<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

UNCLASSIFIED

Title: A DISTRIBUTED GRAPH ALGORITHM: KNOT DETECTION

Authors: J. Misra, K. N. Chandy

Report Number: AFOSR-TR-82-0647

Date: Aug 82

Page: 1/2
A DISTRIBUTED GRAPH ALGORITHM:
KNOT DETECTION

J. Misra
K. M. Chandy

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

ABSTRACT:

A knot in a directed graph is a useful concept in deadlock
detection. This paper presents a distributed algorithm based
on the work of Dijkstra and Scholten to identify a knot in a
graph by using a network of processes.

KEY WORDS AND PHRASES:
Distributed Algorithm, Message Communication, Graph Algorithms.
Knot

CR Categories: C.2.4, D.1.3, F.2.2, G.2.2

* This work was supported in part by the Air Force under
grants AFOSR 81-0205.
A DISTRIBUTED GRAPH ALGORITHM: KNOT DETECTION

J. Misra and K.M. Chandy

Computer Sciences Department
University of Texas
Austin TX 78712

Directorate of Mathematical & Information Sciences
Air Force Office of Scientific Research
Bolling AFB DC 20332

Approved for public release; distribution unlimited.

Accepted for publication in ACM Transactions on Programming Languages and Systems.

Distributed algorithms; message communication; graph algorithms; knot.

A knot in a directed graph is a useful concept in deadlock detection. This paper presents a distributed algorithm based on the work of Dijkstra and Scholten to identify knot in a graph by using a network of processes.
1. INTRODUCTION

A vertex v_i in a directed graph is in a knot if for every vertex v_j reachable from v_i, v_i is reachable from v_j. Chang [1] shows that knot is a useful concept in deadlock detection. Dijkstra [2] has proposed a distributed algorithm for detecting if a given process in a network of processes is in a knot. His algorithm is based on his previous work with C. S. Scholten [3] on termination detection of diffusing computations. We propose an algorithm for knot detection which is also based on [3], but is conceptually simpler. We also discuss the extensions of our algorithm to a more general class of problems.

2. MODEL OF A NETWORK OF COMMUNICATING PROCESSES

A process is a sequential program which can communicate with other processes by sending/receiving messages. Two processes P and Q are said to be neighbours if they can communicate directly with one another without having messages go through intermediate processes. We assume that communication channels are bi-directional: if P can send messages to Q then Q can send messages to P. A process knows its neighbours but is otherwise ignorant of the general communication structure of the network.

We assume a very simple protocol for message communication; this protocol is equivalent to the one used by Dijkstra and Scholten [3]. Every process has an input buffer of unbounded
length. If process P sends a message to a neighbour process Q, then the message gets appended at the end of the input buffer of Q after a finite, arbitrary delay. We assume that (1) messages are not lost or altered during transmission, (2) messages sent from P to Q arrive at Q's input buffer in the order sent, and (3) two messages arriving simultaneously at an input buffer are ordered arbitrarily and appended to the buffer. A process receives a message by removing it from its input buffer.

The assumption of unbounded length buffers is for ease of exposition. We show, in section 5.1, that the input buffer length of process Q can be bounded by the number of neighbours of Q.

3. A DISTRIBUTED ALGORITHM FOR KNOT DETECTION

Consider a network of processes corresponding to a given directed graph G; there is a one-to-one correspondence between processes in the network and vertices in the graph and a process p_i in the network represents vertex v_i in G, for all i, and p_i, p_j are neighbours if edge (v_i, v_j) or (v_j, v_i) exists in G. Process p_1 initiates a computation to determine if v_1 is in a knot.

3.1 Local Variables of Processes

Every process p_i maintains the following variables.

succeeding(i) : this boolean variable is set true when p_i determines that v_i is reachable from v_1.
Initially this variable is false for all p_i, $i \neq 1$ and is true for p_1. Eventually succeeding(i) will be true if and only if v_1 is reachable from v_i.

preceding(i) : Same as above except that it represents whether v_1 is reachable from v_i.

subordinate(i): this is integer valued and will be set to 1 if and only if succeeding(i) and not preceding(i); else it will be set to 0. v_1 is in a knot if and only if subordinate(i) is eventually zero for every process i.

cs(i) : this is an integer valued variable, which keeps the partial sum of some subordinate variables. A goal of the program is to establish the following at termination:

$$cs(1) = \sum_{i} \text{subordinate}(i)$$

Therefore v_1 is in a knot if and only if $cs(1) = 0$ at termination.

