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SUMMARY

This report covers stress analysis and experimental studies of four
types of tension specimens designed for testing composite materials. Two
ASTM specimen types (D3039 tab-ended and D638 dogbone) are considered, along
with the bowtie (flat bar with linear taper) design developed by Grumman
and a streamline design developed at AMMRC. Stress analyses of the first
three types show them to be subjected to high shear stresses and tensile
stress concentrations which tend to degrade their performance. Experimental
studies generally tended to confirm that failures initiated where the stress
peaks were predicted, and suggest that elimination of such peaks would lead
to a better-performing tension specimen. Stress analysis of the AMMRC stream-
line design showed low shear stress levels and indicated that the design is
free of tensile stress concentrations. Results of efforts aimed at experimen-
tal evaluation of the streamline specimen indicate that it has much promise as
an improved design for tension testing, both under monotonic and cyclic loading.

INTRODUCTION

Accepted test specimens used for tension testing of composite materials
suffer from such deficiencies as failures not occurring in a uniform-width
gage region, which is believed to give low strength values that do not
accurately characterize the material under test. In both ASTM specimens
shown in Figure 1 typical failures occur >way from the uniform-cross-section

(A} Tab-Ended
(ASTM D303
Type)
'
! f T T ] (B) Dogbone

— /_T (ASTM D638)

c— I I 1 (C) Bowtie
(Grumman Linesr
——

- —1 (D} AMMRC
Streamiine Design

Figure 1. Specimen types under consideration.
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region in the center of the specimen. The objective of this study was to
develop a specimen design which is free of such behavior and which would
lead to test resuits which more cccurately reflect the true strength of

the material. The study involved stress analysis of the types of specimen
which were of interest, development of a design approach for eiiminating
stress concentrations which are believed to be the cause of poor specimen
performance, and an experimental program having the two-fold objective of
(1) verifying the relation between theoretical stress concentrations and
observed modes of failure in specimen designs of interest and (2) verifying
the performance improvements obtained from designs which are free of stress
concentrations.

Although the effort was aimed primarily at specimens for testing of
fiberglass-reinforced materials, there is reason to believe that any specimen
improvements which can be demonstrated will be applicable not only to composites
reinforced with fiberglass, but to composites with other reinforcement types,
as well as to bulk polymers which behave brittlely and are therefore sensitive
to the presence of stress concentrations.

SPECIMEN TYPES OF INTEREST

Figure 1 shows the types of specimens which have been considered in
the study. Figures 1A and 1B show standard ASTM designs which are in wide-
spread use. The "bowtie" design, Figure 1C, a flat bar with a linear taper
connecting the grip region with the gage region, was introduced by Grumman
(Ref. 1,2) in studies in support of MIL-HDBK-17A (Ref. 3). The '"streamline"
design of Figure 1D is an AMMRC development resulting from the present study.

ANALYTICAL EFFORTS

General Remarks

Stress analysis studies were performed on each of the specimen designs
of Figure 1 using the well-known finite-element method. The main requirement
of a good specimen design being the achievement of maximum tensile stresses
in the constant width center section or '"gage' region, attention in the
analytical efforts was directed primarily at uncovering peak tensile stresses
outside the gage region which could lead to premature failures during the
test. In addition, high shear stresses in the expanding part of the specimen
were felt to be objectionable, especially in the flat bar designs of Figure
1B to 1D, since these would cause premature damage in the expanding region

1. DASTIN, 8., LUBIN, G., MUNYAK. J., and SLOBODZINSKI, A. Determination of Principal Properties of E-Fiber-
Glass High Temperature Epoxy Laminatec for Aircraft. Final Report, Contract DAAA21-68-C-0404, August 1969

2. DASTIN, S., LUBIN, G., MUNYAK, J., and SLOBODZINSKI, A. Mechanical Properties and Test Technigues for
Reinforced Plastic Laminates. American Society for Testing and Materials Special Technical Publication STP 460,
1970, p. 13-26. .

