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NOTATION

x,y,z Cartesian coordinate system

iz, 7f Transverse shear stresses

Yzz, YVz Transverse shear strains

TSz, 78V Adhesive shear stresses

ts, is, to Thickness of the sheet, adhesive and patch respectively

G'13, G'23  Transverse Shear moduli of the patch

Gis, G2s Transverse shear moduli of the sheet

Gs Shear modulus of adhesive

Uo, 1o; Us, vs Inplane displacements of the patch and sheet respectively 4
w Transverse displacement of the structure

x' Axes of orthotropy of the patch

6 Angle measured from local axis system to the material symmetry axis of the
patch

X.)y" Axes of orthotropy of the sheet
0Angle measured from local axis system to the material symmetry axis of

the sheet

Ke Element stiffness matrix for the adhesive

K1 ., Kip Mode I stress intensity factor before and after patching, respectively

KTu, KTP Stress concentration factor before and after patching, respectively

8 Vector containing the degrees of freedom of a bonded element

. :

At,.
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1. INTRODUCTION

Advanced composite materials are finding increasing application in aerospace structures.
In practice these materials may contain defects such as voids, splits, delaminations and

cracks produced by either moulding, machining, fatigue or impact damage [I, 2]. These defects
may act as stress raisers which could precipitate failure, depending on the loading, geometry
and the "toughness" of the material. As a result attention has recently been focused on developing
methods to predict the residual strength of notched composites [3,41 and on developing repair
procedures [5,61. In the latter area the Aeronautical Research Laboratories, Australia, have
pioneered the use of adhesively bonded fibre reinforced plastic patches to repair flaws in metallic
components. This procedure has been successfully used in the repair of stress corrosion cracks
in the wings of Hercules aircraft, fatigue cracks in the landing wheels of Macchi aircraft and in
the lower wing skins of Mirage II aircraft [7,8,9]. The present paper is concerned with the
extension of the analytical methods developed by the authors for the analysis of the repairs to
thin metal structures (e.g. wing skins) to cover the case when the structure is made of a fibre
composite material. In this approach particular attention is paid to the adhesive which bonds
the patch to the skin and allowance is made for the shear deformation in the skin, adhesive
and patch. It is assumed that the skin is made as an orthotropic laminate and that, in the case
of a composite patch, the patch is also an orthotropic laminate.

As illustrative exaniples the repairs of a crack in a graphite/epoxy panel, and of a hole
whose diameter is the same lenght as the totL' crack length in the previous case are studied.
As the repair material titanium sheet, boron/epoxy and graphite/epoxy laminates are considered.
Various lay ups in the damaged graphite/epoxy panel are investigated. As a result of this analysis
the use of an undirectional laminate is recommended for repairing cracks whilst the use of titanium
or a quasi-isotropic lay up of boron/epoxy is recommended for repairing holes in composites.

2. METHOD OF ANALYSIS

Let us begin by considering a thin composite patch which is bonded to a thin sheet of fibre

composite material. The x and y axes are taken in a plane parallel to the midsurface of the sheet
with the z axis in the thickness direction. Under in-plane or transverse loading, shear stresses
will be developed in the adhesive bond and it is reasonable to assume that these will be continuous
across the adhesive-sheet interface as well as across the adhesive patch interface. Furthermore
these shear stresses, riz and ryz, are zero at a free surface or at a plane of symmetry, and it is
reasonable to assume that, since the patch and the sheet are thin, these stresses vary linearly
with thickness in the patch and the sheet. With these assumptions the distribution of the shear
stresses rzs and iys is found to be as in [101:,

fzz= z) 78z

S= f(z) Tsy (I)

where

f (z) = 2 z/t, for 0 < z < t./z

=I for t,/2 4 z < t,/2 + t.

= (t.12 + to + to - z)to for ts/2 + in < z < t2 + to + ta (2)

and where rz, rtv are the shear stresses in the adhesive and are assumed to be constant through
the thickness of the adhesive. The z = 0 plane is taken at the mid-surface of the sheet for a
doubly reinforced sheet and at the lower surface of the sheet for a singly reinforced sheet. Here



t., t. are the thicknesses of the patch and adhesive respectively while t, is the sheet thickness in
the doubly reinforced case and is twice the shee! ihyckm'ess in the singly reinforced case. This
stress distribution is shown in Figure 1.

