ON THE PROPERTY OF DULLNESS OF PARETO DISTRIBUTION (U)

JUL 82

W WONG

UNCLASSIFIED TR-82-16
ON THE PROPERTY OF DULLNESS OF PARETO DISTRIBUTION

by

Wing-Yue Wong
University of Malaya

Technical Report #82-16

*This research was supported by the Office of Naval Research contract N00014-75-C0455 at Purdue University during the author's visit in May 1982. Reproduction in whole or in part is permitted for any purpose of the United States Government.
ON THE PROPERTY OF DULLNESS OF PARETO DISTRIBUTION*

Wing-Yue Wong
University of Malaya

SUMMARY

In the analysis of income distribution, it has been observed that the true income is usually underreported. In this paper we study the statistical properties of reported incomes through a multiplicative underreported model. The concept of "locally nearly dullness" of the reported income is introduced and studied. The above property of dullness has been used to characterize the Pareto distribution for the problem of reported incomes.

1. INTRODUCTION

The Pareto distribution plays an important role in the study of many socio-economic problems, especially in the theory of income. It is common that individuals may underreport their true incomes to avoid payment of some portion of their income tax. This phenomenon of under-reporting has been investigated by Krishnaji (1970) and Talwalker (1980).

Let the random variable X and Y represent the actual income and reported income, respectively. Krishnaji and Talwalker both assume that Y is related to X through the relation

$$Y = RX.$$ \hfill (1.1)

It has been shown by Talwalker (1980) that if $P(Y \leq 1) = 0$, then a necessary and sufficient condition for X to have a Pareto distribution of the form

$$F_X(x) = 1 - x^a, \ x \geq 1, \ a > 0$$ \hfill (1.2)

*This research was supported by the Office of Naval Research contract N00014-75-C-0455 at Purdue University during the author's visit in May 1982. Reproduction in whole or in part is permitted for any purpose of the United States Government.
is that

\[P(X \geq xt | X > x) = P(X > t), \forall x, t \geq 1. \tag{1.3} \]

However, it should be pointed out that \(X \) has distribution (1.2) if and only if \(Z = \ln X \) has an exponential distribution

\[F_Z(z) = 1 - \exp(-az), z > 0. \]

Condition (1.3) can be expressed in terms of \(Z \) as the so-called "lack of memory" property:

\[P(Z > u + v | Z > u) = P(Z > v), \forall u, v > 0. \]

Talwalker (1980) has also shown that if \(F_X(x) \) is absolutely continuous and concave in \(x \), then \(F_X \) is given by (1.2) if and only if condition (1.3) holds for some \(x_0 \geq 1 \) and for all \(t \geq 1 \).

In [Krishnaji 1970], it is assumed that \(X \) and \(R \) are stochastically independent and \(R \) has distribution function given by

\[F_R(r) = r^p, 0 < r < 1, p > 0 \tag{1.4} \]

and \(P(RX > m) > 0 \) for some \(m > 0 \). Then Krishnaji showed that \(X \) has a Pareto distribution of the form
\[F_X(x) = 1 - \left(\frac{m}{x} \right)^a, \quad x \geq m, \quad a > 0 \] (1.5)

if and only if

\[P(RX > t | RX > m) = P(X > t), \quad \forall t \geq m. \] (1.6)

However, if incomes fall below the tax exempt level, there should be no
incentive to underreport. Moreover, it will be more realistic to assume that
the underreporting factor \(R \) depends on the true income \(X \). Therefore in this
paper, we assume that the conditional distribution of \(R \) given \(X=x \) is given by

\[F_R(r|x) = \begin{cases}
0 & \text{if } r < \frac{m}{x} \\
R^P & \text{if } \frac{m}{x} \leq r < 1 \\
1 & \text{if } r \geq 1
\end{cases} \] (1.7)

where \(m \) represents the tax exempt level.

In section 2, we study the properties of Pareto distribution by comparing
the tail probabilities of \(RX \) and \(X \). Some properties of dullness of
Pareto distribution analogous to that of "lack of memory" will be discussed
in section 3.

