NONPRIMITIVE ELECTROLYTE NEAR A CHARGED WALL: GENERALIZED MEAN --ETC(U)

SEP 82 F VERICAT, L BLUM, D HENDERSON

N00014-81-C-0776

UNCLASSIFIED TR-4
Nonprimitive Electrolyte Near a Charged Wall: Generalized Mean Spherical Approximation

by

F. Vericat*, L. Blum*, and D. Henderson**

Prepared for Publication in
The Journal of Electroanalytical Chemistry and Interfacial Electrochemistry

* University of Puerto Rico
 Department of Physics
 Rio Piedras, Puerto Rico

** IBM Research Laboratory
 San Jose, California

September 1, 1982

Reduction in whole or in part is permitted for any purpose of the United States Government.

*This document has been approved for public release and sale, its distribution is unlimited.

*This statement should also appear in Item 10 of Document Control Data - DD Form 1483. Copies of form available from cognizant contract administrator.
Non primitive electrolyte near a charged wall: generalized mean spherical approximation...

An approximate calculation for a model of a solution (ions and dipoles) near an ideally flat electrode is performed. The resulting charge, potential and polarization profiles show layered structures, but the capacitance wave is rather featureless.
INTRODUCTION

Much of the recent work on the statistical mechanics of the electrical double layer has focused on the application of theories based upon integral equations to models where the solvent is assumed to be structureless. These theories are an improvement of the classical Poisson-Boltzmann theory of Gouy [1] and Chapman [2], mainly because they give a better treatment of the short-ranged part of the ionic interactions. However, the influence of the solvent structure on the electrode-electrolyte interface is well recognized [3]. It is thus desirable to extend the integral equation approach to models where the solvent is another molecular species.

In this communication we consider a simplified model of an electrode-electrolyte interface which takes into account the discreteness of the solvent (Fig. 1). The electrode is represented as a hard infinite plane with a uniform surface charge density, while the electrolytic solution is modeled as a mixture of charged hard spheres (the ions) and dipolar (nonpolarizable) hard spheres (the solvent). In addition, we assume the electrode has a dielectric constant unit; thus we ignore the image effects. For this model we developed a treatment in which all the interactions (ion-ion, ion-solvent, solvent-solvent, electrode solution) are considered on the same (classical) statistical mechanical basis. In particular the solvent is taken as a fully orientable system and no special treatment of a hypothetical inner layer is made.

Blum and Henderson [4] and also Carnie and Chan [5] have studied this model within the mean spherical approximation (MSA), the simplest known integral equation. We have considered elsewhere [6] the application of another integral equation, related to the MSA, which may be referred as a generalized MSA (GMSA). In this approximation the Ornstein-Zernike (O-Z) equation for the particle-particle and electrode-particle correlations
is solved for closures which are generalizations of those of the MSA. The correlation functions thus obtained give information of the micro-structure of the system and also permit the evaluation of several thermodynamic and electrostatic properties of the interface. Here we present some further GMSA calculations of some of these properties which complement those of Reference [6].

THEORY

a. Electrode-Particle Correlation Functions

We divide the total (h) and direct (c) electrode-ion and electrode-dipole correlation functions into a nonelectrostatic and an electrostatic part

\[h_2(x) = h_0(x) \pm h_1(x) \]

\[h_d(x, \theta) = h_0(x) + \sqrt{3} h_d(x) \cos \theta \] \hspace{1cm} (1a)

\[c_2(x) = c_0(x) \pm c_1(x) \]

\[c_d(x, \theta) = c_0(x) + \sqrt{3} c_d(x) \cos \theta , \] \hspace{1cm} (1b)

\(x \) and \(\theta \) being, respectively, the reduced distance \(x/D \) from the electrode and the angle between the direction of the dipoles and the normal to the electrode.

The impenetrability of the hard wall implies that

\[h_0(x) = -1 \]

\[h_1(x) = h_d(x) = 0 , \quad x < \frac{1}{2} . \] \hspace{1cm} (2)
and we assume

\[c_0(x) = A_0 e^{-x_0^2} \]

\[c_1(x) = E^* q^* x + A_1 e^{-x_1^2} , \]

\[c_d(x) = \frac{E^* \mu^*}{\sqrt{3}} + A_d e^{-x_d^2} \quad x > \frac{1}{2} , \quad (3) \]

where \(A_\alpha, z_\alpha (\alpha = s, i, d) \) are parameters to be determined. When \(A_3 = A_i = A_d = 0 \) we recover the MSA closures \[4\]. In Eq. (3) we use the dimensionless quantities \(q^2 = \beta q^2 / D; \)

\(\mu^2 = \beta \mu^2 / D^2 \) and \(E^* = (\beta D^3)^{1/2} E (E = 4\pi \sigma) \), \(\beta \) being the Boltzmann thermal factor \((k_B T)^{-1} \).

