 28 11 | 11
! 3 16
7-1/2[7-1/2

PATTERN NO. 2

1300 + 778

Wx 100 = 92.9%.

Pattern efficiency =

The next row cluster seed has row height = 21. The type 1 pro-
cedure can not produce a pattern with acceptable waste, but step 1

of the type 2 procedure immediately provides a satisfactory pattern.

77

P+ LR I

28
7-1/2

11|11

8 8 8 8 8 8

PATTERN

NO. 3

1008 + 778 + 288

Pattern efficiency =

Group 2 is finished.

Group 3 Processing

43 X 52

X 100 = 93.2%.

Group 3 Box List

Group Box Lateral
Height Dimensions L X W Quantity
(Inches) (Inches)
14 28 X 22 2
42 X 12 1
37 X 12 2
18 X 14 2
15 X 15 4

Seed is 28 inches X 22 inches.

complete row or complete column fail,

78

All efforts to obtain any type of

Retain the 28 X 22 boxes and

use the nex*t available seed, 42 X 12. Again, no acceptable complete
row can be obtained, but the following acceptable type 1 uniform com-

plete column is obtained and is saved on the list of complete columns.

12

Column waste = %3 X 100 = 2.3%.
42

Next seed is 37 inches X 12 inches. No satisfactory complete rows or
columns can be constructed and the 37 X 12 box is retained on the box
list. The‘same situation occurs with the two remaining seeds on the list,
The column cluci2r has greater value than any individual box, but
efforts to complete a pattern with the column cluster seed by the type 1
and type 2 procedures fail because there are not enough column clusters.

Applying steps 1 and 3 of the type 3 procedure gives excessive corner

waste.

12 37 3
12
Corner waste =
12 18 X 40
42 57 X 40 X 100

Applying step 2 satisfactorily completes this pattern by the

addition of partial columns.

12 37 3 Corner waste =
12 ’ 4 X 14
0 X 14 X 100
42 12 = 10%.
18 18 ’ Pattern efficiency =
14 | 504_+ 2(444) + 2(252) . oo
= 43 X 52
1t
= 85%.

PATTERN NO. 4
Since the complete row and complete column lists are empty, the next
seed is obtained from the box list and is 28 X 22. In the absence of
complete rows and/or columns, the type 1, 2, and 3 procedures all fail.
Applying the type 4 procedure gives a type 4A configuration which is
successful (success measured by outerfill efficiency), requires no
interior filling (fill measured by inmerfill efficiency), and is a com—

plete pattern (completeness measured by pattern efficiency).

22 15 15

15

28

22

15 28

15

PATTERN NO. 5

actual load area including inner waste area

X 100

Outerfill efficiency = maximum available load area

_ (22 + 15 + 15) X (28 + 15)

73 X 52 X 100 = 100%.

Outerfill waste = 100% ~ outerfill efficiency = 0.

inner waste area
actual load area including inner waste area

Hole waste = X 100

- 8 X 13
(22 + 15 + 15)(28 + 15)

X 100 = 4.657%.

actual load area
maximum pallet load area

Pattern efficiency

_ 2(616) + 4(225) - .
= s X 100 = 95.35%.

Group 3 is exhausted.

Group 4 Processing

Group 4 Box List
Group Box Lateral
Height Dimensions L X W Quantity
(Inches) (Inches)
12 22 X 15 4
28 X 6 4
13-1/2 X 9 8
11 X 11 8

No complete rows or columns can be formed using any of the boxes

as a seed, and, consequently, type 1, 2, and 3 configurations cannot be

81

Y

constructed. Applying the type 4 procedure with a seed of 22 X 15

gives a successful type 4B configuration.

22 28 2
15
6
28 22
(28 + 22)(15 + 6)
Outerfill efficiency = X 100 = 96.2.

52(15 + 6)

Outerfill waste = 100 - 96.2 = 3.8%.

9 X6
(28 + 22)(15 + 6)

Hole waste = X 100 = 5.14%.

Repetition of the configuration leads immediately to a complete pattern.

22 28

PATTERN NO. 6

Pattern efficiency = 2l2(15)(22; ; 2228)(6)] X 100 = 89.1%.

Next seed is 13-1/2 X 9; type 4 procedure leads to a type 4C con-

figuration which becomes, after repetition in two directions, a complete

pattern.
13-1/2 11 13-1/2 11 3

PATTERN NO. 7

- 2(2—1/2) — r
Hole waste = 50024-1/27 ¥ 100 = 1.02%.

Outerfill efficiency = 21371/2 231§)5§(9 * 1D ¥ 100 = 87.7%.

Outerfill waste = 100 - 87.7 = 12.3%.

Pattern efficiency = 8(121;§)x+52(121) X 100 = 86.8%.

Group 4 is exhausted.

R m,______'___

Group 5 Processing

Group 5 Box List

Group Box Lateral

Height Dimensions L X W Quantity

(Inches) (Inches)

10 45 X 38 1

22 X 11 4
15 X 15 4
8X6 6

Only one row may be completed and this occurs when the seed is

8 X 6; no complete columns are obtainable.

8 8 8 8 8

Row waste = 3%- X 100 = 7.69%.

Pattern completion with the type 1 and type 2 procedures fails
because of insufficient complete rows or columns, Applying the type 3
procedure provides no acceptable partial column, so a complete pattern
cannot be made. The incomplete pattern consists of only a single row
cluster.

The next available seed that fits in the reduced available space,
37 inches by 52 inches, is a box 22 inches by 11 inches. Application

of the type 4 procedure immediately leads to a successful type 4A

P
.

configuration which, combined with the type 3 row contribution, results

in a complete pattern.

8 8
6
11 11
22
15
15 15 11 11

PATTERN NO. 8
6(48) + 4(242) * 4(225)
43 X 52

Pattern efficiency = X 100 = 96.4%.

The only item remaining in group 5 is the one 45- by 38-inch box.
No acceptable cluster can be formed, so the 45- by 38-inch box is

placed on the list of remaining boxes.

Group 6 Processing

This group is empty.

85

i A% -

B T v

Group 7 Processing

Group 7 Box List

Group Box Lateral
Height Dimensions L X W Quantity
(Inches) (Inches)
8 36 X 14 2
20 X 14 2
18 X 6 4

No complete rows or columns are obtainable. Use of

the 36- by

l4-inch seed leads to a successful type 4A configuration with an

incomplete pattern.

14

18

i8

36

30

Hole waste =

18

22 X 30

18 14

86

36

[T 7 Z(18)1136 + 6] X 100 = 31.43%.

An innerfill is required and is obtained by returning to the type 3
procedure and inserting a partial column composed of two 20- by l4-inch

boxes.

PATTERN NO. 9

Pattern efficiency = 2(504) +4§(§0§g + 2(280) X 100 = 89.4%.

Group 8 Processing

Group 8 Box List

Group Box Lateral
Height Dimensions L X W Quantity
(Inches) (Inches)

6 X6

There are too few boxes to form any acceptable cluster; these boxes

are put on list of remaining boxes.

Remainde sroup Processing

List of Remaining Boxes

Remainder
Group Box Dimensions
Height LXWXH Quantity
(Inches) (Inches)
10 45 X 38 X 10 1
6 X6X6 6

The seed box is 45 inches by 38 inches and a non-uniform type

2 row may be quickly constructed by the row completion procedure.

