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SUMMARY

\/ The statistical variation of load and strength is described by a three

parameter Weibull distribution. The Welbull parameters are evaluated by a least

square analysis and a method is presented which allows confidence bounds to be

assigned to these quantities. A Monte Carlo analysis is used to calculate the

reliability of the structure from the load and strength distributions.
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I INTRODUCTION

The introduction of new materials for load carrying applications often

presents the designer with problems in assessing the reliability of the

structure. Although considerable advances have been made by material scientists

in the development of new materials capable of operating in severe environments,

it is only during recent years that engineers have considered introducing probe-

bilistic methods of design into structural analysis.

With the advent of engineering plastics, fibre reinforced composites,

graphites, ceramics and high strength steels, many materials are being developed

which have inherent variability in their properties. For example, most graphites

and ceramics have random distributions of flaws, both through their volume and

on their surface, which lead to significant strength variations between nominally
1

identical components subjected to identical states of stress . It is a rare

event in the aerospace industry to find a material property or an applied load

which is not subject to some significant statistical variation.

The relative strengths of most structures vary statistically and direct

measurement of the strength of each member could be uneconomic and impracticable.

To overcome these difficulties the structural reliability may be assessed from a

mathematical analysis based on the test results from a small sample of components.

Once the statistical variations of strength and load have been approximately

modelled by some distribution function, the rellabfility of the structure may be

evaluated by analysing the interaction between the two distributions. At the

expense of imposing certain penalties reliability may be improved by reducing

the applied load, by raising the mean strength of the material substantially, or

by reducing the variability of the material under development. If the material

is made for a particular Service application strength can only be Increased by

thickening cross sections. This is not only expensive but may Increase the

weight to an unacceptable level in certain aerospace applications. Material

variability can be reduced if there is a choice of materials available. The

material variability of some composites can be reduced without adversely

affecting the strength and other properties, by changing the material compo-

sition slightly.

The accuracy of predicting the extreme values of a statistical variable

strength and load depends on the fidelity of the model, and on the amount of

data available and their integrity. Predictions based on the analysis of

several hundred tests may be expected to give reliable results but those



evaluated from a few tests are Inevitably less precise. In these circumstances

predictions are made using conservative estimates for the population parameters.

Many statistical distributions are commionly used to describe experimental

data and the choice of distribution In the field of reliability Is by no means

unique. The normal distribution might appear to be suitable and has the advan-

tage that the evaluation of the confidence limits for small sample data Is well

documented2 . However, the normal distribution Is synmmetric and is Inappropriate

for fracture data with skewed distributions. It Is also double sided, extending

to infinity in both positive and negative directions, which Implies a finite

probability value when the distribution variate is zero. In a fracture analysis

application the normal distribution would yield a finite probability value for

zero load which is clearly physically inadmissible, but it Is negligible in

practical terms and allows the normal distribution to be used in many cases.

A distribution which is bounded to the left and allows for positive and

negative skewness is the one due to Weibull3 , which has wide application In the

analysis of fracture and material strength and Is adopted in this analysis. A

Weibull distribution is also chosen to describe the statistical variation of
loeds. Minor modifications would be needed if the load variations were described

* by some other distribution function.

In Section 2 of this report the strength and load variations are each

described by a three parameter Welbull distribution function. A least square

analysis is presented which allows the various Weibull parameters to be calcu-

lated from the known sample data. Confidence limits are assigned to the para-

meters through an analysis outlined In Section 3. In Secton 4 a Monte Carlo

method is presented which allows the reliability of a structure to be derived

from the strength and load distributions.

2 WEIBULL ANALYSIS

When the strength capability of a structure Is exceeded by an applied load

the structure fails and no longer meets Its original design requirement. If the

variability associated with strength and load Is small It Is possible, to a

reasonable degree of accuracy, to express failure by an Inequality Y>X. Here X

and Y denote strength and applied load respectively. There are many situations

where X and Y are not deterministic quantities but vary statistically accord-

Ing to some distribution. In this case a criterion of failure expressed In terms

of some Inequality becomes Inadmissible and must be replaced by an expression for

probability of failure.



The Weibull distribution3 Is extensively used in engineering and design,

and its application to the strength analysis of brittle materials, composites

and polymers is well documented4 '5_6'7'8 . If the three parameter equation is

used an allowance may be made for threshold value, skewness and scale. The

threshold value defines a point in the range below which the probability of a

critical event is zero. Above the threshold value the probability of a critical

event conforms to the Weibull distribution.

