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AN EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF

AN AIR BUBBLE LAYER ON RADIATED NOISE

AND SURFACE PRESSURE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER

Final Report

INTRODUCTION

A layer of air bubbles when introduced along a boundary in flowing

F water has many associated acoustic and hydrodynamic effects of consider-

able practical value as well as theoretical interest. Possibly the two

most useful applications of a bubble layer are for the reduction of

cavitation damage (Peterka, 1953) and attenuation of acoustic noise

Air bubble layers are sometimes introduced into the flow as a by-

product of some other effort such as the ventilation of struts, hydro-

foils, or the wake of supercavitating flows.

There is some evidence (Stefan and Anderson, 1964) that a bubble

layer will provide drag reduction at the rather large concentration of

10 per cent. A reduction in friction factor, however, was no'C observed

in the case of bubbly mixtures in pipes (James and Silberman, 1958).

The useful phenomena associated with an air bubble layer in water

in some instances is not without some important adverse effects such as

the impairment of performance of pumps (Killen and Wetzel, 1981) or heat

exchangers. The potential for com'promise between beneficial and adverse

effect is possible only when the necessary and limiting para~mters of the

conflicting phenomena are well known. For example, it has been found that

a cooling pump will tolerate less than 4 per cent air by volume in the

inlet flow without serious degradation in performance. At the same time,

the air concentration for quieting by a bubble layer can be much less

than this value if uniformity of the screen can be maintained. The use

of a bubble screen for cavitation damage prevention or drag reduction,

which requires 5-10 per cent concentration, would be incompatible if
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such a bubbly flow could enter a cooling pump at the same time. The

role of bubble size in either cavitation damage reduction or pump

performance degradation is at present an unknown quantity. The equili-

brium size of an air bubble in a boundary layer is only indirectly

known from studies on other devices (Sevik and Park, 1973; Cliff et al.,

1978) and limited experimental measurement on large spillways (Cain,

1975), the latter being a model comparable to ship boundary layers.

The acoustic properties of an air bubble layer have been known

for a consider.able time for their effect on sound attenuation and velocity

of propogation (Mallock, 1910; Minnaert, 1933). The very high attenua-

tion of a bubbly mixture over a broad range of frequencies reaching

4xl04 VdB/cm in a frequency range 20-100 Ki~z where V is the volume

concentration has been very useful for sound isolation application (Kuhl

et al., 1947).

It is only recently that the acoustic properties of air bubble screens

have been suspected of having both a sound amplification capability as

well as attenuation (Crighton et al., 1969; Junger and Cole, 1980). How-

ever, experimental evidence of amplification has been lacking.

It is suspected that in many applications involving the use of

bubble screens for quieting, a superabundant quantity of bubbles are

used. If secondary problems such as improved pump performanc. could be

solved by a concentration reduction, then confidence in the reliability

of the quieting feature would need to be established if adverse effects

such as sound amplification is to be avoided.

Possibly the most significant evidence of increased noise from a

bubble layer was the experiments of Franklin and McMillan (1976) on wall

pressure measurements in bubbly flow in which they showed a 20 dB rise

in the signal sensed by a surface pressure transducer with the addition

of air to the boundary layer. The present investigation is concerned

with a further description of this phenomena--the nature of the acoustic

signal and its relation to air bubble size and concentration. Measurements

were made of surface pressure fluctuation under the boundary layer of a

smooth plane surface with a nearly zero pressure graitient far downstream

of the transition. Air was injected thLrough an or'ifice or orifice mani-

fold at various distances upstream of the Surface pr(,e-sure fluctlation
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observation point. A range of bubble concentrations was used which was

changed by altering the air flow rate through the upstream orifice.

A range of bubble sizes resulted from various combinations of air flow

rates and boundary layer velocities. Correlation measurements were

made between two surface pressure transducers at various separation

points, both streamwise and cross-stream. High speed photographs and

motion pictures were made of the bubble layer produced by the orifice

as it flowed past the pressure transducers. From these photos bubble

size and information on acoustic signal could be obtained.

