The Mann-Grubbs Method

Nancy R. Mann
Frank E. Grubbs

University of California, Los Angeles
Dept. of Biomathematics, School of Medicine
Los Angeles, CA 90024

Office of Naval Research, Code 411
Arlington, VA

July, 1982

Approved for public release; distribution unlimited.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

confidence bounds for system reliability; reliability confidence bounds for exponential series systems

This article was written for the Encyclopedia of Statistical Sciences, edited by Johnson and Kotz. It describes the Mann-Grubbs method of obtaining confidence bounds on system reliability for the exponential series system, for which it was originally designed, and for other models.

19. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Consider a series system made up of k independent subsystems, each having exponentially distributed failure time T with either no censoring of the subsystem data or only type-II censoring. Testing is without replacement. For this model, system reliability $R_s(t_m)$ at time $t_m > 0$ is equal to

$$R_s(t_m) = \exp\left(-t_m \sum_{j=1}^{k} \lambda_j \right),$$

with $\lambda_j > 0$, $j=1,\ldots,k$, the hazard rate for the jth subsystem. One can determine an upper confidence bound on the k-system hazard rate $\phi = \sum_{j=1}^{k} \lambda_j$, and from this, of course, can then obtain a lower confidence bound on $R_s(t_m) = \exp(-\phi t_m)$.

The Mann-Grubbs (1972) method for the determination of confidence bounds for system reliability has been adapted to several situations, but was derived originally for this particular model. For this exponential series-system model with type-II censoring, the method yields a lower confidence bound that very closely approximates the lower confidence bound that is most accurate (has the highest probability of being close to the true system reliability) for all values of system reliability, among exact confidence bounds that are unbiased.

The restriction of unbiasedness is necessary here because of the nuisance parameters $\lambda_1,\ldots,\lambda_k$, the hazard rates for the k subsystems.

*Supported by the Office of Naval Research, Contract N00014-82-K-0023, Project 047-204.
For binomial models and exponential models with censoring by time, the Mann-Grubbs (1974) method uses an approach similar to that used for the exponential model with type-II censoring. However, because of discreteness of the data in the binomial case, optimal bounds are more difficult to approximate. For all of these situations, however, the method is quite simple to implement.

For the model given by equation (1) with \(k = 2 \), Lentner and Buehler (1963) derived the uniformly most accurate unbiased lower confidence bound on \(R_s(t_m) \). Generalization to \(k \geq 2 \) was made by El Mawaziny (1965) in his doctoral thesis. As noted above, their results depend upon the assumption that for the \(j \)th subsystem \(n_j \) prototypes have been tested until \(r_j \), with \(1 \leq r_j \leq n_j \), failures occur, \(j = 1, \ldots, k \). For the \(j \)th subsystem, one observes the \(i \)th smallest failure times \(t_{i,j}, \quad i = 1, \ldots, r_j \). One then computes the total time on test for the \(j \)th subsystem, \(w_j = \sum_{i=1}^{r_j} t_{i,j} + (n_j - r_j)t_{r_j,j}, \quad j = 1, \ldots, k \). Calculation of a lower confidence on \(R_s(t_m) \) based on the \(w_j \)'s and the \(r_j \)'s by El Mawaziny's method must be performed iteratively by means of a computer. If both the number of subsystems and the total number of failures are large, problems of loss of precision will result. See Mann (1970).

The Mann-Grubbs (M-G) method eliminates the need for a computer and the problem of loss of precision resulting from the lengthy calculations. The approach is based on the fact,
demonstrated by Mann and Grubbs (1972), that the posterior k distribution of $\gamma = \sum_{j=1}^{k} \lambda_j$ is that of a sum of weighted non-central chi squares. This sum can be well approximated for present purposes by a single weighted chi-square variate with mean m and variance v. Thus, one assumes, using a two-moment fit to chi-square, that $2m\gamma/v$ is a chi-square variate with $2m^2/v$ degrees of freedom (see Patnaik, 1949).

