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Cy = longitudinal force cocfficient

Cy = lateral force coefficient
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CN * yaw moment coefficient

o < 6 < 180°
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INTRODUCTION

One major source of error in the design of mooring systems for
large ships has been the lack of accurate knowledge of wind loads. Many
of the present methods for calculating these loads are unreliable or
cumbersome to use. One method, proposed primarily for its simplicity,
is presented in the chapter 7 revision of the NAVFAC Design Manual DM-26
(Ref 1). This method involves three curves that are usea for the lateral,
longitudinal, and moment loads for all ships. However, experimental
data have shown this approach to be too approximate for general appli-
cation.

The purpose of this document is to describe an improved method for
computing accurately and easily the wind drag forces, by taking gross
individual ship characteristics into account. Results of this investi-
gation are applicable primarily tc '"typical" ships, although some ot the
31 models used were not typical. Even so, an effort was made to present
trends and recommendations for "atypical” ships by using their collected
responses to better define the wind load characteristics of unique ships
and to amplify coefficient trends for the more typical ships.

In many cases accurate data regarding projected and other surface
areas of the models are lacking. For this reason, along with the fact
that scale model behavior is often not completely representative of full
scale ship behavior (surface roughness, railings, etc.), the accuracy of
the experimental results is not above question. Care was taken to
establish the reliability and accuracy of all experimental results by
comparing projected model areas to a variety of sources and by comparing
results of independent tests for similar ships.

Because of the complex superstructure geometry on most ships, the
lateral and longitudinal wind forces can be calculated more directly
than the moment. The emphasis of this note is, therefore, placed on the

accurate determination of these two forces, while the moment response is
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only observed for trends. The effect of the naturally occurring wind
gradient has also been incorporated into this analysis, especially for
the case of the lateral wind force, where the projected ship area is
greatest.

This analysis was undertaken because of the concern for reliable
ship load files (for wind and curreut loads) expressed in Reference 2
and deals only with the wind load aspect. The design procedures devel-
oped here are particularly useful for mooring analysis problems in
protected harbors, where wave and current loads are usually small. This
work was performed as part of the effort on Mooring Systems Frediction
Techniques within the Ocean Facilities Engineering Exploratory Develop-

ment Program, sponsored by t'. . Naval Facilities Engineering Command.

EXPERIMENTAL DATA

The experimental data used in this investigation were taken from
six independent sources (Refs 3 through 8); data on 31 ship models wecre
used from the available 40 models. The data not used were those cousid-
ered to be from unconventional models or those lacking information in
some respect. Also, only data on 2 ship models were used from Reference
because the data are considered by many to be too conservative. Of the
31 models used: 18 were tankers and cargo ships, including 4 center
island tankers; 3, aircraft carriers; 2, cruisers; 1, a destroyer, which
was independently tested by two sources; 2, passenger liners; and the
remaining 5, general class.

Data from 19 of these 31 models were used for the C_, coefficient

X
determination and 13 for the C, coefficient determination because not

Y
all sources used a wind gradient in the experiment, and because the main
concern of this investigation was with tankers and cargo shkips; there
were less data on warships. From these data, a more reliable method for
calculating wind loads than that given by the three reference curves

presented in Reference 1 and illustrated in Figure 1 was developed
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Approximate silhouettes for some of these ships are presented in Figure 2
to allow the reader to associate the recommendations from this report

with the various ship types.