EXPERIMENTAL

The experiments were performed in the St. Anthony Falls Hydraulic

Laboratory's free-surface water tunnel. Although the free-surface fea-

ture was not used, a number of additional devices which were required

with the free-surface capability proved to be quite useful in these

experiments. The water tunnel, Fig. 1, is equipped with a very large

efficient air separator which was used to cemove the accumulated air

from the bubble injector so that recirculition of bubbles would not occur.

An unusually large contraction ratio of 100:l exists as a consequence of

the presence of the air separator. A low water velocity occurs in all but

the test section, and as a further consequence the noise background of

the water tunnel was quite low, which is an advantage for acoustic mea-

surements. The upper surface of the test section was covered with a 1/4 in.

lucite sheet contoured to match the former free-surface. The surface was

further shaped by a trial procedure to give a ned&rly zero pressure gradient

along this surface in the test region. Figure 2 showz the measured

pressure distribution for a series of taps placed along the lucite plate

centerline. The distance covered begins from a short distance into the

contraction region to a little beyond the pressure transducer location.

Velocity profiles were measured with a stagnation tube at the loca-

tion of pressure fluctuation measurement. Boundary layer displacement

thickness was determined from a graphical integration of the measured

velocity profile. Figure 3 shows the measured displacement thickness

compared with an empirical relationship for turbulent boundary layer

thickness (Schlichting, 1979). The transition was located from the more

rapid dispersion of bubbles that occurred at this point.
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A flooded chamber now exists above the test section which is a

useful location for mounting hydrophones to measure radiated noise.

While the test section is free of visible bubbles, the water in the

tunnel becomes saturated with air so that rather high test section pres-

sure must be used to suppress cavitation. Cavitation and its associated

noise is regarded as an unwanted complication to the noise measurements.

Air was injected through a manifold of one to eight, 2 mm holes,

25 to 90 cm, upstream from the pressure transducers. It was soon found

that the noise spectra did not change in form or magnitude with either a

single orifice or a number of orifices. Flow through a single orifice is

easier to describe than a multiplicity of holes which can interfere with

each other; therefore, the experiments were carried out vith a single

orifice for injection.

The surface pressure transducers were either atn NSRDC produced

3 mm transducer or a BBN Model 377 sensor with a 2 mm active area.

Figure 4 is a block diagram of the data analysis equipment. The use

of analog type rather than sampling type data analysis equipment was found

more convenient for dealing with random pulse type physical data as it

occurs here. Both types of equipment are available at the St. Anthony

Falls Hydraulic Laboratory.

RESULTS

Measurement of surface pressure fluctuation for a range of velocities

of 3.66 - 18.29 mps ar.d a test section pressure of 50.8 cm of mercury are

shown on Fig. 5. A 3 mm transducer was used. No correction has been made

for the finite transducer size. The results are comparable to measure-

ment by other investigators for the same size of transducers (Silberman,

1978; Nisewanger, 1965). The coordinates are I(w) V/¼p2 V•$,vs. 0

where D(w) is the measured power spectra, w is 2rT times frequency,

p the density, V the fluid velocity outside the boundary layer, and ("

the boundary layer displacement thickness. Air was then added to the

boundary layer at a flow rate that would produce a near maximum increase

in noise. The results are shown on Fig. 6. It was found that the spectra

for various water velocities would superimpose if Q/V was held constant
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where Q is the flow rate of the air in m 3/sec, and the same coordinates

as on Fig. 5 were used. An air jet discharging into water through a 2 mm

orifice produced bubbles whose diameter is given by the following rela-

tionship: d - 3.16\Q-'T (Silberman, 1957; Hughes et al., 1979). A

constant Q/V would indicate a constant bubble size. That the spectra

from various velocities will superimpose on these coordinates with a con-

stant Q/V must be regarded as fortuitous. A possible explanation is that

the constant Q/V provides a constant concentration of bubbles and that the

bubbles, if introduced at the same diameter, are then sheared down in a

distance Z from the point of introduction to an observation point (SPT i
location) in proportion to the flow velocity. A similar suggestion to
this has been made by Sleicher (1962) and is shown graphically by

Fig. 7.