3. MIL-HDBK-17A, Plastics for Aerospace Vehicles, Part |1 in Reinforced Pastics, January 1971.
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of the specimen, thereby defeating its proper function. Thus shear stresses
in the expanding region were of interest. In the case of Figure 1B to 1D,
maximum shear stresses less than about 10% of the gage-section tensile
stresses were felt to be desirable. This corresponds roughly with the

ratio of shear-to-tensile strengths of the composite materials which were

of interest. 1In the case of tabbed specimens, Figure 1A, peel stresses
(tensile stresses in the lateral direction) in the bond layer between the

tab and main specimen body could lead to debonding and were of equal interest
with the shear stresses in the bond layer. Discussion of the stress analysis
of the design shown in Figure 1D will be postponed to a later section where
development of the streamline design concepts is discussed.

Tabbed Specimens

Figure 2 shows the geometry which was considered in the analysis of
tabbed specimens. Intere:: centered on stresses along the line B - B passing
through the tab-specimen bondline, with a boundary condition of uniform
horizontal motion along line A - A, representing the tab surface in contact
with a test machine wedge grip surface, the load being reacted at the right
side of the sketch in the form of a uniform nominal tensile stress opgp,

The specimen shown in Figure 2 represents a *45% E glass epoxy tab (Region 1)
bonded to a specimen body (Region 2) of 71.5% 0°/28.5% 90° E glass epoxy
material. The tab bevel angle, a, was given values of 10°, 20°, 30° and

90° in the analysis. Tab and specimen thickness values of 0.125" and 0.068"
(3.17 mm and 1.73 mm, respectively) were assumed for all cases. Bondline
stress distributions which were calculated are shown in Figure 3 as multiples
of opop. While Figure 4 focuses on the peak values of the three stresses

as functions of the tab bevel angle a. Note that the peak stress gy and

o™~

Uniform \.727 m)
Displacement Q125"
i 0o—] 3.1 mm)
(22.86 mm)
Material

Tab@ +45° € Glass Epoxy
Specimen® 71, 5%0°/28. 5%90° SP250-£

Figure 2. Tab specimen model assumed in stress analysis.
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Figure 4. Peak stress versus tab angle,

bond shear stress txy relate to the tendency for tabs to debond prior to
; tensile failure in the specimen, and values of oy or Txy much above about
] 5% opom would be expected to give rise to such debonding for typical specimen
materials. The tensile stress concentration, 0x/0pom, on the other hand,
is associated with the tendency for premature tensile failures to occur
in the vicinity of the end of the bevel. Judging from the results in Figure 4,
tab angles of 30° or less make the peak stress o, small enough to be negligible,
while the ox and 1,, stress peaks are significant factors even for tab angles
as small as 10°. Tt is useful to note that the latter stresses appear to
be nearly linear functions of the bevel angle.

R,

It should be understood that the stress distribution at the very end
of the bevel is not accurately predicted by standard finite element methods
inasmuch as one generally expects mathematical infinities to occur in the
stress distribution when a re-entrant corner formed by the junction of two
straight boundaries is present in a solid body. The predicted stress peaks
are more in the order of averaged stresses over the mesh element used to
model the region near the bevel end. Nonetheless, the trends which are
observed as a function of bevel angle are of interest, and there is reason
to believe that high predicted stress values occurring with high bevel
angles represent a greater tendency toward tab debonding.
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Based on these results one can expect tab debonding to bhe a persistent
problem of tabbed specimens even for 10° tabs. Once debonding occurs, the
bondline takes on the appearance of a crack under "MODE II" or shear loading.
Fracture-mechanics-type concepts need to be applied to the interpretation
of stress analyses of such situations, but in any case, it is expected that
the peak values of oy/o,op Might be considerably more severe for such cases.

D638 Specimens

Figure 5 shows the system which wzs used to model the ASTM D638 'dogbone"
specimen, together with pertinent results from the stress analysis. (The
tensile stress in the Y-direction was negligible and is not considered here.)
Note that peak Ty, amounting to 14% of onom is encountered along the curved
part of the boundary at about 0.2'" (5.1 mm) away from the end of the horizontal
boundary in the grip region. Moreover, a peak tensile stress amounting to 114%
of opom Occurs at about 0.7" (17.8 mm) from the start of the curved boundary
along the line y = 0.25" (6.4 mm) representing the extension of the horizontal
boundary of the gage region.

