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. _ Abstract

This dissertation investigates the behavior of finite diﬁerence models of linear hy-
perbolic partial differential equations. Whereas a hyperbolic equation is nondispersive
and nondissipative, difference models are invariably dispersive, and often dissipative
too. We set about analyzing them by means of existing techniques from the theory
of dispersive’ wave propagation, making extensive use in particular of the concept of
group velocity, the velocity at which energy propagates.

The first three chapters present a general analysis of wave propagation in differ-
ence models. We describe systematically the effects of dispersion on numerical errors,
for both smocth and parasitic waves. The reflection and transmission of waves at
boundaries and interfaces are then studied at length. The key point for this is a
distinction introduced here between leftgoing and rightgoing signals, which is based
not on the characteristics of the original equation, but on the group velocities of the
numerical model.

The last three chapters examine stability for finite difference models of instial
boundary value problems,, We show that the abstract stability criterion of Gustafsson,
Kreiss, and Sundstréom (GKS) is equivalent to the condition that the boundary permit
no rightgoing signalé in tile absence of leftgoing ones. Wave propagation arguments
yield a proof that for the typical instability of “strictly rightgoing” type, one has
unstable growth in the £2 norm, not just in the complicated GKS norm. We prove
that this growth is at least proportional to the number of time steps n for models
driven by boundary data, and to /% for models driven by initial data.

We show further that most GKS-unstable boundaries exhibit infinite reflection
coefficients, which gives an alternative explanation of instability with respect to initial
data. We conjecture that when an infinite reflection coefficient is present, the unstable
growth rate increases from /n to n.

Throughout the dissertation, wave propagation ideas are alsoc applied to various
more specialized stability problems. We identify new classes of unstable formulas,
including soinc in two space dimensions; derive new results relating stability to
dissipativity; give new estimates on unstable growth for problems with two boundaries
or interfaces; examine borderline cases that are GKS-unstable but £;-stable or nearly
so; and present an explanation based on dispersion for known results on instability in
Ly norms. ’
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0. INTRODUCTION

0.1 Purpose

Many problems of physics and engincering take the form of Ayperbelic systerns
of pertial differential equations (Co82]. Some examples of ficlds in which these equa-
tions are important are fluid hanics (weather prediction, aireraft and turbine

design, graphy...), geophysics (earth modeling, petrol prospecting. ..),

hydrody ics, elasticity, snd les. In most i there is no hope

of obtaini lytical solutions, and one must resort to numerical approximations.

Of these the most important are the finite difference models, based on the idea of
pproximating partial der by di differences.

An irony of the finite difference process, as is well known, is that the detailed
behavior of Gnite difference formulas is generally a good deal more complicated than
that of the differential cquations they model. For the most part this is not a problem,
because the nonphysical details are unimportant so long as the numerical solution
converges to the correct physical result when the grid is refined. This convergence
will normally take place provided that the diflcrence model is consistent and stadle
[Ri67,Gu75|. Therefore the analysis of the behavior of difference models traditionally

d to estimating tr fon ersors by Taylor expansions, in order 1o determine

i and asymptoti ; and to some kind of investigation of stability.
Of these the stability analysis is the much more difficult task.

To check for stability in the casc of lincar problems with smooth coefficients
and no boundaries, it is esscntially enough to make sure that the diffcrence formula
sdmits no cxponentially growing Fouricr modes [Ri67,Th69]. But for problems with
boundaries, as are almost always present in ice, the question b more
difficult. One can still push through an analysis based on an cxtended notion of
“growing modes,” but it Is not straightforward. A general theory of this kind waa
developed by Kreiss and collcagues a decade ago and was reported iw an important
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paper of Gustafmon, Kreism, and Sundstrém—henceforth “CKS"—in 1972 {Gu72).
(See also [Co80,Gu75,Kr71,Mi81].) This theory is powerful, but mathemﬂélly and
sonccptually difficult. The proofs involved are obscure enough that it is fair to say
that most people apply the GKS results without understanding them.

This dissertation develops the view that s finite difference model is not just a
mathematical corruption of an ideal problem, but a physical medium of a differeat
kind with analyzable properties of its own. Finite difference models de not ex-
hibit the characteristic features of hyperbolicity, such as fnite apeed of propagation.
Instead, they act as dispersive medie, a subject sbout which a great deal is knowa
{Br60,Li78,Wh74]. Wave propagation in such media is characterised by dispersion of

different froquencies and by energy propagation at afs dependent speed called
the greup selocity. These effects depand on the interf: of distinet frequency

P , and theref D s step beyond the superposition of individual
Fourler modes. Our ion is that dispersive wave propagation ph are

the easential feature underlying much of the more subtle behavior of difference models.
in particular, the CKS stability theory has a simple physical explanation ia terme of
group velocity.

Our interpretation of the main GKS result runs roughly as follows. Let a
difference model for an initial boundary value problem be applied with homogensous
boundary dats. To be stable, the model must admit so solutions that grow exponea-
tially in the number of time steps (a result first exploited by God and Ryabenkii
[Ri67]). But in addition, it must admit no soluti isting of & collection of

d

diati

waves from the b

y into the interior. Such waves might be physicel
{i.e. smooth, close to waves admitted by the diffcrential equation), or peresitic (not
smooth), but this distinction does not appear in the analysis. For s wave to propagate
“into the interior” means, in the case of a boundary at the left of » region, for it to
have a positive group velocity.

The analysis alsc makes no explicit di tion b Jissipative and nondie-

sipative difference formulas. Dissipativity, however, guarantecs a priori that most
wavelike modes cannot occur, and Lhis limits the range of potential radisting solutions
that must be investigated in checking for stability.

Thus we show that instability for initia) boundary value problems is a kind of
resonance phenomenon, in which some energy-radisting solution can oeciliate con-
tinually at the boundary without being continually forced by inhomogeneous

2
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boundary data or by signals hitling the boundary from the interior. The ques-
tion arises as Lo the exteat to which such resonance will be excited by rounding
errors, truncation errors, or other data. Regarding stimulstion by boundary data,
we conclude that the -esonance will in general always be excited. But for stimulated

resonance by initial or field data, the matter of reflection coefficients b impor-

iant. Indeed one nurpose of this dissertation is to demonstrate how closely atability
for initia) boundary value problems is tied, both formally and physieally, to reflection
phenomena. We show that the “standard” GKS-instability ia characterised by infinite
reflection coefficients, leading to great sensitivity of the solution tc energy hitting the
boundary, but that there are realistic borderline casea with finite or sero reflection
coeflicients, and in these the instability is not so casily excited.

Several difficulties have inhibited the theorelical and practical application of
the GKS theory. One, as mentioned above, is that the mathematics involved is
complicated and not clearly motivated. We hope that the wave propagation point of
view can remove some of this mystery. A second is that the GKS scability definition is

plicated and al—it gives estimates in 3 norm that one would not normally
be interested in. We will show that the group velocity analysis allows one to derive

estimates for most unstable cases in the simpler & norm. How best to measure
stability for models of initiss boundary value problems is however a complicated
question, tu which there is no universal answer, and we will attempt to shed light on it
by a variety of examples and arguments. A third difficulty is that the algebraic process
of testing for instability can be extremcly difficult for nontrivial initial boundary value
problem models {Co80). Fundamentally our ideas do not help with this problem at
all. There is probably not much to be done about this in general, we believe, as the
sigebra reflects & physical behavior that is truly complex. However, resuits will be
given that shorteut the analysis for special classcs of problems.

The “wave propagation” approsch to stability might be contrasted with the more
standard “semigroup” point of view. The latter considers difference models as time-
evolution operators, and characteristically investigates what "growth” can take place
from one time step to the next. The former views space and time more equally, and
investigatcs what qualitative changes occur between time steps--which may indeed
cayse growth, but indircctly.

The wave propagation view is not always easy to shape into mathcrmatical proofs.
As a general rule, one can prove instability and determine a lower bound for its
magnitude by studying unstable waves with behavios regular enough for asymptotic
analysis. This is what we have done for the £; resylts mentioned above. Proving
stability, on the other hand, or establishing upper bounds for unstable growth rates,
takes a greater effort, b it requi ideration of arbitrary signals with no
regular behavior.

As dispersive media with a periodic structure, finite difference models have a
great deal in common with solid crystals (and also with certain other periddic physical
systems, such as regular electric networks). Accordingly, the general festures of
waye propagation that we will discusa have close analogs in the solid state physies
literature [Bo54,Br53,Ma289,5084]. However, the analogy is least close in the area
of stability, which corrcsponds approximately to encrgy conservation for physical
systems. For crystals, energy conservation is one of the postulates from which local
solution behavior may be derived, while in our conlext, it is the local behavior that
is given and the stability that is under question. (See, however, Part {11 of (BoS4¢[.}

s .

Three main themes will occupy us throughout the dissertation:

(A) group velocity and parasitic waves... leftgoing and rightgoing solutions;

{B) reflection and transmission at boundaries and interfaces;

(C) stability.
Our first three chapters are devoted Lo an exposition of the phenomena (A) and (B)
and their relationship. Some of our results are old, but many are new, and this is
the most systematic presentation of such material that has appearcd to date. The
last three chapters are concerned with stabiiity theory (C) for initis! bounoary value
problems. They present our analysis of the GKS theory as an outgrowth of (A} and
{B). This lcads Lo new results of various kinda. For a detaifed outlinc sec §0.3, below.

The general purpose of this disscrtation is to shed new light on the existing
theory of finite differcnce models, and to cxtend the theory where possibie. However,
we suspect that most fruitful applications of the wave propagation point of view
potentially lic in more novel and difficult arcas that arc only touched on here, such as

problems with variable cocflicients, nonlincar problems, problems with characteristic

boundarics, and multidi ional probleins with irregular boundarics. If our beliel is

)
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valid that the essential fcatures of discretization for hyperbolic problems are those of
dispersive wave propagation, then further work on these lines ought to point the way
to new and hitherto unrecognized phenomena.

0.2 History

Regarding the application of ideas of dispersive wave theory to the theory of
difference models, | am aware of two important sets of predecessors. The frst are G.
Hedstrom and R. Chin, who in a variety of papers have applied wave theory arguments
to analyse many aspects of solution behavior and (Cauchy) stability [He85,He66,He88,
He75,Ch75,Ch78,Ch79,Ch83]. Making extensive use of saddle-point estimates, these
papers study stability in the maximum norm (sec §1.4), analysis by modified equa-
tions (see §§1.1,1.2), and solution behavior near discontinuities. The second are R.
Vichnevetsky and his colleagues, who for & particuiar semi-discrete model of %; = «,
(usually), analyse wave propagation for both smocth and parasitic waves [Vi75,ete.}.
Vichnevetsky's papers do not pesform explicit saddle-point analysis, and ss a result
they do not obhh_u the kind of precise estimates derived by Hedstrom and Chin.
However, his interest in parasitic waves and in behavior at boundaries makes these
papers the most direet precursor to this dissertation. Vichnevetsky's work will be
summarised shortly in 8 book with J. Bowles [Vi82).

Besides these, there are undoubtedly a Iarge number of group velocity calculations
for difference models in Lhe literaturc, most of which 1 am probably unawsre of. To
the authors of these I apologise in advance. Three references that 1 do know, from
geophysics, are the rcports of Alfold, et al. {A174], Bamberger, et al. [Ba80), and
Martinesu-Nicoletis [Ma81]. These works are mainly concerned with smooth waves
rather than parasites; the first treats the tic (standard) wave ion, and the

other two the elastic wavc equation (pressure and shear).

Similarly, there are no doubt a number of papers that compute numerical reflec-

tion and transmission coclflicicnts for boundaries or interfaces, as done here in §3 and

theresfter. 1 am aware of such calculations by Marti Nicoletis [Ma81], D. Brown
{Br79,C179], and Vichnevetsky [Vi81b). Only Vichnevetsky makes a connection with
group velocity. The general description presented here of behavior at an interface in
terms of left- and rightgoing waves admitted on either side appears to be new.

The stability theory for initial boundary value problems that is the main concern

here has a complicated history. The dissertation refers primarily to the paper of
Gustafsson, Kreiss, and Sundstrom [Gu72], which seems to have dominated -lhe field
since its appearance in 1972, However, this emphasis does not do justice to many
important contributions by G. Strang, S. Oaher, and others. In particular, Osher's
paper [Os89b) obtains a large part of the main GKS result by different means. Osher
considers only models that satisly a certain root-separation condition, which rules out

Aima nati

many

difference I las (those admitting a wave with group velocity
0); on the other qu, his resuit has the advantage of using the ¢y norm rather than
the more unwieldy GKS stability definition. .

Here is & very briel survey of the history of stability theory for difference models of
initial b dary value probl The first contributions were made by Godunov and
Ryabenkii in the early 1960's, who observed that a necessary condition for stability
is that the spectrum of the time-evolution difference operator be contained in the
unit disk in the limit as the mesh size becomes 0, and derived conditions for this to
oceur {Ri67]. This is the beginning of the use of normal mode analysis in stability
theory for initial boundary value problems, which pervades the subsequent results.
The God: Ryabenkii condition is an analog for initial boundary value problems
of the von Neumann condition for initial value problems, and like the von Neumann
condition, it is necessary for stability but not :uiﬁciem. The next contributions were
due to Strang and to Kreiss. Strang applied a factorization technique for Toeplits
matrices, related to the Wiecner-Hopf method, to obtain necessary and sufficient

stability conditions lor a restricted set of difference approximations, namely those
with purely homogencous boundary conditions [St64,5t66]. By different methods,
Kreiss [Kr66] obtained a sufficient condition for stability of diagonalisable (essentially
scalar) two-level explicit dissipative modcls. In [Os69a], Osher proved a similar result
by an extension of Strang’s approach, introducing general boundary conditions by
means of a finile-rank correction to the Toeplits operator for the interior difference

scheme.

These papers loft two main gaps in the available theory. First, they did not say
much about nondissipative modcls. Second, they did not deal with nondiagonalis-
able models. In another paper published in 1969, Osher made some progress on the
first problem, again by the Tocplits factorisalion technique, obtaining a rcsult that
weakens dissipativity to 8 separalion-of-roots condition [Os69b]. This was a quite

general theorem along the lines of “the absence of eig lutions and g lized
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cigensolutions ensures stability,” which we will discuss in §4. Kreiss, on the other

hand, derived a sullicient condition for stabifity of dissipati di. lizabie models

in [Kr88], by making use of a Dunford integral to bound the powess of the discrete
time-evolution operator.

It remained to derive a stability condition for general dissipative models, and
if possible, one that would be necessary as well as sufficient. The groundwork for
this was work by Kreiss on matrix normal forms far initial boundary value problems

for partial differential equations (not difference models), published in {Kr70]. These

results led to necessary and sufficient diti for well-p d of hyperbolic
partial differential equations in several space di i By an ion of the
same ideas, the paper of Gustalsson, Kreiss and Sundstrom [Gw72] finally proved
a general neccssary and sufficient stability th m for { di ional) diffcrence
mﬂd!h, di: ’, ti or di 'r ti 'y di g lizable or di Jizab)

Further additions Lo the stability theory since 1972 have mainly taken the form
of embellishments of the GKS theory. Gustafsson in [Gu?5] established connections
between GKS-stability and convergence; the main problem here is working around
the idiosyncrasies of the GKS stability definition so as to be able to treat nontero
initial data. Ciment [Ci71,Ci72], Burns [Bu?8], Tadmor [Tad81}, and Goldberg and
Tadmor [Ta78,Go78,GoB1] have proved additional results. GKS-like theorems have
btained for method-of-li h by Strikwerda [St78}, and for parabolie
problems by Varah {Va70,Va7i] and Osher {Os72]. Most receatly, attention has
shifted to problems in several space dimensions [Ca80 Mi81}; in particular, new results
of Michelson's [Mi81} offer promise of a complete extension of the GKS theory to
dissipative multidimensiona) models. In addition, there have bees numerous papers
that apply the GKS theory to study stability of particular difference formulas or
classes of them, including [Ab79,Ab81,Be81,Br73,C080,Go78b,0174,0176,Su74).

been

Virtually al} of these results, both precedi ;g and following {Gu72), can be given
wave propagation interpretations. For example, several of them amount to statements
that spent. distion from the boundary implies instability, but with the radia-
tion restricted to scro-frequency components Lhat correctly mimic the dilerential
equation, instead of the more general ponibility of parasitic waves radiating energy
according to the group velocity [Bu78,Kr68,Ta81]. None of them are presented in this
way, bul the relevance to stability of “energy propagating in the wrong direction™ is
mentioned in some of Kreiss's papers. In at least two places he performs a caleulstion
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in which the parasitic solution of one dillerence formula is related to the smoot
sofution of another, whose speed of propagation is then obvious by consistenc;; t!
is a calculation of group velocity in disguise {[Br73] or [Kr73], §20; [Kr74] ~r [Kr7.
§17). In an early paper with Lundgvist {Kr68b], Kreiss also definen the concepi «
strictly noncontractive difference formulas in terms of a quantity that is group velo-i-
without the name (see also {Ap68] and [Os89c]). In fact, Thm. 4 of [Kr88b} is v
closely related to Thm. 4.2.3 here. However, it seems clear that the central posit
of group velocity in} stability theory has not been seen before; to my knowledge, &
words “stability” and “group velocity” have not appeared together in the past.

0.3 Outline and summary of resuits

This dissertation is unfortunately quite fengthy, as the following dctailed outline
makes clear. To mitigate this problem somewhat, a general index is provided at the
end. Readers wishing to go as quickly as posible to the stability theory for initial
boundary value problems should proceed to Chapter 4 alter reviewing Sections 1.1,
1.2, 1.5, 2.3, and 3.1. Fo:‘s quick view of our main stability ideas, sze Sections 4.1,
4.2, and 5.5. Published accounts corresponding roughly to Chapters 1 and 4 can be
found in [Tr82] and [Tr83}, respectively.

Chapter 1. We begin in §1 with a di ion of the behavior as dispersive media

of finite differcnce models of the scalar equation u, = au,. Our model approximates
u(z,t) = u{sjh,nk) by a quantity v}, where h and k are the space step size and
time step size. In §1.1 we define the concepts of frequency w, wave number £, and
dispersion relations, and relate these Lo consistency, sccuracy, and modified equations.
We illustrate these ideas by applying them to a number of well-known differcnce
formulas, which continue to serve as examples throughout the dissertation. (These
sre summatized in Appendix A.) Section 1.2 defines phase speed (£, w) and group
speed C(€,w), and derives the latter by the method of stationary phase. The effect
of group velocity is illustrated by numerical experiments involving wave packets and
wave fronts. Thm. 1.2.1 points out that for .n general nondissipative difference model,
errors in C are greater than errors in ¢ by a factor equal to the order of dispersion.
Section 1.3 shows the connection belween group velocity and dispersion, with further
numerical illustrations. In §1.4 we apply these ideas to show that certain known

results on Ly, -inatability of difference models for p 7 2 can be explained quantitatively
8
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in terms of dispersion and dissipation. In §1.5 we cxamine parasitic waves, and show
that they too arc governed by a group velocity. More numerical illustrations are given.
New concepts f z-reversing and ¢-reversing formulas arc introduced and applied in
Thm. 1.5.1, and Thm. 1.5.2 shows that most nondissipative formulas are z- or t-

reversing. Section 1.8 briefly surveys wave pr

pagation in multids vonal difference
models, where cnergy propagation is governed by a vector group velecity C and wave
packets can be tracked by a process of numerical ray tracing. Some of thesc ideas are

new, but we do not develop them. (More details can be found in [Tr82}.)

Chapter 2. Chapter 2 sets out to make the ideas of §1 more general and more .

rigorous. In §2.1 we definc the general constant-coefficient ncalar difference formuls @
in terms of shift operators K and Z, and analyze what eolutions it supports that are
regular in z or ¢ (Thms. 2.1.1,2.1.2). In addition to £ and w, we now begin to work
with arbitrary complex space and time variation factors k = ¢~A gapd 3 = vk,
The new concept of a separable formula is defined, and it is shown that for separable
formulas, C(€,w) factors into C\{£)Ca(w). Section 2.2 defines Cauchy atability and
relates this to the von Neumann condition and a root dition (Thm. 2.2.1). It alse

defines (z)-dissipativity and relates this to the new concepts of ¢-dissspativity and totel
dissipativity (Thms. 2.2.2,2.2.3). Thm. 2.2.4 points out that if Q is z- or t-dissipative,
it cannot be z- or t-reversing. In §2.3 we cstablish thai the group velocity makes sense
in a general way by proving that every wave admitted by any Cauchy stable formula,
whether dissipative or nondissipative, has a group velocity (Thm. 2.3.1). Thm. 2.3.2
proves further that C is the limit of the transtation speeds ¢ of evanescent waves, and
that the sign of C can be dctermined by a perturbation test. We also define the new
concepts of stationary, rightgoing and atrictly rightgoing, lefigoing and strictly lefigoing
signals in terms of group velocity, and these are summarized in Table 2.1, Scction 2.4
applies most of the resuits up to that point to the interesting case of three-point lincar
multistep formulas studied by Beam, Warming, and Yee [3c79,Be81]). New results
are proved relating A-stability and strong A-stability of such formulas to their wave
propagation behavior (Thm. 2.4.1) and ¢-dissipativity (Thm. 2.1.2). Finally, Section
2.5 shows that all of the results established for scalar modeis carry over directly to
diagonslisable systems. In particular, Thm. 2.5.1 describes the general breakdown of

time-regular vector solutions into leftgoing and rightgoing components.

In summary, Chapters 1 and 2 present the essentials of dispersive wave theory for
finite difference modcls in the of ¢ daries, and d

$

t the imporlance

of this theory by showing its many eflccts theoretically and with numerical demonstra-
tions. The most original ideas here are those related to muitidimensional problems
(§1.6) and L,-instability (§1.4). None of the results have much technical depth; per-
haps the least urivial is the general justification of group velocity in Thms. 2.3.1 and
23.2.

Chapter 3. In §3 we begin to deal with boundaries and interfaces. Section 3.1

describes our general procedure for puti fiection and tr

g ref

coefficients
for steady-state solutions of the form v™ = z"v°: first determine all lefigoing and
rightgoing signals admitted away from the interface, as defined in §2, !.hen. match these
by algebraic interface conditions. This procedure depends upon a numerical analog of

the Sommerfeld radiation condition. Section 3.2 tes reflection and tr

formulas for a large number of examples involving both boundaries and interfaces,
and verifies two of these with numerical experiments; the most complicated example
involves an abrupt change between two arbitrary difference formulas, for which a
van der Monde matrix comes into play. Section 3.3 considers energy conservation at
interfaces, and §3.4 discusses culoff frequencics and stop banda. Section 3.5 p2e<s the
question of how a knowledge of the behav.:r at an interface of each component z can
be synthesized to predict the interaction of a general wave packet with a boundary.
The answer requires solution of an integral equation, and appears to be related to the
Wiener-Hopf technique (but not in the same way as the results of Strang and Osher
mentioned in §0.2). This approach is new and, we believe, quite promising, but we do
not develop it. Section 3.6 goes on tp extend our reflection and transmission results to
diagonalizable systems of differcnce equations. First, intcrface problems are reduced
to boundary problems by a device known as the folding trick. This icads to a general
reflection coefficient matrir [DV1]~! DI describing reflection and transmission at an

arbitrary boundary or interface.

Many of the ideas of Chapter 3 have appeared before, but it is likely that this is
the first general description of how t¢ - alyze numerical wave behavior at boundariea
and interfaces. What makes the general treatment possiblc is the efimination of any
distinction between physical and parasitic waves, and indced of any reference to the
system of equations being modcled, in favor of the notions of leftgoing and rightgoing

signals determined by the numerical group velocity.

Chapter 4. In §4 the dissertation turns to stability lor snitial boundary value

problems (or interface problems), which we view as a direct outgrowth of reflection
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and transmission studies. Most of the ideas in this chapter arc entircly new. They
are however heavily influenced by, and closely tied to, the resulu< of Gustafsson,
Kreiss, and Sundstrém [Gu72]. Scction 4.1 begins by explaining the instability of a
simple example of an initial boundary value problem model in two ways. First, tne
spontaneous righlgoing solution view considers that the modcl is unstable because
it admits as a solution a set of waves all of which are rightgoing (pointing from
the boundary into the field). Second, the infinite reflection coefficient view explains
instability as the existence for some frequency as a right/left reflection coefficient that
is infinite. Sections 4.2-4.3 proceed to analyse mainly the first point of view, which
is equivalent to the GKS theory. In §4.2 we first present the Godunov-Ryabenkis
atability criterion as a st on strictly rightgoing solutions with |z| > 1 (Thm.

4.2.1), and as a determinant condition involving the reflection matrices DIl and DI
{Thm. 4.2.2). Then it is shown that the existence of an arbitrary spontaneous strictly
rightgoing solution implies £3-instabdility, with a growth rate in &; proportional to /n
{Thm. 4.2.3). We conjecture lurther that this rate becomes n if an infinite reflection
coefficient is present. Thm. 4.2.4 shows that suck an unstable solution always causes
growth at rate n with respect to boundary data. (Proofs are deferred to Appendix
B) Section 4.3 moves to the stricter GKS stability definition, showing by a wave
ptopagation argument why even a non-strictly rightgoing steady-state solution is
GKS-unstable (Thms. 4.3.1, 4.3.2). In Section 4.4 the results obtained in §4.1-§4.3
are specialized to the case of dissipative diﬂer.cnce models. Section 4.5 applics the
main stability results to describe some general classes of unstable differcnes mandels
ples (Thms. 4.5.1-4.5.4).
Section 4.8 considers stability for multidimensional initial boundary value problems,

in one space di ion, which are ex jons of known

sketching the reiation between instability in this context and 'oiutionn'with rightgoing
vector group velocities C, as described in §1.6. An cxample is described in Thm. 4.6.1.

Chapter 5. Although certain classes of difference models are unambiguously
stable or urstable, there are various dorderline cases for which the situation is less
clear. This has always bcen s source of difficulty in stability theories for initial
ible for the plexity of the
GKS stability definition. Chapter § is devoted to a discussion based on numerical
experiments of four important classes of borderline cases that are GKS-unstable but
stable in some other respects. First, Section 5.2 discusses mnodels that have finite
reflection coefficients. These are found to be unstable with respect to boundary data,
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boundary value problems, and in particular it is

but in practice nearly stable with respect to initial data, and stable with respect to
the introduction of a second boundary. Section 5.3 examines GKS-unstable solulions
consisting of rightgoing but not strictly rightgoing signals, especially waves with group
velocity 0. For this cuse too, we conclude that instability appears in practice mainly in
response to boundary data, and it is weak. In §5.4 we exhibit a class of GKS-unstable
problemns with both non-strictly rightgoing instabilities and sero reflcction eoefficients,
the transparent interfece anomaly, and these are {p-stable. Finally, §5.5 summarises
our views of stability for models of initisl boundary value problems in general, and
of the GKS theory in particular. .

Chapter 6. The last chapter examines stability for problems with severs!
boundaries or interfaces, such as might occur in modeling the domain z € [0,1],
or in mesh refincment, or in composite difference or boundary formulas. This is &
natural place to apply wave propagation ideas, becsuse a purely algebraic approach
becotn dingly plex. We start in §8.2 with one ioterface, examining known
results of Ciment and Tadmor to the effect that dissipativity implies stability. These

we extond to more general results in which the nolion of t-dissipstivity introduced
in §2 plays a natural part (Thms. 6.2.1,8.2.2). Section 8.3, however, is devoted to
proving by a counterexaraple that no such theorcm holds if two or more interfaces
are present, contradicting a claim of Oliger [0179]. Thus dissipativity is not a strong
enough condition to yield stability in general. For an alternative approach, we move
on in §6.4 to consider reflection cofficients at the boundaries. Thm. 6.4.1 shows that
if all reflcction coefficients are at most 1 in modulus, then stability for two-boundary
problems is guaranteed. We apply this result 1o duplicate and extend certain results
of Beatn, Warming, and Yee rclated o their concept of P-stability for two-boundary
problems {Thms. 6.4.2,6.4.3). The same reflection coefficient argumenta can be applied
quite generally, and in §6.5 we consider what growth rates are poesible in several

important two-bound

y or two-interface texts. The variety of possible growth
rates turns out to be considcrable, and they are summarized in Table 6.2. These

arg ts justify, lor out claim in §5 that GKS-unsiable growth will not
be converted Lo exponential growth when a second boundary is introduced unless sn
infinite reflection cocfRicient is prescnt. Finally, Section 6.6 discusses very briefly the

prospects for problems with three or more interfaces.
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1. WAVE PROPAGATION IN FINITE DIFFERENCE MODELS

1.1 Dispersion relations and modified equations

Throughout this dissertation we are concerned with the artificial effects intro-
duced when a partial diff: ial equation is approxi d by a Baite difference
schcme. Since these effects appear no matler how elementary the equation under
study may be, we will mainly consider as a model the simpic one-dimensione! vave
equation,

weeow, ey0. (1.1.1)
1f initial data are specified for z € [~00, 00),

w(z,0) = f(sz), (1.1.3}
then the solution to (1.1.1} for all ¢ > 0 is the translation
w2, 1) = f(z + at). (1.1.3)
To analyse the behavior of (1.1.1), one may look for Fouricr modes
w(z, 1) = tn—9), (1.1.4)
where w is the (temporal) frequency and £ is the wave number®. Obviously (1.1.4)
will satisfy (1.1.1) if and only if
w = ~af, (1.0.5)

a condition known as the dispersion relation for (1.1.1). Although standard Fourier
analysis asumes w, £ € I, {1.1.5) holds for arbitrary w, € € .

*We will be concerned with linear equations anly, 3o it is enough Lo study complex expoasa-

tials. Resulte for compulations in real arithmetic then lollow by taking real parts, or aquiv-
slently, by add ng 3 complex wave to its eonjugate. The use of ¢4 asher \han €'¢% in
(1.1.4) ls designed 1o make the formuiss for phase and group velotity come out without
minus signs; see §1.2.
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Let {1.1.1) now be modeled by a finite difference formula. For this we set up &
regular grid in z and ¢ with spatial step size &, temporal step site k, and mesh ratio
X = k/h, and seek to approxi u by s grid function v:

v} % w(jh, nk), smeL.

One differcnce formula for (1.1.1) that we will consider repeatedly is leap freg (LF),
given by
LF: ';“ - ':-_I = Xa{v],, - ¥;_1) . (1.1.8)

Substituting {1.1.4) iato (1.1.6) gives
Sk mwh Aafemier -‘(A)'

that is,
snwk = ~Xasin EA. (1.1.7)

This is the dispersion relation for LF. For small wk and €M, which is to say for
wavzes that are well resolved on the grid, (1.1.7) approximates (1.1.5) closely, but
a8 wk and €A i the approximation b poor. M unlike (1.1.5),
{1.1.7) is periodic with period 2x in both £A and wk. The explanation of this is that
because of the discreteness of the grid, sny pair (€A, wk) is indistinguishable on the
grid from all of its “slisses® (EA + 2ux, wk + 2vw). Therelore it is enough to consider
the fundamental region (€A, wk) € (—x,#]®. Figure 1.1a shows a plot of (1.1.7) in
this region for a == —1 and A == .5. It is apparent that cven here, each of € or w
corresponds in general to two values of the other variable.®
Solving for w in (1.1.7), one obtains

w = '.—' sin~*(Masin £A). (1.1.8)

Dy taking the standard branch of the inverse sine here, we confine our attention to
the component of the dispersion relation that passes though the origin in Fig. 1.1s.

*The high-frequency lobas of the dispersion curves visible in Fig. 1.1a (and 1.1¢) are suggestive

of optical medes of vibration in crystals, so called because their frequencics are such that
they are norinally excited by light rather than sound [Bo34]. The physics is quite different,
however, for oplical modes represcnt aliernative modcs of spatial cscillation caused by the
presence of mulliple specics of atoms, whereas the high-frequency components in Fig. 1.}
rosult from the Lime discrctization.
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(s) LF {(v) CN (e) LF4

FIG. 1.1. Numerical dispersion relations for difference models LF,
CN, and LF4 of w, == —w,, plotted for mesh ratio A\ = .5. Each plot
shows the region {~x/A,x/h]® of (£, w)-space. The slope at a point
(€, w) is the corresponding group velocity. Additional dispersion plots
are given in Appendix A.

Expanding for £h == 0, we get the series

- -¢{[l 1= (:a)’(th)’ e IO(X:);; 92a)! (A’ + ] (119)

The ficst term here agrees with {1.1.5), and this must be true for any consistent

difference model. From the next term in the scries, it is evident that the errors
d by LF will i with the square of £h. Formally, (1.1.9) is equivalent

to a differential equation of infinite order,

1= 9‘” M + 1= INX:)’;+ LLD) W R ] (1.1.10)

Since (1.1.10) contains derivatives of higher order than 1 but no even-order derivatives,

LF is u3id to be dispersive but not dissipetive. The significance of dispersion is that

different wave numbers will travel at diffcrent speeds, so that an initial pulse will

change shape as time passes. We will examine this in the next few sections. Dissipation

will be defined more precisely in §2.2.

As a familiar dissipative scheme, we may coosider Lax-Wendro#f (LW):

Lw: ot - = ?(-;" -ol)+ ()‘;)‘(u,“'“ -2 +9p,)  (rL1)

-.-a[t-'*

Corresponding to (1.1.7) and (1.1.10), we find for LW the dispersion relation

—i{e™ ~ 1) = —Xasin A + 2(ra)" sin? % (t113)

and the formal diflcrential equation of infinite order

w = a[u. P (:')’ o _.0‘“)’ -

Sty Be) - Daltye

120 "."“*.4.].

(1.113)
It is the non-centered shape of the stencil for LW that gives rise to the complex
dispersion relation (1.1.12) and to the even-order detivatives in (1.1.13).

If a difference model is applicd to a set of initial duta that is smooth in the sense
that most of the encrgy in its Fourier transform has £h, wk & 1, then one may
expect that the model will behave appraximately like s diferential equation obtained
by taking the first few terms of an expansion like (1.1.10) or (1.1.13). This is the
idea behind modified equations (also known as model.equations) of diffcrence formulas
[Ch83,Wa74]:




Defn. Let s consistent difference model Q of (1.1.1) be formally expanded as a
differentisl equation of infinite order as in {1.1.13). The modified equation of Q is
the diflerential equation

a La
% = au, + Ah*! 0_:: + Bh“';;'

A B, (1.1.14)

with @ odd and 8 even, obtained by dropping all but the first dissipstive and first
dispersive terms from this equation. If there are no dimipative terms we drop the
secoad mmgndutﬁ-n. "

For example, the modified equation for LW is

1= (:\‘)' Ao — (2a) ‘. () s

w = a[u, + t._] (1.1.15)

We define further

Defn. The integers @ and A are the order of disparsion and order of
dissipation of Q. The order of accuracy is min{a, 8} — 1. (Consistency implies
that the order of sccuracy is at least 1) 4/

Thus LW, with a = 3 and B == 4, is te of order 2, dispersive of order 3, and
dhlpnﬁveoforde;'l.lfﬁ<a,then‘ ipation dominates disp at low wave
aumbers, while if @ < S the reverse holds. We will sce in §1.4 that a difference scheme
for (1.1.1) is stable in L, norms, p 3¢ 2, only in the former case.