2. TAIL PROPERTIES OF THE REPORTED INCOME

Theorem 2.1. Let \(X \) be a random variable such that \(F_X(x)=0, \quad x<m, \quad m>0, \quad \) and \(R \)
be a random variable whose conditional distribution is given by (1.7). Then
\[F_X(x) = \begin{cases} 1 - \alpha \left(\frac{m}{x} \right)^a, & x > m, \ 0 < \alpha \leq 1, \ a > 0, \\ 1 - \alpha & x = m \end{cases} \] (2.1)

if and only if

\[P(RX > t) = \frac{p}{a+p} P(X > t), \ \forall t \geq m. \] (2.2)

Proof. (Necessity). Suppose the distribution of X is given by (2.1). Then for \(t \geq m \)

\[P(RX > t) = \int_t^\infty P(R > t | X = x) dF_X(x) \]

\[= P(X > t) - \int_t^\infty (t/x)^\alpha \cdot \frac{am^a}{x^{a+1}} \ dx \]

\[= \frac{p}{a+p} P(X > t). \]

(Sufficiency). Let \(G(x) = 1 - F_X(x) \). By using the method of integration by part, we obtain that for \(t \geq m \)

\[P(RX > t) = pt^p \int_t^\infty \frac{G(x)}{x^{p+1}} \ dx. \]
Replacing $x^{-PG(x)}$ by $H(x)$, condition (2.2) can now be expressed as

$$\int_{t}^{\infty} \frac{H(x)}{x} \, dx = \frac{H(t)}{a+p}, \quad t \geq m.$$ \hspace{1cm} (2.3)

This implies that H is a continuous function and hence differentiable. Thus we obtain that

$$H(t) = bt^{-(a+p)}, \quad t \geq m$$

and for some constant b.

or

$$1 - F_x(x) = bx^{-a}, \quad x \geq m.$$

If $F_x(m) = 1 - \alpha$, then F_x is given by (2.1).

Remark 2.1. It should be pointed out that if we impose an additional assumption that $F_x(m) = 0$ or replace condition (2.2) by

$$P(RX \geq t) = \frac{p_{t}}{a+p} P(X \geq t), \quad t \geq m$$ \hspace{1cm} (2.2)
then it can be shown that \(a=1 \) and (2.1) reduces to (1.5).

The following result shows another property of dullness of Pareto distribution.

Theorem 2.2. Let \(X \) and \(R \) be the same as stated in Theorem 2.1. Then the distribution of \(X \) is given by (2.1) if and only if

\[
P(RX > y|R > x) = P(X > y|X > x), \quad y > x \geq m. \tag{2.4}
\]

Proof. If \(F_X \) is given by (2.1), then

\[
P(RX > y) = \frac{pa}{a+p} \left(\frac{m}{y} \right)^a, \quad y \geq m.
\]

This shows that

\[
P(RX > y|R > x) = \left(\frac{x}{y} \right)^a = P(X > y|X > x) \text{ for } y > x \geq m.
\]

Suppose conversely that condition (2.4) holds. Set

\[
H(x) = x^p(1 - F_X(x)).
\]
Then condition (2.4) reduces to

\[\frac{\int_{y}^{\infty} H(t) \, dt}{\int_{x}^{\infty} H(t) \, dt} = \frac{h(t)}{H(t)} \quad , \quad y > x > m. \]

This implies that

\[\int_{x}^{\infty} \frac{H(t)}{t} \, dt = cH(x) \]

for \(x > m \) and for some constant \(c > 0 \). By using an analogous argument as in the proof of Theorem 2.1, the result follows.

Remark 2.2. As analogous to remark (2.1), it is easily seen that if \(F_X(m) = 0 \) or condition (2.4) is replaced by

\[P(RX > y | RX > x) = P(X > y | X > x), \quad y > x > m, \] (2.4)

then (2.1) reduces to (1.5).

3. PROPERTY OF DULLNESS OF REPORTED INCOME

In this section we shall investigate some property of dullness of the reported income.

Definition 3.1. The reported income \(RX \) is said to be nearly dull if

\[P(RX > mx | RX > mx) = cP(RX > my) \quad \text{for some} \quad c > 0 \quad \text{and for all} \quad x, y \geq 1. \] (3.1)

Theorem 3.1. Let \(X \) and \(R \) be defined as in Theorem 2.1. Then the reported
income is nearly dull if and only if the distribution of \(X \) is given by (2.1).

Proof. It is easy to verify that if the distribution of \(X \) is given by (2.1), then the reported income is nearly dull.