SUMMARY OF WIND FORCE EQUATIONS

Equations for the lateral and longitudinal forces versus incident

wind angle are presented in this section. Derivations and a discussion

e i i

are presented in later sections. It should be stated that these forces
are actually dependent on Reynolds Number, which is assumed for typical

ships to be large enough to allow for constant coefficieats. The general

equation for these forces can be expressed as follows: 73
F o= 2p V2 ACE(0) (1)
where;
F = wind force, Fx or FY; or yaw moment, M
P = density of airx
v = relative wind velocity with respect to ship
A = projected ship area, A (u§ed for F); or AY (used for FY);
or AY L used for N, L = ship length
C = dimensionless wind drag coefficient, CX’ CY' or CN
f(8) = normalized shape function dependent on incident wind angle (8)

Lateral Wind Force

The following results have been obtLained for the lateral wind drag ;
coefficient (CY) by summing forces obtained for the hull and superstruc-

ture:




where the terms (QS/VR) and (VH/VR) are the average wind velocities over
the superstructure and the huli, respectively, taken from a normalized
wind gradient curve presented in Figure 3. CYC was determined from the

available experimental data and was calculated to be:

= +
CYc 0.92 + 0.1

The following recommended normalized shape function was fitted to the
available data:

_ sin 6 - sin (58)/20
f(8) = 1 < 1/20 3)

This function is illustrated in Figure 4.

Longitudinal Wind Force

The longitudinal wind force calculations are not as straightforward
as the lateral force calculations. Both the coefficient and shape func-

tion vary according to ship type and characteristics.

Selection of Longitudinal Force Coefficient (CX)' In general,

vessels are classified as either hull dominated, (such as aircraft
carriers and passenger liners) or normal (such as warships, tankers).
Second, due to possible asymmetry of the superstructure relative to
midships, separate coefficients are used for headwind and tailwind
loadings, designated as CXB and st, respectively.

For hull dominated vessels, the following is recommended:

CXB = st = 0.40

- "~ M m - - "‘lri:ﬂ;
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For all remaining types of ships, except for specific deviations,

the fullowing are recommended:

CXB

0.70

CXS = (.60
Deviations to these general coefficients are listed below. First,
for center island tankers only, an increased headwind coefficient is

recommended:

CXB = 0.80

For ships with an excessive amount of superstructure, such as des-

troyers and cruisers:

Lxs = 0.80

A universal adjustment of 0.08 i5 also recommended fer all cargo
ships and tankers with cluttered decks {(i.e., masts, booms, piping, and

other substantial obstructions). This would apply to both CXB and st

Selection of the Longitudinal Shape Function (f(8)). As with the

longitudinal coefficient, two distinct longitudinal shape functions arc
recommended that differ over the headwind and tailwind regions. These
regions are separated by the incijent wind a2ngle that produces no net

longitudinal force, designated BZ for zero crossing. Selection of 62 is

determined by the mean superstructure location relative to midships (MS):

Just forward of MS: 62 = 80 degrees
on MS: 62 = 90 degrees

aft of MS: 62 = 100 degrees

Hull domineted: 02 = 120 degrees

Generally, GZ ~100 degrees seems typical for many ships, including

center island tankers, while BZ ~110 degrees is recommended for warships.

1
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For ships with single, distinct superstructures and for huil dom:-

nated ships, the following longitudinal shape function is recommended:

f(8) = cos ¢ (4)
where
o = (L) e forece (5)
92 2
- 9 __ -
¢ = (180 0 Sz> (8 - 8,) + 90 for 6 > 0,

Examples of ships in this category, as illustrated in Figure 2, are:
all aircraft carriers, EC-2, Cargos A, C, aud E. These shape functions
are shown in Figure 5 for 92 = 90 degrces.

Ships with distributed superstructure fall into the second shape
function category called "humped cosine." With these ships the longitudi-
nal force actually increases with oblique wind angles (up to 30 degrees)
as additional superstructure is expoused to the wind. For these ships,

the following shape function is recommended:

. siny - (sin 5 y)/10
with
; y = (%9->e+90 8 <o, (7
é Z
% - .._.__90___. 0 + 180 - -———-—-—90 ez 6 > 6 (8)
¥ ° \180 - e, 180 - 8, z

Notice the similarity between Equation 3 used for the lateral force
and Equation 6 used for the longitudinal force. Examples of ships in this
second category, illustrated in Figure 2, include: destroyers, cruisers,
Meteor, and T-AO tanker. This shape function is developed under the
PROCEDURE section, and is illustrated as part of a family of shapes 1in

Figure 6.
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Wind Moment

For the general moment response tendencies of a ship, refer to
Figure 7. More specific moment coefficient curves are presented ia
Figures 8 through 14 for the various ship types considered. More
details concerning the moment response are provided in the DEVELOPMENT
OF PROCEDURE section.