45 6

38

PATTERN NO, 10
Since no clusters or boxes remain, the row is used as an acceptable
incomplete pattern with a flag denoting that the load population is

exhausted.

Stacking and Completion

Ten patterns have been completed. For the relatively small number
of boxes which have been arranged, no pattern repetition has occurred so
that each unique pattern can be assigned to a tier. The height of a
tier is equal to the height of the group from which the pattern was
derived. Arranging the tiers in decreasing order of tier heights gives
the following initial sequence: 18, 16, 16, 14, 14, 12, 12, 10, 190, 8.
The following correlation for patterns, tiers, and tier heights is
provided to monitor the composition of the stacks which result from

tier rearrangement.

PATTERN TIER TIER
NO. NO. HEIGHT

1 1 18

2 2 16

3 3 16

4 4 14

5 5 14

6 6 12

7 7 12

8 8 10

Container #1

Using the notation and formulas previously developed gives

HTCONT = 90"
HTFMAX = 48"
HTPALL = 6"
TOLPIL = 6" (by assumption)

TOLSTK = 3" (by assumption),

_ |Hrcont | _ 90| .
NMIN = | HTFvax 48| 2

The acceptable height range of full piles is given by:
HTFMAX - HTPALL - TOLPIL < HTPILE i HTFMAX - HTPALL
48 -~ 6 - 6 < HTPILE € 48 - 6
The full pile height range is (36, 42].
HTPMIN = HTCONT - (NMIN - 1) X (HTFMAX - TOLPIL)
=90 - (2 -1) X (48 - 6)
= 48
Since 48 > HTFMAX - TOLPIL, no parti. piles can be formed.
When successive tier heights from the initial sequence are added
until the addition of the next height would exceed the maximum permitted
full pile height (42 inches), the following partitioning of the sequence

into full piles and unused tiers is obtained:

18 Unused Tiers since HTPILE = 18 + 16 = 34 < 36
16 18 + 16 + 16 = 50 > 42
1
16 Unused Tiers since 16 + 14 = 30 < 36 ’
14 16 + 14 + 14 = 44 > 42
14
12 Full Pile since 36 < 14 + 12 + 12 = 38 5_42
12
10 ,
|
10 Unused Tiers since 10 *# 10 * 3 = 28 5_36
8
NMIN = 2
NFULL = 1
NPART = 0
NUSED = 9

Since NPART = 0, NFULL < NMIN, Table 1 shows that the system is in
state 4.

The state 4 stacking procedure forms a stack from all remaining full

piles, in this instance only 1, |
Initial Stack #1 List of Un.sed Tiers
14 18
Full
12 Pile 16

12 16

AD=A120 343 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE-~ETC F/G 13/4
CARGO LOADING--A PROPOSED APPROACH FOR MAXIMIZING SPACE UTILIZA-=ETC(U)
‘o SEP 82 G GERSTEL -
UNCLASSIFIED ODTNSRDC-82/099 - NL

i

The height of the stack HSTACK is given by

HSTACK = g;HTFULL(I) + NMIN X HTPALL ' 5
all E
1 h

= 14 + 12 + 12 +2 X 6 =50

An initial underfill condition exists since HOVER = - HWASTE =
HSTACK - HTCONT = 50 - 90 - -40. The wasted space in the stack is filled
by adding unused tiers to the top of the stack until the addition of the

next tier would overfill the stack. The stack then becomes

Modified Stack #1 List of Unused Tiers
16 Individual 16
Tiers
18 14
14 10
Full
12 Pile 10
12 8

HSTACK = 50 + 16 + 18 = 84

HWASTE = HTCONT - HSTACK = 90 - 84 = 6

Since stack tolerance TOLSTK = 3 and HWASTE > TOLSTK, additional
stack modification is necessary.

The next stack refinement consists of trading the next entry on the
list of unused tiers, if possible, for another tier in the stack to

reduce the stack waste. The next entry is 16. Since the heights of all

92

-

individual tiers > 16, the first pile beneath these tiers is considered.
Since HWASTE = 6, the most desirable tier in the pile to trade for is

a tier of height = 12. (If more than one tier has the same height, the

uppermost tier will always be removed.) Before the trade is permitted,

a check is made to ensure that the upper limit of the full pile height,

42, would not be exceeded. This check is satisfactory, and, therefore,

Modified Stack #1 List of Unused Tiers
16 Individual 14
Tiers
18 10
14 10
Full
16 Pile 8
12 12

HWASTE = 6 - (16 - 12) = 2 S_TOLSTK.

The stack is within tolerance and the final refinement in the com-
pletion stage may proceed. Insert a pallet under each full pile; begin
at the topmost individual tier, add successive tiers without exceeding
the maximum permitted full pile height 42, and insert a pallet under the

newly formed pile.

Final Stack #1

16

18

—1

14

HSTACK = HTCONT - HWASTE

90 - 2 = 88

16

12

— R

The tiers on each pallet could be further analyzed to improve stability
and weight but this is not required for this problem. The stack is

complete and the next stack may be begun. The system is now in state 7,

since NFULL = 0, NPART = 0, and NUNUSED = 5. The stacking strategy for

this state is to immediately stack NMIN tiers, and to stack additional
successive tiers from the list of unused tiers, one at a time, to fill
the stack to its maximum permitted height without overfilling. The
maximum permitted height (obtained by subtracting the height of NMIN
pallets from the container height, HTCONT) is 90 - 2(6) = 78.

Initial Stack #1 List of "'nused Tiers

10 Individual 10
Tiers
14 8

T)

P~

Modified Stack #2 - List of Unused Tiers

12) Individual Empty
Tiers
8

opeow—ea

. 10 >

10

14 J |

HSTACK = Z;TTIER(I) + NMIN X HTPALL
all
1

12 + 8 + 10 + 10 + 14 + 2 (6)

HSTACK = 64

HWASTE = HTCONT - HSTACK = 90 - 64 > TOLSK

No further improvement is possible since the load population is
exhausted. Pallet insertion gives:

Final Stack #2

12

8
10
10

a—

14

HSTACK = HTCONT - HWASTE

90 - 26 = 64

| I pallet

95

e e i o o ST & e A R A AT AN g =

T RTAS S e AW s a2 ot 4 el D 2 iy

Container #2

HTCONT = 84"
HTFMAX = 36" 1
HTPALL = 6"

TOLPIL = 6" (by assumption)

TOLSTK = 3" (by assumption), j

_ |ercont| _ 84 _
NMIN = | TPMAX % -3

For full piles,

HTFMAX - HTPALL - TOLPIL < HTPILE ﬁ HTFMAX - HTPALL H
36 - 6 - 6 < HTPILE < 36 - 6 1

The full pile range is (24, 3¢].

For partial piles,

HTPMIN = HTCONT - (NMIN - 1) X (HTFMAX - TOLPIL)

84 - (3-1) x (36 - 6)

24 < HTFMAX - TOLPIL = 36 - 6 = 30

HTPMIN - HTPALL < HTPILE < HTFMAX ~ HTPALL - TOLP1L

26 - 6 CHIPILES 36 - 6 - 6

The partial pile range is [18,24].