If we consider row matrices \(\mathbf{M} = [M_i, M_d] \), then the O-Z equation for the wall-particle correlation functions becomes \[6, 7\]

\[h(x) = f(x) + \int_0^x dt \ h(x - t) Q_B(t) , \quad x > \frac{1}{2} , \quad (4) \]

where

\[f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} dk \ e^{-ikx} \tilde{\mathcal{C}}(k) \left[\tilde{Q}_B^i (-k) \right]^{-1} \quad (5) \]

with

\[\tilde{\mathcal{C}}(k) = \int_{1/2}^\pi dx \ e^{ikx} \mathcal{C}(x) \quad (6) \]

and

\[\tilde{Q}_B^i (k) = 1 - \int_0^\pi dr \ e^{ikr} Q_B(r) . \quad (7) \]

Here \(Q_B(r) \) is the Baxter matrix of the electrolyte and is of the form

\[Q_B(r) = \begin{bmatrix} Q_{ii}(r) & Q_{id}(r) \\ Q_{di}(r) & Q_{dd}(r) \end{bmatrix} . \quad (8) \]

Similar relations (involving scalars) are valid for the nonelectrostatic terms \[8\].
We have obtained explicit expressions for \(Q_B(r) \) in the MSA [9,10] and GMSA [11] as simple sums involving powers of \(r \) and exponential functions of \(r \). If we use the Eq. (3) with \(A_\alpha = 0 \) (\(\alpha = s,i,d \)) as the closure of the O-Z equation [Eq. (4)] we have a MSA/MSA or a MSA/GMSA calculation according to whether we use the bulk MSA or GMSA expressions for \(Q_B \).

If we consider instead \(A_\alpha, z_\alpha \) (\(\alpha = s,i,d \)) as adjustable parameters we have a GMSA/MSA calculation when \(Q_B \) (MSA) is used or a GMSA/GMSA calculation if \(Q_B \) (GMSA) is utilized. In both these last cases we can obtain the parameters demanding that the correlation function satisfy the linearized hypernetted chain (LHNC) [12] conditions

\[
\begin{align*}
 h_s(x = \frac{1}{2}) &= \exp[\eta_s(x = \frac{1}{2})] - 1 \quad (\alpha = +, -) \quad (9a) \\
 h_d(x = \frac{1}{2}) &= [h_s(x = \frac{1}{2}) + 1] \eta_d(x = \frac{1}{2}) \quad (9b) \\
 h'_s(x = \frac{1}{2}) &= \eta'_s(x = \frac{1}{2}) \exp[\eta_s(x = \frac{1}{2})] \quad (\alpha = +, -) \quad (9c) \\
 h'_d(x = \frac{1}{2}) &= h'_s(x = \frac{1}{2}) \eta_d(x = \frac{1}{2}) + [h_s(x = \frac{1}{2}) + 1] \eta'_d(x = \frac{1}{2}), \quad (9d)
\end{align*}
\]

where

\[
\begin{align*}
 \eta_s(x) &= h_s(x) - c_s(x) - \beta U_s(x) \quad (\gamma = +, -, d) \quad (10)
\end{align*}
\]

with

\[
\begin{align*}
 \beta U_+(x) &= -\beta U_-(x) = -E^*q^*x \quad (11a) \\
 \beta U_d(x) &= -\frac{E^*\mu^*}{\sqrt{3}} \quad (11b)
\end{align*}
\]

and

\[
\begin{align*}
 h(x = \frac{1}{2}) &= f(x = \frac{1}{2}) \quad (12) \\
 h'(x = \frac{1}{2}) &= f'(x = \frac{1}{2}) + h(x = \frac{1}{2})Q_B \quad (r = 0) \quad (13)
\end{align*}
\]
b. Some Structural and Electrostatic Functions of the Interface

Once we obtain the total wall-particle correlation functions by numerical integration of Eq. (4) (adequate precision is obtained using the trapezoidal rule), we can evaluate

1 – The density profiles of the ions and the density-orientation profile of the dipoles

\[\rho_\pm(x) = \rho_\pm[h_\pm(x) + 1] \]

\[\rho_d(x,\theta) = \rho_d[h_d(x,\theta) + 1] , \tag{14} \]