DEVELOPMENT OF PROCEDURE

¥ind Gradient

The two major factors that directed the appreach of this investiga-
tion were: quantifying the =ffects of the natural wind gradient over
the ship profile, and allowing for wore individualized shape functions
based on vessel characteristics.

The wind gradient is obtained from the following equation (Ref 9):

v h \?
B L. 9)
o ()

where,
y_
VR = normalized wind velocity at height (h)
h = height above free surface
hR = constant reference ueight
n = arbitrary exponent

For the purposes of this report, the reference height (hR) is taken as
33 feet (10 meters) above the mean sea surface, and the exponent (n) is
assumed to be 7. It was determined that the value of n is not critical,

cince no significant difference wias observed in the calculated wind drag

:
1

iy
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forces when n was varied from 5 tc 10; the value of n = 7 is chosen
primarily because it is the value most commonly used for this type of
application (Ref 10).

In dealing with the wind gradient, the hull and superstructure of
each vessel were considereuy separately. This proved effective for the
CY coefficient, but no consistent results were obtained for the Cx
coefficient. For this reason, the longitudinal wind load determination

is not as straightforward as the lateral wind load determination.

Lateral Wind Force

From Equation 1

FY
CYH = 1—~V2—- (10)
3PV A
Where CYM is the experimentally measured value c¢f the lateral wind drag

coefficient at an incident wind angle of 90 degrees. By separating the
total lateral force on a vessel into hull and superstructure components,
a lateral drag coefficient (CYC) can be calculated. In this manner the

general equation for Fy, given by

1 2
Fy = 30V Ay Gy £(6) (11)

can be written

_ o1 =2 -2 .
Fy = Fg+Fy = 5 p(V" A+ V.7 A) €y £(0) (12)

where cubscripls S and H refer to the superstructure and hull, respectively,
ard V denotes the mean wind velocity over each. Use of a constant drag
coefficient (CYC) is considered valid because the hull and superstructure
both appear as bluff bodies for lateral incident winds. Multiplying and

dividing by the relative velocity (VR) at 33 Zeet gives:

= L M -
Fy = 50V Ao + Ayl Cye £() (13)

a8 L e, s, o o i, bl e i

ot ol sl
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From which

-\ - :
v v E
o ! 2 S H is
Cye = }X//{Z p V) Wﬁ;) A+ A\ Ayl £® (14) ;

iy

where the values for (\-/H/VR)2 and (\-IS/VR)2 are taken from the wind gradient
curve with n = 7 (Figure 3), and are the values that correspond to the
centers of area of the portions of the gradient curve that lie between

the height ranges of the hull and superstructure of the ship. Values of
CYC for the experimental values presented in terms of Equation 10 were
determined by taking the ratio of Equavion 10 Lo Equation 14:

_\2 _ |
v 7
_ _S H

Cyy Cy¢ * vl BtV M /Ny (15)
K R ;
Such that ;
2 2 :
Vs Yy ;

- N —_— —_——

Che = (CpyAy) i Ag + i) Ay (16) |

Representative CYC values were determined using data from 17 of the
31 ship models, and estimated wind gradients from the tests when reported.
Four of the CYC

carded through comparisons to similar ship types and were attributed to

values for these 17 representative ship models were dis-

questionable or incomplete data concerning the gradient or projected
ship areas. A mean value was then determined from the remaining 13

models, yielding i

" . AR i A b e
fmqu‘.m-".‘-‘l'.

= + H

CYC 0.92 £ 0.1 z
This calculated value is consistent with an expected value of just :

less than 1, based on drag measurements of flat plates that yield coeffi- ,

cients ot 1.1 to 1.2 (Ref 11), and the fact that the hull and super- f

structure are slightly streamlined in shape compared to a plate.