Partitioning the initial sequence of tier heights into full

piles, partial piles, and unused tiers gives:

96

&

18
16
16
14
14
12
12
10

10

List of Full Piles

Partial Pile

Unused Tier

Full Pile

Full Pile

Partial Pile

Partial Pile

List of Partial Piles

List of Unused Tiers

16
14
14

12

NFULL = 2

NMIN = 3; Table 1 shows that the system is in state 3.

Initial Stack #1

18
14
12
16

14

Partial Pile #1

Full Pile #1

18 16

12

10

10

8

NPART = 3 NUNUSE = 1

HTPART(1) = 18
HTFULL(1l) = 14 + 12 = 26
HTFULL(2) = 16 + 14 = 30

Full Pile #2

97

[S .

g T

TS

e 371, 2 T

Vst i e 7

e

NMIN - 1
HSTACK = KTPART(1l) + X HTFULL(I) + NMIN X HTPALL
I=1
= 18 + 26 + 30 + 3 X 6

HSTACK = 92

HOVER = HSTACK ~ HTCONT = 92 - 84 = 8

At this point the stack is overfilled and must be unloaded. The
first pile that can be unloaded to produce a stack within tolerance is
full pile #1, and the tier having height 12 inches is removed and added

to the bottom of the list of unused tiers.

Modified Stack #1 List of Unused Tiers
18 Partial Pile #1 16
14 Full Pile #1 12
15

Full Pile #2
14

HWASTE = 8 - 12 = 4 > TOLSTK = 3
The next entry on the list of unused tiers = 16. Trading it for the

14~inch tier in full pile #1 gives

Modified Stack #1 List of Unused Tiers
18 Partial Pile #1 12
16 Full Pile #1 14
16

Full Pile #2
14

HWASTE = 4 - (16 - 14) = 2 < TOLSTK = 3

98

o — e oy ey

:
s
}
1

The stack is within tolerance and, with a pallet under each
pile, the final stack consists of:

Final Stack #1

18
[, T pallet HSTACK = HTCONT - HWASTE

16 = 8 -2 =82

[| pallet
16

14
IR | pallet

The remaining lists are

List of Full Piles List of Partial Piles List of Unused Tiers

Empty 12 12

10 14
10
8
NFULL = 0 NPART = 2 NUNUSE = 2

Table 1 now shows the system in state 6.

Initial Stack #2

10 HTPART(1) = 10 + 8 = 18

Partial Pile #1
8 . HTPART(2) = 12 + 10 = 22

12
Partial Pile #2

NMIN
HSTACK = X HTPART(1) + NMIN X HTPALL

I1=1

= 18 + 22 + 3(6) =~ 58
HWASTE = HTCONT - HSTACK = 84 - 58 = 26

Filling the stack with unused tiers gives

14

Individual Tiers
12
10

Partial Pile #1
8
12

Partial Pile #2
10

HWASTE = 26 - 26 = 0

Inserting pallets gives

14
12
L 1 pallet HSTACK = 84
10
8 -
L] pallet
12
10
| ~] pallet

Since there are three pallets in the stack and NMIN = 3, no

pallet consolidation can be obtained.

it

O e D007t s bt ety et < mee o e

SUMMARY OF STACKING RESULTS

. Container #1
. Stack #1 Stack #2
Requires 2 pallets. Requires 2 pallets, !
Stack efficiency = %%%%%% X 100 Stack efficiency = %% X 100
88 _ = 71.1%
30 X 100 = 97.8%
Container #2
Stack #1 Stack #2 é
i
Requires 3 pallets. Requires 3 pallets. i
i
st . _ 82 . . _ 84 i
ack efficiency =5 X 100 Stack efficiency = gz»x 100
= 97.6% = 100% "

101

Container Loading

The available spaces in both containers have identical width and
length dimensions.
Width = 90"

Length = 54"

Since the maximum pallet dimensions are 43" X 52", the following ¥

pattern is quickly opbtained by first generating a type 1 uniform row

which satisfies the type 1 configuration tolerance requirements.

43 43 4

e

Stack #1 Stack #2
52

DISCUSSION OF RESULTS

The cargo can be loaded in its entirety in either container #l1 or
container #2. Container #2 is, therefore, the proper choice, since the
cost of shipment is lower. The more restrictive ballet loading height,
36", in pallet #2, requires the use of 6 pallets for loading the complete
load instead of 4 pallets which would otherwise suffice. In certain
instances, the extra space occupied by the additional pallets could result
in a load which would not fit in the available space. For this problem,
this extra space is available in container #2. The following comparison

of space utilization efficiencies shows container #2 to be the more

efficient.

F._—-———-——L

4

e e bk s 2en -

Container #l

Volume of Space Utilized

Spage.Ut1lzzatlon = Volume of Available Space 100 ﬁ
Efficiency i
Y %
) all “Doxes box volume + all pallets pallet volume
54 X 90 X 90

260580 + 46080
453600 X 100

70.1%

[

Container #2

260580 + 69120 X 100

Space Utilization =
Efficiency

54 X 90 X 84
= 80.8%

S oaTm

RECOMMENDATIONS AND CONCLUSIONS

The author recommends that a computer program be written to implement
the proposed automated procedure for maximizing the space utilization of
containers loaded with palletized loads. A candidate loading facility
should be selected promptly to provide program inputs and to test and
evaluate the proposed software.

Considerable testing will be required to determine how to trade off
computer costs against improved space utilization efficiency. The sample
problem was developed and solved to demonstrate how the various steps are
interrelated and not to indicate any expected space utilization effi-
ciencies. However, it is anticipated that, by adhering to a loading pro-
cedure which is systematic, logical, and without unwarranted iterations,
and by using computers to do simple but laborious types of bookkeeping
operations, a favorable balance between computer costs and space utiliza-
tion efficiencies can be attained. The computer program could be a
valuable analytic tool in making decisions, as the sample problem demon-
strated. Additional benefits can also be expected from the comprehensive
computer-generated reports to be produced at significant stages in the
loading operation.

After initial program development and testing, the following
enhancements merit consideration:

. Provide for varied loading orientation of
boxes. The length or width of a box could

be substituted for the height if the box
were placed on its side.

105

Extend program capability so that a promis-
ing pattern in a group can be completed, if
necessary, by combining boxes in ¢ .~r groups
to synthesize the height of the first group.
In Figure 11, the pattern is completed by
stacking boxes A and B or boxes C and D to
obtain a "composite” box of the required
group height.

Provide for the construction of rows and
columns in which the row height and column
width exceed, within tolerance, the dimen-
sions of the seed box. In Figure 12a, the
result of the row construction technique in
the initial program version is contrasted
with that in Figure 12b where the row height
can be enlarged within tolerance.

Explore further the possibility of obtaining
the program developed by thristofides and

Nhitlock6 for dealing with loading situations
in which only a limited number of boxes in a
large variety of sizes 1s avallable. This
program might also be beneficial for dealing
with boxes for which successful patterns have
not been found. 1I1deally, the proposed
program could be interfaced with a program of
the type developed by Christofides and
Whitlock. The proposed program would be used
when a large number of boxes is to be loaded,
and the Christofides and Whitlock program
would be used when a relatively small number
of boxes of diverse and troublesome sizes
remains.

Appendix C presents the flowcharts, Figures 13 through 32, for the proposed

program loader.