Let us consider the case of a doubly reinforced sheet. If the x y axes are at an angle 0 to
the axes of orthotropy, denoted by x' y', for the composite patch and at an angle b to the axes
of orthotropy, denoted by x" y*, for the composite sheet then, in the patch

,= G'13 (Y.. coss 0 + yy- sin 0 cos 0) - G'23 (yvz sin 0 cos 0 - y_, sin" 0) (3)

Tip = G'13 (yu sin 8 cos 0 + yzz sin s 0) + G'2s (yYZ coss 8 -d y sin 0 cos 0) (4)

where G'1s and G's are the interlaminar shear moduli of the patch in the x' y' axes system. Here
bw bu w bi'

Yzz =-b + -u; Vz = bw + 5
bX bz by(5)

where u, v, w are displacements in the x, y and z directions respectively.
Substituting for .,, and Ty. as given by equation (I) and for yz and yi, as given by equation

(5) into equations (3) and (4) yields, after a slight rearrangement of terms,

-A+ b =f(z7, 1y -A -A(6

bu v w bwzfs + zfA =f(z) 8.s -fs~- --- (7)

where

fi = (G'13 - G'23) sin 0 cos 0

f2 = G'2s cos' 0 + G'13 sins 0

f3 = G'1 3 cos' 0 + G's sin' 0 (8)

A similar system of partial differential equations may be obtained for the u and v displacements
in the sheet viz:

bu D%, bw bw
hi -- + h2  - f(z) r, - hi - - h 2 - (9)

bz Zz bX by

bu bv 'w bw
h3 - + hi - =f(z) 7&z - hs -- hi -- (10)

Dz bz X b

where

hi = (Z4s - 6s) sin 0 cos

h2 = s cos ' + Ssin 6 (1!)

= Gis cos' 6 + Gs sins 0

and where 613, Ga are the interlaminar shear moduli of the sheet in the x', y' axes system.
Similarly in the adhesive layer we obtain

bu Dw
- = Ga -... (12)bz DX

- = G- sy - -- (13)bz by

If we now assume that the vertical deformation w is independent of z, which is consistent with
classical plate theory and Mindlin plate theory, and that the u and v deformations are continuous
across the sheet-adhesive interface and the adhesive-patch interface then equations (6), (7), (9),
(10), (12) and (13) may be solved to give u and v in terms of w and the shear stresses in the
adhesive. Full details of the solution process for the case when w = 0 and the sheet is metallic
is given in reference [101. From this solution it is found that the shear stresses r., atid -rv may be
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related to the displacements at the midsurface of the patch, which we will denote by uo, vo
and w, and the displacements at the midsurface of the sheet, which we will denote by u, vs and
w, by the following expression:

T ( =uo - us +f7 ' f/fg + (VO - v, +f 7 3)f4 If

To uo - us + f7 f)A1f8 + Vw- vs + fil (5
= - + 'o -- ',+ f, 3y fA fs (15)

where for convenience we have denoted

f4 = 3tofil/8 (fafs - fl') + Is hi/4 (h2hs - hi 2)

fs = ta/Ga + 3tofz/8 (fafs -fl') + t, h214 (h2h3 - h1
2)

A = ta/Ga + 3tofs/8 (fafs -f0) + Is hs/4(hzhs - hil)

f7 = (ta + i,/2 + to12)

fs = fsfe - f4 (16)

For a singly reinforced sheet, i.e. a patch on one side only, the term t1/4 in the expressions
for f4,fs andf6 is replaced by 31,/8.

In the specific case when bending effects are negligible and when the sheet is isotropic the
analysis reduces to that given by the authors in [10]. Furthermore in the case when G'is = G'2 3

(= Go) and G 2s = G13 (= G.), which occurs when the sheet and the patch are transversely
isotropic we have

f4 =fi = hi = 0,f2 fs = Go, ha = h3 , G, fA =f = ta/Ga + ts/ 4G, - 3to/sGo (17)

so that

I' ;,o\w\/ Ia 31o I.
+l (1a - Us + +l Ito  o +  +-- (18)

2 2= O /( Ga o - -4G

T8M Vo -s + (ta+ -+ / Ga + 3to/8Go + ts/4G8 (19)

Indeed in the special case when bwb/x = ,w'by = 0 equations (18) and (19) coincide with the
expression given, without detailed proof, in [12]. Furthermore, inspecting equations (14) and
(15) we see that in order for 7i;, 7,, to be zero we require

VO-I'= (Ia ± 2 8 (20)

Uo -s xa (21)

which is in agreement with classical plate theory.