La
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constant at 0.92, Equation 16 becomes

With the value of C

i‘

YC
2 2 /
v 1%
S H
C. = 0.92 <—,—' Aot (—— A TA, (17)
™ l_ VR S VR H /AY
And using this peak coefficient value:

Cy(8) = Cyp, 1(8) (18)

Lateral Wind Shape Function

The shape function, f(8), versus incident angle was determined by
transforming a normal sine wave into a more flat-tupped sine wave, which
was more characteristic of the lateral wind load coefficient plots for
most of the 31 model ships analyzed. This transfigured siape function
is a result of the summztion of the standard sine wave with a sine wave
of period 1/5 the size (Figure 15). The expression of this trial

shape function (f') is
£f'(0) = sin 6 + M sin 56 where 0 degreces S 0 & 180 degrees {i9)

Substituting for 6:

il

1+ M
0.95

(A) at ©
(B) at 6

90 degrees, f'(90)
72 degrees, f'(72)

Setting f'(90) = £'(72) to get the flat top, and solving for M

0.95=1+ M, M=-0.05

Subgtituting this coefficient into the function,

£'(0) = sin 0 - (sin 560)/20 (20)

10
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This trial shape function is now normalized as

f(6) = |[sin 6 - (sin 58)/20]//(1 - 1/20) (21)
The final equation for the lateral wind drag force coefficient then becomes
/
Cy(8) = Cyy {[sin & - (sin 56)/20] /(1 - 1/20)} (22)

Equation 21 gives the standard form for the shape function for both the
lateral and longitudinal forces,; changes in the constant (i.e., 20) aand
argument of the sire allow use of the same basic equation for a pro-

gression of shape functions.

Longitudinal Wind Force

As previously stated, the separation method used for the lateral
coefficient (CY) was not successful for the longitudinal coefficient
(Cx) which assumed a hull coefficient of 0.4 based on the experimental
data for hull dominated vessels. An alternative inspection method was
used instead. The headwind coefficients of 19 of the model ships were
analyzed, and it was found that ships with cluttered decks have headwind
coefficients consistently higher than comparable ships with cleaner
(trim) decks. Center island tankers were found toc have headwind coeffi-
cients from 15% to 25% higher than single superstructure vessels, depending
on trim or cluttered deck conditions.

The measured headwind coefficients of the 19 models were then
adjusted, if necessary, according to the observations above, and a mean
headwind coefficient of C = 0.70 * 0.06 was obtained, except for hul)

XB
dominated ships (aircraft carriers) where the headwind coel{ficient

obtained was CXB £ 0.40. The tailwind coefficients for these 19 ship
models were also analyzed; it was found that: Single (simple) superstruc-
ture vessels generally have a tailwind coefficient CXS = 0.60; single

superstructure cluttered (piping, masts, etc.) vessels and hull dominated
vessels have st z CXB; center island tankers have st = 3/4 CXB;
and distributed superstructure vessels (cruisers and destroyers) have

CXS z 1.1 CXB.

11

b e i &S rrge crea MRS ¢ - m LAARMERSP Y AV T Maie gt

= = e ek d o - P e i bl e e s I T v o

B "y —EEE sSSP - e



Lol il
e - .-

The longitudinal wind load coefficient shape function has positive
and negative portions that require a separate curve fit for each. The
zero crossing poitit, 92, must be known in order to join these Lwo curves.
The major factor, which determines the value of 62, was found to be super-
structure location. For hull dominated ships it was found that OZ =
120 dcgrees. For single superstructure ships with clean decks, the value
of 62 varied by a full 20 degreces depending upon superstructure location;

62 = B0 degrees for a superstructure centered forward of the centerline,
6

6

n

90 degrees for a superstructure close to the centerline, and

Ha

100 degrees for an aft superstructure. A value 8 ~ 100 degrees
is recommended as a representative value for most ships.