In this analysis it is assumed that both the strength and applied loads are

distributed according to the three parameter Welbull distribution. It is antici-

pated that in most applications this assumption will be reasonable for the

strength distribution but there may be certain circumstances in which a different

distribution is required to model the statistical variation of the load. In this

event the analysis will require minor modification.

The cumulative probability functions for the applied load and strength are

given by the respective relationships

Xl-T r X
X px .1 exp  - ' X XT  ,

PX W 0 , X XT ,xr
Py . I exp T Y > YT

py - I(2)

Py -0, Y T

in the above equations PX and P are the cumulative probability values, MX
and MY are the Weibull moduli, X0  and Y0  are the normalising factors, XT

and YT are the threshold values of the respective varlates X and Y . The

" •Weibull moduli and normallsing factors respectively govern the skewness and

tscale of the distribution. The threshold values are responsible for origin

shift. In terms of these Weibull parameters the distribution means and coeffici-

ents of variation are given respectively by9
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The Weibull parameters appearing in equations (1) and (2) are population
values. For most engineering applications these quantities are not available
but will need to be estimated from small sample data to a given confidence level.
if the small sample data

X-Xi 9 Xi1+1  X,

1-1,2, .... N , (5)y Y Yi 9 Yi • Y, I

are available, where for convenience the size of each sample is taken to be N
the Weibull parameters may be evaluated by a least square analysis 1 . This is
achieved by minimising the error terms

6y(1)  . X (Px( ) ) -X - X 1
6y(i) . y (py(I)) Y I y Y - (6)

with respect to the unknown Weibull parameters. In equation (6) X, and
YI satisfy the transformed Weibull equations
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4f I1  XT~ + X0 ti I(1 - X JJ
I (7)

where

Px() - Py(I - ( / 8

Computations have shown that the assigned experimental probability values

provided by equation (8) lead to unbiased estimates of the Weibull parameters11

It can be shown that the minimisation of equation (6) is equivalent to

solving the least square equations

1/M N

N XT.. + xo  w . ( 19)

XT  W i In WI + X0  WI  In W N " I  In W , ()

~i,,1

k and

N YT + Y 0 (12)

N m 1y N /4y (3
YT WI + YO WO " Y I W I)

9m . .. . . m . . .. .



N ,. 2y N 2/M w ,/ty
V W. ' , In Wi + YO WI M n , - Y W, M WY .W

wl se re

S n( 11(1 P (15)

Equations (9) and (10) may be solved simultaneously to express X0  and

XT  in t:rms of the Weibull modulus MX I Omitting the details

N N N
N 2_X, W, -i_ Wi  _ Xi

x / N N (16)
0N - 2/Mx N- l/Mx W-  I/Mx

1 X Wi -- Xi

XT N N/4 N (17)
! " i w1 -~WI /jWX~IvW

Substitution for X0  and XT Into equation (11) leads to a transcendental

equation for Mx  . Although its final form is too complex to be written in
this text the resulting equation may be readily solved numerically on a high
speed computer. In the root solving routine adopted a starting value of

Mx . 1.0001 was chosen because for M t 1 the Weibull equation degenerated

into a physically unrealistic form for the studies under investigation. The

solution for the other parameter set MY , 0 YT may be obtained

similarly.
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3 CONFIDENCE LIMITS

in equations (1) and (2) the Weibull parameters refer to population values.

The Weibull parameters calculated from equations (9) to (15) are small sample

estimates and only approach the population values as the size of the sample

increases to infinity. in practice the sample size may be small and the Weibuli

parameters evaluated from this limited data may differ significantly from the

population values. In these circumstances it is useful to be able to define,

for a given level of confidence, upper and lower limits of the deviation of

these parameters from the population values.

When all three Weibul] parameters vary statistically the estimation of the

confidence bounds requires Individual attention for each new set of parameters

encountered. If the population threshold values are known or may be prescribed

considerable simplifications occur. The confidence limits for the remaining

two Weibull parameters may be evaluated from a Monte Carlo analysis of a single

system of equations and these results hold universally for all Weibull distri-

butions.