106

e

Aﬁ///lﬁﬁf//,> Jll//,i’//”' GRZLP
HEIL

BOX BOX
A C
BOX BOX
B D

Figure - 11 Example of Pattern Completion by Synthesizing Group Heights

'
(]
. l
) P
i sgep | sEED t
/] SEED SEED LBNGTH X g
: LENGTH BOX ! ‘
— WASTE__ TOLERANCE [:
% Row Height = SEED length Row Height = SEED length ’
i + tolerance i
: Figure 12a -Initial Program Develop- Figure 12b - Advanced Program f
ment Development :

Figure 12 - Generalization of Row, Column Construction Techniques

T Y\ T rege” AT

107

. . PSR & Sy 8 R Y T T T 1Al e N S LR e o e e
I T L EERL TR PRI, e A s 2 AL s ANTARAY AL e 5 A e Rl . e STy b AT Sk iefn KB 3 R i T L e 56 WY) Sl S T e el E . PR

ACKNOWLEDGMENTS

The author wishes to acknowledge Mr. Maurice Zubkoff for providing
and explaining the background information related to some difficult,
hard-to-find details of containerization, and also for his support and

overall supervision of the project.

i

109

N

]

1

REFERENCES ‘

l. Tabak, H.D., "Cargo Containers, Their Stowage, Handling and Movement," !
Cornell Maritime Press, Inc., Cambridge, Maryland, 1970.

2, NAVSEASYSCOM, "Containerization in Naval Logistics," Containerization 1
Workshop, 25 - 27 June 1975, DTNSRDC, Carderock, Maryland.

3. Military Standard, "Palletized Unit Loads on 40" X 48" Pallets," |
MIL-STD-147B, 30 April 1968.

e LG AP st

4, Gilmore, P.C. and R.E. Gomory, "Multistage Cutting Stock Problems
of Two and More Dimensions," Op. Res., Vol. 13, No. 1, Jan. - Feb. 1965.

5. Herz, J.C., "Recursive Computational Procedure for Two-Dimensional i
Stock Cutting,"” IBM Journal of Research and Develonrment, Vol. 16, No. 5, |
1972.

6. Christofides, N. and C. Whitlock, "An Algorithm for Two-Dimensional
Cutting Problems,"” Op. Res., Vol. 25, No. 1, Jan. - feb. 1977.

7. Federal Supply Catalog, C8105/15-IL~N, FSC Class 8115, "Boxes, Car-
tons, and Crates,”" Defense General Supply Center, Virginia, 1 July 1968. 3

B LS

o

111 Fatun ne Bt 11

APPENDIX A
INDEX CHART FOR PALLET PATTERN DETERMINATION
8163 T17¢] 8 [84| 8 {90 10 J1 11 11141 1311 13 1134 14 J144] 15 115¢4] 16 lg 1711741 18 [18¢] 18 11921 20 [209) 21 |21~
¢ h2z2i2zluslnasiaaslags) va laaalung | 60 | 108) 2] 62 78 178 1178 }78 |76 £ 36 {76] 76
- [] i21hler) e7l61 81161 as{asiaalearlasiTeirsiaaiaa}sn el sala7]47 42 142 42
1 17]6¢ 424 Juo 11181 48 1 40 | 15425175 3715 l_&_&_mrn_m_mLJ 42] 42 _!.LLJZ 42
i 11311131 64 | 74125 125|871 87} 87173/70}1738 2131271224711 71497172 172472072 (724 2
8 L31131 64164120 174 251258/22)221224 44 20} 274122127127} 77 722 72122/ 2] 22 30 a0
. 8 1131 741 7. 112125128 22 44) 44: 271 271 271 271 271 721172 aplaol a0l 30,304 30
] 108]108| 48| 21{21] 21| 20} 18] 18) 15| 15] 15S) 15} 14] 97 26 26 | 26
99 108]108) 46| 21 ;20| 20| 20 | 18] 18] 145 14] 14] 24| 14] 97 2626} 26[26 |26/ 26
10 108] 2112} 171 171170 14] 14] 141141 14} 97 26 L 26] 281 26 + 26|
109 104 [104]104104 104 17| 16} 20(20| 12| 12/ 97[97| 261 28| 26| 26| 28] 28 | 26 | 82
11 281 2828l 1119 (9 [26)26) 26) 8 A, 1
2 81281 28 1l 1l 9l 8 8 1102 1102 1102
28l 28l 28} 18t 111l 10! o4 9 1ol Al R{ gl a!7] 7102 1020102
12 281 28 131 10141 9! 919 [§ Bl 1t 31717 ho2 1021102
13 1) lum ninleloletle T 21 71717 (1020102 102102
132 31 7417117071581 s[5 5
14 lsrllonlon|opl 7} 2] r]s})s|s 15]
149 + 4
15 4.]]
15¢ 414 95
16 4]95 9 ;
16% 4! 41 4195195195 95195 |
1 4195/ 95[95195/95 95]95 !
17§ *
18 .
18¢ |
2 |
Sl
_ H
Z 204 %
<] B ‘ 3 ;
Sz ~
H
* i i
224 + I
23 . '
237 i 1
24 |
g USE OF TABLES +
25 L]
25 . 4 ¢
1. Determine iength and width of container to nearest 1/2 inch. i z
269 3. Locate the length of container at the top, and width at left side of ! E
;" index chart, the container pattern number will be found at the inter- | i
section of two columns. (Height may be substituted for width when ‘
the containers are of sufficient strength to withstand superimposed + j :
5 loads, and where such placement will cause no adverse effect in the i
T shipment or storage of the materiel.) it
38 T ¥
7 I
372
38 I
39
-
- i
2 4 - it
a4 ¥ :
42
i N

{

APPENDIX A (Continued)

324) 33 |33¢) 34 349)35 [35¢] 36 |36 37e

32

104 70 4 0

| 801 601 551551 55
54| 54] 54] 54f 54

22 2291 23 {235] 24 {243 25 Jasq| 26 [268[27 |274] 28 284 20 120¢] 30 304/ 31 1319
. 10410101 701 70
| 90 |

34 34) 3434134 29]

33)33/93le3 l93]93 110110130110 10]efelol e
100 10 10 {10 | 10

1010 frol300100y 10 .