2 – The charge density profile

\[q^*(x) = \rho_i^*q^*h_i(x) , \tag{15} \]

where \(\rho_i^* = \rho_iD^3 \),

3 – The polarization density profile

\[\mathbf{P}^*(x) = (\beta D)^{1/2} \mathbf{P}(x) = \frac{\rho_d^* \mu^*}{\sqrt{3}} h_d(x) , \tag{16} \]

with \(\rho_d^* = \rho_d D^3 \), and

4 – The potential profile \(\Phi^*(x) = (\beta D)^{1/2} \Phi(x) \), the solution of the Poisson equation,

\[\frac{d^2 \Phi^*(x)}{dx^2} = -4\pi \left[q^*(x) - \frac{d \mathbf{P}^*(x)}{dx} \right] , \tag{17} \]

which is given by

\[\Phi^*(x) = -4\pi \rho_i^* q^* \int_x^\infty dt \ (t - x) h_i(t) - \frac{4\pi}{\sqrt{3}} \rho_d^* \mu^* \int_x^\infty dt \ h_d(t) \]

\[= \Delta \Phi^* - E^* x + 4\pi \rho_i^* q^* \int_0^x dt \ (t - x) h_i(t) + \frac{4\pi}{\sqrt{3}} \rho_d^* \mu^* \int_0^x dt \ h_d(t) \tag{18} \]

where \(\Delta \Phi^* = \Phi^*(x=0) \) is the total potential drop across the interface.
We obtain [6] analytical expressions for $\Delta \phi^*$ and also for P^* the total polarization

$$P^* = (\beta D)^{1/2} P = \frac{\rho_d^{* \mu^*}}{\sqrt{3}} \int_0^\infty dt \, h_d(t)$$

$$= \frac{\rho_d^{* \mu^*}}{\sqrt{3}} \lim_{s \to 0} \hat{h}_d(s), \quad (19)$$

$$\Delta \phi^* = -4\pi \rho_1^{*} q^* \int_0^\infty dt \, h_1(t) - \frac{4\pi}{\sqrt{3}} \rho_d^{* \mu^*} \int_0^\infty dt \, h_d(t)$$

$$= 4\pi \lim_{s \to 0} \left[\rho_1^{*} q^* \frac{\partial \hat{h}_1(x)}{\partial s} - \frac{\rho_d^{* \mu^*}}{\sqrt{3}} \hat{h}_d(s) \right] \quad (20)$$

where

$$\lim_{s \to 0} \hat{h}_d(s) = -\frac{E^* \mu^*}{\sqrt{3} d_0 d_2} \frac{[a_1 T_{id} + a_2 (1 - T_{id})]}{d_0 (1 - T_{dd;1})}$$

$$+ \sum_{a = i, d} \frac{A_a}{z_a d_0 (1 - T_{dd;1})} \left\{ \left[\tilde{Q}_B (jz_a) \right]^{-1} a_1 - \left[\tilde{Q}_B (jz_a) \right]^{-1} a_2 \right\} \quad (21)$$

$$\lim_{s \to 0} \frac{\partial \hat{h}_1(x)}{\partial s} = \frac{E^* q^*}{d_0^2} \left\{ \frac{1}{2} + \frac{[(1 - T_{id})(1 - T_{dd}) - T_{id} T_{dd}]}{d_0 (1 - T_{dd;1})} \right\}$$

$$+ \sum_{a = i, d} \frac{A_a}{z_a d_0 (1 - T_{dd;1})} \left\{ \left[\tilde{Q}_B (jz_a) \right]^{-1} (1 - T_{dd}) + \left[\tilde{Q}_B (jz_a) \right]^{-1} T_{di} \right\} \quad (22)$$

and $j = \sqrt{-1}$ and a_1 and a_2 are the non-null elements of the matrix

$$\Delta = \begin{bmatrix} a_1 & a_2 \\ 0 & 0 \end{bmatrix} = \lim_{r \to \infty} Q_B(r) \quad (23)$$

and T_{ii}, T_{dd}, etc., are the elements of the matrix

$$I = \int_0^\infty dr \left[Q_B(r) + \Delta \right] \quad (24)$$
The bulk strength parameters d_0 and d_2 are defined by

$$d_0^2 = 4\pi \rho_1^* q^* \delta^2; \quad d_2^2 = \frac{4\pi}{3} \rho_d^* \mu^* \delta^2.$$ \hspace{1cm} (25)