To prove the converse, suppose the reported income is nearly dull. It is easy to see that \(c^{-1} = P(RX > m) \). Let \(H(x) = P(RX > mx | RX > m) \). Then condition (3.1) becomes

\[
H(xy) = H(x)H(y) \quad \text{for all } x, y \geq 1.
\]

This, together with the condition that \(H(1) = 1 \), imply that

\[
H(x) = x^a \quad \text{for some } a > 0.
\]

Let \(G(x) = 1 - F_X(x) \). Condition (3.1) is then reduced to

\[
px^p \int_0^\infty \frac{G(t)}{t^{p+1}} dt = \frac{1}{c} \left(\frac{m}{x} \right)^a \quad \text{for all } x > m
\]

or

\[
\int_0^\infty \frac{G(t)}{t^{p+1}} dt = \frac{1}{cp} \frac{m^a}{x^{a+p}} , \quad x > m.
\]

This shows that

\[
1 - F_X(x) = \frac{a+p}{cp} \left(\frac{m}{x} \right)^a.
\]

Thus \(F_X \) is given by (2.1) with \(a+p=acp \).
\((P(RX > x))^r = c^{-r+1}P(RX > m^{-(r-1)}x^r)\).

Substituting this into (3.4), we obtain that

\[P(RX > m^{-(r-1)}x^r) = cP(RX > m^{-(r-1)}x^r)P(RX > my). \]

This proves the lemma.

Lemma 3.2. If the reported income is nearly dull at \(x_1\) and \(x_2\), \(x_1 < x_2\), it is also dull at \(\frac{mx_2}{x_1}\).

Proof. For any \(y > 1\)

\[P(RX > x_2y) = P(RX > x_1 \cdot \frac{x_2}{x_1} y) = cP(RX > x_1)P(RX > m \frac{x_2}{x_1} y). \]

On the other hand,

\[P(RX > x_2y) = cP(RX > x_2)P(RX > my). \]

Moreover,

\[P(RX > x_2) = P(RX > x_1 \cdot \frac{x_2}{x_1}) = cP(RX > x_1)P(RX > m \frac{x_2}{x_1}). \]

This implies that

\[P(RX > m \frac{x_2}{x_1}) = P(RX > m \frac{x_2}{x_1})P(RX > my). \]
Proof of Theorem 3.2. Let D denote the set of all points at which the reported income is nearly dull. Suppose the reported income is nearly dull at x_i, $i=1,2$ and x_1 and x_2 are log-incommensurable. Let $x_i = m y_i$, $i=1,2$. Without loss of generality, we may assume that $y_1 < y_2$. Let r_1 be the largest integer such that

$$y_2 y_1^{-(r_1+1)} < 1 < y_2 y_1^{-r_1}.$$

Denote $z_1 = y_2 y_1^{-r_1}$. Then we have $1 < z_1 < y_1$. Moreover z_1 and y_1 are incommensurable. By using the same argument, we can find a positive integer r_2 such that

$$y_1 z_1^{-(r_2+1)} < 1 < y_1 z_1^{-r_2}.$$

Set $z_2 = y_1 z_1^{-r_2}$. Note that $z_2 < z_1$. By repeating the process infinitely many times, we can generate a decreasing sequence of positive numbers

$$z_1 > z_2 > \ldots > 1,$$

with $m z_i \in D$, $i=1,2,\ldots$. Clearly $\lim_{n \to \infty} z_n = 1$. Next we want to prove that D is dense in $[m,\omega)$. Suppose $x > m$ and $\epsilon > 0$. Choose $m z \in D$ such that

$$1 < z < \frac{x + \frac{\epsilon}{2}}{x - \frac{\epsilon}{2}}.$$

Let n denote the largest integer such that $z^n < \frac{x}{m} + \frac{\epsilon}{2m}$. Then $z^n > \frac{x}{m} - \frac{\epsilon}{2m}$. For if $z^n < \frac{x}{m} - \frac{\epsilon}{2m}$,
\[
\frac{z^{n+1} < (x - \frac{e}{2m}) \left(\frac{x + \frac{t}{2}}{x - \frac{t}{2}} \right) = \frac{x}{m} + \frac{e}{2m}}{x - \epsilon < x - \frac{e}{2} \leq mz^n < z + \frac{t}{2} < x + \epsilon}.
\]

This contradicts to the choice of \(n \). Thus we have proved that

But \(mz^n \in D \). Thus \(D \) is dense in \([m, \infty)\). Since \(P(RX \cdot x) \) is right continuous in \(x \), by Theorem 3.1, the result follows.
REFERENCES

On the property of dullness of Pareto distribution.

Wing-Yue Wong

Purdue University
West Lafayette, Indiana 47907

Report Date

Approved for Public Release; Distribution Unlimited.

Pareto distribution, multiplicative underreported income, locally nearly dullness, reported incomes.

In the analysis of income distribution, it has been observed that the true income is usually underreported. In this paper we study the statistical properties of reported incomes through a multiplicative underreported model. The concept of "locally nearly dullness" of the reported income is introduced and studied. The above property of dullness has been used to characterize the Pareto distribution for the problem of reported incomes.