In this dissertation we will mostly be concerned with nondissipative schemes like
LF, bocause theit wave propagation properties are simpler and they are more prone
to instabilities. Two other nondissipative models of (1.1.1) that we will often consider
are the implicit scheme Crank-Nicolson (CN),

n » o afl o - LS -
CN: of*'-v= 7‘[5(',“ ~en)+ g3l - ',i:n]- (1.1.16)
snd fourth-order leap frog (LF4) (fourth order in space, szcond order in time),
— 4 - 1o )
LR o ol “[i"?*' - o) Mo - .,_,)]. (1.0.17)

For CN the dispersion relation is

2tan "T' = —asin A, (1.1.18)
and for LF4 itis
dwk:-?ancu 3 anag. (1.1.19)
1
- —— e e s - T e e, M A £

These relations are plotted, again for ¢ = ~1 and ) = .5, in Fig. 1.1b-c. One can
see that LF4 approximates (1.1.5) better st the origin thaa LF or CN. -

Here are two lurther tes of dissipative formulas. An implicit formula with
am3, f=2is backwards Euler (BE):

BE: -} m x?‘(c;:.' - (1.1.30)
An explicit formula with a = 3, # = 4 is loap frog with dissipation (L¥d) [Kr73,
), :

- € - - -
LPd: o3 ol m el = o)) - gtof ~ v 405 et 4o,

(1.1.21)
where c€E R llsin the range 0 C ¢ < 1.

The properties of the difference sch we have joned are rised in
Appendix A. The Appendix also gives information on scveral other formalas: Upwind,
Box, Method of Lines, Lax-Friedrichs, and Leap Frog for the sscond-order squstion
= Vg,

1.2 Phase speed and group speed

Consider now a Fourier mode (1.1.4) in which w and £ arc both real. It is obvious
that in this wave, each point of fixed phase travels at a constant rate

¢m %’. . (1.2.1)

which is called the phase speed. [n the case of LF, (1.1.8) and (1.1.9) show that the
phase specd is given sa a function of € by

cm ;—: ain™" (M2 sin £A) ~v -.{| - ll‘:‘_)'(u)']. (129

Thus LF introduces phase spoed errors that i quad lly as the grid b
more coarse. Numerical apalysts often evaluate difference formulas by examining their
phase or phase specd errors {see e.g. §4 of [Ch79b)).

In most applications, however, phase apeed is of only secondary importance in
bek According to a theory initialed by William
Hamilton (1839) and Lord Raylcigh (1877), and developed further by Sommerfeld

18

dot

ining how an cquath

J I ;,..:L..hﬂx.wmt



(1912) and Brillouin, the flow of energy in a dispersive medium obeys a group speed,
defined by

C= :—: {1.2.3}
For example, suppose & wive train is formed as a sinusoid with wave number §
multiplied by s slowly varying envelope A(z). Then as ¢ increases the envelope will
move, approximately unchanging in shape, at speed C{€), not c{€). As a gencral
principle, phase specd controls the interference of waves, but group speed controls
their propagstion in space.

Eq. {1.2.3) scems surprising tc many people st first, even impo-ﬁbla. For example
one might argue, how can the energy associsted with a wave number { feel the
influence of nearby wave numbers, as (1.2.3) implies that it must? The answer is
that polychromatic waves cannat be understood purely ‘n Lerms of the individual
sine waves that make them up—which after all, are ¢ .h unbounded in extent. It is
obvious that the position and structure of any po:;chromatic pulse are determined
by constructive and destructive interference between sine waves; 00 that the “energy
associated with wave number £, in the absence of other wave numbers, is not localised
at all. Therelore it should not be surprising that its propagation with ¢ also depends
on the interaction of wave numbers. Nevertheless, eq. (1.2.3) takes some getting used
0, snd readers unfamiliar with group velocity are encouraged to take a iook at [Bré0)],
[Wh74), or [Li78).

As a simpl le to moti (1.2.3),

Pp .j'“l,‘(--I—C--)+.-(-l—(nl)
is formed by the superposition of two waves, with §; s £ and wy m wy. Them
beating will occur. The composite wave is in fact equivalent to a single wave of wave
number (£3 + €1)/2 modulated by a s idal lope of wave number (s — £1)/2,

and simple algebra shows that as ¢ increases, the envelope moves at the speed

v-u
ba-6b'
This approaches (1.2.3) in the limit {3 ~ &1, wa — w;.

A more general derivation of group velocity is based on Lhe method of stationsry
phase, due to Lord Kelvin. (For further derivations, sce [Wh74] and [Li78], and also
§2.3.) Let an initial distribution u(z,0) = f(z) have the Fourier transform 1(6). Lat
this signal propagate with ¢ according to a dispersion function w == w(€).* Then at

“For a of a lued di Jon eclation, as le needed for multileve! differcoce
schemes, sce Appendix B,

time ¢ > 0, the solution (ignoring normalisation factors) is
¥z, = / e Ot 7(6) dg
- /e-’l(-(t)—(lli)](() de.

Suppose z/t is held fixed as t — 0o, This corresponds to moving our eyes rightward
at a fixed speed £/t =const. After a long time, what will we see? The answer comes
from observing that as ¢ increases, the exponential in (1.2.4) oscillstes more snd more
rapidly with §, hence tends to cancel to 0 v ¢ — oo. Assuming thut] is smooth
enough, which will be the case if f is localized, such flation will evidently take
place everywhers except for any £ of stetienary phase, at which

(12.49)

;-é(u —¢s/t) =0,
ie
ooz
de ¢

As ¢t — 0o, therefore, our eyes will see only any wave numbers that satisly this

equation. In other words, energy amociated with wave number £ moves asymptotically

at the group speed (1.2.3).
The i y phase

5 is made quantitative ia [Br80}, {Li?8], and {Wh74].
In App. B (Lemma B.1), we will give a complete argument of a related kind in order
to prove the stability theorems of Chapter 4.

Since the stationary phase idea is licable in various ts, we have lelt out
details such as limits of integration, but let us now be more precise for Lthe problem
of central interest. If f is a discrete function defined only for £ == jA, j € Z, thea ]
is defined by a infinite sum and has domain [—x/h,x/A], 80 the limits of integration
in (1.2.4) become xx/h. For [ € &y(h), one has ] € La|~x/h,x/A}, and the more
localized £ is, the smoother } will be; when / has compact support, | will be a
trigonometric polynomial. Whether or not / has compact support, its domain can be
extended naturally from AZ to ali of IR by simply evaluating (1.2.4) for arbitrary =.
The result is a function in Lg(~-o00, 00), namely the (finite or infinite) trigonometric
interpolant through the values {f(jh)}. By Parseval's formula, the Ly norm of this
extension will equal the £y nor»1 of the discrete function f (if both are appropriatety
normalited), since both are eqai to the Ly norm of 7. Therefore in later wections
we can study the sum-of-squares encrgy of a signal without being too careful as w

whether we consider its domain to be continuous or discrete.
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Now et us cxaminc the group speed for waves under LF. By differeatiating (1.1.7)
implicitly on both sides, one oblaina

keoswk dw »= —alh cos §A dE,

hence
C = ~g—2—, (1.2.5)

This formula showa that the effects of discretisation in = and ¢ multiply each other;
for small £A and wk the former will tend to decrease |C| and the iattar to incresse it

(ef. §2.1). Since stability requires Mla] < 1, the first effect will dominate. By (1.1.8),

we can diminate wk to get

Cm 0t -.[x _1=0a (gu)']. (12.)
V1-(ra?sin® ¢ :
A comparison of (1.2.2) and (1.2.6) shows that for small £ and wk, both ¢ and C will
be Jess than the ideal speed —a in magnitude, but that C will lag by roughly three
times as much.
Similarly, diffarentiating {1.1.18) leads to the group speed

C = —aconeh cost o m -..{1 - 3-*7"25((:.)’] 117)
for CN, and {1.1.19) gives

‘im(h—' § cos 2€h

¢ coawk

e —u[l + 5;—'(@)’] {1.3.8)

for LF4. Since C = dw/d§, these functions represent the slopes of the dispersion
relation plots in Fig. 1.1. .
From these formulas one can caleulate that with LF4 and CN as with LF, C
the ideal value for £h =5 0 by 3 times as much as . This fact generalises as follows:
Theorem 1.2.1. Let Q be ¢ nondissipative model of u; == o, with the modified
equation ’
P
Sbai-4 2.
= g, + AN oy (1.1.9)

for some odd integer a > 3. Then as §h, wh — 0, the phase and group specds satisfy

¢ m ~a = (~1)FA(EA)*"! + O((EN®),
21
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C = —a - af—=1) T A(€)* + O((£A)").

Thua C differs from the ideal speed ~a by o times &1 much as ¢.
Proof. Eq- (1.2.9) implies that for small €A, wk the dispersion relation is

o —iag + AN,

w m—af - (1)1 AN g,

The result now lollows from (1.2.1) and (1.2.3). 3

This theorem implics that evaluation of dilference fs Jas by the phase srrors they
introduce may lead to fisticall imisti |

DEMONSTRATION 1.1. As the simplest demonstration of group speed, Fig. 1.2
shows the propagation of a nearly h ic wave packet under LF with a =
—1, X = 4. Fig. 1.2a plots the initia) sigeal on a grid with h = 1/180,

u(z,0) = ¢~ gin s,

with £ chosen so that there are 8 grid points per wavelength: £A = 32/8 == .79,
€ =5 251.3. The exact solution should move right unchanged at speed 1, but (1.2.3)
and (1.2.8) predict phase and group speeds

o 01, C ..

In this experiment the exact solution was uscd to provide values at ¢ = k, and then
LF was applied up to t = 1. The result is shown in Fig. 1.2b. Apparently the wave
packet has propagated at just the group speed O, not st the phase speed, and it
has changed little in shape. If one looked at the wave carclully as a functios of ¢,
one would see phase crests conlinually appearing at the trailing edge of the pachet,
sdvancing through it at speed ¢, and disappearing at the front. The same behavier
sppears in the ripples made when s stone is dropped into a pond, for gravity waves
22
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FIG. 1.2. Propagation of s wave packet with 8 points per wave
length (€A = .79). The model is LF for u, = —u, with A = 1/160,
X == 4. The packet moves not at the idcal speed 1, but at the group
speed C e T4,

FIG. 1.3. Propagation of a wave frant gencrated by a forced oscilla-
tion with wk = 1 at the lefL boundary. The model is CN for 4, = —u,
with h == 1/500, X = §. The wave lront travels at the graup speed
C a2 .78,
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on deep water also satisly a dispersive cquation characterized by C < c.*

This example demonstrates a principle that makes analysis of group velocity
errors in dillerence achemes possible: there ia more to the insccuracy of a difference
scheme than truncation error. The wave in Fig. 1.2b differs completely from the

correct

, and so an estimate of lated truncation error would
lead to the lusion that the putation had been useless. But in fact, it has been
qualitatively correct. Errors caused by diff ing are not d
but a systematic interaction of dispersions and possibly dissipations of various orders.

DEMONSTRATION 1.2. As a second example, Fig. 1.3 shows the propagation of
2 wave front. In this experiment a sinusoidal forcing oscillation at the left. boundary
radiates a wave into the interior of the interval [0,2]. Here A = 1/500, ) = 5, and
the scheme is CN with a = —1. The oscillation

hats

per

{0, £) = sin 100¢

has been turned on at ¢ = 0. At = (.5, only a low-frequency foreruaner has
reached z = 1.5; the main oscitlation of ampiitude 1 has reached only z = 1.0 or 1.1,
suggesting that the wave {ront propagates at a speed roughly 0.7. Now to analyse a
problem like this we neod- to know how C depends on w, not §. From (1.1.18) and

{(1.2.7), we obtain
Clo) = ~acos? ‘-",-“,/1 - (o) ent 5. (1.2.10)

For the given problem wk == 1, and (1.2.10) predicts C =s .75. This explains Fig. 1.3.
Throughout this disscrtation, we will use both spatial and lemporal Fourier transforma
as convenicnt; most often it will be the latier, since boundaries or interfaces will be
present.

For dissipative modcs, the concept of group velocity breaks down. When dis-

ton dinanati

persion domi p the predicti btained by ignoring dissipation may

*In fact for such waves onc has C = }c. For short ripples on decp water (sutface tension
dominated), on the other hand, one has C = ‘c. Other physical problems with C > c are
wave propagation in clastic beams {C' = 2¢) and movement of & particic when viewed as a
quantum mechanical wave packet (C = 2¢ alo). {The classical particle speed correaponds
to C, not ¢.) Closer physical analogs to a finite dilfecence model of {1.1.1) are presented
by problems in which C == ¢ for long wavcleagths but C € ¢ for short ones. These
include wound or ch ic wave pi ion in random media {air, glass, rock) or
reguiar media (crystals, elcetric networks). 1n these cases ¢ and C' begin to differ when the
wavelengths present become comparable o some physical scale involved, such as 3 distance
between molecules,
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not be far off, and we will make use of this in §1.4. One Justificalion of this elaim
can be found in Thm. 2.3.1 together with Lemma B.1; in fact, Thi. 1.2.1 could
be extended to der dissipative difference approximati However, s general

fysis requires s pest d t arg! t that is more subtle than the stationary
phase derivation [Br60]. 1t turns out that for dissipative waves one can distinguish
group, signel, and energy velocities, all of which ide in the dissipative case.
This theory was worked out by Brillouin and Sommerfeld in the early 1900s and is
described at length in (Br60]. The application of steep descent analysis to dissip!
tive finite difference modeis of (1.1.1) is carried out by Serdjukovain {Se83,Se88), and
by Hedstrom and Chin in [He85,He88,11¢08,1e75,Ch75,Ch78]. The same spproach
hae been extended to models of s transport equation by Gropp {Cr81].

1.3 Dispersion

In » signal consisting of a superposition of various wave parameter pairs (€,w),
the energy associated with each pair will propagate at the group spesd appropriste to
that pair. In generpl these group speeds will be differcat, causing the signal to chaage
shape as it pmm‘m This separation of wave bers is called dispersi

DEMONSTRATION 1.3. The simplest configuration that may lead to dispersion ls
s superposition of two wave numbers, & dichromatic wave packet. Figure 1.4a shows
such » signal, given by

(s, 0) = ;.-"(--""'(x +6in 100s).

This signa! contains equal amounts of energy st wave numbers § as 0 and € # 100.
In the experiment the LF formuls was applied with a = —1, /s = 1/100, X = .5, and
the exact solution was used to provide dsta at ¢t == k. For these values (1.2.8) predicts
that the low wave number energy should move at spoed C == [, and the high wave
number encrgy at C s 60. Figures 1.4b,c show “he computed result at ¢ = 2,4,
The initial packet has split into two _pleeeu. and they have evidently teaveled at the
predicted speeds. (Compare Fig. 1 of {Vi75].)

More generally, any wave packet that is localized in space must contsin a range
of wave numbers. Quantitatively, the product of the width of a wave packet v snd
the width of its Fourier transform & is bounded from below by a constant of order
unity (the uncertainty principle). In particular, the initial signal in Fig. 1.4 I not

T T T At

(o)

®

()

wf v T + T
.-_,JWL 1
-
- b . e 4
1 L] L] L]
wE v T -+ v
-
-
A 4 b " " ke
T L] ¥ L]
oF — T T —r
-l ~ E
- 3 e ) — 5 -
A L] R L]
F1G. 1.4. Separation of a dichromatic wave packet with (A s §
and €A aw | into two components. The mode is LF for w, == —u, with
A== 1/100, ) = 8.
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FIG. 1.5. Dispersion of s polychromatic pulse. The mode) is LF for
w = ~%, with A = 1/160, A = 4. Higher wave numnbers have lower
group specds and lag behind the main signal.
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exactly dichromatic, but has a Fourier transform consisting of two narrow spikes.
Similarly the signal in Fi;. 1.2 has a spectrum consisting of one narrow spike. In such

cnses we must expect tha. each not-quit h ic wave p t present

will itsell disperse with time, since it contains energy with various group velocities,
Such dispersion will take the form of a broadening of the wave packet at a steady
rate depending on the range of group speeds present. We can formulate this in an
approzimate way a3 follows:

Let on initial wave packet u(z,0) heve Fourier transform &(€,0) with support
(60— BE/2, Eo + AE/2] for some omall value AL. Let W(L) be an spprozimate measure
of the width of the packet ot time t. Then for large t, W will grow reughly sccording
to

Wit) - W) m £ 8¢ o). s

The significance of (1.3.1) is twolold. First, broadening of a pulse will be spproximately
linear. Seccad, the rate of broadening depends on both the widtd of the Fourier
transform end the derivative dC/d¢.

In Fig. 1.2, there were many grid points in the wave packet, so A was small
and the packet broadened only about '0% or so in the time showa. This example
illustrates a point of practical importan. ¢: the ab of pi persion is no
guarantee that a computation has been accurate. In Fig. 1.4 there sre not as many
grid points within the wave packet, 0 A{ is large. The component with § = 0 still
docs not brosden much, because dC/d§ = 0 at { = 0. But it is evident that the
component with €A = 1 has broadened considerably. In fact, for this component
(1.3.1) has the approximate form

wit; - W(0) = :(zo)(s%).
This leads to estimates like
W(0) =02,  W(3) =3,

whieh are not far off, considering that we have been careless with eonstants.
DEMONSTRATION 1.4. Figure 1.5 shows the dispersion of an initial pulee that is

20 narrow as Lo be thoroughly polychromatic (¢/. [Vi82]). This experiment takos place

in the same iaboratory as Demo. 1.1: @ = —1, A = 1/160, A = 0.4, scheme = LF.

n

But the initial distribution is now
(z,0) = e~ 3300(s—4)",

which is much narrower than before and has central wave number £ = 0. Since the
pulse is narrow, its transform is broad, and Fig. 1.5b shows that it disperses quickly
into a train of oscillations.

Such oscillatory effects of finite difference schemes are common and well known.
What is not generally recogniszed is that all of the bebavior of Fig. 1.5, except for the
phases of individual wave crests, can be predicted quantitatively by considering group
speed. At the front of the wave train, the low wave numbers travel at speed nearly
1, as they must. The further back one looks, the higher the wave number one sees;
measurements in an enl t of Fig. 1.5b confirm that the relationship is that of
(1.2.8). Furthermore, the amplitude distribution can be predicted from the fact that
the initial £ energy density at each wave number is conserved (it must first be defined
carefully, since L¥ is » multilevel scheme; see [Ri87]). Accordingly, the amplitude of
2 part of the wave train with wave number { decreases with time according to the
square root of the rate of dispersion dC/d{. These ideas are made precise and spplied
extensively in the field of -geometricel eptics (Wh74).

For analyses of the dispersion introduced by finite difference models in the neigh-
borhood of a discontinuity in w, see [Ap88,Ch75,He?5,Ch78)].

1.4 Instability in L, norms, p 9% 3

In this section we digress brielly to consider our first application of wave propaga-
tion ideas to stability We will show that dispersion is the controlling factor for
stability of difference models of w, = au, in L, norms, p 3 2.

In the last two decades a considerable body of results has accumulated on stability
in I, norms [Br75]. Some of the contributors to this work have been Breaner,
fledstrom, Serdjukova, Stetter, Thomée, and Wahlbin. This thesry is quite technieal,
and doet. not draw explicitly on the notious of group velocity or dispersion.® Instesd
it is founded mainly on the techniques of Feurier multipliers. Our cos*znlion is that
many of these rcsults can be readily understood, and possibly exterded, by simpler

*llowever, G. Hedstrom st least (privale communication) has been aware of the interpretation
of [y instability prescnted here.
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arguments. We will only skelch some idcas here without developing them rig iy,
as this dissertation is mainly concerned with stability for problems con.uining bound-
aries or ‘nterfaces. However, Lhe discussion should suffice to provide support for our
underlying thesis: that the stability of Anit» difference models is strongly aflccted by
pb of disp

Let Q denote a fixed finite difference approximation to w; = aw, with time and
We will apply Q at all points z € (—o0, 00)
but at discrete time levels nk, and denote the computad solution at time step » by
w™(z). For simplicity we take Q to be & two-level formula, and let § denote the
solution operator v® »+ v™*1:

i

wave p

space steps k and A = k/), )\ = const.

© o™z) = |S"s%z). {14.1)
For 1 € p < o the L, norm of » function o: IR — € la defined by
-
g = [ wlelrds (155 <o) (143)
and for p = oo,
Hollee = sup jo{s)).
€R
The space L, consists of those functions v for which this number is finite. If § : Ly —
L, is 8 bounded op: , the induced op p-norm is given by

NSty = sup fiSoll, (t <p <o)
Tehe=1

We define stability in L, as follows:

Defn. The mode! Q is Ly-stable i/ for cach T > 0 there ezists ¢ constant Cr
such that
5™, < Cr

Jor ali n and k satisfying nk < T.

For models of hyperbolic problems the Ly norm is most often used, mainly becsuse
it is naturally connected to the Fourier transform by Parseval’s formula. But other
L, norms also come up sometimes, particularly the Ly and Lo, n© . when one has
ion to & nonli p [LuB1]. One might expect that most
difference formuias that are stable in Ly would be stable in other L, norms too.
lowcver, a result due to Thomée shows Lhat this is not so (see p. 100 of [Ri67]):

i,

in mind an

aie .

o Pl Shlar it -

Theorem 1.4.1 [Th65]. Let Q approzimate w, = agu, to an even erder of
y. Then Q ia wnatable in L, Jor ellp € 1,00, p 5% 2. 3

It is this and rclated results that we claim are due to dispersion.

Here is the explanation. Consider as aa initial distribution a narrow pulse, as
in Fig. 1.5, whoee width is a few grid points. Following (1.3.1), we writs this in the
form
W{0) = A, (14.3)
with the understanding that "=s" denotes an order of magnitude agr ignoring
constant factors, without being defined precisely. As n increases, the pulse will
disperse into a traln of oacillations (Fig. 1.5b), whose width will increase roughly
linearly with n (ef. {1.3.1)),

W(n) ms W(0) + ¢ = A, (1.4.4)

Let A{n) be some measure of the average amplitude of the wave train. Then we expect
to have

Hu™llp =0 A{m){W(n)}*/.

Now if Q is nondissipative, |jv™ls will be approximately conserved as n incresses
(exactly, if Q is a two-level formula). With (1.4.3)-(1.4.5), this implies

(1.4.5)

Aln) _ TW(n)}™
w ~we =" (14)
Therefore by {1.4.3)-(1.4.8) we have
Henllp Al wim)) -
||v°|l. A0) | W(o) : (147)

For p < 2, the exponent is positive, and 3o we have growth in the p norm. It follows
that the operator powers §* must grow at least this fast,

15*lly 2 né-t, (14.9)

and since n — 0o as & — 0 for fixed ¢t = nk, this contradicts the definition of
L,-stability. Thevefore Q 1 unstable in L, for p < 2.

Thus L, instability for p < 2 can be cxplained by the dispersion of narrow spikes
into oncillstory wave trains. Correspondingly, instability for p > 2 is implied by
the fact that an oscillatory wave train may coalesce into a spike. Supposc that the
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configuration of Fig. 1.5b is taken as initial data v®(2), and then the LF model of
{1.1.1) is applied with ¢ = 1 instead of a = —1. (Alternately, one might retain
a = —1 but reflect the wave train of Fig. 1.5b about z = 0.) Then as t incrcases the
wave Lrain will move left, and the Jower wave numbers to the right will overtake the
higher oncs to the left, whose group speeds are not. quite as laege. The result at ¢t = 2
will be another spike at z = 0—not identical to that of Fig. 1.5a, but close. From
t=10tot =2, each L, norm with p > 2 will have grown. Now W(0) and W(n) are
the same as before except reversed, hence 4(0) and A(n) also, and (1.4.7) becomes

o™
llv™lls -3

o, =" (149

This time the exponent is negative for p > 2, and (1.4.8) becomes

Illy 2 ni=3. (1.4.10)
Eqs. (1.4.8) and (1.4.10) combine to give the general bound

1Sl 2 nH=50, (14.11)

(Actually, for the above argument to go through we must be a little more careful.
The problem is that the wave train of Fig. 1.5b is no. at all uniform in amplitude, so
that A(n) cannot be defined in such a way that (1.4.5) hoids for all p. The explanation
for this comes from (1.3.1} and the discussion in §1.3: our initial spike contains both
nonzeto wave b which broaden and therefore decay in amplitude because
they have dC/d€ 3 0, and ncar-zero ones, which decay very litUle because they have
dC/d§ = 0. One remedy iz to replace Fig. 1.5a with a signal that looks more like
the derivative of a spike. The Fourier transform of the proper signal, instead of being
concentrated in a band of width A€ at £ = 0, might consist of 3 band of width A§
centered at § = A€. Then the broadening rates of the various energy componcnts,

hence their amplitude deeay rates too, will agree up to constant factors, and {1.4.5)
will be valid.)

Now suppose Q is dissipative. Here is the explanation for the even-order hypoth-
esis of Thm. 1.4.1. If Q has even order of accuracy, then its model equation has
a < A {§1.1), and this means that dispersion is stronger Lthan dissipation at low wave
numbers. Dy considering a spike as before composed of energy with sufficiently low
wave numbers, we can again get growth in all L, norms, p 26 2. On the other hand

3

if @ has odd order of accuracy, then dissipation dominates dispersion, and we cannot
achieve such growth.

Let us substantiate these claims by estimating the growth rate for an even-order
formula with a < 8 < 0. In the nondissipative case, we Look an initial signal with
width W(0) = . The troubie is, the transform of such a signal is 80 broad that the
energy will tend to diasipate faster than it disperses. On the other hand if W(0) is
taken too large, then although the dissipation is small, we will have a wide packet
broadening slowly, and not much growth will take place. Achieving a maximum
growth rate will depend on picking W(0) so as to balance these effects. W(0) will
also have to depend on what time step n it is st which we wish to obeerve growth.
The rcason ie that the growth due to dispersion is algebraic, while the decay due
to dissipation is exponential; for 'arge enough n, the simple kind of packet we are
considering will decay to 0 in all p norms.

The maximal growth solution is this: given n, design an initial packet as before
but with

W(0) s Al (1.449)

The width of the Fourier transform is then
Af s h'n"d. (1.4.13)

If the order of dispersion is @, & packet of this width will have group velocities covering
a range (Thm. 1.2.1)
AC = (hAE)"" me n'T?,

and so W will increase with n according to
W(n) = W(0) + tAC = ka5, (14.14)
Eqs. (1.4.12) and (1.4.14) give the ratio of widths

W(n} oo

wio) an (1418}

To get the corresponding ratio of amplitudes, we observe that since Q has order of

dissipation 8, the Lz norm of v will decay according to
lislls = (1 = (g)?)" = e=t400",

or by (1.4.13),

flomllz = et = 1.
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In other words, our initial packet is just broad enough 30 that the decay up to step
n is not significant. (The width (1.4.12) was chosen to be the smallest possible for
which this would hold.} Therefore as in (1.4.6) we have by (1.4.15),

A(n) [W(n) R

—_ | = ma W, 1.4.18
0 ~ W) (416)
Prom this follows the analog of (1.4.7),

ke %{%{o&;]’ b 5) m P (11),
or following (1.4.8),
(154l 2 n'5P(2-1), (t417)

For p < 2 the exponent is again positive. Therefore @ @ unatable in L, for p < 2.
As before, reversing the process gives the same estimate but with the exponent
negated, implying growth in L, for p > 2. All together, we have the bound®

Ns"ll, 2 n 51211, (1.418)

This agrees with the nondissipstive result (1.4.11) if one sets 8 = oo.

The above ug\;mh constitute a sketch of a proof of Thm. 1.4.1.

In addition, we have obtained & lower bound for the growth rate of the difference
operator. What is remarkable is that this bound is as strong ss possible. The following
result was proved by Brenner, Thomée, and Wahibin:

Theorem 1.4.3 [Br75, Thms. 3.1,8.2]. Let Q be a consistent difference ap-
prozimation (o u, = aw, with ¢ven order of accuracy. If Q s dissipative, the powers
of the solution eperetor § satisfy for 1 < p < 00 & bound

M4 < 57, < Man T (1.4.19)

for some constents M, end My. If Q is nondiasipstive (§ = oo) this reduces to the
Jormule
Mt < 15, < Manld=31. (1.4.20)

*An appliication of Lbe uriform boundedness principle shows that not only does $* grow at
this rate a8 B ~ 0O, but so doew ¥* for some suitably choscn initial data v°. In fact it Io
not hard te devise such 8 funclion v%: let it connist of & serles of spikes, each broider and

The fact that our estimate was sharp suggests that not only does the dispcrsion and
gathering of spikes imply instability in L, norms, but there is nothing more o such
instability than this.

Much of the early research leading to Thm. 1.4.2 was concerned with growth
rates in Ly, of the Lax-Wendrolf operator, Q == LW. For this we bave a = 3,8 =
4,p = 0o, and (1.4.19) bacomas

Min'® < {15 lee € Myn'/®, (1.4.21)

{Obviously the instability is very weak.) This bound was first established by Serdju-
kova [Se83], by means of saddle-point esti and ind dently by Hed:
{He86] in 1968; see also {St65], [ThES), [Se08).

The theory related to instability in L, has been carried well beyond Thm. 1.4.2.
In particular one may ask, how rapidly caa |lo"|l, grow if v° satisfies some smoothness
condition? How smooth must v° be to make growth impomibie? The anawers to such
questions naturally involve Besov spaces [Pe76), and a large number are presented in
[Br75]; see also [11e68). Although many of them could probably be given disp
interpretations, we do not.argue that this would necessarily be productive in the more
complicatod cases.

A more promising application of the dispersion idea may iovolve the extension
to verisbie cocfficients. We have not discussed this fact, but the essentials of group
velocity extend with ¢hange to dispersive systems with variable coefficients, so
long as the scale of variation is large compared to the wavelengths of interest [Wh74).
Therefore we propose:

Conjecture. Theorem 1.4.1 continues to hold f Q w a consistent difference
model of

, % = o(z)s,,

where a{z) i & Lipach t Fencti tiafying 0 < apia < [o(z)] for alix.

A straightforward extension of the eatimate (1.4.19) is probably also valid. At present
no such results appear to have been proved, although some thcorems for variable
coelficicnts appear in [Ap88]. To apply Fourier methods, one would moet likely need

aker than the laat, and each designed o achieve ats lar tme to move from Fourier multiplier techniques Lo those of pseudod(ferential operators.

we eac! g s growth P

nep. Technically this would be intricate, and there is a chance that the resulting theorems
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would reguire an unreasonable degree of smoothness in a. We suspeet that a prool
by arguments based on dispersion would be easier Lo carry out.
Fur some very interesting results on stability in /., norms of nonlinear difference

formulas, see the recent dissertation by B. Lucier [Lu8l].

1.5 Parasitic waves

The last three sections have concentrated on the errors thal result from the
deviation from linearity of a numerical dispersion relation near the originw = { = 0.
These might be called the behavicral errora introduced by differencing. However, a
finite difference grid can also support completely nonphysical or parasitic waves,
with €A or wk far from the ofigin, and these loo will propagate at the group specd
{1.2.3). In general parasitic waves may travel not only at the wrong speed, but also
in the wreng direction. This can be seen from the fact that in Fig. 1.1 (also Appendix
A), the dispersion curves have negative slope in various regions. In Chapter 4 we will
see that energy propagation in the wrong direction is closely related to instability for
initial boundary value problems.

1t is perhaps :.urprising that poorly resolved waves should obey a group speed,
since the discreteness of the grid might seem to necessitate a more complicated
analysis. However, the stationary phase argument sketched in §1.2 only required
4(£.0) to be smooth function of §, and has nothing to do with the discretenesa of z.

DEMONSTRATION 1.5. To illustrate, Fig. 1.8 shows the propagation of five
diffcrent wave packcts. o this experiment uy = —ug with @ = —1 was modeled
on [~15,1.5 by CNwith A =1, A= 1/100. In each case initial data cousisted of a
wave packet

v°(z) = ¢~(100)" 1o £z,

with varying values of . In each case the solution was computed up to t = 1|,
and Lhen the result was plotted. From (1.1.18} and (1.2.7), onc readily obtains the
prediction
c= —Soth
14 }sin® €A
for this demonstration. Table 1.1 shows the wave numbers used and the corresponding

group speed predictions:

a5

(a)

(8

(e)

(9)

e X -
b AN
e th=0
8 b 4
0 b " L e
1 o5 e =] .
W T M O T
sk A .3
as AL N ch=1
Ry 1
i3 Vi -
w b E
1 s t - 0
wf M
=33 (11} 3
; BTTGh TR it
a0 v s Eh = ¢
osb et B 2
_L : s 3 =) B =
w 3
13 3
I
o o L = v
otk 4
"E N 2 '
T T € B 1
T T T 3
Eh=rx
o t ) . =

F1G 1.6. Physical and parasitic wave pachets with §h = 0,x/4,...,
x. In cach experiment the initial packet was loealed at z = 0 and the
figurc shows the result at t = 1, so that the position of each packet
ploticd cquals the group velocity for the corresponding wave number.
The model is CN for u, == —u, with A = 1/100, A = 1.
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Figure £h <
0 1

1.6s

1.8b x/4 829

1.8¢ =2 0 TABLE 1.1
1.8d 3n/4 - 629

1.0e L4 -1

The figure shows clearly that the predictions of this table are valid.

DEMONSTRATION 1.8. Figure 1.7 shows the similazity between physical waves
and parasites in another way. In addition to the spatially sawtoothed waves that we
have already seen, which arise from near (§,w) = (/4,0), Figs. 1.1a-c imply that
signals with (§,w) near (0, #/k) and (x/h,x/k) arc alsc possible under LF or LF4.
Fig. 1.7 confirms this for the scheme LF with a = —1. In the same mesh as before,
sinusoidal forcing functions with wk = 0,0.1, ¥ have now been turned on at t = 0 in
the middle of the domain:

(1.7a) vg =y,

{1.7b} o5 =sin{.in),

(1.7¢) o3 =(-1)"
Each plot shows the resulting distribution st time t = .88. This is an artificial
experiment, since it amounts Lo specifying data on the outflow boundary of the interval
{-1,0], but it highlights the pletely predictable behavior of parasi In Figs. 1.78
and 1.7b one sees waves of type (2/A.0) and (0,0} on the left and right, respectivcely.
In Fig. 1.7¢ the waves have become of type (0, x/k} and (¢ /A, x/k}, although to display
the sawtooth behavior in t it would be necessary to show an additional plot for ¢t =

88 + k. All of these waves travel at group specds approximately 31. The remarkable
z-symmetry in each plot is due Lo the {-symmetry about £ = «/2h of Fig. 1.1a, and
the t-symmetry relating Figs. 1.7a and 1.7c is due to the corresponding w-symmetry.
These details are unimportant, for they would change with the difference scheme.
What is important is that smooth bchavior in cither 2 or ¢ is no guarantee of smooth
behavior in the other variable, and that even extremely unphysical waves obey a group
speed, which may have the wrong sign.