3. ELEMENT STIFFNESS MATRIX

Having thus obtained the relationship between the adhesive shear stress and the displace-
ments in the patch and the sheet it is a relatively simple task to formulate the stiffness matrix
for an "adhesive" element. We begin by adopting the standard assumption governing the sheet
and patch [10, 12] viz:

The finite element model for the sheet and the patch assumes a state of plane stress.
With this assumption it is first necessary to determine the strain energy due to the shear

deformation in an element of the structure viz:

V ff VYzz + lz Yzdzdxdy (22)

4



Here the z intergration is over the total thickness of the sheet, the adhesive and the patch while
the x and 'y integration is over the area of the element. Although in the following analysis we
will only consider an element which is triangular in planform (see Fig. 2) the formulation may
easily be extended so as to allow the element to be of any standard shape.

m

I X" Y.) IX1'yd

FIG. 2 ELEMENT OF ADHESIVE

Using the same notation as in the book by Zenkiewicz [13] we define a vector f such that

f (U0, o, U., v,, w x, 0Y)

- (Nb) T  (23)

where as explained in [13] page 18, the components of N are generalised functions of position
and

sr iT 1st, &M, (m 24)

where

ST (uo, 'ou,, u i,,, 1,, , tg, 6, ) (25)

Here, as in [13], Oz = - 6w/y, 6, = w/x.

The strain vector y may after some manipulation be expressed as

YT = (y,. v,) (D)T (26)

where
T T = (% , 2 7 )

and the matrix D, which depends on the thickness coordinate z, is given by:

D - (h? hh h-h3

5



in the patch
I (10O) in the adhesive (28)

Go 0O1

f(z) f- f A in the sheet

(f -f 2f)\ fA - fA

and wheref(z) is as defined in equation (I).

Making use of equations (14) and (15) and (23) we find that v may be written as

= ANS (29)

where

f , -f-, - of6 -f4 ,0 , f, AA (30)
A liIf[Af, -4 , o, -f,f f A, I

Substituting for t, as given in (29) into equation (26) gives

y = DAN6 (31)

If we now substitute equations (I), (29), and (31) into the strain energy expression we obtain

V = I JJ(AN r)T (f(z) Ddz)AN6dxdy (32)

The stiffness matrix K" may now be obtained, as outlined in (13), by differentiating V with
respect to 5 and is given by

K" = ff (AN)T(fJf(z) Ddz)AN dxdy (33)

As before the double integration is over the area of the element while the integration with respect
to z is over the thickness of the structure.

This formulation looks quite complex but in the case when the interlaminar shear moduli
of the patch (and the sheet) are equal it simplifies considerably. For example, let the structure be
patched on both sides and let G'13 = G' 23 (= GO) and G = G23 (= G,). This gives

Ke = 2 ((tGa + t0 3Go ± t,/6G)fJf (AN)T(I 0 7) AN dxdy' (34)

where A has simplified to

S(1, 0 ,- 1I, 0 0, 0, ) 1 . t, 3tp'
A 1 , 0, -I, 0, _A, 0/ . + G+ 8G0-

and as before f 7 = t. + 1,/2 + to12. It is important to note that as the adhesive thickness tends
to zero (i.e. t. -' 0) the stiffness matrix Ke tends to a constant and non zero value. This should
enable the present approach to be used to model internal delaminations as well as the repair
problems which will be considered here.

This approach coincides with the analysis presented in [10] when Zw/x = Zuw/ly = 0 and
the sheet is isotropic. Furthermore when Zw( x = bw[by = 0 but the sheet is a composite
laminate the functional form of the shear stresses 7, and ;,, as given by equations (14) and
(a 5), is similar to that given in [10]. The difference is that the expressions for f 4, fs, and f 6 given
in the present paper are more complex than those given in [10] for an isotropic sheet.