Before proceeding further it is important to note that the least square

equations may be developed from any function of the differences defined by

equation (6). in particular the quantities

ax in X (px(I)) -XT -n ( X. - XT)

(18)

a(i) - nfY (Py(i))" YT lnt Yi" YT)

may be used to carry out the least square analysis. With these assumptions

explicit expressions for Mx , X 0 MY , Y0 may be derived in terms of

the threshold values XT and YT " The threshold values are found as roots

of two transcendental equations. Unfortunately these values are highly sensitive

to small changes in data and in many cases the calculated Welbull parameters are

spurious. If the quantities XT and YT are prescribed, an analysis based on

equation (18) yields reliable and accurate results for all cases.

If the threshold value XT  is known a least square analysis based on

equation (18) yields the parameters

1 11



N N N

N V1 In (X, - X) - V, in (XI - XT)

N N N N

2 V22 In (Xi'XT) - vI V I In (Xi-XT)

xo( - i(S) ip - (20)0 x N N .. .N

i-l I-iI-

where

v1  = In In 1/(-Px( )) J (21)

in the above equations the small sample values MX(S) , X0 (S) are introduced

to distinguish them from the population values Mx , M Making the change

of variable

x X (N (22)

reduces the Weibull distribution to the exponential distribution

Px a 1 - exp (-x) . (23)

Substituting equation (22) into equation (19) leads to

12



N N N

N 7V 1, N Vi V-

Xl N fl X In x 0 I N in ( x I

The quantities x. are derived from equation (22) with X set equal to

X. i-1,2. .... N. If the terms in the brackets appearing in equation (24) areI
expanded,

N N N

MX(S) N 25)1 
2  N N'(25)

M " " X. . . N - - N (

When equation (22) is substituted into equation (20) and the resulting expression

simplified it can be shown after some manipulation that

N N N N

()M X(S) -' Inx V, V, In x

X- exp N V, N N (26)
N 1 ViIn x1  - Vi 1  nx

In the above two equations the right hand sides in each case are independent

of the Weibull parameters. They depend only on the distribution of x , the

random variable of the exponential distribution. This implies that a Monte Carlo

analysis applied to equations (25) and (26), for various values of N , will

result in distributions of M x(S)/M X and (Xo(S)/Xo) X which are universally

valid for all Weibull parameters.

Random samples of any size N may be generated by evaluating the Inverse

of the exponential distribution

13



- -n (1-P i 1-1,2, . N (27)

for a set of random numbers P between zero and unity. These quantities

may then be substituted into equations(25) and (26) and the values of

H (),M and Cs) Mx(S
MX (S)/Mx and (X0 (S)x 0 ) calculated for that particular sample. The

quantities Vi are known and given by equations (8) and (21). If this proce-

dure is repeated many times for the same sample size N , a typical number of
(5) (s)

times being 2500, distributions of Mx (S)/MX and (X0 (S)/X 0) X may be

established. It is then a trivial matter to evaluate the confidence limits

directly from the percentiles of the ranked distributions. A Monte Carlo

diagram showing this sequence is given in Fig. 1.

The above procedure may be repeated for any sample size N . Consider-

able savings in computer time may be achieved if the results can be expressed

as some equation of N and the confidence bounds. To establish such relation-
of andMx (S)

ships 500 values of MX(S)/MX and (X0 (S)/Xo) were obtained 10 times for

each value of N ranging from 10 to 100 in steps of 10. The first three

moments of the distribution of results were evaluated to measure the mean,

variance and skew. An examination of these parameters and the ordered results

indicate a log-normal distribution in both cases. The variables were converted

to their logarithms and subsequent analysis confirmed the distribution to be

log-normal. The average values of the mean, variances and skew moments are

listed in Tables 1 and 2.

In Table I it is shown that for each sample size both the mean and variance

are approximately equal to the reciprocal of the sample size. The skew moments

are small and appear to be distributed about zero indicating symmetrical distri-

butions. The distribution of In(Hx(S)/H x ) can be approximated very closely

by a normal distribution with mean and variance equal to I/N Implying that

14



In[ X(S I *Z L(28)

where Z is the normal standard deviate corresponding to the prescribed value

of the confidence limit. Confirmation of this result was obtained by a Monte

Carlo analysis in which the values of MX(S)/M X were evaluated for various

values of N from a particular Weibull distribution whose population parameters

were M x - 2 , X - 1 and XT - 0 . The agreement between the two methods is

very close, as shown in Table 3.