8g]iof wojr0lr0l10l10f10} 10110 1 68 el 6olea ! 6B 6B} 66

3
kE
c Rk

5454 54) 69 | 69]69

s B

B
kkkitkk

e

g

99 136|136 36]36/92]92)92]92] 92 35135135 35] 53

109 192/ 92192 192]92[{92[92]92] 92 3513535 135[35]235 ar[33| l3r]31 ;31131

1l 35 (35 |35]35(35 |35] 35)
112 35 1 35435 $/351 235 79
12 35[35]35]35/35(35 190791 9 2
122 35 1 3% 35135135039 19 9! 19
il 19119 212 12

r]
eb
3

132 132/32 132]32/32]32
14 132 (32 }3232/32)89]

NNNP
oo oo po oo

©
—
«©
-
o
~
~
v
~
g
[~
~
3
g

94194 |94 E
94/94) 94194 [9419 t

W [t [k ko

W D D K K
o [[ko ke
'guuupwu

80

90 90 90
90 |90 | 90 90] 90 1.11 1
21 6 190]|90/90 {90 {90)90 190] 90 11111 1 1

_
-3
X
n
<
© |
33333
O OO S A8
=
.

i P P P

INCHES INWIDTH
~
o
-
o

*L--

23:
24
242
25 89| 89 | 89 89
25 salgel gl go

26

8

114

APPENDIX A (Continued)

3|’ INCHES IN LFNGTH .
38 |302 | 39 [399] 40 [d0e] 41 |ara] 42]a24] 43 |434] o« [442] 45 [45e] 46 [46q] 47 |470] 48 |48e] 48 1492] 50 [502] 51 To1q] 52 {
i e [124/124 124 |124]124] 52] 52 52 | 52] 52 | 52 [123[123[123]123 123123123 Ji25 {123 (123 [123012.4[123 [123/123]129 [1231§23] B '
Ge] 69| 69| 69|51 | 511515151 saf51] 5t 3 88l gl e 88 | 8| 4e ,sg_s_aj q,u’a esleal 1 | _
7 Leal 51051 [51050 58 51]silsi|s1)51|6s[en]es]as}as/8n/ne]ne/ge[8) g 68}en jna e8lesl .
k 73] 50{50[s0 [50}50!50] 5050505050] 87| 878787 REXRIE1 K. A
8 50|50 |s0ls0ls0)50]50]s50][50 |50 5‘-‘H,A.,4,_4_‘!?,.}?,7.[_37,,_3_"'4.!1 g’l_(t_ﬂ»mﬂ ATie7 |87 87187 (87187)
81 {s0]s0 50 (50|50 50150 50 | 50|50 | 50| 87 87| 87} 87 &7 | A7 [87 [A7) 87 147 | A7 |87 |87 | A7 A7 187 (BT RT|
9 - B EX R ETR ETI T ETH (270 511 W S R A 1 cg@*gs L N :
gefala[n a3 {nia|nis]nlor 186 |86 86 i
1w [arl st s an[ar]3 {3 s horlaes] | | |861s | 861 86 | B6 | 86 | 86 ;
T IR N T R 86 | 86 | 86 | 86 | 86 | b6] | ! 86186 86 1
1 1011101 o Jnor | I R + "'1t‘”—TL
g 2 L3] 2]2iot]101)100 01100 [T S R S B 1 TSI Y I
12 J2 {2 |2 |2 |2 |101]101]101]101 10110} j_L 85 Rﬂ ns_}_ 1]
12 2 (2 (1011011101 (301 (501 {2021 201 B 85 «a.L_M,LA,Aﬁ
13 12| 2 [1o1jioa}torj1ot]tor]1011101]101410] | __ . 583 ARy 4
1] 2 85| 85] 85 [RS | A5 85 | A5 spesmsiwst 1 !
i4 12 . | 94|85 85| 85] 85] 85 ggpi*_g«rLyz
143 1) leaeajo4joayeal | L L 1 U . ’Tl_*“""‘
15 9494 94 94 4 S S \
15¢ 94) 94 94| 94]94] 94| 94| 94] 94| 94 L 1 1 |
16 Jo4l94)l94]| 94/ 04l0al0a]94] 9494} 94 L L Y O {
- i
163 [94] 94 94 [04]94] 04| 094|094} 094] 04! 94] N A . . I S RS I S S R
17 94| 94|94 0494 00|04 04 0a[94[0a] 414 . . .
173 . 841 84) 841 |
_ 4] 84 -
18 _] . 84 84 84 . _ _j 13
18 1 A 84, 84/ 84 n :
19 IR |64 84/ 8a, 84/84f . | |
E —4- . ga a8l | | '
- g 20 . _ R4 | 84 84 | B4 84 S ,
> 84| 84) 84| 84 84 | 84 ' '{
o 12 e 84 84} 84) 84| 84 | 84 | 84 . 84|84 | R4 | 84 | s
o gy i 79|89 | 84 | 84| 84] 84 84| 84 | 84 84 84] 84 :
. z |2 s elele] e IS D S T R BN I 1
224 89 |09 | 89 |89 | 89 [89 [89 - oAb e LL]
23 89 | 80 | g9} 80 |69 (8o [89 |69 e i N 2
234 180 169 159 | 69 169 | 69169 189 | 89 1 89 | RY N 1 - ‘l
24 looim | o069 |69 16916080189 0989 - -4
296909 | B9 9 (89 |89} 8 189189) 891 69 N IS SN W 14
s
25 0| 80[80|s0[89 |89 |69 80 |80]89}e0 . -
25§ o0l 0o 060 (89 |69 {00 |9 |69 8969
:o ,&_Q_._Q__E__&JFE_JL,E_JL_E_L&
THRY
3
i
38
. 3
39
10
)
L]
4l
424
43

APPENDIX B
PALLET PATTERNS ON 40" x 48" PALLETS

HH

8 15 22 29

1

11

=

1 i TR g

4 LAl ~ © o o
° O “ ° N4 [-4 r~
™~ (=} o~ «
s um ” -3 © w
7~~~
o)
Q
3
=4
—
&
o
S
) -
~ :0., -t o~ [Ya) < [S ®
[7) vy (2] s} -
o0 -
>
-
a
Z
[
o,
% — ™
—
" O ™~ @ o
3 3 s 3 s [< M <
FI -
' o
° g7 © o
“ - o~
[} o~ L] :Ow b S

APPENDIX B (Continued)

99

100

101

102

103

104

92

93

95

96

97

85

86

87

78

79

80

n

72

73

88

81

89

90

82

83

74

75

76

103

9

84

17

119

APPENDIX B (Continued)

o~

o~ ” %3
Pl (] ™~
- -
o [
< - o~
- - -
pt " "
- - —
it -d
o~
m [) -4
[] vl -t

-t

y ~
& e &8
- - =]

121

117

113

109

120

B aans

MAIN PROGRAM LOADER

APPENDIX C - FLOWCHARTS OF PROPOSED PROGRAM LOADER

TYPEL

SAVE

T

TYPE2

INPUT
PILES STRING
STATE ANALYZ TYPEL
STAKER | TYPE2
PATRNS
SUPPLY TYPE3
FILL TYPE4
UNLOAD STACKS SAVE
TRADE
PALETS STRING
WEIGHT ARRANG
(Entry in
STABLE PATRNS)
CNTNER
REPRT1 WEIGHT
STABLE
REPRT2
STRING
ARRANG
(Entry in
{ PATRNS)
BARGE
1 WEIGHT
STABLE
REPRT3

TYPE3

TYPE4

Figure 13 - Main Program Loader, Flowchart

121

L)

SUBROUTINE INPUT

Read large type
identifying data

\

Read identifying data
for container types and
container dimensions if
non-standard

¥

Read pallet dimensions
and pallet load constraints

|

Read box data including
identifiers, dimensions,
welghts, permissable
orientations, and batch
size

R

[& 2\

N\

Read tolerance data

y

Generate and print report
of input data

N M

Figure 14 - Subroutine INPUT, Flowchart

122

SUBROUTINE ANALYZ o

e

Form groups of boxes, each
group consi<ting of boxes
having a common height, with
tolerance]

Generate list of groups with
groups arranged in decreasing
sequence of groups heights;
let number of groups be NGROUP