4. ILLUSTRATIVE EXAMPLES
Let us now consider the repair of damaged fibre composite panels. The basic ply is a graphite/

epoxy (Narmco Thornel T300/5208 with the following material properties E, = 141 0 x l03
MPa, ',2 = 0.31. G, 2 = 5.18 X 103MPa, EIE 2 = 14.96. Since it is often stated that com-
posites are relatively notch insensitive two particular kinds of damage were considered. The
first is a centrally located crack 38. I mm long in a graphite epoxy panel of dimensions 508 mm x

6



635 mm • 2.29 mm. The second kind of damage is a centrally located hole with a diameter
of 38 1 mm in the same paneL. Various panel lay ups were considered but to enable a simple
comparison of the numerical results the panel thickness was taken as 2.29 mm for each lay up.
The moduli of the panel were taken to be as for a symmetric lay up of either

(1) (0, : 45 90),

(2) (0,90)
(3) (0,1 45)
(4) (V 45),r
(5) (0)s

These laminates were chosen because of their similarity to skin lay ups in existing or planne-d
military aircraft. In each case the panels were assumed to be subjected to a uniform tensile stress
at these edges. Because of the symmetrical nature of these problems only one half of the structure
was analysed.

The finite element mesh for the cracked panel consisted of 147 constant strain triangles,
142 quadrilateral elements and a special crack element, (see reference [10].)

The mesh for the panel containing a hole consisted of approximately the sam, number of
elements.

To these models was added a finite element model of the various bonded repairs (i.e. patches).
A patch was assumed to be placed on both sides of the panel. Each patch is stepped in thickness
and has dimensions 152 mm ,, 50.8 mm with a maximum thickness of 0.762 mm. which occurs
in the middle of the patch; see Figure 3. The patches considered were:

(a) Titanium
(b) A unidirectional graphite epoxy patch with the fibres in the direction of the load.
(c) A graphite/epoxy laminate with the same moduli as the sheet
(d) A quasi-isotropic (e.g. 0'-- 45,90) boron epoxy laminate.

The finite element model of these patches consisted of 150 constant strain triangles and 150 of
the adhesive elements described above. In this problem the analysis simplified considerably
since the sheet was patched on both sides and the load was acting in the plane of the midsurfare
of the sheet. As a result the structure did not experience bending effects. i.e.

OW 1w
w=0 (36)

This in turn simplified the formulation of the adhesive stiffness matrix, since it was now only
necessary to specify the way in which the uand r displacements varied in the adhesive element.
In this paper we follow the approach given in [10] using a triangular element and taking

u ((a t bix f Cit') i -(a, f hjx - cjv) u1 : (am - h,,x - Cmy) un) 2A (37)

and a similar expression for v where as in [131

at -- xj),m -- X.Yj, b- Y, -- .i, Ct x, xj (38)

and aj, am., b. bin, cj and c. are obtained by a cyclic permutation of ij. ti. Here (xi..vi). (.vJ..vJ)
and (x., yi) are the coordinates of the corners of the element, A is the area and u, are the
displacements at the ith node (see Fig. 2).

The effect that patches have on the damaged panels is described below where we first consider
the repair to the cracked panel using either patch (a) or patch (b). In Table I we see the ratio of
the stress intensity factors KiplKi., where Kip and Kiu are the values of the stress intensity factor
after and before patching respectively. The values obtained for Ku, coincided with those pre-
viously published and which differ from the value obtained for an isotropic sheet by only a few
percent.

7
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Table I. Ratios of stress intensity factors

Kip Kiu

Sheet Material Repair Material

Unidir. graphite epoxy Titanium

(0, : 45,90), 0-16 0.14
(0190), 0-14 0-14
(0 - 45), 0.17 0.16
(. 45), 0.11 0-11
(0), 0-18 0-17

From this table we see that as a repair to cracked graphite epoxy sheets the unidirectional
graphite laminate, %kith the fibres perpendicular to the crack, viz in the direction of the load,
and the titanium are almost equally effective in reducing the stress intensity factor at the crack
tip. This is consistent with the results gi~en in [11] which deals with the repair of a crack of the
same length in an aluminium panel of the same dimensions as considered here. Indeed in [I I]
the authors show that a slight increase in the stiffness of the patch does not greatly reduce the
stress intensity factor. Nevertheless at first glance it is surprising that the titanium, which has
a Young's modulus of 106.7 • 103 MPa, is as effective as the unidirectional graphite epoxy
laminate with Ei1 - 141 0 - 103 MPa. The explanation of this phenomenon is partly due to
the fact that, as indicated above, the rate of reduction of the stress intensity factor with increasing
stiffness is small and partly due to the fact that the transverse shear modulus for the titanium
(G13  G23 = 40.5 - 103 MPa) is much greater than that of the graphitejepoxy (G. 3  G13
=5.2 103 MPa). In titanium the crack opening displacement is resisted by virtually the entire
thickness of the titanium, whereas in graphite the low value of its transverse shear modulus
results in the plies being unequally stressed with the plies closest to the surface providing the
most resistance to the opening of the crack.