In problems involving parasilic waves the notion of phase speed is not just
inadequate, but ill-dcfined. According to I* 2.1) the phase speed is ¢ = w/§, but

since wk and €A arc only determined up Lo multiples of x, this formula docs not give
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FIG. 1.7. Sawtoothed parasites generated by a foreed oxcillation
sinwt at the middle of an inlerval, for various frequencies w. In each
casc the forcing function was turned on at £ == 0 and the result is plotted
at ¢ = .66. The mode! is LF for v, = —u, with A ==1/100, A = 5.

a unique value. The difficulty (regarding wk) is that since the wave is only observable
at discrete time intervals, it cannot be said whether a sine wave has moved left or
right to get from one configuralion to the next. But whatever phase speed onc selects
will fai! Lo capture the basic fact of Lhe speed at which the edge of the parasite moves.
The group speed, by contrast, is well defined, because dw/d€ has the same value for
all choices of w and £.

The above cxamples have suggested that it s common for sawtoothed waves

Lo propagate under nondissipative difference formulas in the wrong dircetion. It is
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convenient to devise a name for this property:

Defn. Let Q be a scalar differenze formula. Suppose that whenever @ admits
a solution v} = ¢*“! with w € I and group speed C € IR, then it also admits the

sotution v} = {~1)¢**, and this wave has group speed C’ € R salisfying CC' < 0,
with C' 5 0if C 5 0. Then @ is z-reversing. Likewise il the existence of a solution
vy = ¢~ with € € IR and group speed C implies the existence of a solution =
(—1)"e7*¢F with CC* < 0, with C' # 0 if C # 0, then Q is t-reversing.
Onc may show readily for the scheres we have considered (see also App. A):

Theorem 1.5.1.

(i) LF and LF{ arc both x-reversing and t-reversing,

(i) BE and CN are z-reversing but not t-reversing,

(i} LFd is t-reversing but not z.reversing,

{iv) LW is ncither z-reversing nor t..cveraing.

Proof. Let us prove (1) for the scheme CN. Suppose v} = ¢*” satisfies CN with
w € IR. Then v has £ = 0 by definition, so {1.1.18) implies tan %% =0, hence w = 0,
and by {1.2.7) the solution has C = - € IR. The dispersion reiation (1.1.18) implies
that v7 = (-1} is also a solution, with £¢h = =, and by (1.2.7} this solution has
C' = +a € R, yielding CC' = —a? < 0. Therefore CN is z-reversing. On the other
hand v} = 1 satisfies (1.1.18) but v} = (=1)" (i.e. ¢h = 0, wk = x) does not, so CN
is not t-reversing.

For the other assertions the proofl is similar. g

Not every nondissipative difference formula is z-reversing. One way to see this

is to observe that a centered spalial differcnce operator

[
9 (K) -~ K-7)
%5 ~,-§ ‘n,T, (1.5.1)

where K denotes the shift operator K'v, = v,,4, leads to a spatial factor

£ sin j£A
- EG’T
y=1

in the dispersion relation. A difference formula based on this spatial discretizalion

will have .
C(€,0) = - 2: o, conjEh.
Fiat]
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Consistency implics

14
C0.0)=-3 a,=:~a 1.5.2)

3t

but it implies nothing about the group velocity for a spatial sawtooth,

L1
Clx/h,0) = ~ Y (~1Va,. (1.53)

=t

Thus for exampl - formula

e e
n -1 -
vt - v = 7(";\1 -vi )+ T(";n = vi_a)

has ¢, = a/3, az = a/3, hence C{x/h,0) = —a/3 < 0 a8 weti as C(0,0) = —a < 0.
But there will also be values £ in (0, x/h} with C of the opposite sign. Usually, for
cach frequency there will be a8 many wave numbers with C < 0 as with € > 0. Thus
it is in the nature of nondissipative formulas to reverse some waves. In [act only »
onc-sided formula can fail to scnd some energy in the wrong direction, and such »
formula is usually cither unstahle or dissipative. (However the Box scheme, liated in
App. A, gives an example of a or.e-sided, nondissipative, not z-reversing formula.}

In practice, a nondissipative difference approXimation 10 a first-order derivative
will often be taken as the optimal formula for the given number of points. For the
centered stencil of size 24 + 1, this formula has order 2£. (For example, LF and LF4
are based on z-difference approximations with £ = 1 and £ = 2, respectively.) In this
important zase, all formulas arc reversing:

Theorem 1.5.2. Let Q be o difference model of (1.1.1) whose spatial (resp.
temporal) discrefization consists of the optimal 2¢ + 1-point centered diffevence ap-
prozimzation to ad/dz (resp. 3/3t). Then Q is T-reveraing [resp. ¢-reversing).

Proof. The optimal approximation in question can be given exactly {{Kr72),

Remark p. 202): in the notation (1.5.1) onc has

=2 4

By {1.5.3) and the alternating signs of these cocflicicnts, it is immcdiate that one has
C(x/h,0)/a > 0, and since C(0,0)/a < 0, the assertion is proved. g

As mentioned above, Chapler 4 will show Lhat the stability of a dilference model
of an initial boundary value problem depends on whether the model ean support waves
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with group velocily opposite to Lhe physically correet direction. In practice, numeri-
cally unstable solutions often consist of sawtoothed waves under z- or t-reversing

formulas, o fact that we will pursue in §4.4 and §4.5.

1.6 Wave propagstion in several dimensions

Mathematically, linear wave propagation in several di i is much the same
as in one, [ot the different space dimensions decouple. Neverthelegs, the combination
of these di ional effects i d geometrical ph

that are surprising.
in particular, difference schemes for isotropic equations are themselves anisotropic,
and as a result imperfectly resolved waves travel not only at false speeds but in false
directions. Such effects have reccived littie treatment in the literature, but there are
sore previous studies, particulatly by geophyasiciste {AI74,8280,Ma81,WaB0}.* There
is also a great deal known about wave propagation in crystal lattices, which is strongly
analogous to propagation in finite difference grids, and there the same anisotropy
phenomena appear. For refercnces see for example {Au73,Bo54,Br53,Je37,5084).
In d dimensiops, Fourier modes take the form

eilr-tn), {18.1)

where w is still a scalar frequency and £ is now 3 wave ber vector of di i

d. From (1.6.1) one may define the vector phase velocity ¢ componentwise by
¢ = ul:—;’ (1€i<d). (1.6.2}

The phase velocity points normal to the wave front, but has little physical significance.
Once again, s stationary phase argument {Wh81,Wh74) can be used to show that
energy travels at a group veloeity, now given by

C =V, (1.8.3)

*In grophysica one faces the inverse problem of inferring the properties of the carth from
obscrvations of sound propagation through it. On a global scale, the sound sources are
earthquakes or nuclear and the goal is to understand the Jarge-scale structure of
the earth's surface or interior. On a scale of a few miles, the sound sources are dynamite

fosions or other de impul and the goal is to detect inhomogeneities of sound
speed that may gives clues to the localion of oil or other resources. In Lhese problems
finite difference models are used extensively [3a80,C176,Ma81). The gride employed are often

where Vg denotes the gradient (d-vector) wilh respect to §.
For simnplicity, let us confinc ourselves to two dimensions, and write (€, 1]) for §.

Consider the (isotropic) second-order wave equation
e =Ygy + Uy (18.4)
The dispersion relation for (1.8.4) is & system of concentric circles,
wt=¢4+ 0t {1.8.5)

which has two frequencies for each wave number because (1.6.4) is of second order.
From (1.6.3) one obtains a group velocity

C = ££/I1€l,

which asserts that energy travels normal to the wave front at speed 1. As a typical
finite difference model of {1.6.4), suppose we define a rectilinear grid with step sise A
in both £ and y, and consider second-order leap frog (LF?):

v:‘,“ - 200+ v:‘,".; Aol,, + DIRTR o 1-:',]. (1.8.8)
(The restriction of this (¢ la to one di ion is included in the y of
Appendix A.) Easy trig ic ipulati then yield the numerical dispersion
relation (cf. [A174), eq. (A2))
cawk  of g Ch . anh
sin” o= = by [nn 2 + sin 7 | (1..7)

From a contour plot of (1.8.7), one can sec the errors in group velocity that LF?
will give rise to (cf. [Au73], [Je37, chap. 15]). Fig. 1.8 shows curves of constant w in
£-space for wh = #/8,...,11x/8. For simplicity A has becn taken here equal to 0, 5o
that LF? is reduced to & semi-discrete or “method of lines” approximation. The full
domain portrayed is (€,7) € [~ /h, x/A]? (in crystal terminology, the first Britlewin
z0ne); any other wave number vector is an alias of a vector in this region. The figure

shows that as w increases, Lhe curve of corresponding £ vectors b less like
a circle and more like & diamond. Now (1.6.3) implies that the group velocity for

any wave number £ points in the direction of the normal to the line of constant w

conrse rolative 1o the lengths proscnt, so rical group velocity ereors are potentially through €. By contrast the phase velocity, since it is normal to the wave front, lies
significant. along the ray from the origin through &, and so would the ideal group velocity for
41 42
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(1.8.4). Thus Fig. 1.8 indicates that poorly resolved wave packels will travel more
along a diagonal under LF? than they ought to. The figure aiso shows an increasing
separation between curves of constant w as w increases. By (1.8.3) this indicates that
poorly resolved packets will travel too slowly, as in the onc-dimensional case, and
evidently thix eifect will be more pronounced at 0° or 90° than at 45°.

Applying (1.6.3) t0 (1.6.7) itulates these ph Igebraically (cf. [AJ74]).

P

One obtains the group velocity components

Asin gh Asinnh

=k = ek (10.8)

Thereflore the group propagation angle (from the z axis) and speed for the wave
number vector (£, n) are

g /@\\

F1G. 1.8. Dispersion plot for the two-dimnensional Leap Frog model
of ugy == ugy + tlyy in the limit XA — 0. The region shown is the domain
|-%/h, x/h?® of the € == (€, ) plane. The concentric curves plotted are
lines of conatant w for wh = »/8, 2¢/8, ...,117/8. The normal to the
curve pnssing through a point £ is the direction of the corresponding
group velocity.
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_1f sianh
© = tan I(in(h)’ (1.6.9)
1 AT ST, s

For infinitesimal" €A these
mulas

pressi reduce to the isotropic and nondispersive for-

@ = tag~! % ICl=1,

but for finite £A they confirm that there is anisotropy and dispersion. Let ¢ denote
the sagle from the = axis of the normal to a given plane wave. Then to second order
one has

IClm1— "-“f-”["“%" - x']. (1.811)
P (IE’|:)' o it : (1613)

Eq. (1.8.12) shows again that waves will travel more slowly than the correct speed |,
lagging twice ss much (for small A) at # = 0° (mod 90°) as at ¢ m 45°(mod 90°). Eq.
(1.6.13) confirms that waves with 8 = 0°(mod 45°) will propagate perpendicularly to
the wave front (a fact obvious from the symmetries of the grid), but that all other
waves will propagate obliquely, preferring di: Is to hori is and verticals. The
details would change if the z and y mesh spacings were not equal.

DEMONSTRATION L.7. Fig. 1.9 confirms these predictions experimentally. Here
s Gaussian wave packe.

w(z,0) = sin(z - £)e= 30"

with # = 22.5° and |{|A = 1.6 has been set up at ¢ = 0. The experiment takes
k= .01, \ = .4, scheme = LF’. Superimposed on the same plot is the packet at the
later time ¢ = 1.4. Ideally it should have traveled a distance 1.4 at an angle 22.5°.
In fact, it has closcly matched the predictions of (1.6.9) and (1.8.10): © = 30.0°,
|C| = .81.

In realistic problems, coeflicients will usually vary in space. Following a standard
theory of rey tracing in inhomogeneous anisotropic modia [Li78], it is possible to
work out in detail what kind of errors discretization will introduce. Now one has &

space-dependent dispersion relation

w=ulz, £)
“




and the group velncity formula (1.6.3) becomes hall of a system of cquations in
Hamiltonian form,

ds d§ _
i Vew, i Ve w. (1.8.13)

In the special case of a stratified medium, in which the spatial dependence involves
one dimension only, one can simplily this system by replacing the second equation by
an algebraic formula £ = §(x) derived from ihe numerical dispersion relation, and
this is a numerical form of Snell's Law. For an example, see [Tr82]. Some further
remarks on Snell's Law are given at the end of §3.8.

Onc might go further, and study wave propagation in nonlinear models by means

of the fairly well developed theory of 1i wave pr ion iz dispersive media
P pe

{Wh74). However, we will ot pursue this here.
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FIG. 1.9. Propag, of a two-di | wave packet with {€|A =

1.6, # = 22.5°. The model is the Leap Frog scheme for uy m wqy 4wy,
with h = 1/100, A = .4. The packet is shown st both t = 0 (lower
lcft) and ¢ = 1.4 (upper right). Dots mark the idcal starting and ending
positions, and the square the position predicted by (1.6.8)-(1.6.10).
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2. LEFTGOING AND RIGHTGOING SIGNALS

2.1 The general scalar difference formula

The purpose of this chapter is to make the results presented so far more general
and more rigorous. The kcy to this is an algebraic study of the dispersion relation for
an arbitrary scalar difference formula Q—two-level or multilevel, explicit or implicit.
For a romplete analyss one must peemit w and £ Lo be complex, and onc must examine
the defective solutions that occur when w or £ has multiplicity greater than 1. In
this first section we will define Q and describe the solutions it admits with regular
behavior ir z and t {Thmns. 2.1.1,2.1.2). Section 2.2 details the relationships of wave
number and frequency to z-dissipativity, t-diasipativity, and Cauchy stability. Scetion

2 3 then sets forth our most important foundational material for Chapters 3-6. First,
Thm 2.3.1 proves that if Q is Cauchy stable, then the dispcrsion relation is analytic
about any point with §,w € R, and there exists a real group velocity. Second, Thm.
2.3.2 describes the connection between wavelike modes, with w, £ € IR, and evanescent
modes. with w or £ complex. Thene resuits form the basis of definitions of rightgoing
and leftgoing, atrictly rightgoing and strictly leftgoing, and stat y solutions to Q,
which will be central to our later work on boundaries, interlaces, and stability. Section

2.4 then goes on to apply these results to the class of three-point lincar multistep

formulas, and Section 2.5 extends them to diagonalisable vector difference models.

We begin by introducing space and time shift operators:
Defn. The shilt operators K and Z arc defined by*

*To avoid abuse of notation, we would have to be consistent as to whether v is a doubly
indexcd sequence, a time scquence of space sequences (v,)". or a space sequence of time
sequences (™). Unfortunately any such fixed choice is 100 cumbersome to be practical, and
we will apply K freely Lo any object that has a spatial index, and 7 1o any object with a
time index.
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= 1
Ko} = v}, Zvy =)t

Let us define complex numbers «,z by

. o b

f 3 =", (2.1.1)

& e
Then the Fourier mode {1.1.4) takes the form
W=t =t (5=, t = k), ) (2.1.2)

and it is an eigenfunction of K and Z with eigenvalues «, z. The case in which §
or w is real corresponds to the situation |x| = | or [2] = 1, respectively. In this
disscrtation we will use §,w or x,2, or both, according Lo convenience. This use of
« and z lollows the stability work of Kreiss and colleagues [Gu72,etc |, and we have
introduced K and Z by analogy. The remaining ideas of this sectiun are alac heavily
influenced by those of [Gu72].

A general s + 2-level finite difference model Q of (1.1.1) with constant coeflicients

can be written

Qv = 3 Qv (2.13)

where each Q, is a spatial difference operator,

Q. = i a,.K? (-1 <o <) (2.1.4)

1=t

We assume that Q_, has a bounded inverse in £3. If Q_y = 1, {2.1.3) is explicit;
otherwise it is implicit. We assume that X = k/A is fixed and that the coefficients
a,, depend on X, but not on & and k independently. The integers ¢ > O and r > €
deline how far left and right the stencil extends.

Carrying the shift operator notation further, we can write Q in the form

P(K,Z)v = [,Z Z 0,0 K120 v = 0, (2.1.5)

-t om-1
where P is a bivariate polynomial of degree £ + r with respect to K and degree s + 1
with respect to Z. The dispersion relation for Q is then simply

Plx,z) = 0. (2.1.6)
43
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In this notation LI takes Lhe form
[K(2® - 1) = ra2(K? - 1)]e =0,

or equivalently,

{(Z-2"*)~2a(K - K~")Jv =0, 21.7)
and its dispersion relation (1.1.7) b
- ; = hafx - i). ) (2.18)

Similarly LW has the shift operator form
2
[ZK K- *2—"(1(’ —1)- ‘-"‘2‘—‘(«’ -+ 1)]., =0,

that is, N s
[Z—l—T'(K—K“)—Q%L(K—2+K")]v=o. (2.1.9)

In these instances the space and time parts of the diffcrence formuls are inde-

pendent. We define in general

Defn. The fo;'rnuh Q is separable if it can be written in the form
U2 - K)v =0, (2.1.10)
where f and ¢ are rational functions. ,;

LF, LW, and many other dilference formulas used in practice are separable. For

example, CN can be written

[;—::—x—:(K-l/K)]vso, (2.1.11)
and LF4 has the form
[z-x/z- ‘%lk - 1/K)+5°'1(x’- 1/x=)].,=04 (2.1.12)

Any diflerence formula based on the method of lines, in which the z discretisation
is carried out before the t discretization, will also be separable. An example of &

nonseparable scheme is LFd (§1.1), which has the shilt operator form
[z —1)7 = 2a(K —1/K) - r:—Z(K i x/K)*],, =0. (2.1.13)

19

Separablc schemes have Lhe property thal their group velocitics faclor into a
product

Clw, £) = Ci{w)Ca(§). (2.1.14)
We have observed this for particular examples in (1.2.5), (1.2.7), and (1.2.8). The

reason for the [actorization in general is that if Q is separable, its disp: L
can be written

fle™*) = gle—th).
Differentiation dvc.
ket PR = —ihe— g/ (e~ g,

and hence by (1.2.3),

dw 1 -t
C= %= _:(eun!:(t..t)) (c"“g’(c““)).
We will be extensively concerned with the relation b « and z imposed by

the dispersion relation (2.1.8). To begin with, suppose that « is fixed. We ask the
question: what solutions of the form

vy = x’¥g, (2.1.15)

where {¥,} is 3 sequence in n, does Q support? By {2.1.5), (2.1.15) is s solution of
Qv =0 if and only if

P(x, Z)¥a = 0. (2.1.16)

This is an ordinary difference equation for ¥., and the solutions to such equations
are well known:

Theorem 2.1.1. Let « € @ be arbitrary, and assume that the polynomial
Pu(2) = P(x, 2}

is of ezact degree s+ 1, i.e. the coeficient of the 2°*' term is nonzero. Let (‘!)IS-S-

denote its distinet roots, with z, of multiplicity v,, hence T-°_ v, = s+ 1. Then the

el

s+ 1 sequences

Vu = 2'n* 1€1€p, 0<8<y, -1 (2.107)

i
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are linearly mdependent solutions of (2.1.16), and they spon the linear space of all
such solutions.

Proof. {0r72). §4.2. ¢

Remark. By assumption Q_, is invertible in {3, from which it follows that for
|| = 1 (and hence, by continuity, for |«| sufficiently close to 1), the assumption of

exact degree s + 1 must hold.

Now let us switch the roles of x and 2, and suppose z is fixed. C: ding to

P ng

(2.1.15), we may ask, what solutions
v} = "¢, (2.1.18)

where (é,} is a scquence in j, does Q support? For this one has corresponding to
(2.1.18) tue equation
PK, 2}y =0, (2.1.19)

which is called the resolvent equation for Q ([Cu72), eq. {4.1)). Again we have an

ordinary difference equation whose solulion can be characterised completely:

Theorem 2.1.2. Let 2 € € be arbitrary, and saeume that the polynomial
P,{x) = P(x, 2}

w of exact degree ¢ +1. Let {r,}1 g, denote its distinet roots, with x, of multiplicity
v,, hence T8 v, = L+ r. Then the L+ v sequences

$i=rlj' 1<i<m 0S6<K-1 (2.1.30)

are Bnearly independent solutions of (£.1.19), and they spen the lineer space of ell
ruch solutions.
Proof. Same as for Thm. 2.1.1. g

Thia theorem, which we will use more often than Thin. 2.1.1, provides a complete
breakdown of all solutions with regular time behavior that @ can support. In later
sections the analysis usually comes down to determining which combinations of these
solutions are permitted by particular choices of boundary or interface conditions.
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2.2 Cauchy stability and dissipativity

We will be concerned only with difference forinulas that are f3-stzble in the
absence of boundarics or interfaces. The foliowing definitian is the same as the
definition of Ly stability in §1.4, except that Ly is replaced by ¢3 and we now cover

the case of multilevel formuias.

Defn. Q is Cauchy stable if for each T > 0, there cxists a constant Cy > 0
such that

Iz < Cr 3 (1v")s

for all n and k satisfying nk < 7', where || - I3 denotes the norm defined by

oo
Neld =4 3 i 4 (221)
3=—c0
The results of the last section lead to necessary conditions for Cauchy stability. Here
and in later sections, when we speak of connections between x and 1, it should be
understood that we are concerned only with pairs {, z) that satisfy the dispersion
relation {2.1.8).

Defn. The model Q satisfies the von Neumann condition if |x| = | implies
<ty

Theorem 2.2.1. A ¥y dition for Ceuchy stabihity is that Q
the von Neumann condition. A further necessary condition @ that [x| = |2 = 1
implies that z iz simple.*
Proof. If the von Neumann condition docs not hold, then by Thm. 2.1.1, @
admits a solution
vy =", n>0
with |&| = 1 and |#| > 1. If the simple root condition does not hold, the same

theorem shows that Q admits a solution
vy = an's™, n>0

with [x| = |z} = 1. It follows that in either casc the nth powcrs of the amplification
matrices corresponding o the Fouricr mode € with e=*¢* = & grow unboundedly as

*In fact in the present Mei ituation, the ditions given arc also sulicient
for stability. But we will wot nced this resuil.
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n — 20 for fixed k. Therefore (b 7 also grow unboundedly as k — 0 for fixed 7. Since
such amplification matrices are continuous funclions of £, Cauchy instability follows

by Fourier analysis (see §5.4 of [Ri67]). ¢

The definition of dissipativity is a further strengthening of the von Neumann

condition:

Defn. Q) is dissipative or z-diesi

P P

if it satisfies tne von Neumann condi-
tion, and moreover, |

=1, x 3¢ 1 implies |5} < 1, or equivalendly, |x| = [s| =1
implies x = 1. It is strictly nondissipative or unitary if |x| = 1 implies 3] = 1.

1t

Note that strict nondissipativity is a stronger condition than the ncgative of dis-
sipativity. Most formulas arc one or the other, but an cxample of one that falls
between is BE {§1.1). For {x] = 1, x ¢ +1, BE has |5| < 1, but the mode x = -1,
z =1 keepa it from being r-dissipative.

In practice, what one ofLen neceds is a slightly stronger property:

Defn. Q ir totally dissipative if it satisfies the von Neumann condition and

moreover, || = |5 = 1 implies x = 2 =1.

For two-level schemes (» = 0}, we will show in 8 moment that z-dissipativity and
tota! dissipativity are equivalent. An .=~mrlc :yffices to show that for multilevel
schemes the situation is different: LFd (§1.1) is z- lissipative, but it admits the mode
& =1,2= —1,s0itis not tolally dissipative. Th* fact that z-dissipativity does not
ensure total dissipativity for multilevel schrmes causes occasional confusion and error
in papers on fnite difference methods, which is why we choose to add the prefix z.

In analogy, onc might define a t-dissipative formula Lo be one for which |x] =
{2| = 1 implies z == 1. For generality in later applications (see especially §6.2), we
choose to make the definition slightly weaker-- the minimum necessary so that z- and
t- dissipativity together imply total dissipativity. The following definition is closely
related to condition (3.7) Tz the paper [CoRi] by Coldberg and Tadmor, and to the
notion of tangential disspativity introduced by Coughran in [Co80).

Defn. [Go81], eq. (3.7)). Q is t-diesipative if k = 1,|z] == | implies s =1.

Thus, for ple, BE is -di

pative but not z-dissipati

Theorem 2.2.2. Q is totally dissipatwe if and only if it is both z-dissipative

$3

N g e B A » P

BTN

and t-dissipative.
Proof. Both total dissipativity and z-dissipalivity require the von Neumann
condition, so that part of the equivalence holds. What remains is to show that ja] =

|| =i = z =& =1 is equivalent to |2| = |x

=1l = g=1plunx=1,lasf =
1 = r =, Thisis immediate. g

The example of LFd showed that z-dissipativity does not imply t-dissipativity.
However, for two-level schemes one has

Theorem 2.2.3. Any consistent two-level formuls Q i (-dissipative. Any
consistent two-level z-dissipative formula Q is totally dissipative.

. Proof. By consistency, Q must have a solution x = z = 1, and i it is a two-level
formula, then by Thm. 2.1.1 there can only be a single z for each x, so this is the
only solution with & = 1. Therclore the condition of t-dissipativity holds triviaily. If
Q in also z-dissipative, then it is totally dissipative by Thm. 2.2.2. g

One readily sees that dissipativity precludes the possibility that a scheme is
reversing:

Theorein 2.2.4. I/ Q is consistent and z-dissipative, it cannot be z-.reversing.
If Q s consistent and {-dissipative, it cannot be t-reversing,

Proof. 1f Q is consistent, then &£ = z = 1 is a solution with C = -a € R.
For Q to be r-reversing, it must therefore admit the solution x = ~1,z = 1. This

contradicts the definition of an z-dissipative formula. Similarly for the ¢ case. g

For a sealar difference modcl with censtant cocfficients, dissipativity almost com-
plctely determines the behavior and stability of solutions to the Cauchy problem in
the £; or Lz norms. In the two-level casc, its influence is complete. Each Fourier
component x will lose Ly encrgy at the rate jz{«}{®, and by Parseval's formula, the
overall solution will decay according to the combination of these cffects. One might
say Lhat dissipalion acts on individual wave numbers independently, and the Ly narm
teasures them independently. For problems with variable cocflicients, Lwo important
thcorerns of Kreiss [Ri67,§6] show that dissipativity still goes a long way Lowards
ensuring Ls-stability.

Dispersion, on the other hand, has to do with the interaction of wave numbers,
and the rosults of §1.4 show thatl this intcraction must be taken into account for

stability in Ly norins other than Ly, We will sec that the samic is true, even the in Iy
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norw. for probicms containing boundaries or intcrfaces.

2.3 Lefigoing and rightgoing solutions

We now have the matetial in place to return to group velocity and give it a fuller

explanati First, the following theorem establishes that “group welocity always
makes sense” —for any wavelike mode, the derivative (1.2.3) exists and is real.

Theorem 2.8.1. Let Q be a Couchy stciie scalar difference formula with zon-
stant corfficients, as descrided i §2.1. Suppose that Q admits & solutien

v} = siah = fetote) g = At = nk) (2.3.1)

with |zg| = (ko =1, ie. wp,§o € R. Then

{1) In a nesghborhood of (ko. 20}, 2 1 a single-valued analytic function of .

{11) The group velocity derwvative C = dw/d€ ezistas at (g, 20), end is real.

(i1} Clro,20) = 0 if and only if xo s multiple (i.e. & multiple root of the
polynomial P, (x) = P(x, 20} of §2.1).

Proof. 1f Q admits the solution (2.3.1), then P(xq,20) = 0, where P is the
bi.ariate polynomi;l defined in (2.1.5). By the remark following Thm. 2.1.1, the
univariate polynomial P,{z) = P{x, z) has exact degree s + 1 for all £ in s neighbor-
hood of & = xq, and by the definition of I, its coeflicients are analytic [unctions of
x {in fact polynomials). Moreover since Q is Cauchy stable, Thm. 2.2.1 implies that
20 18 & simple root of P, (z). From these facts it foliows by the implicit lfunction
theorem that in a ncighborhood of (g, 29), the equation P(x,z} = 0 determines a
unique analytic function z(«), satisfying

(s~ 20) = A(x — xo)" + Offx — xg)"*') A 540, (2:3.2)
for some A € €, where » > 1 is the multiplicity of xg as a root of Po(x) = P(x, 20).
This proves (i).
By differentiating (2.1.1), onc obtains the formulas
dr = —ihx d§, ds = ikadw. (2.3.3)

Sincc we have shown that ds/dx exists st (xg, 20), it follows that C(xe, 25) exists and
is given by the formula

o ldex
C(xq, 30) = @l =%z o (23.4)
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By §2.3.2), 7o, 20) = 0if and only if &+ > 2. which proves (ui}.
Assume on the other hand - = 1, 8o that 2'(xg) # 0. and {2.3.2) and {2.3.4) give

Clxg, 50) = —;A‘—‘:. (235)

Figure 2.1 indicates the situation--the function z(x}) maps a neighborhood of xg
conformally onto a neighborhood of 2.

L’ Gt’qd
2
—Ceh %/" 6/"
s =¢
N \
\\ 10 = ot
2{x) Fic. 2
_

For Cauchy stability the von Neumann condition must be satisfied, which means that
z{x) must map || = 1 into |z] < 1. Obviously, this can only happen if z(w) maps the
‘angent W || = 1 at xp onto a curve that is tangent W |2] = | at zg, as indicated in
e Figure. This tangency condition is the same as the condition that the right hand
side of (2.3.4) is real. This completes the prvof of (ii). g

The significance of Lhis theorem is that it applies to all wavelike solutions,
including those involving defcctive roots x and those admitied by formulas that are
2- or {-dissipative. For example, BE admits the wave (—1} and LFd admits the
wave (—1)*, as mentioned in $1.4, but most solutions with |x| == 1 under these
formulas have j2] < 1. Thm. 2.3.1 shows that nevertheloss, these waves have well
defined group velocitics. (For another example, sec the Lax-Fricdrichs scheme listed
in App. A.) Though we will not give any details until Appendix B, the stationary
phasc argument of §1.2 or other reiated arguments confirm that these group velocities
correclly describe the propagation of energy in Lhese modes.

What Thm. 2.3.1 docs nol do is assign a group.speed 1o signals with {2} 3 1 or
Ix| 2 1. We will now show that for |z] > 1 and x| #€ 1, there is a speed of Lranslation
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& naturally associated with a signal 2*«?, and this speed approaches C in the limit
J2h i Ief 1
Let Q again be a Cauchy stable formula as in §2.1, and suppose it admits a
solution
o =a"¢, = "s75 (2.3.8)
as described in Thm. 2.1 2, with |2} > 1. By Thm. 2.2.1, we must have either |x} < 1
or |[x| > 1. Let us suppose |x| < 1, and assume first § = 0. Now from one step to
the next, the envelope |v,| increases by the fixed factor |z| at all points 5. However,
we may equivalently regard this as a rightward transiation, as illu;trned in Fig. 2.2a.

~ar
T At

¢

FiGc. 2.2

(a) ®

In order for |v] to increase by the factor [2], this translation must cover a distance

Az satisfying
x|~ 2%/ = fa],
that i,
Az = ol
log ||

Since the time step has length k = XA, this amounts to rightward molion at a specd

o Bz 1 lesis
at X log ||

(23.7)

For || > 1, ilustrated in Fig. 2.1b, the situation is similar and we have leftward
motion at a speed given by the same formula. Eq. {2.3.7) also applies to signals with
|2l = 1 and |x| € 1, where it gives the result ¢=o

In the defective situation § > 1, we can slill view Lhe evolution with time as 3

rightward or Icftward motion, now coupled with a lower-order change of shape. One
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way tr make this motion quantitative would be to measure the increase in the total
£; energy Lo the right of a fixed point j {or to the lelt, for a lcftgoing signal) from one
step to the next (see §3.3). [lowever, we will no’ pursue this.

Here is the result on & — C and relatcd matters:

Theorem 2.3.2. Let Q be a Cauchy stable difference formule as in Thm. 2.9.1,
and suppose sgein that Q sdmils ¢ solution

o =5 (238)

with {xg| = |ag| = 1. Let xg Aave multiphesty v > 1. Let QO denote the Ai!uenertwu
of {2 € @ : |z} > 1} with a neighborhood of z = 2o chosen small enough so that for
1 in that neighborhood, the map 2(x) of Thm. 2.3.1 defines v continuows functions
{m2)))cico with x,(2) — "o a0 2 — 20.

(i) For each i, cither |ny(z)} <1 Yz €N or [a,(z]| > 1 Y€ Let v, denote
the number of «'s in the former category and ve the number in the latter (hence v =
vi+v,) Then v i even, ve = v, = vf2; {f v is odd, either vy = (v + 1)/2 end
v, = (v — 1)/2, or the reverae.

(5i) Let &,(2) denote the translation specd (2.3.7) Jor the signel s™xl(z). Then

Jim &,(s) = Cleo, 20) (239)
€]

Jor each i,

(vii) {Perturbation test) If Clxo. 20} 7 0 (s0 that by Thm. 2.8.1, v = 1,
and we can write x(2) for xy(3)), then Clxg, 20} > 0 ff |x(z)] < 1 for 2 € 01, and
Clro, 50) < 0 f |x(3)] > | for 2 € 0. That 1, Clxg, 20} i negative f v¢ = | and
positive tf v, =1,

Proof. The result |x,(2)} 78 1 for 2 € 11 loliows from the von Neumann condition
together with the fact that x,(z) is a continuous function of 2. The rest of claim (i)
is implied by (2.3.2) {cf. Then. 9.2 of [Gu72]).

The prool of (ii} requires only an algebraic verification. If g is multiple, then
(2.3.2) and (2.3.7) imply lim, .o, C.(:) = 0, the correct value. If kg is simple, then
by (2.3.5) and {2.3.7), what nceds to be shown amounts to

lim 1B _ 4%e (2.3.10)
s—uy loglx| x

whete A is the constant of (2.3.2). For « € &((1), let us write

k= xo{l + ce*?}
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with r > 0. Then by (2.3.2),
2= 29 + Axgee™® + O1F) = 2o(1 + A:—:«“) + O(?).
These two flormulas imply
log |x} = ¢ cosp + O[e?)
and, since Axg/2g is known to be real by (2.3.5),
log |2j = A%( cosd + Ofe3).