)

For each group, IGROUP, generate

list of boxes arranged in decreas-
ing sequence of box areas; let-number
of boxes in group be NBOX (IGROUP)

Figure 15 - Subroutine ANALYZ, Flowchart

Figure 16 - Subroutine PATRNS, Flowchart

SUBROUTINE PATRNS

Initialization:
Set group identifier, IGROUP=1;
Set Pattern Type ITYPE=]l;
Set flag for box patterns, IBOX on;
Set flags for pallet patterns, IPALL and
container patterns, ICONT off.
Set flags for complete rows and complete
columns on:
Set PALLL*maximum permissible pallet load
length;
Set PALLW = maximum permissible pallet
load width
Set seed type as fixed, ITYS=1

b

Call STRING to get complete rows and columns

=59

YES

ENTRY ARRANG
Order rows in decreasinyg sequence
of row heights

10

Set subtype, ISUBTY = 1
and seed, ISELD = 0

i

20

ISEED = ISEED = 1

124

T e T ST

Ry

- Hraem

L

M‘mﬁ_ﬂ.m,m ——-

Retain
fixed
seed
ITYS=1

Figure 16 (Continued)

ISUBTY = ?

310
Call
TYPE3A

Set seed type
as variable

ITYS = 2
Previous
NO TYPE] 1SUBTY
success? =2

Retain fixed |
seed ITYS =]

Previous

TYPE3 success
?

Set seed tyvpe
| as variable
ITYS = 2

@9

315

Configuration
successful?

Flag success
for TYPE3

310

Flag failure
for type 3

NO

Pattern

within
tolerance
PTOL?

ITYPE = &4

125

Call
TYPE3B

ISUBTY = 1

t

Set seed type
as variable,
ITYS = 2

1

Set WASTEL

and WASTEW

for next waste
area

t

NWASTE =
NWASTE - 1

fNO

YES

Call
SAVE

318
WASTEL = PALLL
WASTEW = PALLW

|

Update -
seed sequence

(19

L . L N

Figure 16 (Continued)

1

Put container back on
1ist of unused containers

Set flag for manual Call
assistance in loading TYPE4
of rectangular space

Flag success
for type 4

Flag failure
for typed

NO

}

Put seed on
list of unused
boxes

any

IGROUP = untested
IGROUP + 1 seeds in
group?
Pattern
316 | ITYPE = 3 within
tolerance,
™ PTOL?
NWASTE =
NWASTE - 1 NO
Set WASTEL and
WASTEW for next "
waste area ITYPE = 3 -
Set seed type
=y ITYPE = 3 e as variable o
ITYS = 2 .

126

Figure 16 (Continued)

ISUBTY = ?

110
Call
TYPE1A

Set flag for manual
assistance in load-
ing of unused rows,
unused columns, and
unused pallets

YES

125
IPALL on?

o9

Pattern

successful
?

NO

| Save unused
columns

Save unused rows

R T e o ST YAy i T M

ISEED =

YES

115
Call
TYPE1B

Call
SAVE

i

Update seed
sequence

1

ISEED + 1

127

Any untested
seeds left?

ISEED = 0

Order columns
in decreasing sequence
of column widths

170

ISUBTY = 2
ISEED = 0

®)

P

o A A, v T

v

s b e it

Figure 16 (Continued)

a @ 1

[, 1 ISUBTY 2 il
b = ?
\/ s
210 215 ;
Call Call
TYPE2A TYPE2B

Pattern

successful
?

YES

Call
SAVE

Save unused
rows E

@9

Update seed
sequence

ISEED = ISEED +1 ISEED = 0

P

Any
untested
seeds left?

b T ere oy

-4 Save unused columns

ITYPE = 3
Set number of waste areas, NWASTE=1l <— :
Set waste space length, '.ASTEL=PALLL ¢

Set waste space width, WASTEW = PALLW .

128

Figure 16 (Continued)

S

Flag manual
intervention for
difficult boxes

Assign patterns
to tiers

Assign shims
to tiers

Return

129

g

Figure 17 - Subroutine STRING, Flowchart

SUBROUTINE STRING

10
any
box seeds
left

Select next
available seed

20

Yut on list of
row clusters

Attempt type 1 uniform
complete row

YES
nan Success?
NO

Attempt type 2 uniform
complete row

YES

Success?

Attempt type 1 non-uniform
complete row

®

130

e LI T

Figure 17 (Continued)

Success?

Attempt type 2 non-uniform
complete row

Success ?

. | Add box seed to list of
column seeds

Select next available
seed

(8)

131

e ey

D

Figure 17 (Continued)

()

Attempt type 1 uniform
complete columm

Put on list of
column clusters

YES

i

Success?

Attempt type 2 uniform
complete column

YES

Success?

NO

Attempt type 1 non-uniform
complete column

YES

Success?

NO

(39

Put seed on list
of unused boxes

Attempt type 2 non-uniform
complete column

NO

Success?

SUBROUTINE TYPE 1

Select next entry on list of rows
as seed

Flag failure Return

Try linear combination of seed row
height to complete pattern

Pattern
with

tolerance
?

YES Flag ‘
success

Try linear combination of heights of
seed row and a second row to complete
pattern

Pattern
within
tolerance

Flag

‘ YES | Flag
failure

success

Same flowchart as TYPE 1A except that column replaces row and column
width replaces row height.

Figure 18 - Subroutine TYPEl, Flowchart

133

SUBROUTINE TYPE 2

Entry
TYPE2A

NTIME = 0

i

Use as many successive complete
rows as possible without overfilling pattern

Pattern YES
within Flag
tolerance? success
NO
Row
supply No Flag short
complete supply
?
NTIME = NTIME+]
NTIME YES Flag
>47 failure
NO

an existing row in pattern

Try to trade next complete row for

NO Successful
trade?

Pattern YES

within
tolerance?

ENTRY
TYPEZR

Figure 19 ~ Subroutine TYPE2, Flowchart

134

Flag
success

Same flowchart as TYPE 2A except that columns are to be substituted
for rows

Figure 20 - Subroutine TYPE3, Flowchart

SUBROUTINE TYPE3

Complete
row flag
on?

Any

complete YES

rows

Set complete row

flag off
Reduce waste length
WASTEL by total height

. ama

of complete rows in
configuration

5 Select next entry
on list of boxes which
fits in unused column
space

Flag

Avove entry fail
ailute

found?

NO

Flag row
success

!

Exhaust remaining
complete rows

i

Set complete row flag

of f
{

ATOL = PTOL
NWASTE

Configuration
within tolerance
ATOL?

Flag configuration
success

Return

Try to obtain partial
column; repeat as often
as possible

O

135

'

Figure 20 (Continued)

Seed
fixed?

YES

1 partial
column
found?

1

Flag partial column
success; reduce waste
width by total width
of partial columns

! _ PTOL
! ATOL NWASTE

YES

Configuration
within tclerance,
ATOL?

| Flag configuration
success

10 Select next entry on
list of boxes which fits |-
in unused row space

Flag partial
row failure

Above
entry
found?

flag ‘
failure

At
least 1

partial row
found?

Try to obtain partial
row; repeat as often
as possible

NO

136

Figure 20 (Continued)

Flag partial row success;

reduce waste length by

total height of partial
columns

PTOL

ATOL = GUASTE

Configuration
within tolerance
ATOL?