The expressions for the conditional mean m and variance v of the system hazard rate derived by Mann and Grubbs for this model have been simplified by Mann (1974) and are given by

$$m = \sum_{j=1}^{k} \frac{(r_j-1)}{w_j} + w(1)^{-1}$$

and

$$v = \sum_{j=1}^{k} \frac{(r_j-1)}{w_j^2} + w(1)^{-2},$$

where $w(1)$ is the smallest of the w_j's.

Once the hazard-function moments have been calculated, then the Wilson-Hilferty transformation of chi-square to normality can be used to facilitate the calculations, since the number of degrees of freedom $v = 2m^2/v$ for the approximate chi-square variate $2m\gamma/v$ is not generally an integer. To approximate the uniformly most accurate lower confidence bound $R_s(t_m)$ on series-system reliability $R(t_m)$ at time t_m and at confidence level $1 - \alpha$ (incorporating the Wilson-Hilferty transformation), one calculates
\[R_s(t_m) = \exp[-t_m m(1 - \frac{v}{9m^2} + \frac{z_{1-\alpha}^2}{3m})^3] \]

where \(z_\gamma \) is the 100\(\gamma\)th percentile of a standard normal distribution. The Wilson-Hilferty transformation yields an approximation to chi square in this context that, for three or more degrees of freedom, is accurate to within a unit or two in the second significant figure.

For an example of calculation of an approximate confidence bound \(R_s(t_m) \) on series system reliability, we consider an independent series system containing three subsystems, each with exponential failure time. For each of the three subsystems, prototypes have been life tested with type-II censoring resulting in total-times-on test \(w_1 = 42.753, w_2 = 45.791 \) and \(w_3 = 31.890 \), with \(r_1 = 4, r_2 = 3, \) and \(r_3 = 2 \). To obtain \(R_s(t_m) \) using (2), (3) and (4), one forms

\[
m = \frac{4-1}{42.753} + \frac{3-1}{45.791} + \frac{2-1}{31.890} = 0.17656
\]

and

\[
v = \frac{4-1}{(42.753)^2} + \frac{3-1}{(45.791)^2} + \frac{2-1}{(31.890)^2} = 0.00456.
\]

Thus, an approximate ninety percent lower confidence bound at \(t_m = 1 \) is calculated as

\[R_s(1) = \exp[-0.00456/0.17656^2 + 1.282\sqrt{0.00456/0.52968}]^3 = 0.766. \]

The El Mawaziny optimal exact lower confidence bound on
Schoenstadt (1980) uses simulation to compare an exact procedure of Lieberman and Ross (1971) and this approximate method for obtaining lower confidence bounds on system reliability under the model specified by equation (1). He concludes that the results of the simulation runs "seem to demonstrate the superiority of the M-G bounds in those instances that can be considered of practical importance," and also demonstrates that the M-G bounds are exact to the accuracy of his simulation.

For binomial data, the parameter of interest for which a posterior mean and variance (conditional on the failure data) are calculated is \(\xi \), the negative of the logarithm of system reliability \(R \) or, for parallel systems, the probability of system failure, \(1 - R \). The parameter \(\xi \) has been demonstrated by Mann (1974a) to have a posterior distribution that is approximately proportional to a chi-square variate, as does \(\phi \) in the exponential model. The expressions for the conditional mean and variance of \(\xi \) resemble the expressions (2) and (3) only for models for which randomized bounds, commonly used in binomial models, are obtained.

Expressions for obtaining approximate lower confidence bounds on \(R_s \) or \(R_p \) (either randomized or nonrandomized) for the binomial model and for an exponential model with fixed censoring times can be found in Section 10.4 Mann, Schafer,
Comparisons of results with those of other methods are also given for all applicable models, as well as methods for combining results to obtain bounds for models more general than simple series or parallel systems. The latter are also discussed in Mann and Grubbs (1974).

References

Mann, N.R. and F.E. Grubbs (1972), *Biometrika*, 191-204