Looking at the long:tudinal shape functions for all 31 of the ship
models, two major types were found, a cosine wave and a "humped” cosine
wave. The cosine wave is characteristic of the single superstructure
ships with tvim decks and hu)l dominated vessels, while the 'humped" co-
sine wave is more characteristic of all other ship types analyzed. For
simplicity, the same shape function used for the lateral loads was used
for the longitudinal lcads. The value M = 1/20 was changed to M = 1/10
for the Cx coefficient (Figure 6) and the shape function for Cx then

becomes

£(68) = (sin g - Ei%ﬁéﬂgbél - 1/10) (23)

where { depc :ds on 6 and BZ. This is essentially the same as Equation 21.

Now, determining ¢ for the positive portion of the curve fit using

Yy = MO +b (24)

results in

LSO (%9-> o + 90 (6 < 8,) (25)
. Z

For the negative portion of the curve, using the same procedure,

90 ©
o) = <Ig—09%‘9“'> 6+ (’80 - ﬁb—-ZT) (6>6, (26)
z \ Z

\
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s0 that

(+)

cy = CXB £y ¢(*) from Equation 25, (B < 92) (27)

cx(') = Cyg f ¢(') w(') from Equation 26, (8 > 6,) (28)

These apply only to humped cosine curve types, while the shape functions

for the straight cosine curve shape are simply

f(§¢) = cos ¢ (29)
(<) . [0

viooos <Oz )e (6 < &) 0

¢(-) - (;5529—§;> (8 - 6,) + 90 (8>3, (31)

Wind Yaw Moment

The yaw moment response (CN) is more difficult to predict than the
Cx and CY responses because of the difficulties of accurately determining
the moment arms and interference effects of the superstructure and other
tepside features that significantly add to the wind drag on each ship,
and because of a pronounced sensitivity to freeboard in many ships.
Hence, no curve fit was attempted, and all findings are based entirely
upon the observed moment coefficient curve of each model. Generalizations
concerning the moment response with respect to superstructure location
and apparent trends for the ship types covered are presented below.

The location of the superstructure seems to be the best indicator
of a ship's moment response. According to the conventions of this report,
as the main superstructure of a vesse]l progresses trom stern tc bow, the
moment tends ifrom a positive to a negative orientation, as shown in

Figure 7. Similar to the definition of the Cx coefficient, the value of

62 is the incident wind angle at which the CN coefficient crosses the
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axis, changing from a negative to a pesitive moment (by the conventions
established in this report). Based on the experimental data used,

the following values of 62 and magnitude ratios of negative to

positive moment are given for the yaw moment coefficient curves of the

model ship types analyzed.

1. Single superstructure ships, grouped by location:
a. Stern

Trim ~ 8
Cluttered -~ 6

n w

60 degrees; 1:3
1:2

z 80 degrees;

b. Between stern and center

®

1

80 degrees; 1:3

c. Center

®;

d. Between center and bow

1n

90 degrees; 1:1

OZ Z 105 degrees; 1:1

2. Center Island Tankers:

Trim - 8
Cluttered - ©

85 degrees; 1:2
85 degrees - 90 degrees; 1:1

fla e

Z

3. Distributed superstructure ships:

Cruisers

(a1
It4

90 degrees - 100 degrees; 1:1

Destroyers
BZ % 110 degrees; 4:1
4. Hull dominated ships:

Aircraft carriers
62 = 90 degrees - 100 degrees; 1:1

Passenger liners
OZ = 100 degrees; 2:1
Although useful, the above information is limited because the
magnitude ratios are strictly relative, with no reference coefficient

values given. The magnitude of the moment coefficient curve is depenaent

e

e i

o

s i o 2

b A i 4



on the size of projected superstructure and hull areas and the moment
arms through which they act. Therefore, since no approximation for the
actual magnitudes uvf the moment ccefficient is given, example moment
curves have been provided for all ship types dealt with in this analysis.
These curves are presented in Figures 8 through 14, representing the best

estimates (averages) attainable from the experimental model data used.