Flag configuration
success

ENTRY
TYPE3B

Same Flowchart as TYPE3A Except Rows and Columns are Interchanged.

137

Figure 21 - Subroutine TYPE4, Flowchart

SUBROUTINE TYPE 4

10
Select next suitable
box seed

Flag
failure

Try symmetric linear combination of
2 box sizes such that
Zall box widths = waste width-tolerance
Zall box lenghths = waste length - tolerance

Configuration

successful
?

Try symmetric linear combination
of 2 box sizes such that

Z all box lengths = waste length-tolerance

Z all box widths<waste width

Configuration
successful?

Set WASTEL and
WASTEW equal to
waste hole
dimensions

Flag
success

Reset WASTEW; set

remainder waste dimensions;

set NWASTE = NWASTE
+ numbers of new holes

Flag

success

138

R S

e e et ol e o, Pt

Figure 21 (Continued)

Try symmetric linear combination of 2 box sizes such that
% all box widths = waste width - tolerance
I all box lengths < waste length

{

NO onfiguration YES

b T o A . A e VY 4108

Try symmetric linear combination
of 2 boxes such that
I all box widths < waste width
I all box lengths < waste length

{

Waste hole
small?

Yes

Reset WASTEL; set
remainder waste dimensions;
set NWASTE=NWASTE + number
of new holes

Flag
failure
Use largest multiple of symmetric
cluster in both width and length
Flag remainder waste in
two demensions; reset
waste demensions
NWASTE = NWASTE+1 —| Flag —s
success
139

Flag success

e

Figure 22 - Subroutine STACKS Flowchart

SUBROUTINE STACKS

Initialization

ISPEC=0, NTRADE=0, ISTATP=1, IBOTOM=0

HVOID(1) = HVOID(2)= HVOID(3) = O

Set ISTACK on, IUNLOD off, IFILL off, ITRADE off
Set constant for minimum supply of tiers, MINC=10.

Determine minimum number of pallets, NMIN
to reach container height, HTCONT

NMIN = HTCONT
HTFMAX
where]l denotes next largest integer

Call PILES ;

k) gf

20 Call . i

STATE :
{ ;

30 cal1 | _YES ISTACK NO
STAKER on?

YES NO Set ISTACK off !
'? IUNLOD on for states > A
; 1,2, 4 or 6, on or off
i for states 3 and 5, off
' for state 7

98 Call
REPRT1

|
|]
{

Figure 22 (Continued)

Determine overfill height
HOVER where
HOVER=HSTACK-HTCONT

HWASTE=- HOVER

Call
UNLOAD

YES
Set IUNLOD off

IFILL on

141

C L Tk AR

T——

l
|
Figure 22 (Continued) §
|
i

no
supply

message
=7

ISTATP=ISTATE ;

continue with l
full supply

Accept; flag
reduced number
of trades NTRADE=NTRADE+1

Call TRADE

BOTTOM=0?

Message=?

HWASTE <
TOLSTK?

BOTTOM=0

]

YES

Accept; flag for ;
manual intervention BOTTOM=0

Figure 22 (Continued)

YES

ISTATE=ISTATP

Set 1ISTACK on,
IUNLOD off,
IFILL off

()
D

Set IFILL off,
ITRADE on

Short
Supply Used?

Accept
Short Supply

143

PV TN

back

ISTATP
= ISTATE

()

E O e S e i e R

S e 1A) s e SARY Sy

===t

Lo et et Y

Figure 22 (Continued)

Call Call
PALETS WEIGHT

Call
STABLE

!

Call
REPRT1

NTRADE = 0
HVOID(1) = HVOID(2) = HVOID(3) = 0
Set ISTACK on, IFILL off,

ITRADE off

ISTATE

= ISTATP?

ISTATP=ISTATE

(=)

Set NTRADE=0, ISTACK on,

IUNLOD off, IFILL off, ITRADE off
HVOID (1)=HVOID(2)=HVOID(3)=0
BOTTOM=0

MINTIR=1

75 Call
Supply

-®

144

ISTATE = 7 |
SUBROUTINE STATE
NO
15 YES
START NFULL >0 | ISTATE=4
NO NFULL
NPART >0 SNMIN
YES
ISTATE=5
i YES
NPART NFULL YES
> NMIN >NMIN-1
3
NO NO
IEFQTE Return
ISTATE=6 ISTATE=3

Figure 23 - Subroutine STATE, Flowchart

145

oy

T Ty T, w0 Wemee]

|
T
¢
]
}
t
§

[SN TR

Figure 24 - Subroutine PILES, Flowchart

SUBROUTINE PILES

NFULL=0
NPART=0
NUNUSE=0

Determine minimum height of partially loaded pallet,

HTPMIN given by
HTPMIN = HTCONT-(NMIN-1)x(HTFMAX-TOLPJL)

Get next tier
on list having
height HTTIER(1)

y

HTPILE=HTTIER(1)

1ist of tiers

HTEST=HTPILE
+HTTIER(I+1)
I=] .
HTPILE =
HTPILE + HTFMAX-HTPALL
HTTIER(I+1)

146

T M Lt o e i S L %

Figure 24 (Continued)

19

NPART=NPART+1

HTPILE HTPILE
> HTFMAX~HTPALL » HTPMIN
- TOLPIL? -~ HTBALL

Place all tiers
on list of unused
@ tiers; update
NUNUSE

)

S N b it

ris ey AR 2t NI o A AT b e e L ol

Figure 25 - Subroutine PALLETS Flowchart

SUBROUTINE PALLETS

YES NPILE
> NMIN
.

NPILE = NPILE
-1

1
15

Try to consolidate
any 2 partial piles

Consolidation
successful?

Place as many tiers
as possible on next
available partial
pallet with space

Flag unsuccessful

consolidation —

10
Any individual
tiers not on
pallet?

Previous
unsuccessful

consolidation
o

Any partial

pallets with

available
space,

148

AT

Figure 25 (Continued)

Correction of HSTACK based

Start new pile and put on actual number of pallets
on as many tiers as used: ;
possible without overloading HSTACK=HSTACK+ 1

(NPILE-NMIN)x HTPALL

1

NPILE=NPILE+1 HOVER=HSTACK 1
- HTCONT 1

. 1

Insert pallet under | _ = 0,/”//;;;ER

each pile =?

Remove tier having height slightly
Return — exceeding HOVER and place on stack
having most available space

Add additional
. tiers 1if available

149

C - . . - e amaman = S ERprAt b PUNET——

Figure 26 - Subroutine STAKER, Flowchart

b SUBROUTINE STAKER

@ I‘
)
+

) | @9

o~

() (e

® ®

Stock first entry, on list of partial piles, on
top of first NMIN-1 entrees on list of full piles

NPILE=NMIN

NMIN-1
HSTACK = + PART (1)+ z HFULL(I) + NMIN x HTPALL

g

150

Figure 26 (Continued)

o9

Stack first NMIN entrees on list
of full piles

NMIN
HSTACK = X HFULL(I) + NMINx HTPALL
I=1
NPILE=NMIN

NTEST = NFULL +
NPART-NMIN
Stack all full
S;i‘* al; f‘ﬁl NO YES| pjles and sufficient
plles and a partial piles, J so
partial piles that NFULL + NPART
{ = NMIN
NFULL NPART
HSTACK = £ HFULL(I) + I HPART(I)+ NMIN x HTPALL
I=1 I=1

NPILE = NFULL + NPART ,
Set flag to turn

ISPEC = 1 == TUNLOD off,
IFILL on

151

P VT PO p—

W s

Figure 26 (Continued)

29

Stack all full piles

T

HSTACK = UMM HFULL(1) + NMIN x HTPALL
1=1
NPILE = NFULL
ISPEC YES NUNUSE
=2 = 07
NO
Return

S

Stack first NMIN
partial piles

!