ANALYSIS REGION
3.0¢ rad
{A) :}___ﬂ
‘ , '
b —1 105"
0. 75+

0. 870 3,00 —d '
- ]
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L e =J
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Figure 5. D638 specimen and stresses.
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These results indicate that premature shear failure will again occur
with this specimen, and that tensile stress concentrations may give rise
to non-grip failures at low values of 0,5,  Both types of failure are
realized in practice as will be discussed subsequently.

Bowtie Specimens

Stress analyses of bowtie specimens were performed for three values of
taper angle corresponding to 5%, 10% and 12.5% slopes as shown in Figure 6.

(A) SPECIMEN GEOMETRY
12 7 mm
i

h \y { — ¢

L —

'53.97
‘ 119, 0 mm 3 J

mm

IGIDLY FIXED END (no horizontal or vertical displacement)

r~\~x[ — Onom

| =X
(B) ASSUMED BOUNDARY CONDITIONS
1.5
(C) THEORETICAL STRESSES N
NEAR POINT(D /
- .4
- 7
.'4 6Q°® O O/’ 'J
A2 f 41.3
. :
o | oo | T
Txymarg o
; Q& 2 nom
‘ ¥ 1
04f 1.1
.02}
]
o- Jio
l_‘4¥ ' A ol l A A A A J._. A - A - J
0 6 10 15

Figure 6. Predicted maximum stresses in bowtie specimen.
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Stresses shown in Figure 6C correspond to point 1 identified in Figure 6A
at the juncture of the horizontal and inclined segments of the boundary.
Again the stress o, in the lateral direction was found to be negligible,
but significant peaks in the shear and tensile stress distributions were
observed near point 1. As indicated in Figure 6C, these are essentially
linear functions of the slope of the tapered boundary, given by

/ xSo

Txy’ max = nom

ax/max = o,0m (1¥3.5 S)

where S is the slope of the taper region, i.e.,

g = h(in) _ h(cm
T 4.687 11.9

corresponding to Figure 6A in which 4.687'" (11.9 cm) is the horizontal length of
the taper, h its height. Specific cases which have been analyzed or considered
experimentally give the results shown in Table 1. The first entry in Table 1

Table 1. MAXIMUM STRESSES IN BOWTIE SPECIMENS

Where Txy/max Ix/max
Reported Slope %nom %nom
Grumman,
Ref. 1,2 0.0266 0.027 1.09
AMMRC "A" 0.05 0.05 1.175
AMMRC  "B" 0.10 0.10 1.35 \
AMMRC "c 0.125 0.125 1.46

refers to the original bowtie specimen developed at Grumman (Ref. 1,2) and
used for data reported in MIL-HDBK-17A (Ref. 3). The other entries refer
to AMMRC specimens which were subjected to both stress analysis and experi-
mental studies. As discussed later, shear failures were observed for
specimen slopes of 0,10 and above, and localized tensile failures were
experienced for all AMMRC specimens, indicating the level of shear and
tensile stress peaks to be objectionable for slopes equal to 0.10 or
greater. Favorable results reported by Grumman for the 2.7% slope specimen
suggest that the stress peaks for this slope are acceptably low.

EXPERIMENTAL STUDIES
Specimen Geometries and Materials

Experimental studies were carried out on tabbed specimens, D638
specimens and bowtie-type specimens. Geometries for the tabbed and bowtie
specimens are shown in Figures 7 and 8, while the geometry shown in
Figure 5A was used for D638 specimens. The specimen materials consisted
of 14 plies of 3M's SP250E (E glass epoxy) arranged in a 0°(71.5%)/90°(28.5%
stacking sequence (i.e., 015/904). For the tabbed specimens, tabs were
bonded using FM1000 film adhesive.

- s g e
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Tabbed Specimen Fabrication

Tabs were bonded using a special coffin-mold fixture for holding the
assembly in place and appplying clamping pressure. There was concern that
for low tab angles, poor bonding might occur at the part of the bondline
where the tab bevel is located, due to the lack of clamping pressure there.
Accordingly, a technique was devised, as shown in Figure 9, whereby an
insert having a slope equal to that of the bevel was located to allow for
transmission of clamping pressure from the flat surface of the clamping
platen to the sloping part of the tab. Other than this feature, standard
procedures for bonding of the FM1000 film adhesive were followed.