Further insight into the air bubble noise flow relationship can be

seen from Fig. 8, which shows the bubble noise spectra at a constant water

flow velocity with a range of air flow rates. The most identifiable

I! feature of these curves is the "corner frequency" which is emphasized by

superimposing two straight lines on the data points. These corner fre-

quencies were converted into an equivalent bubble diameter based on the

free natural frequency of bubbles in their fundamental mode of vibration.

The equivalent bubble size for each "corner frequency" is shown on Fig. 9

along with a range of flow rates and the correspondiog range of bubble

sizes observed from photographs at the test section. Examination of the

bubble size range shown compared to those expected for the corresponding

d = 3.16 Q/ nmeters is found to be much smaller than predicted. This

observation tends to verify the idea that bubbles are sheared down to a

much smaller size proport onal in some way to the original size introduced

into the flow. The air was introduced in Fig. 10 as far upstream in the

water tunnel test section as possible (• )0 cm). The corner frequency

in this case can be observed to change very little as the flow rate

changes, indicating that the bubble sizes corresponding to a Q/V value
are sheared down to an equilibrium size range. This is shown as a

dotted line in Figs. 7, 9, and 10. No photographic measurement was

made of the bubble size distribution for the last conditions.
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Bubble spectra measurements were also made with a 1.27 cm diameter

surface pressure transducer which was constructed by mounting a 3 mm

transducer in a shallow liquid-filled chamber with a 1.27 cm lucite dia-

phragm. Some attenuation and some resonant response peaks were introduced

by this procedure; however, the qualitative results shown are quite sig-

nificant. The conclusions which can be drawn from Fig. 11 are that the

bubble noise spectra are the same as with the 3 mm unit if the attenuation

and resonant peaks are ignored. The surface pressure fluctuations are

much attenuated, as expected, from the use of a larger diameter transducer

(Corcos, 1963). This establishes that the bubble induced part of the noise

spectra which is not affected by transducer size is a radiated noise, that

the bubbles are responding to the flow pressure structure as evidenced by

the correlation with flow parameters typical of surface pressure fluctua-

tion, and that the bubble suspension causes little modification of the flow

structure responsible for the generation of surface pressure fluctuations.

A high-pass filter with a pass-band above 5 KHz was incorporated into

the noise measuring system. The bubble noise could be observed as a random

distribution of pulses in time in which the peak amplitu3es exceeded 140

decibles above a 1 micro-Pascal reference pressure. Detailed examination

of the radiated pressure pulses showed them to be damped sinusoids, as

would be expected from impulse excitation of an air bubble at their lowest

resonant mode. The possibility is evident that the damped resonant size

of these bubbles can be determined from the dominant frequency of the decay-

ing puise.

Further information was sought through the examination of the sound

pulse from each of two identical pressure transducers for various separa-

tions from 3 mm to 5 cm, as displayed on a dual beam oscilloscope. The

gain was set at each of a series of separations to give equal amplitude of

the displayed pulses. From this, it was found that the pulse amplitude

was reduced proportional to l/r, where r is the transducer separation

distance. The velocity of propagation, as estimated from the time delay

between pulses, equals that of sound in pure water. The reduction in
amplitude versus distance indicated that the pulses of greatest amplitude

were originating within 3 mm of the transducer.
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Two photographic methods were used to determine how the bubbles were