By taking the ratic of these cquations, one obtains (2.3.10), and this proves (ii).
Claim (iii} is a corollary of {ii). vsing [2.3.7). )

The observation ¢ — € amounts te aur third explanation of group velocity, to
supplement those presented in §1.2 (beating of two waves; stationaty phasc). The
idea is simple: since a wave ¢*(¥4~¢*) has uniform envelope 1, one cannol see how fast
the envelope is moving; as soon as § is made slightly complex, however, the envelope
acquires shape and its motion becomes apparent. The perturbation test specialises
this to the statement that if all one cares about is the direction of motion, then all
one must check is whether |sf < 1 or || > 1 for |2 > 1.

Our goal in this section has been to set up definitions of leftgoing and rightgoing

signals, which will be of critical importance. fiete they are,

Defn. Let Q admit a solution v of the form (2.3.6] with {zf > t and 6 <
max{ve, &, ) (defined in Thm. 2.3.2).

()11l > 1 and |} < 1 (resp. |x] > 1), or if 2] = |s] = 1 and C{x,a) > 0
{resp. Clx,z) < 0), then v is strictly rightgoing (resp. strictly lefigoing).

(i) If v is strictly rightgoing {resp. strictly leftgoing), or if |2] = ¥ and |x} < 1
(resp. |«| > 1), or il jz] = |x| = 1 and C(2,%) = 0 and § < v, (resp. § < v¢), then
v is rightgoing (resp. leftgoing}.

(i} If v is both rightgoing and lefigoing, it is stationary. (That is, v ia stationary
if jx| = |2} = 1, Clx,3) = 0, and § < min{ve, 1)) 4/

These definitions divide the wet of solutions (2.3.0) with § < (v + 1)/2 into nine
clasaes, ranging from the strictly lefgoing mode of Fig. 2.2b Lo the strictly rightgoing
mode of Fig. 2.2a. Table 2.1 summarizes this classification. We will sec in §4 and §§
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that positions (5} theaugh 19) i the Lable are associated with ncreasing degroes of
instability for initial boundary vaiue problems

The distinctions between positions (41, (01 and 6) it Tabue 21, based an Thin
2.3.2{, are perhaps the tmost diffisult to grasp  Table 27 clarfies the wtuAlion by
illustrating the conncetion of (41, {5), and {6) to the behavior of the dispersion rcation
in the vicinity of a point with €.« € IR The figure makes it ciear why 11 the case of

v odd, the numbers of lefgoing and rightgoing mades are unequal

TABLE 2.1
(1} (2) (3) {4) (%) i8) 3] (8) [}
1
Joh > 1)l =1 )lzl =1 Izl =1 lel =1t iz} =1 jel =1 ] 2 =1 [zl > 1
> 1] Iet=1]}ls| >1 Il =1 Ixf =1 ikl =1 < st = 1 ik <L
t<co|cco|l=0 ] C= c=0 c=0 j&=0iC>0]|l>0
&= vy 6 < = v,
=, +1 min{ve, v} =g+ 1
[SRESESRPUE e e e————
strictly leftgoing stationary strictly rightgoing
e ——y —
- —
~—
teltgoing rightgoing
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TABLE 2.2
Dilper:i(:l; curve mulot.};::;city Clxo, 20) bnn::::i Rig:g::n(
/ 1 >0 - =7
\ 1 <0 o -
/N 2 ° o o
\../ 2 0 o «?
/./ 3 [} = «, j,‘:'
\_‘\ 3 (] w, jxi &
/’\ 4 0 Rty ®’, it
N4 4 0 wt, jt 3, ju?

o1

Ml

2.4 Application: three-point linear multistep formulas

In this section we study the class of scparable difference models of {1.1.1) with

spatial discretization R

3z

These formulas have been considered previously by Beam, Warming, and Yee [Be79,

Be81]. In examining them we will apply virtually all of the ideas that have been

introduced 8o far, and in Iater sections they will serve repcatedly as examples. (See
especially §3.2 and §6.4.)

We define these schemes by means of shift operators:

~ ;E(K K™Y, (2.42)

- Defn. A three-point linear multistep formula for (1.1.1} is a separable
scalar diffcrence formula

AZ)ey = lea(z)(x - K, (24.2)

where p and o are polynomials in Z and 2-!.

The notation and terminology come from the theory of difference methods for ordinary
differcntial equations: if (}.l.l) is discretized in space by means of (2.4.1}, one obtains
the system of equations

du a X
T e ~ua)  JEZ,
and (2.4.2} is the fully discrete formula obtained if onc solves this by a linear multistep
method with characteristic polynomials p and o [Be81].

Three of the schemes we have considered in previous sections are three-point

linear multistep formulas:

LF:  d2)= %(2~z-'), o(Z) =1

CN: pZy=2-1, ,(Z)=Z_;‘_‘
BE . o(Z)y=2Z2~1, o2)=2
The others we have looked at— LW, LF 4, LFd—do not fall into this class. For further
examples sce [Be79)].
Lel us now examine the properties of a three-point lincar mullistep scheme that

we assume to be Cauchy stable and consistent with {1.1.1).
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Duspersion relation {§1.1). From (2.1.2) we oblain innncdiately the dispersion
relation

A2 = e~ 2), {2.4.3)
of by (2.1.1),

——— = —iaksin{h. {2.4.4)

Orders of dispession, dissipation, accuracy (§1.1). The spatial discretization
{2.4.1) haa order of dispersion a = 3, ordet of dissipation 8 == oo, and order of
accuracy min{a, 8} - 1 = 2. txcept in degencrate cases (e.g. ‘LF with ad = 1},
¢} cannot do better than this, so it will have a = 3 (consistency rules out a = 1),
2 € 3 < . and order of accuracy 1 or 2 depending on whether 8 is 2 or > 4. The

cansisteney rondition a, 8 2 ¥ can also be written

:,((‘l) =(z-)+0{{z=-1)%) asz—1. (2.4.5)

Group velocity (§1.2). Differentiation of (2.4.3) gives

2t

a\ Y
. ]d: = —2~(I + 5" %)dx,

which by (2.3.4) gives the group speed

a L[ o%s
C=-jl+ i)b——_v - W,] (2.4.8)
for any wave with [x| = |z| = 1. From this and (2.1.1}, or from (2.4.4) and (1.2.3),

ane obtains equivalently

C = —aikcos fh[‘”a_’ ], {2.4.7)

where g denotes dp(e™*}/dw, and similarly for &.

Reversing properties (§1.5). I x, 2 satisly {2.4.3) with k = 1, then the samc holds
with & = ~1. Marcover by {2.4.8), the [atter solution has the negative of the group
velovity of the former, Thercfore @ is z-reversing. One tannol determine whether Q
is ¢-reveraing without further information on p and o. (For example, LF is ¢-reversing,
but CN and BE are not.)

Separability (§2.1). That Q is scparable loflows from the definition {2.4.2). Eqgs.
(2.14.8} and {2.4.7) confirm the eonsequence {2.1.14), that C factors into the product
of a spatial and a temporal term.

€3

Catuchy stabulaty (§2.2). By assumiption Q ix Cauchy stable, which means that p
and ¢ must be such that fz{ < 1 whenever |«] == 1, with simple roots z for any «,z
with || = |z] = 1.

Dussipatinity (§2.2). By consistency (of. (2.4.5)) x = z = 1 is a solution o {2.4.3),
and from (2.4.3) it follows that &« = —1, z = 1 i3 also a solution. Therefore Q cannot
be z-dissipative, or totally dissipative. (This also follows from Thm. 2.2.4 and the
fact that Q is z-reversing.) It can however be f-dissipative, depending on p and o,
and will necessarily be so if it is a two-level schome such as CN or BE (Thm. 2.2.3).

Lefigoing ond rightgoing solutions (§2.3). From (2.4.3) follows the quadratic

equation for &,

and {rom this it is evident that for all 2 € @ there are two roots, say x; and «x,,
satisfying
Ker, = ~1. (24.8)

For [z| > 1 these must have modulys different from 1, s0 we can write

ed < U< e for |2} > 1, (2.4.9)
and hence by continuity,

|xef <1 < =yl for |2} > 1, (2.4.10)

The subscripts £ and r refer to “lefigoing” and “rightgoing™, respeclively; in fact
{2.4.9) implies that the waves x}2z™ and x2z™ are strictly Icft- and righlgoing, respec-
tively, for 2] > 1. For |z| = 1 the strictness will be lost if {x¢| > | and |x,| < 1, but
it will be preserved if Jx,} = |x,} = 1, unless C = 0, which by Thm. 2.3.} and {2.4.8)
will happen if and only if x, = x4 = 1. Ib any case there is exactly one leftgoing

value x(z] and one rightgoing value «,{z}, continuoualy defined for |2} > 1.

In many cases where one picks, say, LT 1o illustrate a point about difference
models, it is really its spatial discretization that the illustration depends on, and any
three- point finear multistep formula will show Lhe same thing. With this in mind
we have described this class ps ‘Iy to avoid having to present fulure cxamples in Loo

fimited a context.
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I'or somc applications we will be interested 1n two subclasses of the st of three-
point linear multistep formulas. The following definitions are desived fron. the theory

of lincar multistep methods for ordinary differential equations:

Defn [Be81]. Lot @ be a threc-point linear multistep formuta consistent with
(1.1.1). W’v: say that @ is A-stable if it is Cauchy stable and hag the property

(i) Rea{e ~ 1/&) <0 = |2| <1, with 2z mmple if |z = 1. 124.11)
Q is strongly A-stable if (i) holds and furthermore

(i) Rea(x — 1/6) < 0, x % £1 = |z] <1, (2.4.12)

(i) fz) =0, |z) =1 = z=1 [cf 245 (2413)

The motivation for these defnitions, which i discussed in most baoks on the numerical
solution of ardinary differential cquations, is that they provide emnditions for Q to be
stable for arbitrarily large mesh ratios ». Beam et al have psinted out (hat this is
a desirable property if one wishes to apply a tme-dependent dillerence mor-l to find
the steady-state solution of & physical problem. w.thout being eoncern=d a. 1yt the
accuracy for the transient computation (see §6.4).

A-stable schemhes have some simple propertics tht will turm out to be important

Lo thcir stability analysis:

Theor- m 2.4.1. Let Q be a three voint inear multutep formula connstent wnth
u, = au, witha > 0.

{1} If Q 1 A-stable, then
Rer, < 0 < Rery (2.4 14)

for all z wath 2| 2 1.
n) If Q 1 strongly A steble, then

Rex. < 0 < Rewry {2.4.15)
and
Ix,| < 1 < |ogh (2.4.18)
for all z wath [2] > |, ezcept when kg = ~x, = %1
If a < 0, the same resulls hold wnth the nequalitites w (2 4 1) and (2.{.15)
reversed.
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Proof. Assume g > 0; the prools for a < @ arc similar.

If Q is A-stable, then the contrapositive to (2.4.11) asserts that for [z] > 1, one
has Re({x - 1/x) > 0 Taking x = x; and using {2.4.9}, onc obtains Rex¢ > 0. With
{2 4.8) this implies Rex, < 0 < R. < for |z| > 1, and {2.4.14) (ollows by continuity.

If Q is strongly A-stable, ther the contrapositive 1o (2.4.12) implies further that
for 1z| > 1, either x = £1 or Re{x — 1/&) > 0. Together with {2.4.8), (2.4.10), and
{2.4.14), the latter formula implies (2.4.15) and (2.4.18), as required. g

So far we have not used condition (2.4.13), but it has a simple consequence:

Theorem 2.4.2. Let @ be a three-pownt Linear multistep formula for (1.1.1). If
Q is atrongly A-stable, then it u t-dusspative.

Proof. Suppose x = 1 and {z| = 1. The first of these condilions implies p{z} =
0 by {2.4.3). and by (2.4.13), the second then implies z = L. This cstablishes ¢-
dissipativity.

2.5 Extension from scalars to diagonalisable systems

In practice one is generally concerned nol with one scalar equation, but with a

hyperbolic system of equations. Such a system takes the form
Uy = Au,, (251)

where u(z,t) is an N-vector and A is a square matrix of dimension N. For simplicity
we assumc as before that A is constant, and we continue to oinit any undifferentiated
terms.
Following (2.1.3), we can write a general constant coefficient model Q of (2.5.1)
in the form .
Qv = Z Qov) ", (2.5.2)
=
Now cach v} is an N-vector, and cach Q, is a constant spatial difference operator
with square matrix cocflicients of dimension N. I these coefficients are denoted by

A,o, then the analog of (2.1.4) becomes

Qo= 3 ALK (2.5.3)

y=—t
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matrix coclficicnts,

- .
PIK, Z)v =\[ Y ALKtz lv=0. (2.5.4)
L=t om=:

If the system {2.5.1) is hyperbolic, then A can be diagonalized and it has real
eigenvalues. In principle, the matrices {A,,} might not have this property, or they
tnight each be diagonalizable without the existence of a single matrix to diagonalize
all of them simultancously. But this rarely happens in practice, and indced usually
earh A,, is a polynomial in A, so they are ali diagonalized by the same matrix as A.

Therefore we will make the asssmption (= Ass. 5.4 of [Gu72|):

Assumption 2.1. The matrices {A,,} are simultancously diagonalizable. That

1w, there exists a constant nonsingular N X N matrix T such that

A0 = TA, T = dinglall, ..., (2.5.5)

j0!

with ajy’ £ IR for all @, j,0.

With this assumption, the study of wave propagation unaer difference models of
{2 5.1} reduces diregtly Lo the results already established for scalar problems. From

{2 5.4} and (2.5.5), one obtains

. .
MK,z = { > = ),,K’*‘z'-'la =0, (256)
J=—t e=-1

where & denotes Tv and I denotes TPT 1. Now P is a bivariate polynomial with

diagonal malrix cocllicients. This system is equivalent to the N scalar systems

. .

Pk, 2)5 = Lz z ag‘;‘K’“Z"’]b(‘", 1<a< N (257)

-t g1

Each equation (2.5.7) has the same form as (2.1.5). Corresponding to the polynomials

P, and P, of §2.1, we can alse define matrix pelynomials Pa, Px, P,, and P, in the

) ple)
and P .

Following (2.1.18), we now ask: given z € € , what solutions of the form

obvious way, and P, and P, are diagonal with scalar components i’(_.

vy = ", (2.5.8)

where {9,} is a scquence of N-vectors, docs Q support? Such selutions will be

precisely those sequences satislying, in extension of (2.1.19), the matrix resolvent
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equation
P (K1, = P(K,2)$, = 0. (2.5.9)

The following theorem is an extension of Thm. 2.1.2 {cf. [Gu72], eq. {5.5)):

Theorem 2.5.1. Let Q satisfy Assumption 2.1, and let z satisfy |z| > 1. For
1<a <Nl (xf")),s,s,‘m denote the distinct nonzero roots of f’(:), unth x:")

of multiplicity v(®). Then the sequences

1<a< N
¢, = [Pyt 1 <ig (25.10)
0<s< ™

aré hinearly independent solutions of (£.5.9), and they span the linear space of all such
solutions. Here w® denotes TH0,....0,1,0.....0)7, where the 1 19 1n posttion a.

Proof. Diagonalization of {2.5.9) by T gives K } = 0 with & = T®. The
solutions to this equation are given componentwise by Thmi. 2 1.2, and have the form

;D, = [Ki"‘]’)‘(o, .,0,1,0,.... 0T Multiplying by T™' completes the proaf. §

This theorem completely describes the solutions with regular behavior in ¢ that
are admitted by @. Each-pne is nothing more than a sealar signal transforined to the
basis determined by T. Thercfore all of the theory derived earlier applies directly.
For 6 = 0 and {2| = |n:°)| = 1, vy = 2"%, represents a wave that propagates

uniformly at the group velocity (cf. {2.3.4))

d 1 dz \(=l®
o= o "i( )(‘—) (2.5.11)
dg! dari®l/\ F
We say that the signal i is leftgoing, rightgoi strictly leftgoing, strictly

rightgoing, or stationas y preciscly when the corresponding terms hold for the scalar
signal 2*[<!*'p 4.

The definitions of the von Neumann condition and Cauchy stability given
in §2.2 apply as written to the vactor model Q. {The symbol {¢,] in the definition of
the latter must be interpreted as the two-norm of N-vectors rather than an absolute
value.) it follows from these definitions that @ satisfies the von Neumann condition,
or is Cauchy stable, precisely when the same is true for ali of the scalar problems in
the diagonalization (2.5.7).

Iet n, and n, denote the tolal number of lincarly independent leltgoing and

rightgoing signals, respectively, admitted by (@ for some : with {z] > 1. Then by
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(2.5.10), the general solution of the form (2.5.8) can be written

n, N tny .
=Y el Y awditu. (2.5.12)
[T 1} i, 41

It is obvious that Assumption 2.1 has rendered the developments of this section
fairly trivial, and one may wonder why it is worth tioni t of ti

LI q

at all if they are only to be reduced immediately to scalars. The answer is that as we

turn to calculations of reflection and transmission coeflicients, and then to stability
for initial boundary value problems, boundary terms will appear that couple the

scalar components together and cannot be di lised away. The ing of this

for practical applications is that although a hyperbolic system of equations can be
reduced to characteriatic variables in the interior, it may be desired to give boundary
conditions in terms of primitive variables. For more on this distinction sec {Co80] and
[Gu82).

Let us finish the section with a simple example of a difference model for a system

of hyperbolic equations (cf. §5.1 of [Co80! and §4 of [Gu75)).

Example 2.1. Let the hyperbolic system

(:). = [: :](:) (2.5.13)

be modeled by the vector lcap frog scheme

! ! a 1[4+ ul_y
( :n) = :-1) + *[ ](( e )) . (25.14)
v, vy 1 a\\Vyee Yy
where we have abused notation by using the letters u, v for both exact and computed
variables. Eq. (2.5.13) can be diagonalized by the matrix

=)
O30
O-0-C2)

which converts it to

with

-—

Thus 4 — v and u + v are the characteristic variables for (2.5.13). The same mateix T

: diagonalises (2.5.14), and therelore the vector leap frog model decouples into LF for

each of the two scalar problems %, = (a - 1)&, and % = (a + 1)¥,. It follows that
for any z with [2] > 1, (2.5.14} adiits four fundamental solutions (2.5.10), namely

(v (R
Qeme Ozl

If |2} = [x®}{ = 1, the first two have equal and opposite group velocities in the range
between xa — 1], and the latter two have equal and opposite group velocities in the
range tla + 1f.
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3. BOUNDARIES AND INTERFACES

3.1 Reflection and transmission coefficients

Most practical finite difference modeis are complicated by the presence of bound-
aries or interfaces, al which the properties of the model change abruptly with respect
to 1. A houndary may be imposed physically by the problem being modelced, ar it may
be a pumerical artifact required to keep the grid finite [n77]. Likewisc an interface
may represont a discontinuity in the physical medium (3r79.Ma81,5u74], or a numeri-
<al discontinuity such as a change of mesh size (mesh refinement) [Ci71,Br73,Vi81b}
or of difference formula (hybridisation) [Ci72,0176]). Also, if the solution to a partial
dificrential equation contains shocks or other discontinuities, it may be usclul to think
of these as moving interfaces [ApB8,Ch78,Ch79]. Whether a boundary or interface is
physieal or purely numerical does not affect the procedure for analyzing its numerical
behavior, which we will describe in this chapter. Of course it does affeet the results of
this analysis and their interpretation. For example, a physical boundary or interlace
may be expected to reflect some energy backwards when a wave strikes it, even for
w, € == 0, whereas any energy reflected Ly a purely numerical interface is spurious,
and must approach 0 for w = € = 0.

Our approach to the analysis of reflection and transmission problems is based on
the examination of steady-state solutions with regular behavior z™ in t. On the lace of
it this is Fourier analysis with respect to ¢, but the subtlety of the problem comes from
the inevitable nesd to make a connection between the Fourier spectrum in t and that in
z. Fundamental to this conneclion is the distinction belween leftgoing and rightgoing
solutions presented in Chapter 2. In §§3.1- 3.4 we study scalar monochromaltic signals,
and in §3.5 we superpose these to consider refiection of a general wave packet. In
§3.8 the formulation is generalized from scalars to diagonalizable sysicms, and we
introduce a general notation for reflection problems.

Here is the main idea. Supposc Lthat the wave front of a monochromatic wave

n

et =6® with w, €y € IR, or more generally of any signal 2%« (2.1.2} with &g,z €
@ and |z] > 1, hits a boundary or interface from onc side. The interaction will
be complicated at first. As t increases, however, a steady-state solution will
normally be approached in which the incident signal is balanced by a collextion of
monochromatic reficeted and possibly transmitted signals z"xfj‘-. All of theme signals
will have the same time variation factor z, but their space lactors «, will vary. For
the case of an interface at j = jg, with the incident wave coming from the left, the
steady-state solution will take the form {cf. Thm. 2.1.2)

eh + a,"x)j%  § < 5,
v;'={ 0 E-u, v IJ1%» By

Tier a™sh 52 5
Ilere [ and [, are “left™ and “right” index sets, respectively. In this notation s x
value of multiphicity ¢ appears i times in the index set, with corresponding & valucs
0,...,v-1. The madifications of (3.1.1) for incidence from the right, or for a boundary
instead of an interface, are obvious. Depending on labeling of points, the presise form
of the solution might alse change in unimportant ways for j == .

Two principles determine what «'s may appear in (3.1.1):

The set {(x,.8,)} mdezed by Iy (resp. I, ) consists of precisely those distimct pairs
(x.,8,) for which:

(1) {r,,:) satisfies the dispersion relation for the difference formula applied in
J < jg fresp. 3 > ju) wnth x, of multipltcsty v > &, (Thm. 2.1.8); and

(2) The signal (2.3.6] with parameters x,, 2,6, 1 lefigoing (resp. rightgming) (see
Table 2.1),

The intercsting restriction is (2), for it shows that the numerical bebavior of
boundaries and interfaces depends fundamentally on group velocity. The principle is
simple: a wave impinging on the interface can stimulate only energy that propagates
outward [rom the interface, not energy coming in from infinity. In physics this ia
calicd the Sommerfeld radiation condition. We will not attempt Lo justily the
condition mathematically in the sense of showing that transicat signals approach
(3.1.1) as ¢ — 0o. By construction, however, {3.1.1) is itself guaranteed to be a solution
of the difference model.

We emphasize that the signals present in Ip and I, are determined by mumerical
wave behavior entirely, so they may be any mix of physically realistic waves, parasites,

or signals in between. For |z] = | some may have |x] = 1, and others |af <« 1 or
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|x] > 1. Only the amplitudes {a,(z)} of the stimulated signals are affected by the
algebraic details al the interface, and determining them will be a matter of linear
algebra. These amplitudes, onc for each outgoing signal, are the reflection and
tranemission coefficienta for the given problem.

For setting up interface conditions we necd to rule out possible degeneracies in
the difference model. We will assume that the difference formulas Q appearing on

either side of the interface satisfy the following condition {cf. Ass. 5.5 of [Gu72]).

Assumption 3.1. @ is Cauchy stable, and for all 2 with {a] > 1, the polynomial
P,(x) of §2.1 has nonzero Oth and (£+ r)th coefficients. Moreover, of the £+ r solutions
(2.3.8) admitted by Q, exactly r are leftgoing and exactly ¢ are rightgoing. ,,

We will let the symbo! @ denote the complete difference model, consisting of one
or more “interior” difference formulas Q, Q_, Q.. etc. together with additional

conditions immposed at the boundary or interface.

3.2 Examples

The best way to show how rcflection and transmission cocfficients are calculated
is through cxamples. We will now give a number of these, deferring a more formal
treatment to §3.8, and in the process explore vasious problems of interest in their own

right. Most of the results derived here will be applied in later sections.

Example 3.1: LF with abrupt coefficient change

Consider a first-order equation with discontinuous cocfTicients,

u, = {n_u, (z<0) a_,a, #0. (32.1)

4k, {z>0)
If a_,a4 < 0, the solutions to this equation consist of rightgoing waves, which pass
through £ = 0 with no alteration but a change in wave number, In particular, no
energy is reflected backwards. 1lowever, let (3.2.1) be modcled by LF (1.1.8) on the
grid 7, = jhfor j = ...,-,,—},L,],..., witha, = a_ for j < ~} and a, = a4
for j 2 ; Now, when a smooth wave passes rightward through the interface, a
leflgoing reflected parasite will be generated. If a-, a4 > 0, on the other hand, then
a sawtoothed wave can travel rightwards through the interfzce, and it will gencrate

a reflected signal of low wave number,
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Let us determine the steady-state configuration that results when a strictly
rightgoing signal xJz" (2.1.2) with [z| > 1 hits the interface from the lefl. Whatever
the signs of o and a,, there are three signals to consider: one incident, one trans-
mitted, and one reflected. Their functional forms are indicated in Fig. 3.1:

b Bais FIG. 3.1

The j'sin these expressions are hall-integers. We will ignore the question of the choice
of square roots; it does not affect the final result.

Given z, the quantities «,, &, x, arc determined by the dispersion relation (2.1.8)
on the teft and right:

z- ; = Na_(x, - ') = ra_{x, - w7 = e, (s, - =) (322)

Our purpose is to find tle reflection and transmission cocfficients A and 8. The
cquations needed to determine them are the “interface formulas® at 3 = 3}, which
assert that the steady-state solution satisfics the difference formulas at those pointa:

1 -1 o g
U:Tn - "':l/: =Xa_(vi/2 - "::/:)v

vTE =R = el (vl - vy ).
Inserting the wave forms of Fig. 3.1 in thesc equations gives
1, -
{e= U0 4 AT ) = a8 - kY - Ak,

3.23
| SYNRY? v _an it ( )
{z - ;)H:c‘ = da,{Bxr,' " -« - Ax] %)

We could solve these equations for A and B and get formulas involving 2, &, ., k¢, 8-,
and a4 . In general, this is the best that can be done. However, for simplc problems
one may convenicntly climinale z. In the present case, applying (3.2.2) to (3.2.3)
climinates not only 2 but a4 as well, leaving
kP = k) 4 AR (ke - k) = B Y AR,
{xe - xf')[lx,'/’ = Bx,:/’ - x‘_]/’ - Ax,"/'.
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henee because of canccllations,

Bn.‘" = x_l“ + Acl/2,

B = 7MYy ATV (3.2.4)

The solution to this pair of equations is
A=-5T% ‘_” p="r""% [% (3.2.5)
e —-x Vx5 PR g

We have now solved the reflection and transmission problem: given z, first compute

Xy. Ko, &¢ from (3.2.2), then derive A and I from (3.2.5).

Eqgs. {3.2.5) have a pleasing symmetry that becomes particularly useful in the

case of strictly wavelike solutions, i.e. |2} = |x,| = |x¢] = |x,| = 1. Let us write

P TR TR Ut P

Then {3.2.5) is readily seen to take the form

_ sin(f, — 9,) __ sin(0, - 8,)

A= sin{0; — 8.)"  in(0, - 0,) (3:28)

{Of course, these formulas are also valid for 8 ¢ IR.)

A further simplification follows from the fact that for LF, &, and «, or 8, and 9,

are retated in a simpie way. From (2.4.8) one has x, = —1/&,, hence

0 = ; -, (3.2.7)

With these substitutions (3.2.5) and (3.2.8) become

1 ¢ -x, ® +1/x,
4 Vg 41 B= xolr +1 VR (3:28)
A S0 =0) L ot

i~y U Y XN (329
These equations show that in the Timit of a vanishing interface, i.e. a_ =5 a, and
hence #, s 8, onc obtains the physically correct values A =5 0, B = 1. In facl they
imply A= Ofa, —e_)ma, —6. 0.

DEMONSTRATION 3.1. Fig. 3.2 shows an experiment with 6_ = —1, a, = -8,
7%

X =.5, A = .01 on the interval {~1,1]. ALt = 0 the oscillatior
u(~-1,1) = sin 30¢

has been turned on. This generates a rightgoing wave Lhat is well resolved on the mesh
(== 21 points per wavelength), and Fig. 3.2a shows that by t = .5, it has traveled at
the correct group speed C == | and should hit z = 0 at t = 1. In Fig. 3.2b, showing
t = 1.5, it is evident that the transmitted wave must have traveled at approximately
its correct speed C = }. We are interested in the reflected parasitic wave that appears
as wiggles in the region [—1,0]. Apparently it has moved at speed C 22 —1, which is

(a) E?\\ //\\‘L T/\ \ : t=25
°\/ Vo, L]

(5 Z\ /\ /\-/\ f\ I&P\‘Mﬁ : t=15
VYV

o« T i —
o2y l E
or i t=15
(e) : 3 1§ high-pass filtered
Lty E
o — 3 &
L T
ar -4
o 3 t=12
@ o 7 high-pass Bltered
o2 -
Y] —

FIC. 3.2. Reflcction and transmission at an LF interface. A forcing
oscillation with wk = .15 has bcen turned on at t = 0 and bits &
cocflicient-change interface at ¢ as 1. The mode! is LT for u, = ~uq o0
the left, w, = —.5u, on the right, with h = 1/100, X = 5.
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what we expect for LF. From {3.2.9} we can predict its amplitude. We have
0 = §A/2 == wh[2 = .15,

8, = /2 = 26:h/2 = 30.
Eq. (3.2.9) therefore gives
sin.15
—_—
cos .45
The exact value for (3.2.9) turns out to be A = .1884.... It is hard to tell from

Ass .168.

Fiz. 3.2b how well this agrees with the amplitude of the wiggles in the experiment.
Therefore Fig. 3.2¢ isolates these wiggles by showing the result of passing the function
in {—1,0] of Fig. 3.2b through a high-pass filter (discrete Fourier transform; seroing
of lower half of spectrum; inverse transform). Fig. 3.2d gives a similar filtered plot
for ¢t = 2, alter the initial transients in the rcflected wave have died down. The
agreement with the prediction |A| = .1884, represented by the dashed line in Fig.

3.2d, is obvicusly excellent.

Example 3.2: Abrupt change between arbitrary 3-point schemes

Consider egs. {3.2.4) of the last example. Although our derivation made use of
the dispersion relation for LF, it is obvious that what these equations really assert is
this: at j = —1/2 and at j = 1/2, the lefthand representation v} = (<! + Axi)s™
and the righthand representation v} = Dix}z™ are both valid. (A priori, we knew only
that the former was valid at j = —1/2 and the latter at j = 1/2 (Fig. 3.1).) This
suggests Lhat the calculations of Example 3.1 have a wider applicability. This is in
fact the case.

Let Q- and Q, then be arbitrary three-point difference formulas as described in
§2.1, to be applied for j < —1/2 and j > 1/2, respectively. By this we mean that the
stencils satisfy ¢ =r_ =1, ¢, =r, = 1. (In fact all we need is &, = r_ = 1.)
Assume further that Asssmption 3.1 holds. The following argument shows that eqs.
(3.2.4) must hold. We know thal the representation v} = Bx2™ is valid for j > 1/2.
By the definition of &y, it follows that if v2, , = B '/?2* also, then @, will be
satisfied at j = 1/2. But Q@ s natisfied there, and Ass. 3.1 implies that if the values
v} for j 2 1/2 are fixed, then this can only happen for a unique value of Lo
Therefore v2, 5 = Bx,"/’z“. The result at 5 = 1/2 is similar.

Thus most of the calculatinns of Example 3.1 apply not just to (3.2.1) modcled by

LF, but to any interface at which one three-point diffcrence formula changes abruptly
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to another. The interface may involve just a change of coclficient, as before, or it
may include a change of diffcrence formula also, for exanple from LF to LW. For any
such problem, one is led by (3.2.4) to (3.2.5) and (3.2.8). After this, eqs. (3.2.8) and
(3.2.9) are oot universally valid, but since all they depend upon is (2.4.8), they will
hold whenever Q- is a three-point linear multistep formula.

As an pl ppose (3.2.1) is replaced by the d-order wave i

alu,, (z<0)
= {a,‘u" >0 o #0 (3.2.10)
modeled by the leap frog scheme LF?,
ot = 200 4 077! = (e (V] — 207 4 0] ). (3.2.11)

This formula has the dispersion relation
2-2+ 27 = hay) k- 2+ x7"),
from which one may see that instead of (2.4.8) and (3.2.7), x, and x, now satisly
Kk, =1, 8, = -4, {3.2.12)

Now both the incident wave and the reflected wave can be physical (smooth) at the
same time, for (3.2.10) permits wave motion in both directions. The reflection and
transmission coefficients for (3.2.10) can be obtained by enforcing C' continuity at
z =0, and are independent of w and £ (sce e.g. [C176], §8.1):

. ta_ —1/as 2/a_

A= o+ /s’ = o +1jas’

(3.213)

These formulas are written in a standard form in terms of the admittances 1/a, ; one
could also use the impedances a4 directly. For the LF? model, the corresponding
rcsults are by (3.2.5), (3.2.6), and (3.2.12),

_ &R _ Al

iy B= Py NS (3.2.14)
o inls — 8) in 28
sin(0, — 6, ___sin26

= Ginl0, ¥ 8)' = im0, + 0 (3.2.15)

This last pair of formulas is a trigonometric analog of the admittance formulas

(3.2.13), and approaches them for small £ and w, but it is not the same.
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Our calculations apply to dissipalive schemes also. 1et (3.2.1) be modcied, say,
by LW {L.1.11). For a_,a, < 0, a physical signal will then have /c.,in. == 1 and (it
follows from (2.1.9)) |x,| = lﬁi}l > 1. Therefore the reflected wave is evanescent,
and will have negligible amplitude except near the interface. It can by no means be
ignored in computing B, however, for it nced not be negligible at £ = 0-—i.e. A itsell
need not be small. This situtation is typical for both dissipative and dissipati

models: evanescent modes are oflen present that have negligibie sise away from the
interface, but their influence is still global becayse they affect the amplitudes of the

non-evanescent modes.