We discuss in section 3.2 the different types of messages sent among processes. In short, a process p_i may send a message to p_j and p_j sends an acknowledgement (ack) to p_i for every message that p_j receives from p_i. We introduce the following variables related to message and ack transmission.
num(i) : is the number of unacknowledged messages, i.e. the number of messages sent by this process \(p_i \) for which acks have not been received so far.

father(i) : is a process from which \(p_i \), \(i \neq 1 \), received a message when its \(\text{num}(i) \) was last zero. father(i) is undefined initially.

Our goal is to maintain a rooted tree structure at all times over processes whose \(\text{num} > 0 \); father will denote the parent in this tree structure and \(p_1 \) the root.

3.2 Messages Sent Among Processes

There are two types of messages sent between neighbours in this algorithm.

(i) Structure message or message : has 2 components

\((\text{type}, p)\) where, \(\text{type} = \text{suc} \) or \(\text{pre} \), and

\(p \) is the identity of the sender process. Process \(p_i \) sends \((\text{suc}, p_i)\) to \(p_j \) if there is a path from \(v_i \) to \(v_j \) in which \(v_i \) is the prefinal vertex. Process \(p_i \) sends \((\text{pre}, p_i)\) to \(p_j \) if there is a path from \(v_j \) to \(v_i \) in which \(v_i \) follows \(v_j \) in the path.

(ii) Acknowledgement message or ack: is of the form \((\text{ack}, c)\), where \(c \) is an integer. Acks are used to update \(cs \) and \(\text{num} \). The entire computation terminates when process \(p_1 \) receives acks for all messages that it sent; i.e. when \(\text{num}(1) \) is decremented to zero. Acks for all messages are sent back.
as soon as the messages are received except for messages received from father; an ack to a father is sent only when num next becomes zero.

Convention

It is convenient for purposes of proof to define an atomic action within which invariant assertions may be temporarily violated and outside which the invariants must hold. We write \(<A_1; A_2; \ldots; A_n> \) to show that executions of statements \(A_1, A_2, \ldots, A_n \) must be considered as an atomic action. We use Pascal like notation with the added commands send and receive to write our programs.

3.3 Knot Detection Algorithm

Convention

We write succeeding, preceding, etc. for succeeding(i), preceding(i), when the context is clear.

Overview of the Algorithm

As stated earlier, one goal of the algorithm is to maintain a rooted directed tree structure over the set of processes \(p_i \) whose num(i) > 0. The root of the tree will be \(p_1 \) and father(i) will be the parent in the tree for \(p_i, i \neq 1 \). In order to maintain the tree structure, we must ensure that, (1) a process \(p_i, i \neq 1 \), acquires a father only if it does not have one currently: this is guaranteed since a process acquires a father only when its num(i) becomes nonzero, and (2) a process \(p_i \) can be removed from the tree, i.e. set its num(i) = 0, only if it was a leaf node:
this will be guaranteed by every process sending its last ack
to its father. Computation terminates when the tree is empty.

We will also maintain the invariant (1) given in lemma
4.2, which states that the sum of cs over all processes plus
those in the acks in transit equal the sum of subordinates
over all processes. The algorithm will ensure that if num(i) = 0
and i≠1, then cs(i) = 0. Therefore, when the tree is empty,
cs(i) = 0, for all i, i≠1 and hence
\[cs(1) = \sum_i \text{subordinate}(i). \]
Process p_1 is in a knot if and only if cs(1) = 0.

3.3.1 Algorithm for p_1

Initialization

\[
\begin{align*}
\text{begin} \\
& \text{father is undefined;} \\
& \text{subordinate} := 0; \quad \text{cs} := 0; \quad \text{num} := 0; \\
& \text{<succeeding} := \text{true;} \\
& \text{num} := \text{num} + \text{number of successors of } v_1; \\
& \text{send(suc, p_1) to all successors>;} \\
& \text{<preceding} \not= \text{true;} \\
& \text{num} := \text{num} + \text{number of predecessors of } v_1; \\
& \text{send(pre, p_1) to all predecessors>} \\
\text{end}
\end{align*}
\]

Upon receiving a structure message (type, p)

send (ack, 0) to p \hspace{1cm} (M1)