Types of Study
The experimental effort was two-fold in nature, including (1) detailed

observation of damage modes in the D638 and bowtie specimens together with
cursory examination of failure characteristics of the tabbed specimen and

\,\ 035" 13.43 mm)

/& | 221 mm r
| .
0.200"% — T (‘
53.97mm  119.0 mm
6.10 mm)m} m 10.0"* (254 mm) r_ T
olnu—r Q._
(9.1 mm) ¢y
MATERIALS - See Fig. 2
Bevel S 5
Lot Clamping  No. of ope
No. deg. Condition®  Specimens
I 9 U 10
2 30 u ] H
3 0 U 3 CONFIGURATION SLOPE'S' in mm
3C 10 [ 7 m mm
A 0.05 0484 1229
¢ C - clamping pressure applied to tab beve! during tab
bonding, per Fig. 9 B 0100 0.719 182
U = bevel unclamped during tab bonding c 0.1 0.8% 2.3

Figure 7. Tabbed specimens tested. Figure 8. Bowtie specimen configurations.

Clamping Pressure

L 7Paen7_ 7 7 7 7 7 7 71

Rl

Figure 9. Special arrangement for clamping bevel during tab bonding.




(2) comparison of failure levels measured in the specimen types of interest.
Subsequent discussion in this section is arranged in terms of these two
aspects of the experimental effort.

Failure Characteristics

General QObservation: No gage failures were observed in any of the tests.
Invariably specimens broke into strips on the order of 0.25" (6.4 mm) wide
which ran the length of the specimen lying between the test machine grips.
Initial damage characteristics of the various types of specimens are
illustrated in Figure 10.

(A) Tabbed Specimen Failures
i iiber break between tabs
especially at end of grip
region
Qriber breaks outside tab
region near end of beve!
(tab de-bonding

@

axial cracking , Fom " 74 7 ksi (B) Typical D638 Faitures

025 a5 (515 NPai

w 63-~127mm
Q708"
(a7.7-203 mmi

fiber pop-away alan om 73 7 ksi
505 M Pa}

(C) Typical Bowtie Failures

axial {shear) cracking

Ultimate Stress Nominal
for First Failure Ultimate Stress

Slgp_; % ksi NPa  ksi MPa
, 0 1.3 56 76.0 524
100 55. 6 383 72 8 502
125 35.1 242 65. 6 452

Figure 10. Failure characteristics of tension specimens.
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Tabbed Specimens: As shown in Figure 10A, failure of tabbed specimens
occurred either in the region between the tabs or outside the tab region

but close to the end of the bevel. In a few cases tab debonding was apparent.
Fiber breaks inside the tab region were often located near the end of the
portion subjected to clamping pressure by the test machine grips.

In the case of 10° tabs, the development of shear cracks parallel to
and near the bondline were observed in the course of the test in cases where
the clamping arrangement of Figure 9 had not been applied during tab bonding.
As seen later, low failure levels occurred in these cases.

D638 Specimens: Figure 10B illustrates typical failure characteristics of

D638 specimens. Axial cracking occurring at 0.25" to 0.5" (6.4 to 12.7 mm)

from the end of the wide portion of the specimen appears to be associated with

high shear stresses in this region indicated in Figure S5C, while fiber breaks
occurring at about 0.7" to 0.8" (17.8 to 20.3 mm) from the end of the wide

portion appear to be associated with the tensile stress peaks shown in Figure 5C.

The apparent shear-type failure is also seen in the moiré€ fringe pattern shown

in Figure 11. These fringes represent contours of equal axial displacement, each
fringe representing an increment of 0.001" in displacement (0.0254 mm). The

spacing of fringes gives a measure of axial tensile strain while curving of the
fringes indicates the presence of shear strain. (The pattern at zero load represents
a fictitious mismatch strain of about 0.0035 which must be subtracted out of strain
measurements at non-zero load). The nature of the pattern at the two highest loads,
especially the curving of fringes to the right of the crack, suggests that the
material outside the crack continues to be stressed after cracking, and therefore that
the crack does not completely penetrate the specimen.