Example 3.3: Abrupt change between schemes with larger stencils

The principles of Example 3.2 apply directly to difference schemes with larger
stencils. Let Q- and @, have stencil sizes £_,r_ and £,,r,, and assume that both
formulas satisfly Assumption 3.1. We seck the reflected waves that result after an
incident signal x3z™ with |z] 2 1 hits § = 0 from the lelt. For j < 0 there are r_
Iefigoing signals, and if we denote their amplitudes by —A;,..., —A._, these may be

written

—Axlz®, 1<v <P,

(We ignore the possit.ility of defective modes.) For j > 0 therc are £, rightgoing
signals, and we denote their amplitudes by A,_4y,...,A,_4e,:

Arls®, o1 <o+,

Exactly as in the Jast example, Assumption 3.1 implics that the righthand repre-
sentation of vy’ must hold not just for j > 1/2, but for j > 1/2— ¢,. This follows by
the same argument as belore by considering in succession j = —1/2,-3/3,...,1/2 -
2,. Likewise, the lefthand representation must hold for all j < -1/2 4+ r_. All
together, there are £, +r_ matching conditions iu extension of (3.2.4), and they take
the form of a van der Monde system of cquations:

i S e T A I
-2, ~ty -ty A -y
ver R 'l
"‘ 4, patll | IR PN o {a.2.10)
CRMEEE LSRR v | LTRESY B WL
7

The determinant of this matrix is

[ o ben
IIAYAS ) ]
=11 PN

>

According to Cramer's rule, the solution to (3.2.16) can be expressed in terms of ratios
of such determinants. We find (cf. (3.2.5) and (3.2.8)):

[T te—§ Lysv.,
(%4 — %0}/ %o sin(0, — o) (%, \j(ta—o_)
A, = = — — . 3.2.17
e=t (k= m)/el H. (s, = 0.) =) 217}
pphs oo

These formulas give the complete soiution of the reflection and transmission problem.
{n practice, if the incident signal is wavelike (|z| = |xg] = 1), then often some reflected
and transmitted signals will be wavelike, others evanescent. llowever, this distinction
affects the values of {x.} and {0.}, not the form of {3.2.17).

DEMONSTRATION 3.2. As a particular example, let us again consice the problem
of Example 3.1, but with LF replaced by 1.F4 (1.1.17), whose stencil :overs five grid

points in r FEq. {3.2.16) now becomes a system of dimcnsion 4, and for typical

a8
{a) oo
Y

t=15

=
teezes

tw= 13

ggegeree

FIG 1.4, Wefirction and transmission at an LI*4 inteeface. Same a8
Fig. 3.2 but with LF seplaced by LF4.

bigh-pass filtcred



values of z with jaf = 1 we expeet one wavelike mwde and one evanescent mode on
each side, as shown in Fig. 3.3.

~Ageys™ e—1 .
———— Aycia”
~ Ay s . Fi6.3.3
P Aisis”
Kél‘ ——%

Fig. 3.4 shows a repetition of Fig. 3.2 with LF replaced by LF4. Qualitatively, the
behavior appears as before, except for one interesting change: the reflected parasite
now travels at speed C == —5/3, not —1. This is in keeping with Fig. 1.1c and with
(1.2.8) {or {1.5.3) for £ = 4). Let us predict the amplitude of the reficcted parasite.
For the given problem z #~ 1, and 50 (2.1.12) implies

1 dda, 1
Dea:—; T(s—; )

)= e,

k-8 + 8- 120
on both sides of the interface. The seros of this polynomial are
k=1 -1, 4-VI5 4+Vi.

The first two values correspond to right- and leltgoing wave modes, respectively, and
the second two to right- and lefigoing evanescent modes. We will order the x.'s
according to
Roml, Ky ms-1, kg d+ VIS, xymsl, K= 4-VI5,
but we will nced a little more precision for kg and xy, namely (as in Example 3.1)
ko ® ¢ % o |+ 304, k3 % %% 2u ] 4+ .00i.
Now from (3.2.17) we obtain the amplitude sought,
(x1 = moxs = xo)(r4 = mo)s}/*
A =

(k3 — xiKma = &1 )ra - 20 )ug/?

o B+ VI3 - VIK-i) _ -18 oo
(5 + VISK2)5 — VisK1) 0
81
"R
. - gl _

An exact calculation from {3.2.17) gives the slighUly larger result
A; =5 —.100476 + 0012484, |Ay| = .100484.
These numbers are in good agreement with the magnitude of the wiggles observed in

Fig. 3.4b, which are once again isolated by a high-pass filter in Fig. 3.4¢c.
En le 8.4: Mesh-refi interfy

Instead of considering a discontinuous coefficient, let us now look at problems
where the mesh sise changes discontinuoualy at 2 = 0. We will stick to the equation
U, = au, and to models with onc leftgoing and one rightgoing mode. A that a
rightgoing signal x? 2" hita the interface ftom the left, generating steady state reflected
and transmitted signals Axiz™ and Bxjz™. We will calculste A and B for three
different kinds of mesh refinement.

(5} Crude mesh refi t. ‘The reflection ang tr

properties of the lol-
iowing mesh-refinement schemc (in its semi-discrete limit) are analysed by Vichnevet-

sky in [Vi81b]. Let z; denote jh. for j < 0 and jhy for j 2> 0, where A_ and A,
are arbitrary. Let (3.2.51) be modeled at ali points j 7€ 0 by LF, or more generally
by any three-point lincar mullistep formula (2.4.2),

z ror = 0
:‘((z)).;-_- ""‘M:'_‘, {3.218)

and at j = 0 by the related (crmula

AZ) . _ vi-vn

mv, =%y hy {3.2.19)
as illustrated in Fig. 3.5.
x « b n » » : ]
N FIG.35
x x " x n 1 x
Ao Ay

The interface formulas for this model are then

1+A=8,
AZ) __.a 1
m(‘ + A) = W M(”M 1/n, ~ AfR,).
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After making use of the first formula, the second can be rewritten
h_plz) h_Ap(z) h,pz)
Tols) T Thels) T Hela)
The quantities 2,k hy,a can be eliminated from this equation by means of (3.2.18)
or (2.4.3), and one obtains

(1+ A)=a(l + A)xe — afr; — ad/[x,.

1+

. Alke = 1/x) = (1 + AJe = 1y — Al

%(;, -1/x)+ ;A(x. -1/ )+
hence
{ry + 1/} + Al&, + 1/x,) = (1 + A)(n¢ + 1/x,) =0,

which implies
A b UR) =[x+ 1/m)
T (ke 4 1/k) - (e + 1/Ry)
Hy (2.4.8), this leads to

_ (r, +1/&) = (Ky + 1/} 2(x, + 1/x;)

= R B= . 3.2.20
(&, + 1/m,) + (ke + 1/5¢) (e + 1/} + (%¢ + 1/54) ( )
An alternative expression for these resuits is
cos§ h —cosfeh 2cosé.h
= B8R M = a2 .2.21
cos & h + cos &b’ cos §,h + cos £ (3:2.21)

Compare [Vi81b], &q. (26}

(1] Coarse mesh approximation. Suppose that in the sbove sctup, b, is an
integral multiple of A_: h, = mh_. Then instcad of (3.2.19), it is natural Lo consider
applying the coarse mesh formula used for § > 0 at j = 0 also, with the lefthand
value necded taken from j == —m, as illustrated in Fig. 3.6:

24{2) .
2 °

=al,(o] - v2 ) (3.2.22)

x
x X% 1/ \- b Fic. 3.6

With this interface condition in effect, the interface formuias become
14A=5,

5,’(‘7',’(1 +A) = ahy (B - 7™ - AKT™),

-—3

which by mcans of (3.2.18) reduce to

arp{me = 1/ + A) = ad, (xe(l + A) = &7 — A=),

(1+ A)/&e = &]™ + AT™,

and therefore

_ K= me
A= Um e (3.2.23)
By (2.4.8), this leads to
PR VL) IR GV e
= e (=™ vy (3.2.24)

(ii5) BKO mesh refinement. The following *“BKO" scheme was proposed by
Browning, Kreiss, and Oliger in [Be73], and some of its reflection properties are
snalysed in [Vi81b]. Supposc again that h_ and A, are arbitrary. Now let the left-
and righthand grids overlap, as follows:

right: 7} = jhs =~Lid.

left: =y =jh- - j=h-h-ho

Ay

X — X — x »x F1G.3.7
Ao

Then, s a discrete analog of C! continuily at z = 0, consider the interface conditions

vy 4, -:v; -0-1:’,

1 1 (3-2.95)
E('; - ':’) = K(': - ':.)
(with obvious notation). The corresponding interface formulas are
od 4t ad ¢ et = B+ )Y,
1 - -8 -
- B - = i - h
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These have the solution

A.cotd, — A, 2oté,

h_cotd, — A_cotd,
- =
hycoth — h_cotf,’

hycotd - h_cotd,’

(3.2.28)

where 8, = £,A/2 again, 30 that cot®, = i{x} + & H)/(xd - ), and s0 on. For the
case of three-point linear multistep formulas, (3.2.7) converts the resuit to

A_coth, — hycoth

A_cotd; —A_tand
=

= h,coth—A_tand,’ hecotl —h_tand, (3:2.27)
For LF?, similarly, (3.2.12) reduces (3.2.28) to ’
_ h_coth - h,coth, 2h_ cotd; (3.2.38)

~ hecotD + h_cotd,’ = hycotd +h_coth’

Again, these equations are similar to the admittance formulas (3.2.13).
Example 3.5: Boundaries
Finally, !.o’ justify the title of this chapter we must consider some problems

containing boundaries rather than interfaces, at which there will be reflected but not

transmitted signals. Let the cquation
W = ou, 220, ayo

be modeled by a difference formula Q on the grid z; = jA, j = 0,1,2,.... I
Q extends £ points to the left of center, then numerical boundary formulas will be
needed for the points j = 0,...,¢—1. Let us assume ¢ = 1, so that only one boundary
formala is needed. If a strictly lefigoing signal ] 2™ hits the point § = 0, then in the
steady state some cnergy will propagate rightward as a signal Ax#z"®, We seek the
reflection coefficient A.

— Axlz"
. n
r——— &z

Suppose irst that the boundary formula is (¢—1)st-order space extrapolation,

Fi1c. 3.8

S:  (K-1)'w3t'=0, g¢21 (3.2.20)
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where K is the spatial shift operator deflined in §2.1. Then A will satialy

(k= 1)* + Alx, — 1)* =0,

hence .
A= _(_.: =1). (8.0.30)

If Q is LF or any other three-point linear multistep formula, then (2.4.8) converts this

Am _(:;‘/:‘_il)' = _(: = :)'.:4 (3.2.31)

. Suppose alternatively that the boundary formula is (¢ — 1)et-order space-time
extrapolation,

ST: (KZ™' - 1)%§ =0, e (3.232)

Now A will satisfy

(%, ~2)* + Alx, - 2)*' =0,

hence
— g\
A= -(“ ') . (3.2.33)
R, — 2
For three-point linear muitistep sch this b
.
=-(i7% e
A (1 ““) . (3.2.34)

‘This is an example in which it is not practical to eliminate 2 rom the formula.

Our purpose in this section has been to show how rcfiection and transmission
coefficients can be computed, not to apply such computations to the evaluation of
parlicular numerical treatments of boundarics or interfaces. BBul obviously this kind
of information is potentially useful if one is trying to choose betwecn various sumerical
methods.

The refection and transmission behavior we have predicted, like the group velocity
phenomena of Chapter 1, can be readily confirmed with numerical experiments.
We have performed a number of these, but except for Demos. 3.1 and 3.2 siready

presented, we will not take Lhe space to describe them here.
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3.3 Energy fux and energy conservation®

Suppese that a Canchy stable diffcrence formula admits the wave solution
u;‘ = At 2" (3.3.1)

for some cunstant A, with [z] = 1. If Jx| = 1, then by Thm. 2.3.1, the wave has a well
defined growup velocity € € R. It is natural to define the energy flux {(magnitude) 4
of {33 1} as the absolute group speed times the square of the amplitude,

&= [A}C] i ol = |x{=1. {3.3.2)

Qae wight prove that asymptotically, & measurcs the £; energy flow per unit time
acruss a given line 2 = zg. Other definitions could be used for encrgies ather than
£ I 12" = 1 and |x| # 1, then there is no energy flux,

®=0 forlzt=1, x5 1 {3.3.3)

If 2] > 1,1 which case jx| ¢ 1 by Thm. 2.2.1, then a sensible definition of $ would
have 10 vary with z and increase with {. But we will not define & in this case.

Given a difference model containing a boundary or interface, we naturally ask:
dues the intorface conserve energy” If not, how close does it tome? For the sieady
state solutions of the last section, we have all the machinery in place o answer
these questions. Assume, for example, that ue = au, is modeled by one threc-point
difference scheme for 2 < 0 and another for z > 0, and that a rightgoing wave (3.3.1)
is incident on Lhe interface at # = 0. I[n the steady state, reflected and transmitied
waves will be generated. We define the efBciency of the interface for the given wave,
E, by the formula

_ %+
£=202 (3.3.4)

Encrgy is absorbed, conserved, or created at the interface if £ < 1, B =1, or E>1,
teapectively. Mote gencrally, il an interface gencrates & colicttion of ovigoing signals

in resp 10 a collection of § ing ones, then the efficicncy for that configuration
i
B= ¥ oy 3 e Q3s)
suigelag incoming

*Maay of the idens in this section sppesr in [VI81b].
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Of the mesh-refincinent problems consideted in Uxample 3.5 of the 1ast section,
two conserve cnergy exaclly: “crudc mesh refinement”™ for any three-point lincar
multistep formula @, and BKO mesh refinement for LF2. Let us vetify these claims.
For @ applied to uy = au, we have by (2.4.7),

C =tosth flz)

for some function f. From this formula, the reflection and transmission coefficients
{3.2.21) for crude rresh refinement become

_G-G 2C,
A=zoe B=gi (3.3.6)

Inserting these values in {3.3.2) now gives the Ruxes (el |C176}, eq. {B-1-8))

€. -G ACIC,
¢, =C, b, = C, i, = el
@xcr  "TEwar

and applying these to (3.3.4) yields

(€= CP +4CC _

~E$ (€, + Ce)? o

as claimed. Similarly, for the case of LF? with BKO mosh refinement, egs. {3.8.7) and
(1.8.8) (ignoring the terms in n) imply

C = é:s'm &h 2%,;3)0. cosd,
T Tenwk 2sin % con f

A_sind, cosd, [ sin? ?ﬁ h_ cot b,
= S o cor of (\ -

? sin’ 8, kcot'} '

with cacecsponding expremions for C, and C,. From this formula and (3.3.28), it
follows that (3.3.6] holds for this problem too, and this implies £ = 1 as before.

However, it is only in cxceptional cases that a boundary or intceface conserves
cnergy cxactly. The rcason is that for this o happen, Lhe errors introduced by the
interior formulas and the interface formulas must exactly counterbalance, so the two
sets of formulas must be fortuitousty compatible in some sense. In particular, the
other mesh refinement problems of the last section, such ss LF with BKO or with the
coarse mesh approximation, do not exactly conserve caergy.

Energy conservation is an attraciive property, especiaily if extensions Lo nonlinear

problemns are being considered, bul onc should not automatically assume that if one




intcrface exactly conscrves energy and another does not, then the former is belter,
For LF applied Lo u, = au,, for example, {3.2.27) implies that the nonconserving
BKO interface gencrats a reflected parasite of amplitude A = O(h?), while (3.2.21)
gives A = O(h?) for the “crude” interface. Surely it is no virtue of the latter scheme
that the spurious signal it generates on the left is large enough to balance the flux

error it introduces on the right.

3.4 Cutoff freq ies and t waves

We have observed earlier that although a nondissipative difference model Q nust
admit waves of all wave numbers § € [—x/h,x/h], the same is not true for all
frequencies w € |~ /k, % /k]. A frequency that correaponds to no wave solutions may
be said Lo lic in the stop band or forbidden band for Q. In Figs. la-c, thesc are
the values of w for which no value of § appears on the plot. Of course there will be
sorme wave number £ for every w, since § must do something in response to a forcing
oscillation sin wt, but for « in the stop band { will be complex, corresponding to an
evanescent mode that by (3.3 3) carries no energy.

in a problem involving an interface, it may happen that a frequency for which
a wave may exist on one side lies in the stop band on the other. In this event the
tesponse Lo such an incidenl wave will be ¢ = 0 total reflection. Given an
interface, one may look for the minimum frequency w,., the cutoff frequency, at
which o transmitted wave cannot cxist. The solution te this problem will satisly the
cutoff condition

Cléesw) =0. (3.4.1)

One can sce this by considering that in a dispersion plot such as Fig. 1.1, w, is
associated with a tero slope. Aigebraically, the explanation is that if z(x} has {z] =1
for arg x < arg k. and |3] 7% 1 for argx > arg k., then x, must be a multiple root,
which we know by Thm. 2.3.1 corresponds to C = 0.

Cutell frequencies for finite difference and finite clement models have been dis-
cussed previously in [Ok76], [Br73), and [Vi8o0).

The primary significance of (3.4.1) is that it enables one to determine cutoff
frequencies by solving an algebraic equation. Another interesting implication is
that although the vanishing of the transmitted wave as w riscs above w, may be

discontinuous (the transmitted wave abraplly becomes evanescent, but it amplitude

docs not become zero), the vanishing of the transmitted energy Aux is not. Instead,
@ decrcases smoothly Lo 0 as w T «,, since C decreasces smoothly to 0.

Vichnevetsky points out that in the case of interfaces between LF models, the
evancscent wave that appears for w > w, always has wavelength 44 [Vi80,Vislb].
The explanation is that by (2.1.8}, || = t and {x| ¢ 1 can only happen with x pure

girary, which to dength 4h. The *4h phenomenon® does not extend
to arbitrary difference models, however.

3.5 Reflection of a general wave packet

By the methods described so far we can now determine exactly how a monochrom-
atic signal ¢!™*~ €% is reflected and transmitted at a boundary or interface. The
question is, haw can t/ is information be used to predict the reflection and transmission
of a general wave packet? The problem is one of Fourier synthesis in an inhomogeneous
medium, and it is subtle.* One might expect, for example, that if the reflection
coefficicnts salisly [A(E)} € Amux < oc for all €, then a general estimate [jv"||; <
Amax[lt®]lz will hold. However, Thm. 4.2.3 will show that this is not the case.

We will study the sim‘plml possible example. Let the equation

Yy = Uy, z,t >0

be modeled by a finite dilference scheme Q on the grid (z,,ta) = (2h,nk) for j,n > 0,
with h = 1 for convenience. Let @ consist of Q@ = CN (1.1.16) for all points j,n > |
coupled with some two-level boundary equation for j = 0, n > 1. For initial data we
take

W=/, j20

for some sequence f. Now v™*! is completely determined by v™. Since CN i

nondissipative and z-reversing, we expect significant reflections at the boundary.
Let £ denote the sel of squarc-summable sequences (f,), >0. If f € €3, then it

has a Fourice represcentalion

5= 5',; /_'e"“i(e)dc (35.1)

*A solution for a special case of this prablem is sketched in §6 of IVi81b), but it appcars to

be invalid cxcept, perhaps, in some asymptatic scnse. For example, this solulion begina by
considering a wave packet with compact support whonse tranaform also has compact support,
and such 1 combination cannot oceur.
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for some function J € Ly|-n, 7], and 7 is given by the Fourier transform

oo

Ho=3 nev. (35.2)

3=0

By (1.1.18) and {1.2.7), we know that for each §¢ € [~ F, 5], CN admits a leftgoing
‘wave, and at the same frequency there is one corresponding rightgoing wave with
wave number §, = x — £ (Fig. 1.1¢). (Ilere £, should be taken modulo 2x.) Let A(€)
denote the corresponding reflection coefficient function for monochromatic solutions
for the given boundary ronditions. Now suppose that by chance J' happens to satialy

the reflection condition
Jir -8 = AN for te -1, %) (35.3)

Then by the definition of A{£). [ is the superposition of steady state solutions of Q:

1

*/2 ]
7, = G/ {e"" + A({)e"v‘"”!],"( £ (3.5.4)

e/

Therefore if {v"} ia computed with f as initial data, Lthen each steady-state solution
evolves under @ in a uniform fashion, oacillating according to a factor e**(¢¥, and we

» valid for all n:

obtain a Fourier repesentation for ¢}

.

1

- 1
: 2% J eyt

¢'~'f"[e"‘! + A(()r-f'*"]}(e)dg {t = nk). (3.5.8)

In general, of course, / will not satisly (3.5.3). The main idca of this section is
as follows. Consider choosing arbitrary values f, for ) < 030 that f is extended Lo &
biinfinite sequence ()¢ x € £3. Any such sequence will have a Fourier representation
{3.5.1), where now fe La|-=, 2| is given by

ey
Ho= 3 fev. (3.
y——a
Suppose an extension / can be found for which (3.5.3) holds. Then again, (3.5.5) muat
give v for all . In fact, (3.5.5) will determine & function {v}'} that satisfies CN for
oll j € 2, and in sdditi ishes Lhe boundary equation imposed by Q at j = 0.
Therefore ita restriction to 7 > 0 must be exactly the solution we seek.

We can thereforc determine the refloction in 3 == 0 of & general wave packet if
we can solve the lollowing problem:

REFLECTION PROGLEM
Gven: (i) [, for 3} > 0
(ii) [ satisfies (3.5.3) for » known function A[£)
Find: (i) f, forall j€ 2
(i1} J(€) for all € € [—x,7]

In effect (i) gives us half of f, and {ii} gives us hall of its transform. The parameter
count appears right for the problem to be well posed.

The reflection problem as stated has a simple interpretation Given initial data
(/,); >0. we seek a distribution of dual initial dats (f,), .o such that as n increases,
the solution v™ obtained by applying W°N for all ; € Z satisfies the boundary equalion
of @ at j = 0. In other words, the dual packet must be chosen so that it contains
rightgoing componcnts that exactly duplicate any reflections of the initial data that

shauld be observed under Q. The idea s illustrated in Fig. 3.9:

\ — Fic. 3.9

“dual initial data” t=10 N t>0
AN N AN

Mathcmatically, the reflection problem amounts to the problem of solving an
integral equation. Let f, and [, dencte the resttictions of f and f to j > 0 and
£ € [~ %, § respectively. According te {3.5.4), we oeed to solve Lhe equation

Vi, =/, (3.5.7)

for J,, where ¥ : La[~§, §] — £ denotes the integeal operator

wi = [ K. of. (04 (559)
where K dcnotes the kerael
KGO = ,i,[e"“ + A== (359)
9




Unfortunately, we have not yet made any progress in solving the problem as
formulated here. It appears that it might be possible to treat the integral equation
by some variant of the Wiener.Hopf technigue [Mo53), which is designed to handle
Fourier transforms that are split into two halves. [lowever, the solution remains to
be worked cut. [t seems that despitc the obvious likelihood that there is 8 connection
between this problem and the Wiener-Hopf methods of Strang and Osher mentioned
in §0.2, the two formulations are not the same.

3.8 General formulation; the “folding trick”

We will now write down formally the linear algebraic relations that govern steady-
state solution behavior for a system of equations at a boundary or interface. In doing
s0 we lace the question of how much fexibility Lo permit in the representation of a
difference model. For example, in the interface calculations of §3.2, it was sometimes
convenient to use A grid 3 = 0,41, 2, ..., and sometimes j = if,tg, .. was
better. At issue is a tradeofl betweer the simplicity of the general formulation and
the sitnplicity of ils application to particular problems. Qur procedure will be to
presceat the generalitics in a reatricted foriaalisim here, but continue to abuse that
formalisin later as convenient for dealing with particular cases.

Our main simplification will be that instead of Lreating interface problems as
interface problems, we will reduce them formally to boundary value problems by a
device known as the foldi: g trick. If the original problem is made up of a system
in Ny unknowns on the feft coupled with a systemin N unknowns on the right, the
folding trick consists of replacing these in the obvious way by an equivalent system in
N1+ Ny unknowns involving only a boundary. This device has been used in various
papers on numetical stability, including [Ci71,C372.8773 Su74]. It is nol an unqualified
blessing, however, for it tends to obscurc what is really going nn when one deals with
an interface. In particular, one must remembee that the system oblained alter folding
is not an arbitrary svatemn in Ny 4+ Ng variables, bul 4 2 X 2 block diagonal system,
since the lefi-side and right-side variables are uncoupled except through the boundary
conditions. In particular, it follows that if the difference models on each side of an
interface satisfy Assumnption 2.1 {diagonalizability see §2.5), then that assumption
also holds for the folded problem.,

Consider then the (84 2)-level N-vector differcnce model @ of {2.5.2). We assume
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that Q satisfies Asssmption 2.1. In addition, corresponding to Assumption 3 {, let us

impose the following condition:

Asssmption 3.2. For ali z with |2| > 1, Q admits exactly ny leftgoing and n,

rightgoing solutions (2.5.8), where n, and n, are some fixed intcgers.

Instead of letting j range over all integers, we now restrict it to 3 > 0 Q wilt
apply at all points j 2> ¢, and n, additional boundary conditions are then in general
needed that involve v;‘". §=0,...,—1. We can write these in the form

Imax fmaz
Sty T =0 (361}
y0 ¢m—1
for some integers fmax: Omax < 00. where each Sy, is  constant n, x N matrin The
“0" on the right denotes the null vector of length n, . We let Q denote the d.ference
modcl consisting of Q for ; > £ combined with {3.6 1}. For Q to be usable we need a
solvability assumption (cf. Ass. 3.1 of [Gu72} and Ass. 11 of {MiR1])

Assumption 3.3. The model Q can be solved boundedly 11 the sense that of
vrTIman " € {; are given, then v s uniquely determined. and it aatisfies 2
bound —

o™ < M3 fvrme

=0

The two-norm here s defined (c[. {2.2.1)) by
x
o3 = h 3 16,1% (362)
y=0
where |g,! denotes the veetor two-norm.

1t can be shown that such a solvability assumption ¢, oid only when {3.6.1) has n,
rows, as w¢ have assumed (cf {MiRl], Thm. 1 1).
[et z be a complex constant sausfying {z[ > 1. According to (2.5 12], the general

solution to {2.5.2} can be writlen

- n s
v} = Ea‘x{_)"w. + Z anlpb v, (46 3)
=t P

for some constants {a,}. The two sums represcrt nghtgeng ard leltgenng «gnaals,
respeetively. Let this formula be doserted an 30000 The roalr ova irear systoo of

equations of dimensior g o N that aobves fa
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All ol these quantities are known, since & is given, except for {a,}. We can therefore

rewrite {3 6.1) as the new system

e S i e =0,
=1 [ELYES

where fach term in brackets is an n,-vector depending on z. If we write now

o' = (a....,a..)7.

(ﬂn,‘-h e .an.¢n‘)rr
then these equations take the form {ef. eq. (10.2) of [Gu72})

D 2al" iz + DW2)all2) =0, (3.6.4)

wheee 117 won, ¥ n, and 8 is n, X ne This cquation represents the interface
foramlas for the general problem (2.5.2), (3.6.1).

Now we canli »olve for reflection cocfficients. la the previous sections we just
studied the repsonse to a single incident signal, but of course linearity implies that
the response to a sum of incident signals will be the sum of the responses to each.
The general problem of finding reflection coefficients is therefore: given aif!, find al"l,

WD s mvertible,‘ then (3.6.4) gives the result

"l = (DY} pleigidl, (3.6.5)

This equation is the general solution to the problem of finding reflection coefficients,
and (D'))7' D1 ig an n, X np matrix that might be called the reBection coefBcient
matrix. Il the problem (2.5.2}, {3.6.1) came from an interface problem by folding,
then alfl describes incident signals and al”) both reflected and transmitted ones.

1t is by no means aiways true that D"t is invertible. In certain circumstances the
examples of §3.2 demonstrate this problem. In Example 3.1, for instance, if 6 >
0 > a,, then for z = 1 one has §, = 0 = 0, and the denominators in (3.2.8) are
0. Similarly in Example 3.4{ii), for a < 0 and z = 1 one has x, == &, = 1, and if
m is even, then the denominators in (3.2.24) arc 0. Apparenily for the wrong vaiue
of z in these problems, the reflection and transmission coeflicicats become infinite—
and for nearby values, arbitrarily Iarge. [his is no flaw in our formulation, but the
sctual behavior of these schemes, as we will verily by experiment in the next chapter
(Demo. 4.2). We will sce there that the singularity of D"l and the presence of infinite
reficetion cocfficicnts are dircctly related to instability in finite difference modcls of

25

intitial boundary value problems.

Al of our discussion in this chapter has been restricted Lo probletns in one space
dimension, but the same principles apply in the multidimensional case. Suppose
for example that a plane wave with frequency « and wave number vector =
(&v... . &) i« incident upon a plane interface at 1 = 0. As in the one-dimensional
problem, the first step is to solve the dispersion relation o determine all posable
reflected and transmitted wave number vectors €' €% Sinee the intetface is paralie!
to the axes zg..... 24, one can use the fact that all components will have equal values
of w and £3.... €y differing only in &  The various solutions § on each mde of
the interface then yield waves oriented at varioys angles. The radiation condition
requires that one pick oul those waves with vector group velocities pointing away
from the interface Onee these are determined, reflection and transmissien coefficients
can be computed as usual . they will be angledependent. Thus Snell's Law for
difference models, already mentioned in 1.6, fits directly tnto ihe framework we have

established for interface problemns.
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4. STABILITY FOR INITIAL BOUNDARY VALUE PROBLEMS

4.1 An example

Fram here on, the rest of the dissertation is concerned with the stability of finite
difference models that contain boundaries or interfaces. According to the folding
trick {§3.6}, it is envagh to consider the stability of models of initial boundary vatue
problems. The svadable theory for this was devefoped by Kreise, Osher, Gustafsson,
and others in the deeade preceding 1972, and was reparted in an important paper
by Custafsson. Kreiss, and Sundstrom (“GKS") in 1972 {Gu72| (see §0.2 for further
refesences). For further developments of this theory see {Gu75] and [Mi81}, and for a
systematic introduction to it see [Co80]. Out purpose in this chapter is to show that
the key fartor determining stability is dispersive wave propagation. We will see that
the results of Kreiss and others are built around a group velocity test in a disguised
form.

We will bring ot our hasic ideas with a simple example. Let the problem
ug = uy, u{z,0) = f(z} (1.1.1)
be given on z > 0. t > 0: no beundary data at z = 0 are needed Lo make (4.1.1)

well pused. To obtain an approximate solution on the grid 3,n > 0, we can specify

initaal valyes x*‘,’ and v; for ; > 0. and apply LF {1.1.8) fat n > 2 at points 7 > 1.

An adddional boundary formula is then necded for v3, n 2> 2. Let us pick the

zeroth-order space extrapolation formula (3.2.29),
=t nz ), “12)

and procecd to slep forward in time.
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Instability se spontaneous radiatian from the boundary

Inatability refers to the unbounded amplification of small perturbations. Now
imagine that at some pair of adjacent time steps & rounding crror or other perturba.
tion happens o be introduced that has the form of & wave front with (x,2) = (1, -1},

v = {(-11" Gh<e

) Gh> e (413

for some ¢ 3 h. To be a little more careful, we could make v decrease smoothly to 0
near z = ¢ rather than abruptly. Then what will happen as ¢ increases” At j =0,
(4.1.3) satisfies both LF and {4.1.2), so the oscillation (4.1.3) will persist. At sh = ¢,
the wave front will move at the group specd for the given pair {x,z)- which by {1.2.5}
is +1. Thus as ¢ increascs the wave will propagate rightwards into x > 0 at speed 1.
The initial perturbation, with sum-of-squares energy on the order of ¢, will give rise
to a growing solution with energy on the order of « + ¢. Since « might be arbitrarily
small (so long as h is decreased accordingly), this amounts Lo an amplification of
the initial pertutbation by an unbounded factor. The difference scheme u unstable,
because there exists a rightgoing wave that satanifics both the mterior formula LF and
the boundary condition (4.1.2).

DIMONSTRATION 4.1, Of course few random perturbations look exactly fike
(1.1.3), but instability comes about berause almost any data will excite this mode to
some extent. One can verify this experimentally . Fig. 4.1 shows a computation on a
grid with h = 1/200, » = 1/2. For initial data we tock vf = t',' = 0 for all ; except

for the “random” nonzero initial values

! t
= v] = 3 (4.1.4)

&
t

=1, 7
Figs. 4.1a-c show the resulting solution at steps n == 1,100, 200, 201, i.e. ¢ = 0025,
.25,.5,.5025. Obviously the expected incoming mode has been excited, and apparently
no others,

{n a realistic computation, truncation errots wonl! usually causr a similar radia-
tion of ¢ rgy in this mode from the Loundary. From (1.2.5) o Fig. 1.1a we know
that there are many other rightgoing medes for LI in fa-t, any wave with §¢h < x/2
and wk > 7/20r €h > %/2 and wk < /2. The mode (&, 2) = (~1,1) is the simplest
example. None of these lead to instability, however, because none of them aatisfy
(4.1.2).
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FIG. 4.1. Instability as spontancou~ radiation from the bound.
ary. The initial data (4.1.4} slimulate a righlgoing wave wilh (£, w) =
(0,%x/k) and C = 1. The modet is LF for ue = u, with A = 1/200,

A=, v;,‘“ = v?“.

Instability as ap infinite reflection coefficient

Another way to look at the instability of initial boundary value problems is in
terms of reflection coefficicnts. In Example 3.5 we have considered the boundary
condition (4.1.2) already. and derfived the reflection cocflicient formula (3.2.31)

Alz) = —:,(‘ h “), (4.5.5)

1+ x

where k¢ = x¢(z} is the spatial vasiation factor for the incident lefigoing signal.
From this formula it is evident that A becomes infinite if (and only if) £y = -1.
By (2.1.8), LT for (4.1.1) has two modes with x = —1, namely {x,z) = (-1,1) and
{=~1, =1}, Of these the latter is the leftgoing one, and by (2.4.8), the corresponding
reflected rightgoing mode is {x,. 2} = (1. ~1). This is exactly the unstable mode we
have identified in (4.1.3). The difference scheme s unstable, because there ezists &
leftgomng wave for which the reflection coefficrent 1 infinite.

DEMONSTRATION 4.2. 1t is not possible to obscrve infinite amplification in
reflection. but we can come arbitrarily close. Fig. 4.2 shows an experiment involving

the same model as Demo. 4.1. In Fig. 4.2a, an initial Gaussian packet
1
By = - = G{mrper o WY o8yt {4.1.8)

is shown for t = n = 0. As ¢ increases, this packet moves left at speed C(—1,-1) =
—1, hits the boundary, and reflects rightward. Fig. 4.2b shows the result at ¢ = 0.5.
One secx immediately that the reflected wave is not a packet, but a plane wave as
in Fig. 4.1 the unatable mode has become lodged in the boundary, where it will
continuc to radiate forever. In addition, there has been an 18-fold amplitude increase
from 0.1 to 1.7725.

By doubling the width of the initial packet, one doublies the refllected amplitude.
Figs. 4.2¢-d show Lhe experiment repeated with the width 025 of (4.1.8) repiaced by
.05. Now thc reflected amplitude is 3.5449—just twice the previous value. One can
aceount for this in various ways. The simplest is Lo argue that the broadened pulse
interacts with the boundary for twice as long, cnabling twice as much of the unstable
mode o accumulate there, A more clegant explanation starls from the fact that any
finite packet cannot consist of cnergy al exsctly the ceticial wave number §o = 0
(the uncertainty principle again), but will approximate §9 with some effective wave
number £q. Eq. {4.1.5) suggests that the observed rellected amplitude should behave
like nat.