Upon receiving an acknowledgement (ack, c)

\[
\begin{align*}
\text{begin} \\
& \text{cs} := \text{cs} + c; \quad \text{num} := \text{num} - 1; \hspace{1cm} (M2) \\
& \text{if num} = 0 \quad \text{then terminate computation} \\
& \hspace{1cm} \{ v_1 \text{ is in a knot if cs} = 0 \} \\
\text{end}
\end{align*}
\]
3.3.2 Algorithm for \(p_i, i \neq 1 \)

Initialization

begin
father is undefined; subordinate := 0; cs := 0, num := 0;
succeeding := false; preceding := false
end

Upon receiving a message \((\text{type}, p) \)

begin
{update father or send an ack immediately}
if num = 0
then father := p
else begin <send \((\text{ack}, cs) \) to \(p; cs := 0 \)> end; \((L1) \)
{update succeeding and preceding if necessary}
if type = suc and not succeeding
\(\text{For the first time, } p_i \text{ has determined that } v_i \text{ is reachable from } v_1 \)
then begin
succeeding := true;
num := num + number of successors of \(v_i \);
send \((\text{suc}, p_i) \) to all successors
end;
if type = pre and not preceding
\(\text{For the first time, } p_i \text{ has determined that } v_i \text{ is reachable from } v_1 \)
then begin
preceding := true;
num := num + number of predecessors of \(v_i \);
send \((\text{pre}, p_i) \) to all predecessors
end;
{update subordinate if necessary. Also update cs to maintain the invariant in lemma 4.2}
if succeeding and not preceding
then begin \(\text{cs := cs - subordinate + 1; subordinate := 1} \) end \((L2) \)
else begin \(\text{cs := cs - subordinate + 0; subordinate := 0} \) end; \((L3) \)
{send ack to father if num = 0}
if num = 0
then begin <send \((\text{ack}, cs) \) to father; cs := 0> end \((L4) \)
Upon Receiving an acknowledgement (ack, c)

\[
\begin{align*}
\text{begin} & \quad \text{cs } := \text{cs} + c; \quad \text{num } := \text{num} - 1; \\
\text{if} & \quad \text{num } = 0 \\
\text{then} & \quad \text{begin} \quad \text{send (ack, cs) to father; cs } := 0 \quad \text{end}
\end{align*}
\]

(4.5) (L6)

4. PROOF OF CORRECTNESS

4.1 Lemma

At any point in the computation, the set of processes with num > 0 form a rooted tree with \(p_1 \) as the root and the parent relation specified by the local variable "father."

Proof

The lemma holds vacuously initially. num(i) and father(i) may be changed only upon receipt of a message or an ack by process i. If a process with num > 0 receives a message then it does not alter its father, thus preserving the tree property. Similarly, if a process has num > 0 after processing an ack, it does not alter the tree structure. If a process \(p_j \) changes num(j) from zero then it must have received a message from some other process \(p_i \) on the tree and must have set father(j) = i, thus preserving the tree property.

We now show that only a leaf node can decrement its num to zero. If \(p_i \) is on the tree and is not a leaf then there is a process \(p_j \) with num(j) > 0 and father(j) = i; then \(p_j \) will not return an ack to \(p_i \) while \(p_j \) remains on the tree and hence num(i) > 0, while \(p_j \) remains on the tree. Therefore only a leaf node can decrement its num to 0, which preserves the tree property.
Let T, at any point in computation, denote the set of ack messages which are in Transit, i.e. which have been sent but have not yet been received.

4.2 **Lemma**

The following is an invariant.

$$\sum_{i} cs(i) + \sum_{(ack,c) \in T} c = \sum_{i} subordinate(i) \quad (1)$$

Proof

The lemma holds initially since all the terms in the equation are zero. For p_1, $i \neq 1$, the terms in the equations are modified only at program points $L1$ through $L6$, and for p_1, these terms can be modified only at $M1$ or $M2$. The reader may easily convince himself that the equation is left invariant by the execution of the statements at these program points.

4.3 **Theorem**

Assume that process p_1 terminates computation (in step $M2$).

$cs(1) = 0$ if and only if v_1 ia in a knot.

Proof

We will first show that when p_1 terminates computation

(I) $cs(i) = 0$ for $i \neq 1$, and (II) subordinate(i) is correctly set and (III) the set T is empty. The theorem follows directly from the invariant proven in lemma 4.2.