Bowtie Specimen: As illustrated in Figure 10C, initial failures in the

-—

bowtie specimens were axial cracks initiating at the end of the tapered

region. Typical results for each taper value are shown in Figure 10C in

the form of nominal stress for first damage compared with ultinate nominal
stress developed by the specimen. Some tendency for fiber breakage to

develop at the end of the tapered region was apparent in post-test

examination of the bowtie specimens. The nominal stress for first failure
decreased with increasing taper angle, consistent with the prediction of
higher shear stress with increased taper (Figure 6). Combining the theoretical
shear stress predictions with the nominal stresses at which axial cracks
occurred does not give a very consistent shear strength value from observations
of nominal stresses at which the axial cracks developed, eith.r for the

bowtie or D638 specimens. The trend of the bowtie specimens toward lower
nominal stress for first damage with higher predicted shear stress is felt

to indicate that the shear stresses do have an important controlling effect

on development of early damage in the specimen.

Comparison of Tension Test Results

Tension test results for the specimens of interest are given in Figure 12.
Generally speaking, the 10° tabbed specimens with the bevel region clamped
during tab application give the highest average test results. Results for
30° tabbed, 10° tabbed/unclamped (during bonding) D638 and 5% taper bowtie




Nominal Stress Nominal Stress
0 MPa 97.8 MPa

L il

Nominal Stress Nominal Stress
460 MPa 489 MPa

Figure 11. Moire patterns for axial displacement, D638 specimen. 0/80 SP250E glass epoxy.
(Grating Density 39.37 1/mm)
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0 during tab bonding

U =10" Tabbed specimens with bevel unclamped
during tab bonding

Figure 12. AMMRC test results on SP250E glass epoxy laminates, 0,,/90, layup.

gave average test results which were close to identical. The 90° tabbed
specimens gave a relatively high average strength; average, highest and
lowest values for 90° tabbed specimens were all greater than those of the
30° tabbed specimens, for example, and only slightly less than those of
the 10°/clamp-bonded specimens.

During tests of the 10°/unclamped specimens there was a tendency, in
those which were closely watched during loading, for shear cracks to develop
in the bevel area. With the 10°/clamp-bonded tabs in which shear cracking
was absent, the highest of all test results were obtained. However, in
a few cases shear cracks were observed in the 10°/clamp-bonded tabs, and
in these, low strength values occurred. The statistics of the situation
being somewhat sparse, it is apparent that more testing is needed to firmly
establish such trends, but there is enough evidence to suggest that such
further testing is definitely warranted.
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While the 5%-taper bowtie specimens gave results which were comparable
to thaose of other specimens, the 10% and 12.5% tapered specimens fell
considerably below. This indicates that exploring the region below 5%
taper may give further improvement in the performance of the bowtie
specimen. The Grumman results shown in Figure 13 (Ref. 2} for 7781 woven
E-glass-reinforced laminates throws more light on the situation. Here the
2.7% taper bowtie configuration gives results which are somewhat above the
D638 test results and considerably above those of the 30° tabbed specimens.
Furthermore, it was reported in Ref. 2 that failures in the 2.7% taper
bowtie specimens were consistently in the gage region, a desirable
characteristic of good specimen design. The Grumman results indicate that
the low-taper bowtie specimen shows definite promise as an improved specimen
design and that the 30° tabbed specimen is inferior to the D638.

0 2.7% Taper
90 p— | D638 30" Tabbed Bowtie
ut. |
Stress, s 600 —
ksi

- MPa{'

B B Shoulder T
80— Radius

| -

3" 8"
~ - 18 28 W% 1-
}___ res

= 200 — W%

0 r- res
24 wt% res

B .

- B
60 u W%

— res

- 400 }—

» 36 wt% ;

™ res w%

50— res

Figure 13. Grumman test results for 7781 woven E - glass/epoxy laminates (Ref. 2) - warp direction.
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Discussion of Experimental Results

The primary aim of the experimental studies was to determine tc what
extent stress concentrations in the specimen can be correlated wit}) initial
damage and failure level of each specimen design, and to establish < hether
reduction of stress concentrations gives improved performance, The iata
given in Table 2 suggests that the test results for flat-bar type specimens,