" const.”
amplitude Ry el (4.t.7)
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F1G. 4.2. Instabilily as an infinite refiection cocfficicnt. The initial
lcfLgoing wave packet (4.1.6) with (£, +) = (x/h, x/k) hits thc boundary
and refieets as a wave front with (§,w) = (0, x/k) of mueh greater
amplitude. Doubling the widil of the pachct doubles the smplification.

The mode! is LV Tor ug = uy with A = 17200, X = 5, vg*! = u}*}.
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ly doubling the width of the packet, we have cut £g — oy in half, and thereby doubled
(4.1.7). In §8.5 we will pursue this kind of reasoning in some detail. 1t is likely that
by an extension of the ideas of §3.5, one could also get an exact expression for the
reflecled amplitude.

Instesd of widening the packet, we could have made h smaller. As a general
rule one can expect amplitude increases comparable to the number of grid points in
the initial packet. For fine enough meshes this implies arbitrarily great increases in
amplitude. This amounts to instability in any norm.

Discussion
Of course not all numerical boundary conditions are unstable. To obtain stability

in the present problem, we might replace (4.1.2) by the zeroth-order space-time
extrapolation formula (3.2.32),

= (n21) (4.1.8)
From the corresponding equation 2 = x and the equation (2.1.8) for LF, it is im-
mediale that now @ admits no regular solutions except (x, z) = (1,1} or (~1,~1).
Since both of thesc are lcfgoing, no spontancous radiation from the boundary is pos-
sible. Similarly for the reflection coefficient point of view, (3.2.34) shows that A = oo
is possible only for z = —1/x¢, a condition that is never satisfied ynder LF,

Obviously the possibility of spontaneous rightgoing modes and the existence
of infinite reflection cocflicients are algebraically related, so our two approaches to
instability arc far from independent. They are however not cquivalent, for it turns out
that there are a number of problems Lthat admit a spontancous rightgoing tnode, but
for which all refiection coeflicients arc uniformiy bounded. To what extent such models
act unstable in practice is open to question, and these arc among the “borderline
cascs” of stability L be discussed in §5. Chapler 5 is also concerned with another
weakly unstable borderfine case, namely the situation in which @ sdmits a steady
state solulion thal is rightgoing but nol strictly rightgoing. This in turn divides into
Lwo principal subcases correspanding to positions (5)-(6) and (7) of Table 2.1,

For the remainder of §4, we will mainly pursuc the interpretation of instability
as the cxistence of a spontancous righlgoing mode. Unlike the reflection coefficient
interpretalion, this one corresponds cxactly to the GKS stability criterion, WL is also
relatively casy to make rigorous.

Throughout this discussion our philosophy is that instability need nol be studied
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only abstractly, for it is mainly ciused by sitmple physical mechanistns, By concentrat-
ing on these mechanisins we can show Lthat most CKS-unstable difference schemes are
susceptible to unstable growth in the £, norm (Thms. 4.2.3, 4.2.4}, not just in the
much less natural GKS norm (Thm. 4.3.1). In the process of isolating this strongly
unstable case, we also come to better understand the borderline cases for which the

situation regarding stability is less clear.

4.2 {;-stability; growth theorems

We will consider stability for a general difference model of an initial boundary
value problem for a hyperbolic system of equations, as described in §2.5 and §3.6. For
much of what follows we could use exactly the formulation of those scctions, but to
make contact with the GKS stabilily definition, il is nccessary to include in the model
an inhotnogeneous forcing funciion F{z,1) and inhornogencous boundary data git).

Consider then the first-order system (ef. (2.5.1))
a a
Zuz ) = AL u(zit X 2.
8:"(2 ) Aazu(z ) + F(z,1) (4.2.1)

on the guarter-planc 2.t > 0, where u(z,t} and F(z,t) are N-vectors and A is a
constant ¥ X N matrix. Let (4.2.1) be modcled in z > 0 by 2 fixed s + 2-level
difference formula as in (2.5.2), but with the inhomogeneous terin added:*
s
Qv =3 Quul T + kF(jh,mk), >t (42.2)
s=0

We let Q denote the homogeneous part of this formula {i.e. with £ = 0), and we as-
ptions 2.1 (diagonalisability)
and 3.2 (n.,n,). If (4.2.2) is applied for ; > ¢ then boundary formulas are required
to determine values v} for j = 0,...,£ — 1, a8 in (3.8.1). These will be of the form
(3.6.1), but with the inhomogencous term g sdded:

sumic that Q is Cauchy stable and that it satisfies A

Iman *max
Syev; " =g", (4.2.3)

)0 em~1

where g™ is a vector of leagth n,. For initial conditions, we aspuine a set of formulas

W=/, 0<j<o, 0<e<e (4.2.4)

*To get a higher nrder of sccuracy, one might wish o represent F in the model in a more
complicated way. Thin is no problem for the stability theory; sec (Go8)].
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The entities {S,,}. {g"}. and {/]} incorporale approximatians of all of the boundary
or initial data that together with (1.2.1). make up the physical problem to he modeled
(S,,) includes in addition any purely numecrical boundary conditions. We let the
symbol Q denote the complete difference model, (4.2.2) (1.2.4).

We assume Lhat the following solvability property holds, the natura) extension of

Ass. 3.3 to inhomogeneovs boundary data:

Assumption 4.1. The model @ can be solved boundedly in the sense that if

uRTImAL L y™ € £y and g™ are given, then v™*! is uniquely determined, and it

satisfies a bound
fman
e g < M’( 3neept e hlc't%).
=0

where the norms || - {ly and | | are defined as i (3.6.2).

In sctting up the problent we have made three irnpottant simplifications. We
have left out

(i} variable coefficients A = A(z,¢);

(i) grid-dependent formulas Q, = Q, (&, A(k));

(iii) undifferentiated term Hu in (4.2.1).
An important feature of the GKS theory is that it extends to problems with these
complications, and although we will discuss only the simplified problem without them,
we believe that the same is truc for our own argumants based on wave propagation.
However, one effect of (i) and (iii) should not be ignored, and that is that they make it
possible for solutions to (1.2.1) to grow exponentially with £. Therefore in rewriling the
definition of Cauchy stability from §2.2 and §2.5 for initial baundary value problems,
we recognise this possibility explicitly, following Defn. 3.1 of [Gu72):

Defn. Let Q be applied with homogeneous boundary and forcing data, g = F =
0. We say that Q is Z;-stable if therc cxist constants ag > 0 and M > 0 such that,
for all @ > ag, the following cstimale holds for all n > 0 and all sufficicntly small &:

e o™il < MY USME (1= k). (423)
om0

Here I ||a denotes the &5 norm (3.86.2). 4,

The definition permits an exponential growth of the solution . -at a rate ¢®°*, however,

that does not increase as the tnesh is refined.
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We are now in a position to identily mechanisms that can render a differcnce
scheme £y -unstable  The first important mechanism is Cauchy instability. I the
interior formula & is ot Cauchy stable, then it cannot satisfy a bound (4.2.5), and
easy Fouricr arguments show that then Q cannot be £5-stable either. But we have
assumed that @ is Cauchy stable.

The second important mechanism was studied by Godunov and Ryabenkii in
the early 1960's [Ri67]. Since Q does not extend into z < 0, a solution of the form
2™x? 3%y (2.5.8) with || < | belongs to £, for each n. If such a solution exists with
|z| > 1, then once again we have exponential growth and therefore £5-instability. One
can think of this as spontaneous radiation from the boundary of striculy rightgoing
energy of type (9) in Table 2.1, that is, of a signal of the kind illustrated ir Fig. 2.2a.

For this kind of instability the boundary is definitely involved, and we know that
the boundary can couple various wave components v, (§2.5). Therefore in general
we must look not just for ane- solution z*&?;%y, but for linear combinations of such

modes. We define:

Defn. lct 2 € @ satisfy )z} > 1, and suppose Q with F = g = 0 admits as a

solution a lineat combination of rightgeing modes

]
V=g, = Y el a0 14.2.6)

-1
as defined in (2 5.10), where for each 3, |x,] < 1. Then @ is an eigensolution of
Q with eigenvalue z (Eigensolutions with |z] < 1 can also readily be defined, but

these are not refevant to stability)

In other words, an eigensolution is a fiuear combination of signals from position (7} »f
Table 2 1 in the case || = 1, or [rom position {9) in the case J2f > 1, Lhat satisfies both
the homogencous interior formula (4.2.2) and the homogeneous boundary conditions
{4.2.3). (We will abuse terminology by referring to both ¢ and 2"¢ as eigensolutionn,

as convenient.) We define further:

Defn. A strictly righ i i luti is an

i g lution consisting
entirely of atrictly rightgoing signals. Equivaiwently, it is an eigensolytion with |2 > 1
{position (9) of Table 2.1). ,,

The Godunov-Ryabenkii theorem now states:
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Theorem 4.2.1 (Godunov-Ryabenkii theorem) /R167 A necessary conds-
tion for £3-stabihity of Q 1s that there czist no strictly rightgoing eigensolution.
Proof. Suppose thete cxists a strictly rightgoing cigensolution ¢. If vy = "¢,

is taken as initia! data {4.2.4) for 0 < o < s, the solution as n increases will be

v} = "¢, for all n. Since t = nk, this means that v will grow like [s]/*, This

growth is unbounded for any t as k — 0, which contradicts (4.2.5). ¢

This theorem has a direct restatement in terms of the reflection matrix D¥! of
§3.6:

Theorem 4.2.2 (Godunov-Ryabenkii theorem, determinant condition).
A necessary condition for l3-stability of Q is that for all z with |z] > 1, the metriz
D'*! of (8.6.4) is nonsingular, i.e.

det DI*(z) % 0 if 1zl > 1.

Proof. 1f D!(2) is singular for some z with |z] > 1, let a'"! be a corresponding
homogencous right eigenvector. Then Lhe function
.
¢ =3 al'elitv, “27)
=t

as in (2.5.10), is an unstable strictly rightgoing eigensolution. §

The limitation of the Gedunov-Ryabenkii condition is that although it is neces-
sary for stability, it is far from sufficient, both in theory and in practice. What it
fails to take into account is a third instability mechanism, namely the existence of
strictly rightgoing waveltke solutions {i e. with |2] = [} = I}, For this we make use
of the concept of a generahzed eigensolution, which was introduced by Kreiss but is

def..ed here from our wave propagation point of view:

Defn. let 2 € € satisfy |2} = 1, and suppose Q with F = g=0adnitsasa

solulion a linear combination of rightgoing modes

L)
W=, =" E acljhd, e #0 (4.2.8)
(]

as defined in {2.5.10}, where for at least one 1, |x| = 1. Then ¢ is a generalised

eigensolution of Q with generalised cigenvalue :.

in analogy with the earlier definitian we now state:
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Defn. A strictly rightgoing generalized eigensolution is a generalized
eigensolution conaisting entirvly of str ity righlgoing signals. Equivalently, it is any

generalized cigensolution with |x,| = | and C, > 0 for all 1. 4,
This definition leads to the (oliowing theorem, whick is new. Lel § denote the
multilevel solution operator for the homogeneous model Q with g = F = 0:

St {um e o e (0™ e ) (4.2.9)

Let these s + 1-level vectors be normed by
.
oo i = 3 il {4.2.10)
om0
with the norm on the right defined by (3.8.2), and let }|S]j; be the induced operator

norm.

Theorem 4.2.3. A v dition for {;-stabslity of Q s that there exist

no atrictly rightgoing generalized eigenjolution. If there does czist a strictly rightgoing

generalized eigenaofution, then
5™z > <onst. v/n (4.2.11)

Jor infinitely many integers n > 0.
Proof. See Appendix B. g

The proof of this theorem has been deferred to an appendix for clarity here.
However, the explanation of the result is exactly what was discussed in §4.1. If the
initial data consist of a narrow signal at the boundary of the form of the generalized
eigensolution, then as lime elapses it will move steadily rightward, as suggested in
Fig. 4.3

As a result Lhe solution grows in £3 ax fast as \/fi. Precisely this argument can be
made rigorous, but for technical simplicity the proof in App. B proceeds somewhat
differently.

Whether (4.2.11) captures the rate of growth observed in practice for an unstable
difference modcl appears to depend on reflection coeflicients. In Demo. 4.2 we saw that
il an infinite reficction coefficicnt is present, then amplitude growth may be obscrved

that is proportional to n, not /n. Therefore we propose:

Conjecture. The bound ({.2.11) u sharp in the sense that there are some £;-
unstable models  admitting strictly rightgoing generalized eigensolutions for which

5™z € const. VA ¥n > 0. (4.2.12)

However, suppose that Q has g strictly rightgoing generahzed ergensolution for which
the reflection matriz [D17(z)] "' DI(2) &s infinste. Then [4.2.11) can be strengthened
to

Sl 2 const.n ¥n > 0. {4.213)

in addition to u'.nbilit.y with respect to initial data f, it makes sense to consider
stability with respect to lorcing data F or boundary data g. Our proof of Thm. 4.2.3
can in fact be used Lo show that a bound analogous to (4.2.11} holds for problems
driven by F. Probably the natural analogs of (4.2.12) and (4.2.13) hold aiso. For
boundary data, however, the situation is differcnt - we get growth proportional to n
regardless of the reflection coeflicients. Let Q be applied with [ = F = 0 but with
9 # 0. Let S(,:) denote the operator

S(;? L gre o™ (4.2.14)

with norm induced by &3 norms for g and v™ with respect 1o ¢ and z, rempectively.

Theorem 4.2.4. 4 ¥ dition for stability of Q with respect to bound-
e taml ary data is thet there exiat no atrictly rightgoing eigensolution or genevalized eigen-

c>0 | solution. If there does e2ist such 8 sclution, then

=z _..____—_L
Fic. 43 1S4Ms 2 const.n Vo> 0. (4.2.15)
) T T
L}
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Proof Sce Appendic B. g

There is little doubt that as with (4.2.13), this bound is sharp for the class of

strictly righlgoing gencralized eig lutions as a whole, although faster growth can

be obtaincd in particular cases.

1t is natural to ask whether the growth rates (4.2.11), {4.2.13), (4.2.15) are severe
enough to cause trouble in practice. For the latter two cases ilinnr growth) the
answer is clearly yes. Whatever the problem being solved, rightgoing radiation at
the boundary will tend to appear in thesc cases, causing the computation to give
unreasonable answers. As a minimutn it will result in failure to converge as the grid
is refined. The numerical examples of the next chapter will iliustrate these claims (see
especially Figs. 5.26, 5.4.3 &) For the question of stability with respect to initial data
in the finite reflection coefficient case (1.2.11), however, the situation is more delicate.
We will give evidence in Chapter 5 that the instability here is quite weak in practice.

There is another important justification for considering the kind of growth we
have described unstable, which is often mentioned by Kreiss. That is, if a second
boundary is introduccd in the problein being modeled, say at z = 1, its effecv may
be Lo convert an algehraic growth rale to exponential. If one hopes for a stability
theory that permits onv Lo investigate the stability of cach boundary individually, it
follows that a inodel with a strictly rightgoing gencralized ecigensolution will have to
be considered unstable lowever, we will discuss problems involvir. |, L+ bouncaries
at length in §5 and §6.5, and conclude that the exponential growth eceurs only if the

unstable boundary has an infinite reflection coefficient.

4.3 GKS-stability

Theorems 4.2.1 and 4.2.3 give neceasary but not sullicient conditions for stability.
As has been stated, we believe that in practice these conditions are more or leas
sufficient also, al least for stability with respect to initial data, and we will give
various examples in support of this vicw in §5. However, no estimate on the growth
of v is available to make this opinion precise. In fact in at least one {quite contrived)

situation, these conditions are demonstrably too weak to ensure {p-stability. This
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is the case in which Q admits an cigensolution with {2} = 1, but in which z is a
delective eigenvalue of Pi(2) (§2.5) and it is also defective with respect to the boundary
conditions. In this eveat Thm. 2.1.1 implies that one must cxpeet algebraic growth
with n,

A striking #chievement of the GKS theory is that it obtains a necessary and
suffictent condition for stability. This is accomplished by cxtending the stability
conditions of Thms. 4.2.1 and 4.2.3 to include non-strictly rightgoing solutions, and
by strengthening the definition of stability. Here is the new definition, which appears
as Defn. 3.3 in {Gu72): :

Defn. Let @ be applied with homogencous initial data f = 0. We say that Q is
GK S-stable if there exist constants ag > 0 and Af > 0 such that, for all @ > aq,

the following estimate holds for all sufficiently small k:

2 -1
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This definition is quite forbidding, and sorne remarks oo it are in order:

{t) Unlike {4.2.5), the bound (1.3.1} imvolves # (and g} rather than f. This
is an unfortunate technical limitation that is miade necessary by the proofs of the
GKS theorems, which are based on a Fourier trarsformoin ¢ 10 {4 3.1, invalved f
but not F, then one would be able to extend it to a bound invelving F oalso by
means of the discrete analog of Duhamel's principle. The coancetion in the other
dirvelion is however not so easy; the obyious approach requinis the introduetion of
a factor 1/k in the right hand side of (4.3.1) For the problea of well posedness of
partial differential cquations (as opposed to differenee models), by contrast, a cainplete
connection between [ and F is known o hold [RaT2].

(2) The Fouricr transform arguments are also responsible fur the appearance of

decay factors £72¢

on the right as well as the left, and for the rormalizing Fractions
(3:27). Like (£.2.5), (1.3.1) permits exponential growth al the rate e,
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(3) The boundary term 3 [le=2*v,||? gives special weight to the behavior of the
solution near z = 0. This is an important point that we will discuss below and in §5.

(1) A valuable property of this definition is that one can show that the set of
CKS-stable difference schemes is open in the foliowing sense: if Q is stable, then
a perturbed scheme Q is stable also, provided 1@ -Ql = O(k) as & — 0 (Thm.
4.3 of [Gu72{). It is this robustness that makes the GKS theory extend readily to
problems with the complications (i)-(iii} listed in §4.2, and also to problems with two
boundaries.

Because of (3), GKS-stability is a substantially more stringent requirement than
,-stability. However, it is not known whether GKS-stability actually implies £;-
stability. Kreiss et al. conjecture in §3 of {Gu72] that it does.

The main GKS theorem is like Thms. 4.2.1 and 4.2.3, except that the hypothesis
of a strictly rightgoing mode is removed and an additional dissipativity restriction is
added:

Theorem 4.3.1 (GKS stability theorem). Assume that @ 1is either z-dissipa-
tive or strictly nondusipative.® A necessary and aufficient condition for GKS-stablity
of Q 1 that there exust no rightgoing eigensolution or generahized eigensolution fi.c.,
no eigensolution or generalued eigensolution with |z] > 1).

Preof This theorem is equivalent to Lemma 10.3 and the sentence following in
Gu72. g

The proof given in [Gu72] is a lengthy one, and to prove that the eigensolution
condition is sufficient for stability, we know of no alternatives. But asin Thm. 4.2.3,
the necessity can be cstablished by arguments of dispersive wave propagation. We
have stated that the cssentisl feature of the GKS stability definition is the integral
slong z = 0 that it includes. The foliowing arg: will work for any stability

definition involving such a boundary integral.

Sketch of proof of necessity in Thm. 4.8.1. Asin the proof of Thm. 4.2.3, suppose
Q admits a rightgoing solution {£.2.8). Once again, we want to construct an initial
signal consisting of this solution for z near 0, cutting off smoothly to v == 0 near z =
¢, aa in Fig. .38 (Since the GKS-stability definition involves F rather than f, this

*This is Asswmption 5.4 of {Gu72]. it appears to be unknown to what exteat thie restriction
i necessary for the theorem 1o go through. We conj that for di Hsable difference
model, at least, it is unnceensary. Osher's resulle of [Os60b] show this is tewe for at lesst
some problems.

im

—

signal must be introduced theough F rather than f} Now as t increases, each wave
front in {4.2.6) remains stationaty or moves right. In cither event the initial signal sits
essentially unchanging near the origin. Because of the boundary term 3 lje v, ||}
on the left of {4.3.1}, this stationary behavior can be seen to be GKS-unstable.

The GKS theorem has a simple restatement in terms of a determinant condition
(ef. Thm. 4.2.2);

Theorem 4.3.2 (GKS stability theorem, determinant condition). A
necessary and sufficient condition for GKS-stablity of Q is that for all 2 with (2] > 1,
the reflection matriz D" of (8.6.4) is nonsingular, ie.

det Dz} £ 0 if jz| 2 1.

Proof. The detcrminant condition is equivalent to the condition of Thm. 4.3.1,
by the same argument as in the proof of Thm. 4.2.2. g

To summarize §4.2 and §4.3, we have shown that unstable difference models
of initial boundary valuc problems can be recognized by the unstable steady-state
solutions they admit. If Q admits a strictly rightgoing solution, it is unstable in &y
with a growth rate of at least v/, and probably n when an infinite reflection coefficient
is present. If it admits a rightgoing solution with no strictly rightgoing components, it
is still unstable according to the GKS defrition. Since the definition of “rightgoing”
for wavelike modes depends on the group velocity, these resuits demonstrate that
group velocity has a fundamental role in determining stability.

We have not mentioned stability for problemns with interfaces, excepl to fold
them into initial boundary value problems. However, the results above unfold casily,
and we find: an interface model i3 unstable if it admits a steady-state solution that &
outgoing from the point of view of the interface (lefigoing on the left, rightgoing on
the right).

‘We have also not mentioned the “perturbation test for gencralized cigensolu-
tions,” which is described in various accounts of the GKS results, but which many
practitioners find mysterious. This is nothing more than the periurbation test for
distinguishing positive and ncgative group velocities that was described in Thm. 2.3.2.
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4.4 Stability for dissipative schemes

All of the staterments of the past three sections apply to dissipative formulas,
for nowhere have we assumed nondissipativity. In particular, recall that Thm. 2.3.1
guarantees that the group velocity makes sense for any mode with |z = |x| = 1, even
if it is admitted by a dissipative formula. However, it is worth discussing dissipative
models explicitly, both because the stability criteria can be simplified in this case, and
because dissipative models are a natural point of confusion regarding the validity and
scope of the group velocity appreach to stability. .

Suppose first that the interior formula Q is totally dissipative, which means that
Ixf = lz| = 1 is possible only for &k = z = 1 (§1.2). From ‘Table 2.1, it is evident
thiat this restricis the set of rightgoing solutions admitted by @Q, apart from z =
& = 1, tu the pessibilitics 'zl = 1 > ix| and {z[ > 1 > |&l. From the definitions of
cigensolutions and generalized cigensolutions in §4.2, it follows that the GKS theorem

{Thin. 1.3.1) takes tht {allawing specia) Torm:

Theorem 4.4.1 (GKS theorem for totally dissipative sehemes). Let Q be totally
dussipative. A necessary and suffictent condition for GKS-stabiity of Q is that the
Jolioung conditions hold:

{1} There are no (rightgoing) etgensolutions witn Jz| > 1;

{u} There are no [rightgoing) generalized ¢igensolutioms that involve the wawe

mode x == z = 1.

Similar speeial formylations could be given for the theorems of §1.2.

The advantage of this statement over Thm. 4.3.1 is that it enables one to limil
the search tor unstable wavelike modes to the single point & = z = |. This point
e special, of course, in that it corresponds to the partial differential equation heing
modeled whenever @ is a consistent approximation. Therefore one is templed to
rewrite condition (i} above as the condition that Q is consistent with a well-posed
initial boundary value probleac Hawever, this is nol strong enough, because, Tor
example, of the possibility of an unstable rightgoing solution cousisting of some energy
in the mode x = z = | plus additional encrgy in a component with z =1, [x] < L.

As mentioned i §0 2, much of the early work on stability for models of initial
boundary value problems was confined to the case in which @ is a two-level z-
disgipative farmula, henee by Thm. 2.2.3, tetally dissipative. Therefore the poimt
x = | takes on a special significance in these papers, The results derived in them
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are not necessary and suflicient conditions, but they have the copsiderable advanrtage
of being stated for the £ norn. In particular, the vain theotems of [K166). [0<69a],
and [Kr68! state appeonimately that for two level dissipative models, conditions f1)
and (u) above are suflicient for ¢;-stability.

Now supposge that @ is r-dissipative bul not necessarily t-dissipative (§1.2).
This possibility comes up only for multilevel schemes, such as LFd {Leap Frog with
dissipation, §1.11. Then Thm 4.4.1 holds if {15} 1s replaced by the condition that there
is no rightgoing generalized eigensolution involving a wave mode with {2l = 1, x = 1.
This cluss of problems has not received <eparate treatinent in the literature,

These results naturally iead to an impottant guestion. does one need dissipativity
in order to be able to derive theorems involving f.-stability instead of just GKRS-
stability™ The tesults in §4 2 have shown that for neeessary conditiors ove does not,
Bt this leaves open the rmatter of s:fcient conditions Our befief i that althnugh
£ resaits may be harder to dernve i the bomlissipatse vase, there 1 no reason why

they shewed heunobrainahle In facto ot has afreas

Socicmentoned 0§13 that s

Bkefy thar GRSorabality ampdies £oovabahty i who b v Thm 131 provides one

soch st Tent condition althoug'. as will be chown 0 G340t not sharp.
Flodly, what if @ is neither 2-dissipative nor wtally dissipative”™ For exanple,

¢ maght b oa tdissipative scheme <ack as BE o 1aF (App A adouttng a frite

colleetion of wavelike

thodes rather than a continunm of thers 18 is certanly likely
that Than 4 480 e v abd for these probicms if condition {u, s evended i the obvious

way to rover all points where (x| = J2| = i possibls under (2 In funt Osiee’s rosults

of T0NuIb! shouw stability Tor BE wind Eal with cortam Rasads of bou

rlary conditions
isee ooty XXIH of [1OS68bY) However, as mentioned it the Last section, the preafs

of (Gt do not cover this case.

In addition to these theoretienl romarks, there is a practical point ta be men.
tioned: totally dissipative modeis aee maick tese often ureable than nondissipative
anes. In practice, despite e gqualtiboation above, aee rardly chvmaders instatolities
of 1ype (5t) in Thin 141, so that this eaves the possibilty of vigensolitions (1) For
simple problems in ane dimension, these alinost nevet appear unless one is tocking
for them <o that as a rule. one can ustaily make an wnstabie meae ! @ stable by
adding some dissipation. Howover, s the conoaty of the pealloe goes up, and
espreintly i more that one space dia nsion s vl the el

totally disstpative

1




implies stable” becomes less and less reliable.

An example will suflice to show Lhat even for very simple problems, enc can devise
unstable totally dissipative models. Let uy = u, be modeled by LW with A = 1/3
for j > 1, together with the boundary formula

W3 =g+ Mvg - o). (e

One readily verifies that this scheme admits a strictly rightgoeing eigensolution of

Godunov-Ryabenkii type: 7 = 31/27, x = —1/3. Numerical cxperiments confirm

that any solution attempted with this scheme is rapidly obliterated by moise growing

at the rate (31/27)". lHowever, note how contrived the condition {4.4.1) is it would
never be proposed in practice.

Sections B 2 and 6 3 investigate the cannection between dissipativity and stability

further for some boumlary and interface problems.

4.5 Some general classes of unstable difference models

In practice, as'we have mentioned, a large proportion of instabilities that appear
in differenice models of (nitia) boundary value problems are not cigensolutions but
generahzed egensolutions. Within the range of gencralised eigensojutions, it turns out
Turther that in practice, a large proportion of instabilities involve simple sawtoothed
waves with z = —1 andjor & = —1. (Analogously, when a difference model for
an initial value problem is unstable, it is usually an unstable sawloothed mode that
dominates.} As we saw in §1, sawtoothed modes arc by no means the only waves
that travel in the physically wrong direction. The reason for their predominance in
practice is that other waves which do so, for which « and 2 have values on the unit
cirele other than %1, do not as often satisfy the numerical boundary conditions.

It was with the significance of sawtoothed parasiles in mind that we defined the
concepta of - and {-reversing diffescnce formulas in §1.5. We ean now apply these
definitions Lo delineale some gencral ciaascs of unstable difference models. All of the
theorems in this seclion are new, but they are straightforward generalisations of well
known examples. One purpose in collecting them together is to demonstrate that once
the stability question for initial boundary value problems is given a physical meaning,

I

it be natural to ider diference

in groupe rather than one by one.
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1: space extrapolation with !-reversing formulas
Let u, = u, be modeied by a diffcrence formula @ for 3 > £ coupled with

(g, — 1)st-order space extrapolation boundary conditions {cf. (3.2.29}))
S: K-, =0 (0<;<¢-1) (4.5.4)

for the boundary points j < £ with g, > 1 for each j. For the case of Q = LF
and £ = go = |, we showed in §4.1 that this scheme admits the unstable strictly
rightgoing mode (x,2) = (1, —1), and the samne result has appcared in [Gu72, §6| and
in various other places.

liere is a natural generalization:

Theorem 4.5.1. Any consistent t-reversing difference formuls Q for (1.1.1) s
f3- and GKS unstabic 1 combination uath the dboundary condition S.

Proof Assumc first @ > 0. The sawloothed wave v} = (-1)" salisfies S for
any set {q,}. and if Q is t-reversing, it also satisfies @ and has C > 0, since by
consistency v} = | must satisfy Q with C = —a < 0 By Thins. 4.2.3 and 4.3.4, the
modcl is therefore {3- and GKS-unstable. For a < 0. on the other hand, ¢} = 1 is
itsell an unstable rightgoing mode. (In this case the model is not consistent with any

well-posed differential equation.) 1

This is an example in which the reflection coefficient for the unstable mode is infinite,
as was pointed out in §1.1, so thal growth like [[§7[l > const. n can be expected.
Thm. 4.5.1 applies even for scheines that are z- but not t-dissipative, such ax LFd
or various analogous schemes consisting of LF4 with spatial dissipation added. The
instability of § with LFd has been pointed out by Goldberg and Tadmmor in Example
4.1 of {Gu81]. One can also rcadily extend Thm. 4.5.1 to t-reversing formulas in
combination with arbitrary extrapolation boundary conditions, provided that they

arc al lcast zeroth order accurale and confined to a single time level.

2: “one-sided leap frog” with t-reversing formulas
Similarly, it las been noted in various papers that if (1.1.1) is modcled by LE for
J > | together with the boundary condilion

05! =v§" + Dalo] - 95),

then the result is GKS-unstable. As a gencralization, consider any act of boundary
conditions
=] 4 2keDe] 0<5 <L, (45.2)




where cach 1, is a spatial difference aperator consistent with @/dz that involves at

most j points to the left of center We oblain just as abave

Theorem 4.5.2. Any conswstent t-reversing difference formula @ for (1.1.1) is
¢;- and GRS -unstable 1n combination with the boundary condition {4.5.2).
Proof. Same as for Thm, 4.5.1. g

3: sign-ch ing caefficients; 1i instability

Consider the caefficient-change problem (3.2.1). As in Example 3.1, suppose we
model this on a grid (jh,nk) by consistent diffcrence formulas Q.. for § < -1/2
and Q. for j > 1/2, respectively. According to (3.2.5) or (3.2.6), the reflection and
transmission coeflicients will become infinite in this problem if there exists a steady-
state solution in which x, = &¢. thal is, a uniform wave that is leflgoing on the left
and aightgoing on the right If sgra . = sgna,, then most medels do not admit such

solutions, and they are stable. Bat stability vanishes if sgna_ % sgpo..

Theorem 4.5.3. lLet (9.2.1) be modeled by consistent formulas Q_ and @, as
ndicaled above. Ifa. > 0 > a., the modelss {;- and GKS-unstable. Ifa_ < 0 <
a, and ¢ and (J, are both r-reversing or both ¢ reversing, the model is again {;-
and GK'S unstable.

Proof ln the first

e. the constant Tunction v} = 1 is an outgoing wave that
satisfies all of the difference fofmulas, so the model is unstable by Thms. 4.2.3 and
1313 Inthr sccond case, the same gors for a space or time sawtooth (—1) or (-1)".
[ 4

This clemnentary example s related to cerlain known examples of nonlinear

nstabilty. If the Burgers cquation

By = Uy,
is todeted by the leap frog scheme
i -1
et~ el =g, -y,

then exponentially growing instabilities arise that are marked by oscillations of the
furm [FaT3,K¢73)

v =0, vl <0, v, >0, vl 0
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Though it s casy enough to exanune this penbhor discctly, it aiso has a rough
interprotation along wave propagation dines. LI iv an £ seversing formula, and the
instability obscrved looks approvimitely Lke the ouizoir g spatial sastuoth (= U7 of
That 153 Trom the point of view of the sign-change interface at 1,3 3. The linear
growth of this outgoing wave would be converted 1o exponcntial by reflection at points
7, and z, 43 even if the cocfficients v, did not change from one time step to the next;
the fact that they do makes the growth still more rapid.

For an interes

ng study of a nonlinear instability with a more subtle explantion

related Lo wave propagation, see the paper [Be81) {especialiy §4) by Briggs, et al.

4: “coarse mesh” mesh refinement

Consider the “caarse mesh approximation” mesh refnement seheme of Example
3.4, in which a three-point linear multistep formula is applied with space step h_
for x < 0 and A, = mh_ fac 2 > 0, with the Tormis 13222 imposed at the
interface. Arcording to (3.2 23], this scheme possesses an infinite retlection eaethicient
il there exists a froquenvy 2 for wheh k¢ {tratsm stedt w2 87 [refiected), When m
is even, this sitnation can easity accur. The follawing theorem gencralizes the setup

somewhat:

Theorem 4$.5.4. Let (1.1.1) be modeled by g consistent £ veversing S pont
formula Q_ on 1, = jh for ; < ~1 coupled uath any consictent formuls @, on
2, = jmh for 3 > 0. with left hand values for the latter near the interface taken
where necded from pornts imh withy < ~1 [fu < 0 and m 12 even, the model s 8.
and GRS unstable. [fa > 0 and ™ 15 cven and both (@ ond . cre ! reversmg, the
model 11 agamn £+ and GKS unstable. g

Proof. In the case 8 < 0, cor sider a wave

(-1y (y <0}
v = T 153
g { ! U zo 153
On r > 0, this wave is constant and has C = —a > 0. On z < 0, it is sawtoothed

and has € < 0 since Q- is r-reversing Thus (15,3} 1~ outgeing on both sides of the
interface. Morcover af m is even, it obviously satisfies the Loundary formulas, so we

have instability. In the case @ > 0, multiply (4.5 3) by (- 11" ¢

For LI, ON, and many other formulas, 1he sawtaoths we Lave considered turn
out to be the only instabilities that arise, so then rash pfnerient wlieme s stable

when miis odd (Joseph Oliger, private conunanie glon)
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4.6 Unstable difference schemes in several space dimensions

tn the study of well-posedncss of hyperbolic partial differential equations on a
region with a bouadary, probiems in one space dimension are casy to treat {by the
method of characteristics), but in two or more space dimensions the situation becomes
complicated. By a multidimensional problem, we have in mind an equation defined
on the d-dimensional half space z, > 0, 7, € IR for 2 < j < d. The main theory
available for this was derived in an important paper by Kreiss in 1970 [Kr70], by
techniques that formed the basis of the GKS theory for difference models published
1w vears later 1Gu72) Like the stability criteria that we have discussed in §§4.2 4.3,
Kreiss's well- posedness criterior 1s a determinant condition that requires, roughly,
that the problem admit no spontancous rightgoing signals at the boundary. The
diffeecnce 1s that for the differential equation, the question of whether a signal is
rghtgoing depends on muttidimensional geametric effects, but does not involve a
totttnaal granp velority . sinee the system is nondispersive. Similarly, itis well known
that hypertiviic equations i mote than one space dimension are generally itl-posed
i £y norms for p % 2, as we have seen for finite-difference models in one space
d:menston 1§14} but this s due to geometric focusing rather than dispersion.