ATYPICAL SHIP TYPES

The methods presented in this report for calculating wind drag
coefficient curves are primarily geared toward tankers and cargo ships,
since these comprised the majority of the ship models investigated.

Eveu so, these same methods proved adequate for the warships that were
present in the experimental model data used. There are, however, several
uncharacteristic design features which create atypical ship types not
entirely compatible with the suggested methods of this report. One ruch
atypical ship is the Kumo, which possesses an aft superstructure somewhat
larger than normal with respect to the overall length of the ship and an
extremely prominent forecastle. Collectively, these two uncharacteristic

XB)
for the Cx wind load response to a vaiue near 1.0, and an increase in the

features cause a considerable increase in the headwind coefficient (C

peak CY coefficient to a value between 0.90 - 1.0 in magnitude. The
moment response (CN) is essentially unaffected, with ez = 60 degrees and
a magnitude ratio of 1:3 for the negative to positive moment orientation.

Other atypical ship types, at least for the purposes of this report,
are the smallecr auxiliary and research vessels such as the METEOR. These
vessels have a distributed upper deck layout that causes them to behave
very much like a destroyer in their wind load responses.

Al)l other atypical ships (submarines, catamarans, hydrofoils, etc.)
were not investigated in this study, so the use of the design methods

presented in this report for determining the loads on such ships is not

recomuended.
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DISCUSSION OF RECOMMENDED PROCEDURES

To provide the reade. 4ith a better perspective regarding the
accuracy and praticality of the methods recommended here, comparisons
will be made to representative experimental results and recommendations

from earlier investigators.

Comparisons to Experimental Data

Figures 16 through 19 illustrate longitudinal coefficients (CX) for
most ships and allow for an evaluation of the design procedures recommended

here. Figure 16 shows C, values for the simplest type of ships; the re-

X

commendations for C,. = 0.70, a cosine shape function, and variable zero

crossing values arexgeasonable for this application. Figure !7 shows Cx
values for center island tankers; the rccommendations of CXB = 0.8 or
CXB = 0.9, a humped cosine shape function, and 82 ~ 100 degrees are
demonstrated. Similarly, Figure 18 shows CX values for ships with

distributed superstructures; note that C_,. values are larger than

XS
C,y, values, as noted in the SUMMARY OF WIND FORCE EQUATIONS section.

Fﬁﬁally, Figure 19 shows hull dominated vessels; note the extreme

62 ~ 120 degree value, and the extreme behavior of the "Fahrgastshiff”
{see Figure 2 for silhouette). Otherwise, the results are nearly
identical.

Figures 20 through 22 show representative lateral coefficients
(CY). However, only a discussion on the shape function is applicable
here, since the design methods presented in this report allow for variable
values of the peak coefficient.

Figure 20 shows the 'usual” sinusoidal shape function used by most
designers. As shown, this shape function certainly applies to these
vessels. However, Figure 21 shows the type of behavior recommended in
this report as typical for most ships. The flartened behavior of these
regsponses are evident.; in fact, more vessels fe.’ into this category
than the forwer. Figure 22 shows an even more extreme type of behavior

meagsured for some ships, which seems to suggest a "double-humped" behavior.

16




With all three of these figures, no clear indications as to vessel
types versus shape category types were discovered, and the middle-of-the
road shape of Figure 21 was used as generally applicable to all ships.
It is evident now why the general form of the shape function was retained
in Equations 3 and 6; it a!lows the user to easily tailor the charac-
teristic shape of the load versus angle to whatever is considered best.

The question of error in the yaw moment coefficients is also
applicable to all the specialized coefficients presented in Figures 8
through 14 in this report. Care was taken to collect as much data as
possible for each ship type before deciding on a "recommended" curve,
which resulted in consistent and recognizable trends for the ship types
used here. Defining the error associated with each recommended curve is
difficult; however, Figure 23 illustrates a typical ship-type comparisor
for center island tankers. It is seen that the use of an average valur
in this case is entirely justified as representative of most center
island tankers.