Table 2. EXTRAPOLATED LAMINATE STRENGTH VALUES &

Extrapolated Strength = Measured Tensile Strength x SCF

Measured Strength Tensile Extrapolated Strength

Specimen ksi MPa SCF ksi MPa
0638 80.5 555 1.14 91.8 633
Bowtie-5% 81.5 562 1.17 95.3 657
10% 74.0 510 1.34 99.2 684

12% 66.5 459 1.39 92.4 637

i.e., D638 and the three bowtie designs, are reasonably well correlated
with tensile stress concentration factors (SCF) taken from Figures 5 and

6 for these specimens; the ''extrapolated laminate strength" is simply the
maximum laminate tensile stress occurring in the specimen at failure
calculated by multiplying oo, by the SCF. The effective laminate strength
obtained by this method lies in the range of 92 to 99 ksi (635 to 683 MPa)
which is fairly good agreement considering the scatter of the material.

The shear stress for first damage of the axial cracking type is similarly
compared for selected individual tests of the flat specimens in Table 3.
The biwtie shear failure levels are ieasonably close to each other, although
the shear stress for first damage of the D638 specimen is higher and
considerably out-of-line with the bowtie results.

Table 3. MAXIMUM SHEAR STRESS AT LOAD CAUSING FIRST DAMAGE

Nominal Stress For Maximum Shear Stress
First Damage At First Damage
Spec imen Shear SCF ksi MPa ksi MPa
p638 0.14]1 60.0 413 8.46 58.2
Bowt ie-5% 0.05 73.3 505 3.66 25.2
10% 0.10 55.6 383 5.56 38.3
12.5 0.125 35.1 242 4.39 30.2

In general, it appears that specimen performance correlates well with
stress concentration factors predicted by two-dimensional elgsticity analysis
for the flat-bar specimens.

The same type of evaluation has not been pursued with the tabbed
specimens in view of a more complicated failure progression that occurs
with tabs, i.e., once tab debonding shear cracking occurs in the tab region,
the stresses are likely to undergo considerable readjustment, making initial
SCF calculations invalid. As mentioned previously, fracture mechanics
analytical approaches are required to evaluate tab specimen performance
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if a shear crack or debond is present in the tab area. Results with the
10° clamp-bonded tabs suggest that elimination of initial tab-region cracking
by a further decrease of the tab bevel angle in combination with the clamp
bonding approach would give a data base for using the predicted SCF values
more effectively. Although such research investigations of tab angles less
than 10° would be fruitful, the question of practicality of providing
specimens with tab bevels less than 10° must be addressed in terms of
economy of specimen manufacture. Broadly speaking, the results of the
present study suggest that of the tabbed specimens considered, the 90° tabs
provide the best compromise of manufacturing economy and performance, the
30° tabs giving the least satisfactory performance. Although 30° bonded
tabs are almost an industry standard in the field of advanced composites,
they appear to be a poor choice for testing of fiberglass-reinforced
materials. Low performance of 30°-tab specimens is especially evident in
the results of Ref. 2 cited in Figure 13.

DEVELQOPMENT OF THE STREAMLINE SPECIMEN SHAPE

The streamline specimen design is in the tradition of the use of
analogies between hydraulic flow and elastic stress fields in bodies of
comparable shape which have been described from time to time in the literature
(Refs. 4, 5) as a means of designing machine parts having low stress
concentration factors. In the present case, the specimen shape is derived
from one of the flow lines for the system shown in Figure 14, which represents

x— X
R 7Ry 2 ow
TN T _ H

=N ——-.50

NS

N T .5

RN Tty = == Ll

y.l .95

Figure 14. Two-dimensional flow lines in channel with right-angle expansion.

two-dimensional flow in a channel with an abrupt right-angled expansion.
The solution of the flow field, i.e., the shapes of the flow lines, can
be calculated in closed form by well-known methods (Ref. 6] involving the
application of the Schwarz-Christoffel transformation in conjunction with
an analytic function representation of the problem. The analogy which is
used to relate the stress field in the tension specimen to the flow field
in Figure 14 requ..2s a scale change for the y-coordinate given by

ys= y’/Ex/ny .

PETERSON, R. E. Stress Concentration Factors. John Wiley & Sons, Inc., New York, 1974, p. 83-84.
HEYWQOD, B. Drsigning by Photodastictty. Chapman and Hall, Ltd., London, 1st od, 1952,

WALXER, M. The Schwertz-Christoffel Transformation end Its Application - A Simple Exposition. Dover
Publications, New York, 1964, p. 53-6S.