The mean value of the ratio In (Xo(S)/Xo)MX(S) does not appear to be

related to the sample size, as Table 2 shows, but being smaller than its standard

deviation It may be assumed to be zero. The standard deviation of the ratio has

a log-linear relationship with the sample size N and may be closely approxi-

mated by the equation

a - N" (29)

with a correlation coefficient of 0.9987. In the above equation aO denotes

the standard deviation of In(X 0 (S)/X 0 ) . It therefore follows that

(ixs)

In(Xo(S)/Xo)X - 3N"V7Z (30)

where Z is the normal standard deviate correspooding to the prescribed

confidence limit value. A Monte Carlo analysis gave similar results, as shown

In Table 4.

4 RELIABILITY EVALUATION

Equation (7) allows the distribution variates X and Y to be expressed

in terms of the Weibull population parameters. In practice these quantities are

not usually known and Instead only estimates from small sample values are avail-

able. Provided that the threshold values XT and YT can be prescribed, the

population values for the remaining Weibull parameters lie within the confidence

Intervals

r-I II I I - 1



r o

M M(S) e xp{ + L << M N () ex {r+ Z2 (31)

XO (S) exp{..3~ (S N zj < c S exp { 3s N" /3 z2} (32)
tH 2H x

with a similar pair of equations for MY and YO The quantities Z and

Z2  are the normal standard deviates for the lower and upper confidence limits

respectively.

Failure occurs when the applied loads exceed the component strength, arid

the structural reliability may be obtained by considering the distribution of

their differences. A conservative estimate of failure probability may be

obtained by taking upper and lower confidence estimates of the population values

of the respective load and strength distributions. The minimum and maximum

values of the respective variates X and Y follow from substitution of the

values of the inequalities given by equations (31) and (32) into equation (7).

Omitting the details the minimum and maximum values of X and Y are given by

1/K (min)

X XT + X(m i n ). X (33)

(/ miii)
Y T + Y ( ma x ) QY /M (34)

where

(min) XO(S) exp1N I j (35)

Yo0(Mx) . Yo (S) exp{2 yS N" /W 'Z21 (36)

02 h

16



Mx(min) - Mx(S) exp NE+ J (37)

(min) . (S) (3xp z+)

ax ,- In[ I/(1-P X)  ,(39)

my a Inl ,,(,ev ) (0

Since the population parameters are constant only one confidence limit value

may be chosen for each parameter. The values chosen are those which minimise

the strength variable In the lower probability region (i.e. aX < 1) and maximise
the load variable in the higher probability region (i.e. a y > 1). The choice of

values for aX and a is reflected in the derivation of the above equations.

The probability that Y exceeds X can now be evaluated by a Monte Carlo

analysis in which the values of Y and X are selected by generating random

values for P and P . The number of occasions that Y exceeds X ,

expressed as a ratio of the total number of trials, gives the required failure

3 probability. if the anticipated probability values are high the method described

above may be acceptable, but for low probability values the method is both

inefficient and uneconomical and an anticipated probability value of 10-6 would

require 10-9 trials to give moderate results.

An alternative method is to analyse the distribution of the differences

'4 defined by

i - , =1,2, .... N . (41)

Computations have shown that up to N - 1000 the assumption that the distribution

of the differences, D , is normal Is not rejected by the Lilliefors or
12Kolmogorov SmIrnov tests at the 201 level of significance . Under these

conditions the variate D can be expressed in the form

D - + Z 12)

17



where PD and GD respectively denote the mean and standard deviation of the

difference distribution 01 , i-1,2, .... N . The quantity Z is the normal

standard deviate. The probability that Y exceeds X Is found from equation

(42) by first setting 0 equal to zero and then finding the probability value

corresponding to the normal deviate

z - '-D (43)
a D

The required failure probability value fol iows from the relationship

PFVx ! - P[DWl - I - - • tAD (44)
0

A flow diagram describing the Monte Carlo simulation for calculating PE Y>XI

Is given in Fig. 2.

To assess the accuracy of the above procedures population parameters were

prescribed on the assumption that the two distributions for X and Y were

normal. The population parameters were chosen to give a high failure probability

for P[Y>XJ and insignificant probability values for PX and Py as X and

Y approached zero. A Monte Carlo analysis was used to generate two samples of

size M - 1000 from the population parameters characterising the above normal

distributions. Each sample was subsequently divided into smaller samples of
size N - 10, 20, 20, 50, 100, 200, 500. The failure probability, PCY>X ,

was first calculated for each sample size N to a specified confidence level of

952 by the non-central It' statistic1 3 . This analysis took into account the

total interaction between the two distributions PX and Py but was valid only
for normal distributions. Welbull distributions were then fitted to the same

sets of data and the small sample estimates of the Weibull parameters calculated.