For firote differesice mudels in two or more diinensions, focusing and dispersion
efleets are combined The corresponding stability theory has been [ate in appearing.
snme results follow from the one-dimensional theory by a Fourier transform in the
varables 23.. ., 24, but these were never developed by Kreiss, ot al. See also the paper
OsB9c] by Osher More recent results in this arca are due to Coughran [Co80] and
rapecially Michelson IMiRl| Both of these authors consider only difference schemes
that satisfy a dissipativity condition in the former case, one that is related to our
definition of t-dissipativity {§2.2).

Our purpose in this section ia to point out that the wave propagation arguments
we have developed for one space dimensian provide inimediate necessary conditions for
stabilily of both dissipative and nonrdissipative diffcrence snodels in scveral dimensions,

too.

We will confine the discussion o a simple class of examples. Abarbanct and
Gotulich [Ab79] and Abarbanel and Murman [AbS1] have studied the stability of

various difference schemes for the following problein in two space dimensions:
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BT Uy Uy 2t >0 y€(-oc, 00). {1.6.1}
The solutions to this equation consist of functions
u{r. g t) = u{z + L,y + £.0).

That is, information propagates with a vector velocity {~1, —1). Since the How is
outward across the boundary = 0. no boundary conditions should be given there.

For a multidimensional problem like this, we saw in §1.6 that £ becomes a wave

number vecter €. and the group speed C generalizes o a vector group velocity given
by the gradient
C = Veu. (462)

Ry the same arguments as in Thins. 4.2.3 and 4.3.1, one can readily obtain the
following stability resuft: f @ finite difference model of {4.6.1) admits & solution
consisting of waves with group velocity C pomnting mto 1 2 O ‘e with Oy > 0), ot
19 GKS-unstable. If each wave has "y > 0, then at as alse £, -unatable. with a growth
rate at least proportional to \/n We will not go to the trouble here o developing the
statulity definitions in this thearem, or of writing down a proof, because there are no
ideax involved that were not present in one dimension
As an example, suppose (1.6.1) 15 modeled by the leap frog formula
=T = AT, vl ,) M el ) (4.6.3)

The dispersion relation for this scheme is

sinwk = —~Xsinh ~ Asinnh,

where € = (£, 1), and from {1.6.2) there follow the group velocily components
C. = cos h __ _cosnh
" coswk’ ¥ coswk’

As usual, these reduce to the ideal value € = (-1, 1) for £h, wk = 0. If we look at
parasites, on the othicr hand, we sce that a sawtooth form in 1 or y negates C, or C,,

respectively, and a sawtooth in t negates both. Table 4.1 surmmariges the situation:
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Eh, nh, wk

(a) (0.0.9), {n,x,7) (-1,-1)
(b) (x.0,8}, (0,%,%) (+1,-1) TABLE 4.1
{¢) {0, %,0), (x,0.7) {~1,+1)
(d) {x,x,0), (0,0, x) (+1,41)

Thus sawtoothed parasites can travel in any of the directions at 45° to the grid. If
any parasite of form {b) or {d) is permitted by the houndary conditions, the difference

model is unstable.

Abarbanel ct al. consider various boundary formulas. Four of these are space

eztrapolation and skewed space extrapolation (cf. (3.2.29)),
S R~ Mgt =0,
88 IKeK, - 1003t = 0.
and space time ertrapolation and skewed space//time extrapolation (cf. (3.2.32)),
XT ReZ V0o
SST T LR TLN

Here Ky Ky and 2 aienote Ui il o

rsoin roy, and £ By counting sign
changes, one can see which bountary formadas pennit which sawtooths. The results

wee listed i Tuble 4.2

unstable sawtaoths

s 10.0.01.(0, =, 0) 0.0, 2),(0. %, z} TABLE 4.2
NS 0,000, -, a1, %) 10,0, wh (= » 0)

NT 00,0070, 700 (~ (L aign, =, x)

S8T i0,0.0' %0, 7) W.omxt (%, w0}

Thus & S8 and ST a-¢ aii umatahie wath LF 1t tures out that ST, whick the Lable
shews has po sawtoot? nstabi b ndmits nooother rightgoing, sotutions either.

Other diferen

sfosmnias typocally peseet fower gawtooths, Bence are stable with
s honndary combitons. et ue geneesdize ta d space dimensions 1Y &k and § are
2

dovectors, &7 will denote &) xy

Defn. 1t Q be ssealar differercs fornmilaoin o space dinonsians Sypposc that
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t
t
1
wortovet Qadamite asointion v = k22wt 2o wy v b lor eacl 5,a; o for
sort foand grenpoveley O IRT 00 alin e s B SRR
e ¥ ;
amd this wave Las group velociny G702 Y satnfyine ¢ = ), & o

Gowith 7y # 6.0 ¢ =€ 0. Then Qs ry-reversing Sujpose that whenever 0 admits
a solution ¢ = &7 with i) = 1 for all 1 and group velucity € 2 [RY then it also
adwnits the sefution v} = &2(- 117, with group velorty €' » IRY satisfying <0

for 1 <1 < d, with C, 3 0if (', # 0. Then Q is t-reversing.

Now let () be a consistent difference model of

an tzy >0, 7, € {—oc ) for 2 < 5 < o, and fet the bowndary semiditions S,

T. SST he extended tn the obvious way By the same argrnents as in the last

section we abtain the following theoren:

Theorem 4.6.1. /The faliowing crsestions hold v the +

5 odiveciion oy,

their converses are moln genecar vahd )

£ The model SQ s f, end GRS

tahle of Q! rererang

11 The model SN Q s £ and OKT ue

Ale Af Qe t rover

sor Qo r

reversinyg and also £y oveverstnyg for at ieast one j > 2

The mode! SST,Q 1 £: and GRS unstable 3f () 12 r, recersing and or ¢

reveremg, and @lio 1, vevrrung for ol least one ) 2 2

Arong the ferndas € cansiderod By Abarhatel o8 al are e i e s vt vons

LY ONDBEL wnd MaeCormiaen s xoheme One secs riatiiy

R T I 3

ol 1 oreversing for varh 3 ON and BE: Sroverang o Crotd sovetang.

andd MacCormack's sehrme Be nob reverdiog onoany var gt terns oot chat gl

coqbinatioms of these sehenps wath ) RSOST e SNT b Gre o - fed w00 Ly

Thmi t6 1 a hind

1t no rightaoing solutions of

Aharchanel aid Murman ale cogades i £

Phoeie made of 1y the

Burstein acheme [ABSEL Unddor this formasc wwmton bon e wathon, g = o

v

ard 2 = 21 turas out to fone vctar arongoas et 6 e e Tty ss and

SST sapport <uch a wave, which smplies togr vve b L ooall . Cageh

not necessarily £oounstabic  Sbarbanel aond Mo o Ve et
ax 1o whether these medes give tronble e practive e 20 b e T of thie

Yind of horderV ne teatabiiny




5. BORDERLINE CASES AND THE DEFINITION OF STABILITY

5.1 Introduction

In Chapter 1 we have seen that a difference model @ of an initial boundary
vabee probdom may admit snlutions exhibiting various degrees of instability. At one
et ) iy possess o strictly rightgorng ergensolution {ic. [z} > 1 a3 Godunov-

Luhenk: eigensolutioni. which grows exponentially with n and is thercfore unstable

wsorable measure [Thims 4.2.1, 4.2.2}1 Or it may admit a strectly rightgoing
generalized eigensolution (ve |2l = x; = 1 with pusitive group velocity} with an
piints reflevtian eoeflicient, as in §4.1, and v.e betieve this situation is unambiguousty
elnble oo At the ather extreme, ¢ may be GKS stable, admilting no solution
cansisting of a copthination of rightgeing modes of any kind {Thms. 4.3.1, 4.3.2). In
this event it will beliave stably in almost any sense. The complications come when
one investigates situations between these two extremes, and this chapter is devoled

e laoking at sotne of these borderhine cases The guiding questions are, what "5 the

rewan. g of stabitity for umtial boundary value probiems” How appropriate is the GKS
stabulity definition”

We arc mainly concerned with two classes of borderfine cases. Suppose that Q is
GKS-unstable, admitting a nghtgoing mecnsolution or generalized eigensolution z™¢.

Then how docs @ behave, if

(1} The reflection cocilicient matrix (D)= D# (3.6.5) corresponding to ™9 is
finite rather than infinite”

(2) "¢ contains no strictly rightgoing modes? (i.e.

|z} =1, and for each mode
in @, cither |&} < 1 or C = 0?)

The various combinations implied by (1) and (2) do not exhaust the range of GKS
iastabilities, but we belicve they touch the important issues. In this chapter our
aim is Lo examine these probleins, illustrating them with numerieal axps..ments, in
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order Lo demonstrate the complexity of the stabiliry question Tor inital boundary
vasue problems and to reach some tentative conclusions  Unfortunately. it has not
been possible to be rigorous here, and cur conclusions will he expressed as a series
of “obscrvations,” not theorems. We do not attempt to state these observations
precisely. and we do not claim that they huld as stated for 4!} possitle problems. What
we do claim is that the abservatiors capture some of the fundamental mechanisms
that cause instability, and that many of them could probabiy be made rigorous, after
approptiate modifications of details.

In §5.2 and §5.3 we consider situations (1) and (2), respectively. "We will see

that all of these borderline

X S-unstable situations behave stably in smne respects.
Section 5 4 desepibes the “transparent interface anomaly,™ a problem exhibiting hoth
borderline fratuees (1) and (21 whick behaves stably in alimost all recpeets and s in
fact £r-~tabie In B35 we summare the main conclusinns of this chapter, and of
the dissertation, soncerning borderhine vasew and the delinition of stability for intial

houndary vilue problems.

5.2 GKS-unstable solutions with finite reflection coefficients

For a general diagnnalizable model @ of a hyperbofic initial boundary value

problem, we derived in §3.6 the equation
Dla"i 4 pifia =9 (321)

relating rightgoing and lefigoing modes at the boundary with uniform time depen-
dence 2™, Here 6" and a'fl are coeflicient vectors of length n, and ny. respectively,
and D! and DY arc matrices of dimension n, X n, and n, X ny. According to Thm.
4.3.1, Q is GKS-stable if and only if D" is nonsingular for all = with 1z} > 1, in

which case for any such 2, al! determines & by means of the formula

= — (D) pitiatt, (5.2.2)

On the other hand if D! is singular for some z = zg with |z¢| > I, then {(D'1) !
is undelined, and there is a risk that we may have in eflect an infimite reflection
coefficient.

Whiat happens Lo (5.2.2) in this case? Obviously the cquation as it stands - no

meaning. owever, assume that D' and DI are smooth functions ol = in a point
4 b
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set {1 consisting of the intersection of 2] > 1 with u urighbortived of 2. and that
D!(z) is nonsingular in 0 = {25} The bases of right- and leftgoing solutions with
respect to which a” and ¥ are defined also depend on 2, but let us assume that

this dependence is also smooth in 1 Cousider the limiting matrix

Ao = lim (D"(2))”" D 2). (5.2.3)
oh
The existence and behavior of Ag will depend on whether D'%(zg) has singular be-

havior that cancels the singularity of D"'.(,u) We ronsider three possibilities:

o If the product in (5.2.3) blows up as z — zy, then the limit does not exist, and
Ag is nfinste.
o If the fimit rxists, then zg us a reeonlble singularity, and Ag is finste.

» Suppose that Ay exists and is finite, and morcover
ker(D™ 12, (Y rangel Aol = {0},

that is, if Di"'[zg)a” == 0 with a® # 0, ther *hire exisls no vertor a ¥ suck that

a7 = Aga't Then Ag is zero (with respect to all unstable aghigoing solutions)

If we specialize the discussion to sealar problems with one lefigoing and une

rightgoing selution for cach z with 'z

1, then (5 2 2) becomes
d .
fr) —= - - afliz}, {5.24)

where cach letter denotes a sealar. Section 32 derived many reflection coethcent
functions of this kind. (@ is GKS-unstable if and only if d"/(29) = 0 Tor some z; with
izal > 1 The imiting reflection coclficient will be infinite, finite, or 2ero depending
on whether '€ has a rero at z = 2z; of order lower than, equal lo, or higher than
that of 1.
The question we wish to ask is: assuming Q is GKS-unstable, how is its unstable
behavior, iF any, aflected by whether Ag is infinite, finite, or zero?
Let ue = uy be meaddded by LE with N = § for j > 1. [t turns out that by ictting
() canuixt of various boundary formulas for 13 *! together with this scheme, we can
aver a full range of dezrees of stability. Consider the four possibilities a, 8,4, & listed
i Table 51 We will now uge these examples Lo explore the significance of reflection

cacllicients

125

TABLE 5.1

Reflection GKS-unstable A =
Label vt = function A mode (ke x0.20) Arzo)  Cly, 20}
o v} GKS-stable ~ -

e~ 1)+ (1 —al
8 wpji-vy) —EEREES tth-11) 0 +1
1 $(vg + 07 (n,-1.1) = +1
1] upt! (-1,1,~-1) w41

Initial data

DEMONSTHATION 51 First let us consider stability with respect to the initial
data, fled (W bebuas than the same deas apply to stability with respeet to foreing
data For b Tagure 50 shows ast of expersments in extension of the computation
of Devnes 42 0 every case. the L1 mdel of e = wy with A = 3 has been applied

e 00D forneth A - U W and b= E 1000 The initial distribution is the Gaussian

n x4 """113 0 /h

A A

1 €1
= (5.2.5)

withoay chosen cqual ot leligoing wave aalue corresponditg to the unstable

rrhteng ol ot e, e ke = 1ar prublems o, dand 3, &g = -1 for 6. Eacn pait
of piots shows the it dats at £ = 0 and the result at t = 0.5,

Forthe “stardard”™ anstable case & with Ay = oc. ig. 5.1 shows a great growth
weamphtude s Demo 42 Obviaasly this s anstabile in any reasorable senee But
for cases 3 ard v just as for the GRE ctable example a, no such growth is ovident.

We tentatively conclude.®

‘Ob-er\:ulion 5.1, Unstable u;npl;}ifal|oﬂ ~ vl data occyrs only l/‘:

an anfinite reflection coeffictent 1s present.
[ Al oY R b .

Powever, even though no significart arphfivabion Cados place, o dyTorencre model
may fail to converge as the mesh is refined. Fxanple v o0 Tig %1 3ustrates this
The smooth tutial pulse ought o propagate arross 7 = 0 and disappear but ustead,
arellected puise is generated that esidentty does not doroag oo arprrgde when has

*Itecall the (3

imer of §5 1 eegarding these abarryations
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II1G. 5.2. Models @, 3. 7,6 with random initial data (5.2.6).
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cutan hall I Tact, it has amplitude very elose to the lmit "dgi = 221 = 1, 3 listed
e Tabibe 510 By contrast, the result for boundary condition 3 i Fig. 5 1 is vietually
ndistinguishalile from the result for the GINS-stable case a. and it certanly appears
that convergenue is taking place  We propose
e —
Observation 5.2, Nonconvergence 1n a problem driven by smooth instial

data occurs only if 6 nonzero reflection coefficient 15 present.

DEMONSTRATION 5.2. Onc may wonder whether the same obscrvations remain
valid if a more cromplicated initial data distributien is cousidered. In Fig: 5.2, Demo.
51 is repeated with uniformly distributed random initial data,
0< S 1/h

n=201

‘The plots show that che GKS-unstable problems ;3 and 5 are virtualls indistingutsh-

1
vy = h random: _ -

(5.2.6)
able from the GRS-stable problem a. But in the infinite reflection coetlicient case
¢, the computation is completely unstable, This supports Observation 5.1, This

experiment does not shed any further light on Observation 5.2,

Boundary data

DEMONSTRATION 5.3, Now let us look al unstable behavior with respect to
boundary data. In Fig. 5.3, Iigs. 5.1 and 5.2 are duplicated with the new initial data
distribution
. vy = ; v = 135‘ (5.2.7)
which is the same as in Demo. 4.1 up to a scale factor. This amounts to an initial
input of more or less random encrgy at the boundary. Fig. 53 shows that as t
increases, spontancous rightgoing waves arc generated in all three cases 8, 4,8, Their
amplitudes differ, but qualitatively all are the same {except of course for the difference
in kg between 3-9 and &). They are all qualitatively diffcrent from the GKS-stable
problem o, where the initial data has apparently caused a rightgoing pulse of finite
duration. A table of |jvj]; as a function of ¢ confirms that a lineae grawth in energy

is Laking place in problems &, bul there is no growth for problem a. We conclude:

TOburvnlion 5.8. A GKS-unstable >tﬁnmu ‘model aets unstable with
lrcwed to boundary data regardiess of whether the reflection coefficient 1

| sero, finite, or infinste.

This obscrvation is in keeping with the fact that Thm. $2.1 made no mention of

reflection cocllicients,
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FIG 5.3. Models a, 3. 3. & with theeepoint initial data (5.2.7).

DUMONSTRATION 5 b Agan, it s a good wdea 1o confiem the obvervation with

a randomized signal Fig. 5 4 shows the usgal cotlectan of plats, exeept that now the

foreing stimnulue comes lrom inhamogencous random boundary data,

g" = %random‘,“]. 15.2.8)
As before, it is apparent that all three GKS-unstable boundary formulas -4 lead
to energy radiation inlo the interior. As ¢ increases, the amplitude of the wave near
the boundary will follow a kind of random walk, achieving amplitudes on the order
of /n Hy choosing g™ tc be u reguiar wave at the unstable [requency wo, we could
convert this to qu:ti dean atic growth proportional to n The GKS-stabie probleny
a. on the other hand, behaves more ke a damped random watk, with ueiformly
bounded ampl:tude, because in a stanle problem cacrgy cnput al the boundary moves
dircctly into he interior, o0 her than remamine 1f the boandary to sadiaste cnergy

forever. ALl of this goves furttor suppott ta Oy = ulon 5 30

Two boundaries
Suppose that in a probler oalvng twe bocmdaees say . a moddel of w -

th o e bautdary shemes is GRS

ug on the strip 2 9 0 0L 0 2 0 e or b
utstabic because of & peneraliro soresstuton We have seen that the unstable

Boenaterr gy heoweah, bt Breiss poots

growth assoviated with sgckoa b

et varons papers that jn the preson o o0 o hosedary the restabilily may
be converted to catastrophie grow't ot canger e ReTLROTEGWT2) This

phesoron s onc gustdiation of the sretness ol the GRS wabiie . oboition Tn

Fart Kevsne shows the fallowing (see Thin 54 of GuT2 fae thee pres e % imulation]

Theorem 5.2.1 'Cu?8 Let Q b° o ‘auchy stadic meas! of a hyperdohe system
onthe stmip r v (01, ¢ > 0 Suppose el the tmitio. bouadary value prorlem obtaned
by semoving the boundary 6f 5 = 1 tn p = o s (AN sfadle, and so w the one

obtained by removing the boundary afr = 0 to r - x Then (Q 1 GRS stable

and absa %20 et L T e e conest s the

Froaf mec B11 of GuTY

N o,
\ h
\ [ sovarianee of GRS Statahty with respeet to petast cuene of s 00 the effeet of
: rach boundury an the other can bo shown to be of tusorder av k0 0 g
1=0 t=.5 t=20 1 t=U34
h= k=155 DUMONSTIATION 5.6 The theorem makes 0wt n 8 eflec noefhowats
serve what happons wher g L GO st A an the e
116 5.1, Moddls @, 8.5, with random boundary dala (5.2.8}. However otserve what bappen o ! N
amples o A we bave boen stadying, T - el e cpei e
129 130

\

\
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identical 10 that of Dewo. 5.3, but carried up Lo t = 14, which is time enough for
many reflections between the boundaries to take place. Each entry shows the £; norm

fle™l2 at a fixed time step:

a 8 ] ]
t=20 154 154 154 154
1 150 187 170 513 TADLE 5.2
2 104 132 138 990
083 124 135 5.66 x 10° . two boundaries
10 051 18 149 180 X 107 LF h=4¢ =}
1 073 130 AT4 452 X 10t

Again the equation u, = u, was modeled on {0.1] by LF with h = 1/50, and the

boundary condition at r = | was viy ! = 0. The table shows that problem & exhibits
eatastrophic growth, but for problems a, 3,5 there is no growth at all. Obviously

the (GKN-stable problem o has no advantages here over the GKS-unstable problems

3 and y. We propose:

Observation 5.4. An unstable generalized eigensolulion can cause
erpon:nial growth when a second boundary is introduced only if the as-

sociated reflectson coefficient s mfinit

There is a sitnple argument involving 2, x, and A(z) that explains why Obsetvation
5.4 should hoid For this see §6.4 and §6.5, where we discuss two-boundary problems

in detail

5.3 GKS-unstable solutions with no strictly rightgoing components

Suppose that @, a difference model of an initial boundary value problem, admits

an rigensolution or generalized cigensolution (1.2.6)

v; =" Za.x:&.. a, #£0 {5.3.1)

with |z} = 1. (For simplicity we ignore defective modes.) The assumption |z| = 1
rules oul Godunov-Ryabenkii eigensolulions, but the solutions Lhat remain are GKS-
unstable by Thm. 4.3.1. They fall into three categories, which correspond Lo positions

{R). {5, and {7) of Table 2.1, respectively:
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“Case " > O:" Yor at a least onc 1, |x

=1land C, > 0.
“Case " = 0:" Not Case C > 0, but for at least one 1, |c,[ = 1.
“Case |x| < 1:" Neither of above. i.e. fx,] < 1 for all 1.
By definition. each signal z"«,¥, in (5.3.1} is rightgoing, but in the cases C = 0 and

|xl < 1, none of them are strictly rightgoing (§2.3). We wan' to investigate how this

affects Lheir unstable behavior, if any.

As in the last scction, we will work with representative examples. Here is a

contrived but very simple model of type C = 0:
1
¢: LFforug = u, with A = 7 ug" =772 (5.3.2)

(We continue as in the last section wo label examples with Greek letters) It is casy
to verify that (5.3.2) admits the GKS-unstable generalized eigensofution {x,2}) =
{1, 21173}, Tor which one has C = 0.

For an example of type [x] < 1 we turn Lo a dissipative Lax-Weadroll model:
1 . .
¢ LWloru = uowith h = 30 1§ =t - et (5.3.3)

One readily verifies that this model adinits the GKS.ynstable cigensolution [x, 2} =
(—4. 1)

By straightforward computations of the sort we have done many times, one can
see that examples ¢ and ¢ share the feature that their right/left reflection coeflicients
are finite. (In fact one gets Ag = ~1 and Ay = 4, respectively.} This will make it
difficull to separate the cffects of one borderline circumstance from those of Lhe other.

To get an example with C = 0 but Ag = oc, we invent the lollowing 2 X 2 problem:

n:  LF for (:)l = [; ;](:)' with X = %; (5.3 4)

u",'“ +upt! =u','“’+u?", gt = o],

Like ¢, problem n admits a rightgoing solutivn of typc € = 0, namely (k. 2) =
(21, £1'73), ¥ = (1 0)7. But now the reflection coefficient with respect o (strictly)
leftgoing energy incident in the v component is infirite. Lot x, 4 be the & variables

for the v and v components, respectively. Then (5.2.1) takes the form

P-x -y u[l'!) 41/ :3+I/ul(a;l') 0
[ 0 z—y‘(n;"' +{ 0 I+ 1/p "'le) —(0)‘
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Tiw

and multiplying through by the inverse of the first matrix gives for (5.2.2), after some
s s
a|lv| _ l.d»-lsk (..o_-.slie_—”n[ ﬂgl]
o 0 "
2

ol
For (k, z) = (41, £1'/%), the diagonal elements of this matrix are finite, but the upper-

simplifications,

(5.3.5)

a+1/u
—p

right element is infinite. Therefore we expect lellgoing energy in v with wk = /86,
hence £h = sin™!(sin §/3}) = sin~}(), to stimulate  large response in u.

DEMONSTRATION 5.6. As s first test of examples e-1), Figs. 5.5-5.7 repeat the
computations of Demos. 5.2-5.4 {Figs. 5.2-5.4). The three figures show the response
of modecls ¢, ¢, and 7 to the stimuli

Fig. 5.5: random initial data (5.2.8),

Fig. 5.6: random boundary data (5.2.8),

Fig. 5.7: three-point initial/boundary dats (5.2.7).
For problem 7, the lorcing data arc applied o v but not u, and both v and v are
plotted, with the labels n, and 5,. Since the v component of this problem is identical
to problem a of the last scction, cxcept for the cocflicient 3/2 in place of 1, the n,
plot gives a convenient GKS-stable comparison to the others. As before, each plot
shows t = 0 and t = .5 for A = 1/50 and h = 1/100.

! I
T e e NS WEYV VIV WONTRN SR WIVS V7.0
- k - - s
e s o -t
. -
i A e e mal - A e
t=0 L, t=$ t=0 . t=35
A= o h= L
5 100

F16 55 Madely ¢, ¢, with random initial data (5.2.8).
133

S |

¢ ”
< —
|
! i
[ s I
!
T
t=10 t=.5 =
he N t=0 . 1 t=235
T 50 = 100
FIG 5.8. Models ¢, ¢, 7 with random boundary data (5.2.8).
. ] !
€ Ml e
0 b '
§ ? !
t I
T - — —
. \
e . PRSPPIV PP,
t=0 t=25 t=0 t=25
1 !
h = % h= %

Fic 5.7, Models ¢, ¢, 1 with theee point initia! data (5.2.7).
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Growing modes

The fiest Lhing ta shscrve in these Hguresis that, in contrast to the situation with
examples 3 & in Figs. 5.0 5.4, no catastrophic growth is taking place. For problem
v with [g] < 1, all of the salutions shown ate quite small, as the dissipativity would
make one expect. Note that in Figs. 5.6 and 5.7, the distribution at { = .5 for this
problem looks exactly like the eigensolution {— §)’. For problem ¢, with C = 0 and
Ag < 90, the random initiai and boundary data do not seem to have caused instability
(compare problem a in Figs. 5.2 and 5.4), but the situation with the three- paint initial
data at the boundary is not so clear. In fact near the boundary in Fig. 5.7, the solution
looks aporoximately like the “4h wave”™ with x = 3i that the GKS theory says is
unstabie The results for the u romponent in probler », with C = 0 but Ay = oo,
are simitar, while the r romponeat is entirely stable. whieh is what one expects ftom
(5 3.4) or (5.3.5).

The situation is cluarified il we look at f3 norms as a function of ¢ for the three-
point problems of Fig. 5.7. Table 5.3 lists [|t™jz for ¢ n for b = 1/50 and h = 1/100
attimes t = nk=10,2,.. 1

€ S K Te
t=0 135 135 0 135
2 132 125 A0 077
1 RELI 125 078 075 h= o
8 698 125 098 075
8 A17 25 093 074
1.0 110 125 076 .070 TABLE 5.3
t=20 096 098 0 098 3-point boundary data
2 081 089 054 054
L] 083 .08% 066 .054
8 072 089 068 054
8 077 089 058 057 A=y
1.0 080 a80 062 053

in no case do we obacrve any growth in energy. (Note how the numbers confirm that
for problesn ¢, the salution rapidly settles down to the farm of a fixed cigensolution.)

Therefore we snggest:
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Ob;rr\-x;tion 5.5, Incase O =0o0r = . 1, @ admits no wlu:::ns]

Usnalty a difference scheme exhibits conspicyous instability in practical exampies only

that gvouw steaddly wita t.

if theee is mich a growing mode, so Obs. 5 5 explains why nu instabilities are evident,
for example. in Fig. 5.5. Of course we have long ago observed that non-strictly
rightgoing solutions have zero encrgy flux (§3.3), and one would expect Obs. 5.5 to

hold as a consequence of this.

Initial data

The absence of growing mades, cven if we could prove it rigorously, would
not imply £y-stability, because there could stil] exist nitial data distributions that
would grow arbitrarity much at first before ultimately leseling off. Nevertheless, we
conjecture that problem ¢ is £a-stable. as defined in §4 2, despite being GKS-unstable.
If true, this can probably be proved by an energy methad argument [Ri67], and
possibly also by an application of the ideas of §3.5. In general, one appears to have
something like the following:

[Obsetvation 5.6.. In case C = 0 Dv_\;‘:‘< 1. Q u stoble with rc;p:ct o

L nitial data provided that the reflection coefficients are finite.

DEMONSTRATION 5.7. By contrast, a problem with 4g = oo need not be stable
with respeet to initial data. To demonstrate Lhis, Fig. 5.8 shows a computation with
problem # in which initial data have been chosen 1o stimulate as much growth as

possible, as was done for examples 3 & in Fig. 5.1. The initial data are

[

vj' = ron(£z) e Ix~33)/ [ (z = jh), (538

1]

o
o [ —

u, =u =0,

with £h = sin_'(g). Fig. 5.8 shows the resulting signals u and v at § = 0,.5,1
for A = 1/100 and h = 1/100. 1L appears that there is some instability, but it ia
extremely weak, The initial wave (5.3.6) with & = 1/100 has cight times as many
grid points in the wave packet as (4.1.6) with A = 1/200 or (5.2.5) with A = 1/100,
yet it gencrates nothing like the 18-Told amplitude increase that we see in Fig. 4.20,b
and that is Jurking off-scalc in Fig. 5.1. Morcover, the signal that it generates does
not radiate rontinualfy from the bonndary, but evidently Toses amplitude as it doifts

into the interior.
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Again, a table of &5 norms makes it clear what is going on. Table 5 4 shows ||ulfs

and {lvljz in this problemn for both values of A and various tines.

A=t A=

Tu L M v
t=90 0 177 0 477
2 185 150 207 143 TABLE 5.4
4 198 .080 301 .059
8 188 060 .293 050 “bad” initial conditions
8 182 060 291 059
1.0 184 080 292 .059

For h = 1/108, we observe an amplification u{1)ii/|¥{0)}) of about 1, and for h =
1/400 it has increased to more like 2. Evidently the ratio can be made arbitrarily
large by rcfining the mesh. But it is hardly large as things stand, and- confirming

Obs. 5.5— there are no solutions in evidence that grow with t. We propose:

I Observation 5.7. If O has C = 0 but A = oo, 1t 15 weakly unsloble

with respect to initial data.

Boundary dats

From Figs. 5.6 and 5.7, we expect that il Q has C = 0 or || < 1, then it will
not be dramatically unstable with respect to boundary data. In fact, as in Obs. 5.7,
it Lurns out that there is a weak instability. As we found in Obs. §.3, the presence of
this instability docs not depend on whether Ag is infinite.

DEMONSTRATION 5.8, Fig. 5.0 shows an experiment like those of Figa. 5.6 or 5.8,
except that now the computation is forced by regular boundary data oscillating at
the GKS-unstable frequency. The boundary condition is

1
v3*! = {homog. b.e) + Thisd wkn (5.3.7)

with wk = 2/6, 0, and /6 for +, ¢, and n, respectively, and the figure shows A =
1/50 and A = 1/100. The results are much like those of 1ig 5.7, but stronger. Some
instability is definitely in evidence for all three problems {note the small amplitude of
the forcing term in (5.3.7)), and it grows stronger as h is refined or as t increases with
the boundary function left on. Table 5.5 conlirms this with o record of £ norms,
whith for the ease of problem ¢ beeame Turly large. For cemparisan with Liese

nutnbey, the norm of the forcing fundtion it {9 3 7)is approvmately V10,
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*
« ¢ T v
t=10 0 )] 0 0
2 039 .12 019 1023
K 059 .220 037 031 (b= gy}
8 .092 327 054 .039
8 .102 A35 059 044
1.0 122 .543 .076 049 TABLE 5.5
t=10 0 0 0 0 “bad"” boundary data
2 042 158 028 022 :
4 073 .309 042 032
8 107 462 .064 039
8 124 815 078 044 (h = )
1.0 1146 .769 087 050

Nevertheless, to achieve this amount of growth we had to stimulate just the right

frequeney, and il we had done the same for the strictly rightgoing problems of the

last section, the result would have been much more dramatic. We conclude:

Observation 5.8. A model with (' = 0 or K< las ur:«:kly unstable with
| .
! respect ic boundary data regardless of whether the reflection coefficient is

‘\zno, finite, or s finite,

Despite the impressive £ norm, it is obvious (and expected) that nothing happens in

case § except at the boundary:

Moburv-tiron 59 Ina pirAl;;}l;l of type [x| < 1, any unstadle growth u-

| confined to the region near the boundary.

Two boundaries

Observation 5.9 suggests that in a two-boundary problem, as we considered in
the fast section, the presence of an unstable houndary of type |c| < 1 prabably will
not cause exponential geowth. Tndeed this ia true, as our argtiments of §8.5 will show,

W have the lollowing complement of Obs. 5.4:

. Observation 5.10. An unatable boundary can cause ezponential growth

|
w:l<1.

in o two-boundary model of it 1 of type C = 0, but not if st W of type

DEMONSTRATION 5.9, To illustrate Obs. 5.10 experimentally, we ran problems
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eoonp et I e eandis il s 20 et case on aopnd with B o=
P T boumbary conditions at the tght hand soe were o551 = 0 for probicns «
and
uig! =0 sie - =y - vy

fur problem n (The compleaity of the latter foreuta 15 needed to introduce some
crupling between v and v st the nght boundary | The results are summarized in

Tabic 5.6.