Return

NMIN
HSTACK = X HPART(I) + NMIN x HTPALL
I =1
NPILE=NMIN 1SPEC=3

NPILE=NPILE +1

1

HSTACK = HSTACK + HPART(J)

i

Add next
partial pile, J to

stack
L

HSTACK
- HTCONT
207

YES Set flag to put

TUNLOD on

Any NO

Set flag to put
IFILL on

NO
YES

more partial
piles

152

Figure 26 (Continued)

Stack all partial piles

NPART

I=1

HSTACK = T HPART (I) + NMIN x HTPALL

NPILE = NPART

1spec | YES
-4
1
NO
Stack all YES N0 Stack NMIN
unused tiers Tiers
4
NMIN
HSTACK = I HTTIER(I) +NMIN x HTPALL] lyopack = I HTTIER(I) + NMIN x HTPALL
ISPEC = 5 NPILE=0
153

e e T TRkl EE

e

Figure 26 (Continued)

NFULL
HSTACK = z
I=1

J
HFULL(I) + Z HPART(I) + NMIN x HTPALL
I=

1

NPILE = NFULL + J

HSTACK Set flag to
- HTCONT turn IUNLOD
>0 on

Unused
entry on list
of partial
piles?

HSTACK =

Add next partial

HSTACK + HPART(K)

pile, K to stack

154

YES

partial
piles?

Any,
unused

full
piles?

SUBROUTINE SUPPLY

NUNUSE
- Bottom >
MINTIR

NUNUSE
- Bottom 1

YES

full pile

Unstack next unused

Flag message

YES

to continue with
full supply

Return

NO | Flag message
[no supply

Flag message to
continue with
short supply

i Unstack next

unused partial
pile

Add unstacked tiers
to 1list of unused
tiers

Flag message
»{ to check for
change of state

Figure 27 - Subroutine SUPPLY, Flowchart

SUBROUTINE UNLOAD

START

HOV (N)=HOVER

i

For all 1 belonging to pile N, find HTIER (N,I) - HOV(N).
-] Select tier J such that O<KHTTIER (N,J) - HOV(N)
< HTTIER (N,I) - HOV(N) |

B

J NO |
void?

YES

Select tier K such that
HTTIER(N,I) - HOV(N) < HTTIER(N,K) -~ HOV(N) < O
Temporarily remove and flag tier K from pile N

!

HOV (N)=HOV(N) - HTTIER(N,K)

Permanently remove
all flagged tiers M=N
from pile M and also
tier J

Select pile M such that
for all N YES
0 € HTTIER (M,J)-HOV(M)
< HTTIER(N,J)~HOV(N)

S o | N=N+1

NO

Figure 28 ~ Subroutine UNLOAD, Flowchart

156

——"—CAR e - =
'

YES

I=1+1

SUBROUTINE FILL

&

I=1
HTOT=0

i

HTOT=HTOT + H(I)

NO

IMAX = NUNUSE

Flag message

NO
YES

HTOT=HTOT-H(I)

1
IMAX=1-~1

“

Add patterns I = 1, IMAX

that supply
is used up

Figure 29 -

to previous stack

i

IMAX
HWASTE=HWASTE - T H(I)
I=1

NUNUSE = NUNUSE - IMAX

e

Subroutine FILL, Flowchart

157

SUBROUTINE TRADE

AR o e R 2 3

bk M S et

Flag message to go Set HNEW = height of . 14
to 75 next unused tier on list
of unused tiers

NTRADE=NTRADE-1

NEW
tqual to any
previous
voids?

Skip this
tier

Find all tiers I in stack
of tiers such that for all I,
0 < HNEW-H(I) € HWASTE

!

Select the J belonging to I :
such that for all I Flag message .
HNEW-H(J) > HNEW-H(I) to go to 85 !
j
YES HVOID (NTRADE) ’ ;
= HNEW ;

i

NVOID (NTRADE)=0.0

{

Trade next unused tier on list of
unused tiers for tier J. Put tier
J on bottom of list.

R v ar Ry

BOTTOM=BOTTOM+1
Flag message to | HWASTE=HWASTE+H (J) ~HNEW
test waste

Figure 30 - Subroutine TRADE, Flowchart

158

§
{
b

SUBROUTINE CNTNER

Initialization:

IGROUP = 1, NGROUP = 1, ITYPE = 1 ITYS = 1
Container type, ICNTNR set by input

Set 1IBOX off, IPALL on, ICONT off

Set complete row and complete column flags
on

10
Get dimensions of next available
container, SPACEL and SPACEW

PALLL=SPACEL
PALLW=SPACEW

J

Call STRING
to get complete
rows and columns

Call
REPRT2

Call
STABLE

Call
WEIGHT

any
pallets
left

Put on list of | YES

unused pallets

Call PATRNS at
entry ARRANG

1

Flag manual

[

intervention

Figure 31 - Subroutine CNTNER, Flowchart

159

P

Figure 32 - Subroutine BARGE, Flowchart

SUBROUTINE BARGE

Initialization:

IGROUP=1, NGROUP=1, ITYPE=1, ITYS=1
Barge type, IBARGE, set by input; i
Number of rectangular spaces, f
NRECT, set by input;

Set IBOX off, IPALL off, ICONT on
Set complete row and complete
column flags on

1

10 Get dimensions of next
available rectangular
space, SPACEL and SPACEW

PALLL=SPACEL
PALLW=SPACEW

Call STRING to get
complete rows and
columns

160

Figure 32 (Continued)

Call PATRNS
at entry ARRANG

1

NRECT = NRECT - 1

€:> NO

YES

Call WEIGHT

Copies

10

12

Copies
1
2
1
20

INITIAL DISTRIBUTION

Copies

PLS1E
MSC, Code 09
MSDEC
Mr. Gerald Gerstel
Hq. U.S. Army Avionics
R&D Activity
Attn: DAVAA-SS
Ft. Monmouth, NJ 07703
NAVFAC, M. Essoglou
FMSO, Code 93
NAVSUP
1 Ssup 03
4 SUP 04A
1 SUP 043
1 suP 05
NAVPGSCOL
NSC CHASN, Code 400
NSC OAKLAND, Cdr Nelson
NSC PEARL HARBOR
NSC PUGET, Code 43
NSC SAN DIEGO

DTIC

CENTER DISTRIBUTION

Code Name

1800 G.H. Gleissner
1809.3 D. Harris

185 T. Corin

187 M. Zuhkoff

163

1

10

Code
93 L. Marsh

Name

5211.1 Reports Distribution
522.1 Unclassified Lib (C) (m)
%22.2 Unclassified Lib (&)