Using these parameters and a specified tconfidence level of 95% the probability

of Y exceeding X , P[Y>Xj , was evaluated by the Monte Carlo analysis out-

lined at the beginning of this section. A comparison between the Monte Carlo

analysis and the results obtained from the non-central 't' statistic are shown
in Table . Agreement is close in all cases, the Monte Carlo results being

slightly more conservative.
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4i 1

TABLE I

Distribution parameters of In x

derived from a Monte Carlo analysis

Sample Mean Variance Skew moment
size

10 0.0881 0.1026 0.5437

20 0.0494 0.0490 0.0420

30 0.0331 0.0336 -0.009

40 0.0258 0.0258 0.2567

50 0.0187 0.0212 0.2716

60 0.0122 0.0172 0.1164

70 0.0150 0.0147 -0.0591

80 0.0132 0.0131 0.0972

90 0.0143 0.0119 0.1101

100 0.0096 0.0104 -0. 1348

21



TABLE 2

( oS) MxlS

Oistribution parameters of In L 0 ) j

derived from a Monte Carlo analysis

Saile Mean Variance Skew moment
size

10 -0.0322 0.1712 -2.62 x 10-2

20 -0.0210 0.0703 -1.10 x 10 3

30 -0.0167 0.04.58 1.26 x 10 .4

40 -0.0117 0.0322 3.20 x 10- 5

50 -0.0153 0.0244 -4.84 x 10 4

60 -0.0083 0.0202 1.32 x 10 5

70 -0.0077 0.0174 1.43 x 10 5

8o -0.0076 0.0159 -1.85 x 10- 5

90 -0.0047 0.0139 -1.80 x 10 - 4

100 -0.0003 0.0119 -6.19 x 10- 5

22



TABLE 3

MX(s)

Distribution parameters of In ( M _ obtained by

Monte Carlo methods from a Weibull distribution

with M - 2 , X0 - I , XT - 0

4th moment

Samie Mean Variance 2s ize va riance2

10 0.0851 0.1007 3.20

20 0.0452 0.0492 2.98

30 0.0353 0.0325 2.92

40 0.0271 0.0252 2.97

50 0.0215 0.0195 2.97

60 0.0186 0.0166 2.93

70 0.0169 0.0143 2.90

80 0.0158 0.0131 3.06

90 0.0139 0.0113 3.00

100 0.0130 0.0103 2.98

For each value N the distributional parameters of 500 samples of the

Mx(S)
ratio In I -w- I were obtained 10 times and averaged.

Note, for a normal distribution 4th ronent .0
varance2

23



TABLE 4

x (S) 'ix(S
Distribution parameters of In 0 obtained by

Monte Carlo methods from a Welbull distribution

with M - 2 , Xo 0 1 , XT

4th moment

Sample Mean Variance variance

10 -0.0197 0.1654 4.47

20 -0.0174 0.0657 3.60

30 -0.0087 0.0433 3.15

40 -0.0062 0.0315 3.27

50 -0.0035 0.0242 3.36

60 -0.0022 0.0203 3.11

70 -0.0006 0.0175 3.08

80 -0.0015 0.0158 3.12

90 -0.0008 0.0133 3.17

100 -0.0004 0.0122 3.13

For each value of N the distributional parameters of 500 samples of the

. (S)

ratio In L were obtained 10 times and averaged.

[ 4eth moment
Note, for a normal distribution a.-icet 3.0

vriance

21.



TABLE _5

Probability of failure calculations for various
sample sizes at a confidence level of 95%~

Sample Probability of failure PtY>X]
size Non central 't' (Monte Carlo

statistic analysis

10 0.3606 0.3897

20 0.2310 0.2711

30 0.2054 0.2528

50 0.2373 0.2598

100 0.1611 0.80

200 0.1470 0.1650

500 0.1358 0.1347

1000 0.1276 0.1399

25



T .

Fig. I Monte Carlo diagram for confidence limits
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Fig. 2 Method of calculating PE Y>Ci using the Monte Carlo similatlon
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