Although here we have confined our attention to unidirectional graphite patches there are
many reasons for using a uni-directional boron patch to repair cracks. One of the main reasons
is that standard eddy current inspection procedures may be used to inspect for crack growth
under a boron patch. For further details concerning the advantages of boron,.epoxy over carbon,'
epoxy laminates as repair material see [7].

Although we have seen that both repairs give rise to approximately the same reduction in
the stress intensity factors there are several reasons why a unidirectional repair should be used
in preference to a titanium patch. Indeed the reasons for recommending use of a uni-directional
laminate to repair cracked composite sheets are the same as for recommending the use of a
unidirectional laminate to repair cracked metallic sheets and are gien in [7. 8). These are best
illustrated by considering the recent repair to cracks in the lower wing skin of Mirage III aircraft
in service with the Royal Australian Air Force: see reference [8]. This repair was a unidirectional
boron/epoxy laminate with the fibres perpendicular to the crack and was designed by the authors.
In this case the crack lay in vicinity of the spar and the root rib intersection. The use of a titanium
patch, with its parasitic stiffness in the direction parallel to the crack, could easily have changed
the strain distribution in the spar, which was itself stress critical. However by using the unidirec-
tional boron laminate the strain in the spar, with a cracked but patched wing skin, was restored
to the value of the strain in a spar with an uncracked wing skin: see reference [8].

Let us now turn our attention to the repair of holes in graphite/epoxy laminates. In Tables 2
and 3 are given the ratio of the stress concentration factors KTi,"KTr, and the ratio ofthe maximum
fibre stress to the applied stress op/a. Here KrP and KTI' are the stress concentration factors in
the sheet after and before patching respectively. The values obtained for KTV coincided with those
previously given in (3].

9



Table 2. Ratio of Stress Concentration Factors KTPiKTc

Panel laminate
Patch 0/ J- 45 45 0190/ 45 0/90 0

a 0.32 0.32 0"33 0.32 0.26
b 0.30 0.28 0"32 0.26 0.26
c 0.43 0.54 0-46 0.40 0.26
d 0-36 0.32 032 0.37 0.31

Table 3. Ratio of Patch Stress to Sheet stress apr/

Panel laminate 0/, 45 . 45 0/90,/ 45 0"90 0
Patch

a 3.05 4.2 2.69 2.25 2-32
b 3.94 5.4 3.46 2.86 3-08
c 2-43 1.73 1.91 2.02 3.08

d 2-73 3.82 3-46 2-01 2-12

From Tables 2 and 3 we see that when repairing holes in composite sheets under uniaxial
loading it is best to use a unidirectional laminate with the fibres in the direction of the load.
Indeed one may generalize this and say that if, under an arbitrary system of loads, one knows
the direction of the principal stress which is primarily responsible for failure then it is best to
use as a repair a unidirectional laminate with the fibres in the direction of the principal stress.
In general however one may not know this direction and in this case the use of a unidirectional
laminate as a repair could be unconservative. Indeed in this situation the use of a bonded
titanium, or a quasi-isotropic boron patch as a repair is quite common [5]. Furthermore consulting
Table 2 we see that the titanium and the quasi-isotropic boron patches give approximately the
same ratio of the stress concentration factors which is significantly lower than that obtained
using a patch with the same lay up as the skin material.

As a result since bonded repairs often take place either in the field [5, 8] where the direction
of the principal stress, may not be available, or in a repair depot the recommended repairs to
holes in composite sheets is either a bonded titanium or a quasi-isotropic boron patch. On the
other hand if the panel contains a distinct crack the recommended repair is a unidirectional
laminate with the fibres perpendicular to the crack.

5. CONCLUSION

An advanced finite element method for analysing the repair of damaged composite laminates
has been developed. Subsequent analysis has shown that either a titanium or a quasi-isotropic
boron repair is equally suited to the repair of holes while a unidirectional laminate, with its
fibres perpendicular to the crack, is best suited to the repair of cracks in composite laminates.
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