excited to emnit sound pulses. The firs'%. assumed that splitting of the

bubble from large to smaller would produce the pulse of sound. This pulse

was made to trip a flash lamp to photograph the region of the transducers

at the sam~e in'3tant of time. It was expected that a pair of bubbles would

be found within a few mm of the transducer face which could be possible

candidates for the source of the noise, Single bubbles were photographed

sufficiently near the transducer to have been the source of the noise. The

number of bubble pairs were so few that doubt began Co arise with regard to

spli~tting as the only source of bubble noise, although many bubble pairs

were found in more remote points in the field. High speed motion pictures

were then attempted (5000 frames/sec) with a superimnposed trace of the sound

pulse on the same film. Again, very few splitting events were observed

which were close enough to the transducer to have been a likely source with

the amplitude observed. However, no other unusual motion of the bubbles was

observed, which miglt impart an impulse of excitation except possibly the

impact of the bubble on the surface. A practical dif~ficulty of this pheno-

mena arises with high-speed motion pictures. if it is desired to reduce

the number of bubbles in the photographic field sufficiently so that only

I a few will be near the transducer at any time so that significant bubbles

can be identified, then the number of pulses per second are so few that

an entire reel of film can be exposed with no sound pulse occvurring,I DISCUSSION

The presence of air bubbles in a boundary layer has been established

as an active source of radiated noise. The spectral intensity of the

sound was found to be dependent on bubble concentration, and the radiated

frequency is related to the size of the air bubbles in the layer.

The size of the bubbles in a layer is dependent on the size of the

bubble introduced into the flow. If given sufficient time, however, they

will. reach an equilibrium size independent of bubble size larger than

the equilibrium (Sevik and Park, 1973; Sleicher, 1962).

The radiated sound was observed to consist of damped sinusoids whose

amplitudes are inversely proportional to the distance from source to obser-

vation point for a single b)ubble size. Pressure pulses such as these are

typical of impulse excitation of second order resonant systems. If it is
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assumed that the impulse pressure arrives at the transducer in a random

manner, as for example the impact noise of rain drops on a surface, then

the expected spectrum can be written (Bendat, 1958),

S((j)) = n G(L) (1)

where n is the average number of impulses arriving per unit time and

G((o) is the Fourier transform of a typical single event of the pressure

wave arriving at the transducer when frequencies below 5 KHz are filtered

out.

The analytic form chosen for G(w) for an exponentially damped sinusoid

(Bendat, 1958V is

K
G(W) = (2)

where K is a constant depending on amplitude,

(0 = 21 x frequency f in Hertz,

(0 = the undamped natural frequency of the air bubble in radians/sec,

and b = a constant related to the damping of the bubble oscillation r.

The measured value of 'f ranged between 3-10 when substituted in

the above relationship for G((0 ) giving a peaked spectra whose maxima

correspond to the corner frequency. The actual measured spectra shown on

the figures are a result of averaging over a range of bubble size and

frequencies. In mean terms, bubble size would appear as a broad band or

highly damped system.

The location point of the bubble excitation region is necessary in

order to specify concentration and possible magnitude of the impulse. If
as proposed by Fitzpatrick and Strasberg (1969) that bubble splitting is

the predominant source of impulsion force thereby causing the observed

oscillation of the air bubble, then the most likely region of the splitting

of the bubble would be in a region of the boundary layer of greatest

kinetic energy dissipation (Sevik and Park, 1973). The grratest kinetic

energy dissipation occurs very close to the boundary surface. High speed

motion picture observations of the air bubbles and the corresponding

12



sound pulse did not show recognizable associated splitting events. This

might mean that the bubble size is below the splitting threshold (Sevik

and Park, 1973); however, the bubble is deformed never-the-less by the

same mechanism which would have split a larger bubble. Alternatively, the

bubbles P'.re impulsively deformed by their impact on the boundary layerI
wall. Since only a fraction of the bubbles located in the boundary layer

are expected to participate in the noise production, absolute value of

concentration based on the air concentration in the entire layer is only

of limited usefulness. A simple series of experiments in which the air was

injected into the flow at various distances from the wall could have given

some insight into the bubble excitation region.
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Fig. 8. Air Bubble Noise Spectra lor a Range of Air Flow
Rates Veloci' Constant.
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Fig. 10. Bubble Noise Spectra. Air Injected 92 cm Upstream
of the Transducer.
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Fig. 11. Bubble Noise Spectra With a Chamber Mounted Pressure
Transducer.
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