Finally

$$1 - T_{dd;1} = \left[(1 - T_{dd})^2 + (T_{di})^2 - d_2^2 \right]^{1/2}. \hspace{1cm} (26)$$

From Eq. (20) we can evaluate the differential capacity from

$$C_d^* = \frac{1}{4\pi} \frac{\partial E^*}{\partial \Delta \phi^*} = \frac{1}{4\pi} \left(\frac{\partial \Delta \phi^*}{\partial E^*} \right)^{-1}. \hspace{1cm} (27)$$

RESULTS

In Figs. 2 and 3 we show the charge and polarization density profiles calculated by using the GMSA/GMSA, GMSA/MSA and MSA/MSA approximations. The oscillations observed are consequence of the discrete character of the solvent. This follows from a simple observation of the corresponding curves resulting from models where the solvent is treated as a continuum [13,14].

In Fig. 4 we compare the potential profile for the three integral equations considered. Here again the oscillations are notable. The change in slope of the potential at the Helmholtz plane ($x=1/2$), which implies a change of the direction of the electric field, is due to the large polarization at this plane. This is more clearly seen if we write

$$- \frac{d\phi^*(x)}{dx} \bigg|_{x=\frac{1}{2}} = E^* - 4\pi \rho^* \left(x = \frac{1}{2} \right). \hspace{1cm} (28)$$

If we attempted to define a local dielectric constant in the impenetrable region or Stern layer [$0 \leq x \leq 1/2$] by requiring that the electric displacement be continuous at $x=1/2$ we
would arrive at a negative local dielectric constant in this region. This illustrates the
difficulties and ambiguities associated with attempts to define a local dielectric constant. The
point is that the dielectric constant is a macroscopic quantity, computed using an infinitely
large volume, and any attempts to define a local dielectric constant will lead to
inconsistencies.

Figures 5 and 6 show the differential capacity as a function of the total potential drop
across the complete double layer. The MSA/MSA curve is independent of $\Delta \phi$ and so is
unphysical except near $\Delta \phi=0$. The other two curves are more reasonable and, in particular,
show the differential capacitance increasing with the magnitude of the potential. Ultimately,
we expect GMSA differential capacitance curves to flatten.

CONCLUSIONS

The MSA gives considerable insight into the structure and properties of the double
layer. However, it has the drawback that the MSA results are linear in the charge density on
the electrode. The GMSA results presented here overcome this difficulty. These results
represent our first attempt to apply the GMSA and have some difficulties. For example, the
density profiles do not satisfy the contact value conditions of Blum and Henderson [4]. We
expect to develop other and better schemes for choosing the GMSA parameters in the near
future.

In contrast to the featureless curves of the Gouy-Chapman theory, the MSA and
GMSA ionic profiles, potential profile and polarization density show oscillations which imply
a layering of sheets of alternating charge near the electrode. These oscillations are even
more pronounced in the GMSA than in the MSA. In contrast the differential capacitance
curves are rather featureless. In view of the simplicity of our model which ignores the
interaction of the metal with the double layer and which is based on an oversimplified picture of the solvent, the differential capacitance curves are reasonable, especially considering that we have not attempted to adjust any parameters to fit any experimental data.
REFERENCES

[3] See, R. W. Fawcett, Israel J. Chem., 18 (1979) 3, for an example of a model where the solvent is considered to have a discrete structure only in a two-dimensional layer next to the electrode.

Figure 1. The model of the electrode-electrolyte interface $\rho_+ = \rho_- = \rho_0/2$ (ionic number density), ρ_d (solvent number density), D (diameter of all the hard spheres in the mixture), μ (dipolar moment of the solvent molecules), σ (surface charge density), ε (dielectric constant of the electrode).
Figure 2. The normalized charge density profile \(q^*(x) / \rho_1^* q^* = h_1(x) \) for a nonprimitive electrolyte \((q^* = 40, \mu^* = 2.5, \rho_1^* = 0.007, \rho_d^* = 0.6) \) near a charged hard wall \((E^* = 1.5) \).

--- GMSA, GMSA. - - - - GMSA/MSA, - - - - MSA/MSA.
Figure 3. The reduced polarization density profile $P^*(x)$. The system and notation are the same as in Fig. 2.
Figure 5. The differential capacity vs. the potential drop across the interface. The system is the same as in Fig. 4.
Figure 6. The differential capacity vs. the potential drop across the interface for two different concentrations of electrolyte. The remaining parameters are the same as in Fig. 4.