It should be pointed out that the yaw moment can be very sensitive
to vessel draft; the yaw moment response of a supertanker can approximate
the response given in Figure 8 if it is unloaded (and therefore hull
dominated), but change to Figure 9 when loaded (and therefore stern
island dominated). This behavior is not characteristic of ships with a
centered superstructure arrangement, but some caution should be used in

applying these recommended moments.

Comparison to Other Investigators

The peak lateral coefficient value of CY = 0.92 + 0.1 compares

favorably to the value of C, = 0.871 with a 23% deviation as calculated

Y
by Altmann (Ref 12) from the test data of Reference 5. The longitudinal

coefficient value of CX = 0.70 £ 0.06 1s more accurate than Altmann's

value of Cx = 0.796 ¢t 0.19 for normal ships. The agreement is closer

for the hull dominated ships with Cx 2 0.40 compared to Altman's Cx =

0.363. These latter values for hull dominated vess=ls are higher than
those given by by Hughes (Ref 7), where only one-third of the total hull

area (thus C = €.33) was used in calculating the wind load forces.

X
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Figure 24 is Figure 7 replotted with recommended yaw moment coeffi-
cients from References 1 and 12. This illustrates the possible errors
associated with the use of any single moment curve, regardless of the

source.

CONCLUSIONS AND RECOMMENDATIONS

The primary goals of this investigation have been achieved in that
the methods for calculating wind drag loads on many types of ships can
now be carried out in a simple vet individualized manner. Although the
proposed approach is less complex than that of others, its value is
readily evident from a practical standpoint.

It is recommended that the methods presented in this report be used
primarily for the determination of wind drag loads on tankers and cargo
ships; they can also be applied to other conventional ship types (including
warships) with a reasonable degree of confidence.

Finally, several other sources used in the preparation of this
paper, not directly referenced in the text, are listed in References 13
through 17. An example of a typical wind load and moment response

determination is presented in the Appendix.
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NOMENCLATURE

AH Lateral projected area of the hull only

A Lateral projected area of the superstructure only
Longitudinal projected area of the ship

AY Lateral projected area of the ship

CN Nondimensional yaw moment coefficient
CX Nondimensional longitudinal wind force coefficient
CXB Longitudinal headwind (bow) coefficient [Cx at 6 = 0 degrees]

CKS Longitudinal tailwind (stern) coefficient le at 6 = 18C degrees)

CY Nondimensional lateral wind force coefficient
CYC Calculated peak lateral force coefficient; constant = 0.92 * 0.1
CYH Measured peak lateral force coefficient (from data)

f(6) Normalized shape fuactions

Fx Joongitudinal wind force
FY Lateral wind force
N Yaw moment

v Wind velocity

VR Reference wind velocity at 33 feet above sea
21
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Average normalized wind velocity over hull

Average normalized wind velocity over superstructure

Incident wind angle with respect to the ship

Zero crossing angle

Density of air
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Naval Vessels

Vessels Used in Figure 6

Carga A

A‘

Cargo Eorafo

Escart Carnier (CVE-3$)

Cargo I (fedy

Heavy Cruser (CA-119) 'i . I

Sceschiepper

Large Carrier (CVA-59)

v
1

Misceliancous Reprosentative Vessels

Light Cruisct (CL-1485)

Kumao

Destroyer (DD692) Fahrgastsomdf

tHlecktrawler
) ! \J
Amphibious Transport (APA-248) 1 !
Mcicor
Lberty s 121 ity
Tankee A
Cargo

T-AQ Navy Tanker (AO-143)

Figure 2. Representative vessel profiles taken from the total listing in Table 1,
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Height Above Sea (ft)

96

80

48

Variable Wind Gradients
(N=5,7,10)

0.4

(%)

Figure 3. Wind gradient family.
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Appendix

SAMPLE PROBLEM

For demonstration purposes, the following example of the wind load
determination for the center island tanker S. §. Pennsylvania (Figure A-1)
is presented for an arbitrary 30 knot wind. Refer to the summary section

for the expressions used in this example.