(I) When p_1 terminates computation in step $M2$, $num(1) = 0$.

Then the tree is empty since p_1 was the root of the tree.

Therefore $num(i) = 0$ for all i. If $num(i) = 0$ then $cs(i) = 0$, for all $i, i \neq 1$, because every change to $num(i)$ is followed by the code to set $cs(i)$ to 0 if $num(i)$ is 0 (steps $L4,L6$).
(II) If \(v_i \) is reachable from \(v_1 \), it follows by induction on path length to \(v_i \) that \(p_i \) will eventually receive a message which will result in succeeding(i) set true; succeeding(i) remains true thereafter. Similarly for preceding(i). Therefore subordinate(i) will eventually be set to its correct value. When assignment is made to succeeding(i) or preceding(i), \(p_i \) has not returned an ack to its father and hence the computation could not be over. Therefore these variables are assigned their correct values before the termination of computation.

(III) Since the tree is empty, every process must have received acks corresponding to all messages sent. Therefore there can be no ack in transit, i.e. set \(T \) is empty.

4.4 Lemma

\(p_1 \) will terminate computation in finite time.

Proof

A process \(p_i \) sends at most two messages (type, \(p_i \)), to any other process \(p_j \) because (1) a message is sent only when succeeding or preceding is set to true and (2) succeeding and preceding are never reset to false. Because the graph is finite the total number of messages sent is bounded. Hence the total number of acks sent is also bounded. Observe that every process must send or receive either a message or an ack every time it starts to execute. Therefore a process can switch from idle to executing only a finite number of times. There are no loops in the program; therefore every executing process will become idle in finite time. Hence every process in the network will cease to execute in finite time and no more messages or acks will be sent or received from then on.
We now show that the tree must be empty at this point. If not, let p_i be a leaf node of the tree; $\text{num}(i) > 0$ since p_i is on the tree. There is no p_j on the tree for which $\text{father}(j) = p_i$ and hence p_i must have received all its outstanding acks; therefore $\text{num}(i) = 0!$. Contradiction!

5. NOTES ON THE KNOT DETECTION ALGORITHM

5.1 Bounding the Buffer Size

We assumed earlier for purposes of exposition that buffers are of unbounded length. In the knot detection algorithm a process sends at most 2 messages to any neighbour process and therefore no process sends more than 2 acks to any other process. Hence the buffer length for any process need not exceed 4 times the number of neighbours of the process.

5.2 Efficiency

This algorithm is superior to the brute-force algorithm in which: (1) process p_1 computes successor*, the set of vertices reachable from v_1 and (2) predecessor*, the set of vertices that can reach v_1 and (3) then declares that v_1 is in a knot if and only if successor* \subseteq predecessor*. The computation of successor* (predecessor*) can be done by using an algorithm similar to the one proposed here - every ack carries with it a set of successors (predecessors). Therefore a successor at distance d from v_1, will have its identity transmitted through d processes to reach v_1. Total message length will be at least $O(N^2)$, for an N-vertex graph as opposed to $O(E)$ for our algorithm where E is the number of edges.
6. EXTENSIONS

We show in this section that the ideas in the knot detection algorithm can be extended to solve a very general class of problems. Consider a distributed computation which is initiated by process p_1 sending messages to some of its neighbors. Any other process can send messages only after receiving a message. The computation terminates when no process has any more messages to send and all messages that have been sent have been received. Dijkstra and Scholten [3] were the first to identify this class of computations, which they call diffusing computations. They proposed an algorithm, using the growing and shrinking tree, to detect termination of diffusing computations. Our contribution is to show how the same idea may be exploited to compute a network-wide function of locally computed results.

Let $\text{local-result}(i)$ denote some computed result at process p_i, at termination of the entire computation. It is required to compute global-result at the termination of computation, where

$$\text{global-result} = f(\text{local-result}(i), \text{for all } i) \quad (2)$$

where f is any arbitrary computable function.