L el it
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where y' is the lateral coordinate in the flow field problem of Figure 14,
y the related coordinate in the elastic stress field, and E_ and G__ are
axial Young's modulus and shear modulus of the material beiﬁg test®d. The
parameter Y in Figure 14 represents the dimensionless position in the y!
direction of the flow line under consideration at the far right end of the
system where the lines are parallel; i.e., Y = 0.5 refers to a flow line
which is halfway between the straight upper boundary and the lower boundary
containing the change in shape, Y = 0.25 refers to the line lying 1/4 the
distance from the upper to the lower boundary, etc.

Studies have shown that tension specimens having boundary shapes corre-
sponding to flow lines for which Y is not greater than 0.5 successfully
eliminate intermediate tensile stress peaks in the expanding part of the
specimen. In addition, for Y less than about 0.4, the shear stress can
be limited to about 6% of ooy, an acceptable.level. Figure 15, for example,

{A) QUARTER-SPECIMEN PROFILE GEOMETRY

Yin | ¢ EXPANSIGN RATICY'ZO
<04
2F
0__' ¢
0 |— —— _ (B) STRESS DISTRIBUTICNS 10 f
™~
o “ ———q e
— ) ~ T, Chom
o-noms' - = _ -_IV_— ] 06
at 04
2 2
i | P
oL 00
lo i 1 i 1 i U "
2 4 X N — 6

Figure 15. Stresses in typical streamline specimen.

shows the distribution of 64 and t4v along the boundary (where these are
maximum for a given x) of a specimen for which Y = 0.4. Figure 15A shows
the geometry for one quarter of the specimen, while Figure 15B shows the
predicted stresses. It is clear that o, is nowhere higher than in the gage
region where it reaches a value of 1.0, the value of o,,,. Peak shear
stresses of about 0.065 or 6.5% of oo, appear to be quite acceptable.

Figure 16 shows the half-specimen geometry based on the profile of Figure 15.

Several experimental programs aimed at evaluation of the streamline specimen
have been underway at AMMRC for glass epoxies and graphite epoxies, as well as for
non-fibrous materials such as structural foams and homogeneous plastics. These
efforts have been conducted under both monotonic and cyclic loading. Results of
these efforts, which will be reported subsequently, indicate that the streamline
specimen design has much promise an an improved specimen for tension testing. In
addition to in-house evaluation, a program of round-robin testing of graphite
epoxies, aimed at a comparison of the streamline shape with the D3039 tabbed
specimen, has been supported by AMMRC in conjunction with ASTM Committee D30.04.
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Figure 16. Half-specimen geometry for specimen of Figure 15.

CONCLUSIONS

Results of the present study give strong evidence that poor performance
of tension test specimens for glass-reinforced composites is associated
with the presence of tensile stress concentrations in the test specimen,
and that elimination of suck stress concentrations by improved design of
the specimen geometry will result in desirable improvements of tensile
strength measurements.

The sireamline specimen shape is capable of complete elimination of
tensile stress concentrations, with marked freedom from shear stresses which
can cause first damage to occur at low nominal stress values.

Bowtie specimens having taper ratios less than 5% look promising, espe-
ci1ally in view of the results reported in Ref. 2.

Flat specimens with well-designed transition regions appear to be
generally more desirable than tabbed specimens. Not only do they promise
better ultimate performance, but the manufacturing economy seems favorable
in view of the possibility of mass producing flat specimens by template-
controlled routers. AMMRC is currently undergoing an assessment of specimen
machining methods in which numerical control methods will be compared with
template-controlled profiles, etc.

In the case of tabbed specimens, 90° tabs appear to give adequate per-
formance at minimum fabrication effort. Bevelled tabs of greater than 10°
bevel angles appear to be inferior, especially if measures are not taken
to clamp the bevel during tab application.
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Bell Helicopter Textron, P.0. Box 482, Ft. Worth, TX 76101 1 ATTN:  ard D. Rummel
11 ATTN: l;:mnt Jujc]r‘v;l’és Jr. Material Concepts, lnc., 2747 Harrison Road, Columbus,
: OH 43204
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