Figure A~1. S. S. Pennslyvania
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Projected areas of vessel, as estimated from Figure A-1, and known vessel

dimensions are:

Ay = 19,390 fr?

AH = 16,660 ft?

AS = 2,730 ft?

Ay = 4,500 ft?
L = 595 ft

wind Gradient Approximations and CY

Average height of freeboard = 14 ft (0 - 28 ft)
Average height of superstrucrfure = 43 fr (28 - 57)

Normalized local wind speed is taken from the wind gradient curve (Figure 3),

with n = 7:
v 2 ~
0 to 28 ft .......... (VH/VR) = 0.60
v 2 ~
28 to 57 ft ....... ... (VS/VR) = 1.11
Such that
_ (1.11)(2,730) + (0.60)(16,660)

Thus, for the lateral force in a 30 knot wind, from Equation 1,

]

1 2
Fy(8) 3P Ay VT Gy £(8)
= 1(0.00237 1b-sec2/£t)(19,390 £t2)(30 kt)?

. (1.688 ft/sec/kt)2(0.62)£(8)
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Substituting £f(8) from Equation 3, or using Figure 4, lateral force

_ 4y sin 8 - (sin 50)/20
= (3.66 x 10) 0795 (1%)

This lateral force is shown in Figure A-2, along with Reynold’s Number-
scaled experimental data. Since no information as to the ship's loading
candition (and therefore projected areas) is available from the test
report, the experimental data should be used only as a qualitative check
on the geaersal behavior of the calculated loads. The particular shape
function recommended by this report is shown to bhe a good fit to the

experimental data.

CX' The initial mean longitudinal coefficient value is CXB = 0.70
(£ 0.06), but since the SS PENNSYLVANIA is a center island tanker with

uncluttered decks, the coefficient is adjusted to CXB =0.70 + 0.10 = 0.80

And, for center island tankers,

Cuva ~ 3/4 CXB = 0.60; Oz % 100 degrees

XS
Such that, for 6 < 02

1 2 +
F, (8) 2PV A G f(y)

= %(0.00237 1b-sec?/ft*) (4,500 ££2)(30 kt)?

. (1.688 ft/sec/kt)(0.80)£(w)"

Sutstituting for f(\b)+ from Equations 6 and 7,

(1.09 x 10%) (“i“ v ‘Of;in 5&)/LQ> (1b)

Fy(0) =

¢ = (0.9) & + 90
Tbe lcngitudinal force for # > 6, is ideuntical to the above equation,

Z

except st = 0.60 is used, and Equation 8 is used for y:

0+ 67.5




The longitudinal force for this tanker is illustrated in Figure A-3,
zlong with Reynold's Number-scaled experimental data. Again, because
the projected area of the model in unknown, only a gqualitative check is
possible. This shape function, with 1its 'skewed" benavior around 100°

and the flattened tails, shows the came characteristic behavior as the

experi tal results.

N. The recommended wind i {uc.d yaw moment coefficient, CN(O),
for a trim center island tanker is shown in Figure 13. The moment

is calculated using Equation 1:

4
1]

1 yi
1p vt a1y (8
= 10.0237 1b-sect/£t4) (30 kt)2(1.688 ft/sec/kt)?

. (19,380 ££2)(595 ft) cy ()

it

(3.5 x 107) ¢y (8) (fr-1b)

The moment is shown in Figure A-4, along with Reynold's Number-scaled
experimental data.

The ship used in this example could be classified as a 'center-balanced
superstructure” ship, so the yaw moment coefficients recommended in
Peference 1 and shown as dotted in Figure 16 could have been used instead
of ithe specialized curves in Figure 13. A compariscon of N (0) values
between Figures 13 and 16 shows that this alternate function would have
overestimated the measured minimum and maximum yaw moments by approxi-
mately 100%. This clearly demonstrates the potential errecrs of using

a too simplistic loading function in the moment estimation.
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