The knot detection algorithm computed the global result $cs(1)$,

$$cs(1) = \sum \text{subordinate}(i), \quad (3)$$

i.e. $f = \sum$
We propose two schemes to compute network-wide functions. Note that our algorithm can be used to develop distributed algorithms according to the following methodology: in order to compute some global-result, invent a function f and local-result(i) satisfying (1) and then design a distributed algorithm to compute local-result(i) at process p_i, for all i. Then superimpose our algorithm to compute the global-result. A variation of this idea appears in [4], where a number of other problems amenable to this approach, are listed.
One difficulty with a straightforward implementation is that a process cannot know when network computation has terminated. Process p_i knows that network computation can terminate only when $\text{num}(i) = 0$; however, p_i cannot assert the converse, i.e. that network computation may not have terminated even if $\text{num}(i) = 0$. Hence p_i must send back its current value of $\text{local-result}(i)$ to its father every time that it decrements $\text{num}(i)$ to zero. This causes a problem: p_i may send back a local-result to its father, and subsequently get another message which causes it to compute a new local-result. Therefore p_i must cancel the old local-result value. We propose two mechanisms for cancelling out-of-date local results: bags and time-stamps.

To simplify exposition in our discussion of cancellation schemes we will assume that there is no delay between sending and receiving a message, i.e. there is never any message in transit: the reader can easily convince himself that the arguments also apply when the transmission delay is not zero.

6.1 Bags

Each process p_i maintains two bags $\text{all}(i)$ and $\text{cancelled}(i)$. Each bag element is of the form $(j, \text{local-result}(j))$. If (j, x) is an element in $\text{cancelled}(i)$ then process p_j has definitely cancelled an out-of-date local-result x. If (j, x) is an element of $\text{all}(i)$, then at sometime p_j posted a local
result x. The elements in all(i) are not necessarily current. Every local result that p_j has posted appears in the union of bags all(i), for every i. Similarly, all local results that p_j has cancelled appear in the union of cancelled(i), for every i. Therefore p_j's current local result is in the difference of these two bag unions. In other words, the goal is to maintain the following invariant. Let $r(j)$ denote the current local result of process j, and let U denote the union operation over bags.

$$U(j, r(j)) = U \text{ all(i)} - U \text{ cancelled(i)}$$

Initially, all(i) holds the initial local result of p_i and cancelled(i) is empty. To post a current local result x and cancel the previous local result y, process p_i adds (i, x) to all(i) and (i, y) to cancelled(i).

Two bags $a\text{bag}$ and $c\text{bag}$ are returned with every ack in the form (ack, $a\text{bag}$, $c\text{bag}$). When p_j sends an ack it takes the elements out of bag all(j) and puts them into $a\text{bag}$, and similarly puts elements from cancelled(j) into $c\text{bag}$, and then sends $a\text{bag}$ and $c\text{bag}$ along with the ack. If p_i receives (ack, $a\text{bag}$, $c\text{bag}$) it adds the contents of $a\text{bag}$ to all(i) and $c\text{bag}$ to cancelled(i).

At termination, all(i) and cancelled(i) will be empty for $i \neq l$, and cancelled(l) will contain tuples corresponding to all cancelled local-results, and all(l) will contain tuples corresponding to all local-results, current and cancelled. By removing the cancelled results (i.e. elements
of cancelled(l)) from all(l), p_l can determine the current local-results for all processes. The knot detection algorithm of section 3 uses the bag idea; the information in the two bags have been condensed into a single integer cs. Adding an element (j,x) to all(i) is implemented by incrementing cs(i) by x. Adding an element (j,y) to cancelled(i) is achieved by decrementing cs(i) by y.

A Note on Efficiency

The sizes of the bags returned with acks can be reduced by having each process p_i remove all elements common to all(i) and cancelled(i) from both all(i) and cancelled(i).

6.2 Time-Stamps

Each process p_i maintains a set S(i) of triples of the form (j, n(j), local-result(j)) where n(j) is a time-stamp local to process p_j. When a process p_i wishes to post a new local-result x (and cancel an out-of-date result) it increments n(i) and adds (i, n(i), x) to S.

When p_i sends an ack, it sends (ack, S(i)), and then sets S(i) to empty. Upon receiving an ack, (ack, B), p_i sets S(i) to the union of S(i) and B. Upon termination, S(i) will be empty for all i ≠ 1, and S(1) will contain all tuples (i, n(i), S(i)) that have been sent. p_1 can identify the current local-results because they will be associated with the latest time-stamps.

Efficiency

The sizes of the sets returned with acks can be reduced by having each process p_i discard all elements in S(i) that it can identify as being out-of-date.
Acknowledgement

We gratefully acknowledge the suggestions of E.W. Dijkstra and C.S. Scholten, on whose work this paper is based. We are also grateful to two unknown referees for their valuable comments.

References