‘ 1 n n
=0 153 0 153 153

100 022 037 1R.2 342 TanLk 58
200 021 037 240 % 100 365 . 100 twn bonndares
300 021 037 348 « 507 4TR « 108

100 018 037 IR T LS R [

Faadenths o aned ¢ wonerate no growth at sl whie for the 1 model there s exponential
grew b, bt at s el wenker G e Tabie 5 28 inate the large vadues of ¢ i the

table) These rosulty are in keeping with Obeersatisns 3 4 and 5,10,

5.4 The transparent interface anomaly: inflow.outlow theorems

The “transparent interface anomaly” is an example that in addition W being

rather startling, proves that a difference mode! riay be GRS unstable but at the same

tieee Fo-stable. Consider any of the meshereiinenent probloms of Example 3.4 {(§3.2),
i owhich agrid with b = A for ; < Ois conneeted toagrid with A = A, for 3 > 0.,
wed tet LEF b the formala applicd onoeach side 104 = kL then all three interface

fornmlas vonsidersd in 43.2 are stable, exeept for the “coarsc-mesh™ Torimula in the

case when Ay b s aneven integer {Thin 15 170 Bt nes, consider the degenerate

situdtion ko= by il three cases T Lotk leterfaee conditions become
equaalent to the LF formula at 3 = 00 and one is deft with LI applicd at all points
3 € 7 Sinee LF i Caneby ~tabie, the resuit smust be fost bl Neverthel s, this
dreenerate case of a “raneparent mtesfaee ™ v GRSyt stubic. This Tact appears not
to have been peittod oot befure oven thoagh T3l st rast, stadies GRS stabiiity

frer mesh sefisn et schemes,

TC s vasy o see why the transparont pterSoe madel i wiesable aecording o
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the GRS delinitton The CKN unstable solution that it admits is a generalized
ertsolution with 2=z Land xg = 21 on buth sides of the interface. By Fig. tlaor
(1.2 5}, thes wase has group veloeity €' = 0, and this impiies that if a wave packet of
thee bind s torated instially around j == 0, it will remain approximately fixed there as
Sancreased. We have already observed in §4.3 that because of Lthe boundary integral in
the dehinstion of GRS-stability, sueh stationaty behavior ronstitutes GKS-instability.

tn terms of Thr. 4.3.1, the instability results frem the fact that the wave with
€ = 01s by definition buth rightgeing and leftgoing (position (5] in Table 2.1), and
s ore ey think of it as rightgeing for 3 > 0 and ieltgoing for 5 < 6. Or in terms of
Then, 432, the inatability is due to the fact that for k, = x, = #3, the denominators
of e reflection coe'fient functions (3.2 20), (3.2.21), 13.2.27) vanish.

We hive shawn
Ohservation 5.11. GRS matabiity does mat tmply £3 mstability.

In this instanee st is possible to state the conelinion as a theorem, wiiich we have

seteralized in the chycus way:

5.4.1 et Q be uny acalar or vector difference model applied for
iz 1 and ("{x,2) = 0.

Theorem

;= 7 that ad=uts a steady state soiution 2"’y with |2

Tet ; = 3o b thaught of as an mierface point of () and the GKS theory apphed by

foiding” the model at this porat (33 6) Then the result v GKS unstable.
Proof GRS-instabelity follows from Thmo £.3.1, since 27ay can be thought of

a~ tightyoing on the right apd leftgaing on the Jeft g

The tratisparent ieterface probd i as deseribed above mvolves a doubly borders
Vne win b of nstabality First, the groap velicty s not positine, but 0. Second, the
retcton cortlicent mat have the vabie 0 oo Tur no euergy ean be reflected at

anento T that s cquivalent to the aheence of an interface This we are dealing
Wt e cteraee i of the woank 'y rnstable s lisses of the Lt two sections, amdin
Coere g o b i abwe Bove alroads propoess that s b probbem aadl be stahle

St e IeTadn e prebdens we hane ned chv fe 2 00 bat 1z - 0 for

Vs Yhes comnberatiens confrag st pe metecton mechamisins are apetative ta

e e teanapan o sterface el et anstable with respert tosnitial data OF

e s e ab i nnstabie we b reepect s farein s data at the peiet == e,

Gr e g e s T e e eores Trogn o tnesd peb e et strategy,

Seome e e e s datan
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All together, itis clear that the GRS assessment of instubiity is rather misleading

for the transparcnt intetface problem. and that this s due to the fact that the

GKS theory is oriented towards boundaries while the transparent interface problem
concerns initial data. It s natural to suppose that there may be other models of initial
boundary value problems for which the GKS result is also unreasonable, but where

the true state of alfairs would not be s0 obvious.

A “strict transparent interface anomaly™
The identically zero reflection coeflicient function is the essential reason for the

stability of the transparent interface anamaly, not the fact that the GKS-unstable

generalized ecigensolution itvelved has € = 0. T see this, consider now the same

setup as before, but with LF replaced by LF?, the Leap Frog model of uy = uyy

1332, App. AL For L¥, there are two distinet waves with « = 2 = 1, one strietly
rightgoing with ' = 1. amd one strictly lefigeing with € = -1, The dispersion
plot of App. A snakes this chear. As a resalt, LE® must adrit solutions of the kind
Mlusteated in Fig. 510, which are strictly outgoing from both sides af & transparent

interface:

C=-1 |

— ﬁ ‘

Fte 510

In fart, consistency With gy = tgy iupaes that sueh solutione mast be possible

The exvistonee of this kisd of solution smpiies thit LE9 s not only GKS unstable,
but Cane by anstable toos w.th agrowth rate ke om0 (Trhin 4230 [An alteenative
prroct s ot G F it were Canely stables this weald cortegdirt Thin 23 15 whieh states
that for Cuaetiy stabite furmtas o piar v ot with a s Lran corrcpond to
o e wiene t OF conrs Yheimast Lot coptradot the waisrhown fesu' that the
"

secemdeonier woase v aate s owell pos st The fee it cemees frene the fot that

Gl Caneby stab he . this welt poserin :

soostated o berne of a

uroe e e

eaiva e vadives s el as e o vadnce b as b e flag 4

Noverthowea, s weil vown that despite s Gy sty Lt s in
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practice o completely reliable differenee model. The standard way to show this, in
ardopy with the situation for uy, = u,,. would be to prove that L% satisfies a bound
eciving function vatues and their first-order Jilferences. But in the present context,
we an view ts siability in practice as a consequence of the idenlically zero reflection
coctheients. That is, the LF2 model possesses unstable resonant modes, but they are

net significantly excited by initial data.

Infow-outflow theorems

However, we will now show that the GKS-instability of the transparent interface
probdem, even o the case C 2 0, is not completely irrelevant Lo questions of stability
with respret tooaratial data. The following is a paraphrase of an “inflow-outflow”

tho aren. published first by Goldberg and Tadmor; for detai's see Thin. 2.1 of {Go81].

H#y “utlow” and “outflow” variables, we mean variables corresponding to comp ts
of the partial differential cquation with characteristics pointing into or ot of the
segion ol the boundary, respectively  not to rightgeing or leftgoing modes admitted

by the difference model. This use of the terms is standard.®

Theorem 5.4.2 /Go81]. Let Q be a dwgonshzabdle Cauchy steble difference
model ronsistent with ¢ well posed hyperbolic mitial boundary value problem. Assume
that at the boundary the mmflow variables, u, are given as functions of the outflow
variables, v. Then () 1s GKS stable if and only if its restriction to th= outflow varisbles
v 1 GKS-atable.

Sketch of proof. il the restriction of § to v is GKS-stable, Lhen by the definition
of GRS-stability (1.3.1), the tintegral of v at the boundaty r = 0 can be estimated.
The e boundary values are jusi the boundary data for u, so it follows that u can be

estimated too. g

We clabm the fullowing:
Observation 5.12. An mflow outflow theorem ke Thm. 5.4.8 ceases ]
to hold if "GKS-stable™ 11 replaced by *l7 stable® J

seliey of discussoig stabibty with minimal ecference

Simeve e in keegarg with our gerer
o othe proeprrtes ab the differcnnal Cquation, we abacrve that the satme theorens tolda for

vor sphitting of 4 T rence mode it sariables uand v
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“T'o show this, imagine a probleo with one catliow variabie v oang twairflow variabies,
u; and uy. Let v and uy correspond to a folded transpar ot iterlaee with € = 0
so that data in these components at some frequeny <n can femain stationary at
the boundary. Let ug obey any model under which boundary data at frequency wg
generate a rightward flux of encrgy Then absivasdy the system cannot be £; stable,
but its restriction to v is.

The difficulty again has to do with boundaries. The inflow-outflow wdea depends
on having control of the numericat solution along the boundary, since that is where
the inflow and outflow vatiabiles are coupind. The GRS stability definition is strong
enaugh for this to go through, because of the boundary integral it includes, while
the definition of £ystability s not This weld appear to be a point in faver of the
GRS stability defintion. Howeover, sinee the transparent citerfuce probien, does not
act anstable itany more usual sense, we are nchned to think that aflow autflow
theoremes are probably too tach to donnd of o ostshibe s definition,

1t s worth pomnting out that not only can energy with ¢ = 0 remain ap-
provuzately faed g sparc Tor o fong tane, bt b can an ponciple accunmiate inoa
spike At one pomt, csng large growth in the Lo norm An exampie of this kind
i given ot 85 oF TR Thus i a GRS anstable probiem with & stubie outflow
components, it s possible that o smudl vutflo wing signal ould generate a stroagly

utstable mnflowing one that was large o amphitnde. ant Just total energy

5.5 Summary and discussicn

For the Cauchy problem with constant coctficients, there are two posaible mechan-

tars 2 af modulus greater than uaity, and defective

istns of instabihty amplificatior
anphfiestion factors of moduiuy rquai to amty {Thim 222) U the cocilicents are

allowed to vary with 2. toor ko new poss.bidiies ans (R167; When a boundary isin-

teoduced, one mast hegin ta vonsider Godano lyabenkn ngeesolutions spontancous

radiation of parasitie wases, bord thine waves with O - 0, trappod sipr ds weth k] o
1, and radiative solulions of defectac tape Thims 121423403 1)0 Adaing a seconid
bormdary raises the praspect o podectons ek and fosth briween to two hound-

OO phiatad Bially i world o nstdnl bies

aries, which we sellsec i 865 <0

Fer nontinear ot s Doy, e e podiee o Tlerent

Tcchane s cat e etane ot Uiy r s e e evplasive te the narly
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invisible. Nor can onc assume hat these various mechanisms will not interact to

produce further complications.

The variety of stability questions that one may wish to answer is cqually compli-
cated One may be concerned with a difference model driven by initial data, forcing
data, or boundary data, or some combination of these, and one may or may not be
willing to assume that they have some degree of smoothness. One may be interested
in ¢ or in maximum errors, at fixed lime steps or averaged over time, in the field only
of at the boundary also. One may want a guarantee that stability will be preserved
when a second boundaty is introduced, or when one outflow modei is used to drive
a distinet inflow model, or when undifferentiated terms or other perturbations are
added  And of course, techniral limitations inevitably lead to the consideration of
further stahility definitions that would never corme up naturally, as onc tries to find

a workable compromise between what can be proved and what can be used.

In summary, the first point ¢that we wish to emphavse is this:

r;mlnblhty for dyfference models 1 caused Sy edentifiable physicol mechan-

}

| understanding of matability requires o recognition of these mechanisms.

wums, erpecrally phenomena of dispersive wave propagation. A complete

| D\fferent mechanwsma are relevant to different stablity queations. No single
definition of stability, or wdentification of sts cause, can satufactorily ac-

| count for all possibilities.

We have reached many more specific conclusions about what physics normally

causes what kinds of instability. The most important ones can be summarited as

follows:

'ﬁm-my with respect to initial data 1 usually associated with the exu-
tence of infinite reflection coefficients (Obs. 5.1,5.8,5.6,5.7). Instabihty
with respect to boundary date u usually asioctated with the existence of

¢ strictly rightgomy solutions {Obs. §.9,5.5.5.8,5.9). Instability
to the introduction of a second boundary u associated wnth

tap
{IHU\ respect
\mﬁmle reflection coefficients involving wavelike modes (Obs. S, 510/

The GKS theoty represents an extreme point in scveral respects. For one thing, it
goes far in the direction of emphasising mathematical unity at the expense of natural-
ness, combining all stability issucs into a single remarkably complicated definition,

about which a remarkably simple theorem can be proved. Second, the GKS stability
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definition is also close Lo extremc in its conscrvativeness: if 3 problem is GKS-stable,
it is almost certainly stable in practice, whereas we have seen in this chapter that the
converse docs not hold. However, in soine respects the GKS definition is not so sirict.
Its generous allowance for exponantially growing solutions leads Lo problems related
to “P-stability” that we will discuas in §6.4; and its failure 1o give estimates at fixed
time steps rather than integrated over all t makes its application to adaptive mesh
refinement problems difficult (Joseph Oliger, private communication).

The GKS theory is focused on boundaries. The stability definition {4.3.1) requires
that the solution along the boundary satisfly an estimate in terms of the data along
the boundary, and the proof of the GKS theorem {which we have not discussed] gives
evidence of this bias: it proceeds by reducing the difference model to a ree .rrence
relation in 7, with the boundary conditions [or initial data, and the forcing data F
are introduced only as an inhomogencous term in this recurrence relation. In fact,
the result Tabeled “main theorem™ in the GKS paper is not our Thm. 4.3.1, but an
ansertion that GKS-stability is equivaient to a boundary estimate (Thm. 5.2 of Gu72}).
initial data do not figure naturally in the theory at all, and must be introduced by
way of the forcing function F at the cost of a factor of h (Thm. 3.1 of [Gu72}), or

by way of the boundary data g at the cost of a smoothness restriction {Thm. 2.1
d all
Y

of {Gu81)). ldeally, an analogous theory would be ilable that was f
oriented towards initial conditions instead, but although Osher's results of [Os69b)
are of this type, they do not have full generality.

Our summary asscssment of the GKS theory is this:

[ There u prodably no better all-purpose atability criterion than the GKS

determinant condition. However, the theory i support of tAis conditien,
i particular the GKS stability defirstion, are relatively unsatisfactory, and
Jully justify the determinant condition only with respect to the problem

dditi ]

of estimating boundary values in terms of boundary date. For
insight 1 particular problems, st 1w worth checking whether any GKS-
unstable solution has nfinite reflection cofficients and strictly rightgemg

modes.
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6. STABILITY FOR MODELS WITH SEVERAL BOUNDARIES OR
INTERFACES

6.1 Introduction

tu this final chapter we consider difference modrls containing two or more bound.
ates or anteefaces  The question s, when is such a model stable® In mosl cases the
GRS theary gives a procedure for answering this question, but the algebra involved
< often very complicated, and in addition regrettabiy problem-specific. To aveid
these ditfieulties, 1 is natural Lo took for stability results that depend only on the
properties of cach interface independently. One asks, what properties of an inter-
face can guarantes that models containing several such ir.arfaces will be stable, or
unstable?

The simplest problem of this kind is that of modeling a hyperbolic system of
equations on a strip, say 0 < 2 < 1, with numetical conditions prescribed on each
boundary. For this the GKS theory gives what appears to he the ideal result, which
we quoted as Thm, 5.2.1: far GKS-stability of the strip medel, GKS-stability of cach
buaundary individually is sufficient. In fact, Thin. 5.2.1 is not quite ideal. The diffculty
15 that for fixed A and k. a GKS-stable differcuce model often exhibits exponential
growth for a problem whose solution does not grow, and the rate of growth need not
decrease as h and k arc reduced unless the model is totally dissipalive. We will look at
this problem in §6.4. Still, for most purposes Thm. 5.2.1 is good enough for realistic
strip problems.

We will be mainly inlerested in a different class of difference models, those in
which the interfaces arc not separated by a fined distance Az in z as Ak — 0, but
by a fixed number of mesh intervals Aj. {Of course in reality, every computation is
dune on a finite mesh, so this Jistinction is somelimes delicate.) Such problerns come
up, for example, when one has an initial boundary value prablem model that involves

two or more distinet boundary forimulas in addition to the interior formula, as wounld
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noroally be used when the interior scheme bus orger of aconticy grentee than two
O171.0176]. Iis not standard 1 view suck composite schemos as consisting, of fixed
forinulas separated by interfaces, but we believe this approach may be yscful. They
might also occur in modeling an adaptive mesh eefinement scheme, where there can
be no guarantee that one interlace between meshes will remain a fixed distance from
the next as h is decreased.

For these muiti-interface problems of “fixed Ay type”, ne theorem as simple
as Thm. 5.2.1 holds, and we will demonstrate this in §6.3. However, §6 4 and §6.5
will show that stability results can sometimies be obtained by arguments based on

refiection coefficients.

6.2 One interface: results of Ciment and Tadmor

INTERFACE PRODLEM, Consider a scalar differenee model Q consisting of one
formula Q  applicd for —oc < 3 < ju coupled with s second formula @, applied for

J0 € ; < oc. Thisis an interface of the "abrupt change” type considered in §3 Q

may represcnt a discontinuous physical system, or the inter

Ace may be a aumerical
one [mesh refincinent, hybridization) Assume that Q@ and Q. each satisfy Ass. 31,
so that @_ has stencil parameters £ v and admts exactly r_ lefigoing and {_
rightgoing solutions for all z with iz, > 1, similarly for Q.. \We have discussed Lhe
stability of such problems in §3 §5. In Thin 431 we saw that @ is GRS-nastable if

and anly if it admits some steady-state solution that is vuiguing from both sules of

the interface, as suggested by Fig. 6 1:

16 6.1

Vack arrow in the Gigure represests one signal wih energy Jux dn ooe andirated
direetion {positions 113 {5} in Table 21 on the left. (5) 19 on the right! To prove
~tability, ope must show that the hind of ronfgurat andbustrated eannot oecur

INITIAL BOESPARY VAl PROGREEA Alreenatvely. consuder asmalar sealar

moded @ Fur ar ot db bantdary watue probton 2 Q@ conssts of L fived

Tarmuia (J. satliist A 3 wath £y n Juo B vnnssts of

IBL




a fixed boundary formula Q_, also satisfying Ass. 3.1, which to be applicable will
have to be one-sided in the sense of having {_ = 0. Boundary conditions of this
xind, namely identical at all points 0,...,jo — 1. are va}led translatory boundary
conditions by Goldberg and Tadmor [(G078,Go81]. Now for GKS-stability, since Q_
applies ontly at a fixed set of points, it is necessary and sufficient that @ admit no
steady state solutions that for j > jo consist of rightgoing modes. That is, we can
drop the requirement that the solution on the left is leftgoing. However, since £_ =0,
@ . admits no rightgoing solutions anyway, so the change is vacuous. Therefore as
before, @ is GKS-unstable if and only if it admits some steady siate solution that is
outgoing on both sides of § = jo, as in Fig. 6.1.

For problems of both of these kinds one main general result appears in the
literature: roughly, total dissipativity ensures stability. The original theorem in this

direction is due to M. Ciment:

Theorem [Ci78). Consder the interface problem of the first paragraph above.
Let both Q _ and Q, be exphest, two-level formulas consistent wnth the equation uy =

ax, If Q. and Q. are duspative (i.e. r-dissipative}, Q is GKS-stable.

A similar result for boundary rather than interface problems was derived a few
years later, perhaps independently, by Tadmer and Goldberg [Ta78,Go78,Go81]. We
express their results in our terminology, in particular replacing their condition (3.7)
with the idea of f-dissipativity {§2.2). For a full statement sec Thms. 3.3 and 3.4 of
Go8l)

Theorem [Go&I! Consuder the wnitial boundery value prodlem of the second
paragraph above Let Q. be consistent with u, = au, for @ > 0, and assume that
(0 satssfies the von Neumann condition and a certan solvability condstion (Defn. 3.1
of ‘GoRIl). but drop the assumption that it satisfies Ass. 8.1 If Q 15 ¢ dissipative
and either @ _ or Q. 1t r dissipative, then Qv GKS-stable. g

Obviously these two theorems are related, and by isolating the idea of ¢-dissipat-
ivity. we can bring out the connection and genetalize them both. In particular,
Ciment's restriction to two-level formulas serves no purpose except to ensure that z-
dissipativity will imply t-dissipativity {Thm. 2.2.3). Similarly, Tadmor’s assumption
is unnecessary that it is @_ rather than Q. that is t.dissipative. We propose the
following generalizations. In each of these theorems, Q. and @, may be explicit or

implicit, two-level or multilevel.
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Theorem 6.2.1.* Consider the interface problem described in the first paregraph
above. Let Q_ and Q. be consistent with v, = a_u, and u, = a.u,, respectively,
withu_a, > §. If at least one of them s 1 dissipalive and al least one u t-disstpative,
then Q & GKS-stable.

Theorem 6.2.2.* Consider the initial boundary veluc probiem described tn the
second paragraph above. Let Q. be consistent withu, = au, forg > 0. If at least one
of @_ and Q, is z-dissipative and at least one 13 t-dissipative, then Q 11 GKS- atable.

Proofs. Consider first the case £, = r_ = 1, which covers ipterfaces between
typical threc-point formulas. Given z with |z] 2> 1, let x_ and «, denole the & values
for the unique leftgoing and rightgoing modes admitted by Q _ and Q. respectively.
The abrupt-change interface imposes the condition

K_ =K, (6.2.1)

for a steady-state solution; call this number x. Now since the signals are outgoing
from the interface, we must have {x_} > t > |x.]|, hence || = 1. and the von
Neumann condition for @, theu implies 2] = 1 also {Thm. 2.2.1}. Since one scheme
is r-dissipative, these ('qu:AULi('s imply &« = 1 Since one scheme is t-dissipative, this
implies further 2 = 1. Now by the consistency assumption, the only signal with
z = & = 1 is strictly leftgoing on the right of the interface in the initial boundary
value problem. while in the interface problem, cither it is sirictly leftgoing there (case
a.,a, > 0), or .. is strictly rightgoing but so is the solution on the left of the
interface {case a_.a, < 0) In any case there can be no unstabie solution of the kind
iltustrated in Fig 6.1

Now consider the genera! problem, 1n which @ and @, have arbitrary stencil
parameters £ ., r_ and £, v, In §3.2 we examined a general abrupt-change interface
of this kind in the context of reflectnn coeflicients.  Given z with 2] 2 1, let
k7 ... ok denole the teftgong & values for @, and x{,.. k] the righlgoing x
vatues for Q. Fq {3.2.16) showed that an vulgoing sofution as in [ig. 6 [ exists if

and only if the equation
VA=0 (6.2.2)
kas a solution A # 0, where Vi the van der Mande matrix of size £, + »  formed

fram {x, }U{%"}. and A is a vector of the same Tength We assumed in §3.2 that

*Nee the qualification s the inal paragraph of 1 proofs.
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a notzeru solution o and only if k; = x for

Ve tere o proof proeecds as bofare, beginning with (6.2.1).

te the proof, exeept for one qualification. In the GKS

sry thit we are appenhne to (T 4.3 150 the assumption was made that the

patier or <toetiy rondissipative. This restriction, if

Vrered meded s ether g ;

oot digensed with redues sur the rems to the situation in which both @ -

Leipitae Howevoro e heliove that the argoments of {Gu?2] can be

B bt sover the tise gy e sDan see the footnote to Thano 4.3.1). 3

Fxample 8.1, 1er (0 b oaormoded of u, = u, an {=x, x| consisting of Q. =
P ot weh Q0 = BE far 3o« g0 In 2.2 we have seen that BE
Scbenpat e o P EDd s sodisapative By Thoo 021, @ is therefore GRS-stable.

tet L thearern dees et cuver s case,
Fxample 6.2, 101 Q 1 amodel of ue = %, on 0.2 consisting of @, = Lx¥

ol ridenches e App Al fur 3 2 g9 2 1 together with the boundary formula

e | S _
A TR o (6.2.3)

Tae 0w gy Sinee LaF s a tao-ievel “ormuta. it is tdissipative by Thin, 2.2.3 aad
ey te e that (623 s rodissipative, Therefore @ is GE S-stable. (Compare

P 45 25 The GoldY ooz and Tadmor thearem does not cover this case.

63 Two interfaces: dis

ipativity is not enough

The U coretis of the last section are appealing!y simele, but limited to models
cinieg anly ane cnterface. Inopractice this covers most first- and sccond-order
Ve whieh oy have £ S L bt veey Tow Ligher-or or ones. [C has been
Gomhr by e researebers gt far gl s erfaee preblems wo, dissipativity must
came stabebtyand i fuet this elaim ds stated as Thine 300 in JO178] However,

- and this becores quite chvious when one thinks
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! eoovamiple.
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Here is the explanatior. Copsider a0 steady state colution at o GRE-stable

interface,

L‘—‘i FiG 6.2

where the lengths of the arrows are telited somehow to the amplitudes or energy

Now from §33 5, we know that GKS-stability

fuxes of the ecrresponding sipn:

does nat imply that the interface conserves energy, or an.piitude, or anything else. It
itnphies that the reflection coefficicnts are Bnite, but not that they have moduli less

oxted in the figure, a s

than or equal ta 1. Thus ac supp il inicident wave may cause

a larne reflected wiver i€ is only a configuration exhibiting reflected cnergy in the
absence of any tncideat enermy that would constitnte instability.

Now suppose @ contains two stable but nonconserving intecfaces of the above
sort separated by a fixed number of grid paints 37 Then it may bappen that each

o stinulates the other's reflected and transmitted energy.
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If the two-interface system, incinding all the grid pomts in between, is thaught of as

a single more eomplieated inte-face, as saggested tm Uig 6 3. then the configuration
shown generats ouigoing wotes without any stimulation by incoming ohes Therefore

it is GKS-unstable.

ample 6.3: an unstable combination of dissipative stable formulas

This caample is oxtremddy contrived, buc it vidds o ctrong resu’t The scheme

@ wil be an metial boundary value probion madel ennsisting of three disapative

Wlerenac formulas Qny QL and @y which are applied w Yoand 3 2 ¢

respeoerively s TS this evanepi the twoimerfaces ¢J0 ) aod Q0 are only
R T N P S PTUFTILIND WU

At prad stepoapart 1

et erpative as vl as s ansGpat ve Vet e et s e Qs sty anstabile




in that it admits ax exponentially growing cigensolution of Godunov-Ryabenkii type,
i.c. with [z > L

We start from an intended normal mode and build the difference schemes in such
as way as to make it indeed an cigensolution of Q. We will take

1 129
et =12
g Tim

ard aim for the normal mode shown in Fig. 6.4:

FI1G. 6.4

4
{ ¢
[ 1
Q ' @ Qa
INTERIOR FORMULA: UPWIND DIFFERENCE PLUS DISSIPATION. @3 is defined by
sl " " e D a4 " :
v] =u,+X[v,‘1—v1)+?(u,“—.v, +vyy) iz

With x = } this has the characteristic equation
1 9 1
=1 — - + — -2 Z
z + R(K 1) M(: + ‘)

_ 38 11« 9

BT TIPS
From this formula one may readily verify that || = 1 implies |z| < 1, with equality
only for & == z = 1. This shows that @ is Cauchy stable and totally dissipative. The

formula also canfirms that for & = }. as in the mode we have chosen, z = 120/128.

LEFTMOS T FORMULA- COMBINATION OF UPWIND DIFFERENCES. Qg is defined by

- AL un— vt
arl _ a2 V2 Yo el s ) Q
=g M 78) s 2(25%),

With X == } Lhis has the characteristic equation

12 L
— i — (T — 1) (-
z=1+ 118(“ V+ 102(K 1)

367 3s7 k!

TR TR
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)
This formula implics that Qg, like @2, is Cauchy stable and totally dissipative, since
2| < 1 for |s} = 1 cxcept when &2 = &% = 1, hence x = 1. Applying it Lo the
chosen normal mode gives again the growth factor 2 = 129/128.
MIDDLE FORMULA: LEAP FROG PLUS IMPLICIT DISSIPATION. Q. is defined by
ot = o7t MR - )+ e(vp ! - 20P*t 4 o3t
with ¢ > 0 (cf. LFd), which for X = | has the characteristic equation
1 1
{l-e(x—2+1/x)) = 3 i(x - 1/x).
For || = 1 and x 3 1 this becomea
1 1 1
Mz— - = -(k - -
T2 8(‘ n)
with M > 1, and as the right hand side is pure imaginary it can equal the left
hand side only when {z| < 1, so the scheme is Cauchy stable and dissipative, [The
possibility z = +i must be disposed of scparately.) We are entirely done if e > 0 can
be chosen so that when the characteristic equation is applied to the normal mode of
Fig. 8.4, the growth wiil be z = 129/128. For this one needs
1 171 -5
z=-+ | -+ —}
z  8B\4 4
that is, / ;
- 1/z—1/32 1036
=] D08 220~ 01245117
‘ Thz/4 mazgy = oI
According to these definitions @ and @, cach have one lefigoing and rightgoing
maode for all [z] > 1, while Qg has three leftgoing modes. All Logether, therelore, the
proposed normal mode has the schematic form
Fi1G.6%
— Le
—
e— —_
—
——
=0 y=1 ;=12
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This is cansistent with the general form of a GKY instability illustrated in Vig. 6.1,

DEMONSTRATION 6.1. To confirm the above analysis, the model Q was applicd

on a grid h = 17100, k = 1/800 on {0,2] with inj

with inflow boundary condition v'z‘&,l = 0. The following unstable growth was

observed:
t n llv™ lkms Ratio
[¥ 0 5781
1 800 .2010 348 TABLE 6.1
2 1600 8.404 118
3 2400 4.250 X 10° 506
4 3200 2149 x 10% 506

The ratio rapidly approaces the predicted value (129/128)8%90 = 505.6. A plet of the

computed distribution also shows exactly the form of the predicted normal mode

6.4 Two interfaces: stability and reflection coefficients

The example of the last section showed that when two or more GKS-stable
interfaces interact, the presence of reflection cocllicients greater than 1 in modulus
may cause the combination to be unstable. Herc we will show, conversely, that if the
moduli are not greater than 1, this implics stabitity. The problem we apply this idea
to comes ftom a paper of Beam, Warming, and Yec [Je81], in which they motivate
and define the notion of F-stability. {Beam et al do nol argue by means of reflection
coefficients.) We will reproduce and extend their main results.

The backgronnd te [Bedl} is as follows. In studying certain fluid fow problems
numerically on an inlerval [0, 1], Beam et al. applied time-dependent finite-diffcrence
models for the purpose of determining steady-state solutions, i.c. £ — 00. Since they
had relatively little interest in tnodeling the transient behavior accurately, it was
natural to consider large time steps, hence large mesh ratios X, and even to consider
the Himit X ~ oc. When they did this, they observed that in same cases, large values

of % led o models that admitted exponentially growing solutions, evets though cach

155

boundary individualiy was GKS-stabic. Such expencntial growth docs not violate
K
is fatal for computations in which one wants a meaningful funit as ¢ — oo,

Therefore Beam et al. defined

-stability, provided it does net become more severe as the mesh is refined, but it

Defn. [Be81]. A difference model is -atable il it is GKS-stable, and further-

more, for all A > 0 it admits no eigensalutions with |z > 1.

By an eigensotution, we mear here .n eigensolution in the standard functional analytic
sense of the operator represcntin  the entire difference scheme, including boundary
ennditions at both ends. This definition rules out the troubiesome expouential growth.
The trouble is that it is not a stability definition of the usual sort, since it is not
connected with any estimate fike (4.2.3) or (4.3.1). However, the complexity of the
GKE theory in general. and of (4.3.1) in particular, suggest that it may sometimes be
useful to dixeusss practical stability criteria without waiting for a complcte theory W
justify them. (This is what we did in §5) In experiments on their original nonlinear
finids problem, Beam et al. found that £-stability is a reliable guide Lo observed
success af the computation,

The observation that GKS-stable strip models may admit exponenually growing
solutions is not new, and in fact §7 of {Gu72] is devoled to this phenomenon. For a
particular example involving a 2 X 2 system, that section derives conditions in terms
of » and the number of grid points between the boundaries lor there to be no growing
cigensolutions. The contribution of [[3e&t] is that it applies similar ideas in a more
realistic context, and in particular it derives f-stability results for an interesting class
of models bascid on A-stable formulas.

We will now derive P-stubility results by means of reflection coefficients. Consider
the two-interfuce geometry shown in Fig. 6.6, on which a composite dillerence model

Q is applied.

FIG 6.6

At points 3 Voo =1 with > 1, Q consists of a constant-coeflicient,

Cauchy-stable differenee forinabe Quo ter simplinnity we assuine that Qy is a threes
1t

-



point scalar formula satisflying Ass. 3.1 with £ = r = |. (The ideas Lo follow can
all be extended to more complicaied difference models, including systems as well as
scalars.) For j € 0 and j > J, two additional Cauchy stable formlas Q_and Q4
are applied. Though the fignre illustrates the pure intesface case —oo < 7 < ™, we
will permit one ot both interfaces Lo degencrate to boundaries, as in §8.2—in which
case Q_ or @, becomes onc-sided, and we cease to require Cauchy stability for that
formula. If both interfaces are boundaries, we speak of the “boundary case”; if at
Icast one is an internal interface, we speak of the “interface case”.

Suppose that Q admits a steady-state solution with [z| > 1. For 0 < 5 < J it

will necessarily have the form
v} = 2™{ak} + Or)) 0<;i<J) (6-4.1)

Let A; and Az {fuactions of z) denote the reflection coefficients at the lefL and right,
respectively, as considered in §3. That is, A, denotes the ratio of amplitudes of the
sightgoing signal to the leftgoing one at j = 0, and analogously for A;. Then (8.4.1)
implies that o and 3 satisfy

8= Aa, ox{ = A8«!. (6.4.2)

{We permit the GKS-unstable possibilities A, = 00 and A3 = c0.) Il weset a =1,
then 8 = A;, and {6.4.1) becomes

vy = 2k} + A1x}).
But the second equation of (6.4.2) implies further
A Az{x, /el = 1. {6.4.3)

We can interpret this as follows: if at a fixed time step we trace the rightgoing mode
from j = 0 to j = J, reflect it by a factor A; Lo a leftgoing mode, Lrace this back
to j = 0, and reflect it by Ay to Lhe rightgoing signal again, Lthen we must have the
same value we started with.

In (8.4.3), all of the quaitities Ay, Az, x4, &, depend on z. This equation containg
all the information relevant to stability analysis: @ admits an eigensolution for a given
2 € € if and only il (6.4.3) is salisfied for that z. Determining whether this is so for
a range of values of z may be diflicult. The advantage of (6.4.3) is Lhat it permits one
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to make simpler inferences il the reflection cocllicients are well behaved. Here is the

most natural such result:

‘Theorem 6.4.1. Let the two-interface model Q be defined as above. IfjA,| < 1
and {Aq] < 1 for all z with [2] 2 1, then Q admits no eigensofutions with {ef > 1.
If m addition [A1} < 1 or [A2] < 1 or both for each such z, then Q admits no

g or . lized espensolut, with |z} > 1.

Proof. Since |x,| < 1 < x| for |z| > 1, one has |(x,/xe)’| < 1, and the

second stat tis an i diat q ¢ of (6.4.3). For the first, one uses the
additional fact that Cauchy stability implies |x.| < 1 < |xg| for all [z] > 1, so that
one has {(x./xe)?} < 1. 8

Remark. This result holds even if one or both interfaces are GKS-unstable (cf.
Observation 5.4).

Theorem 6.4.1 yields a simple proof of the first main theorem of Beam, et al.
Recall the notions of three-point linear mullistep formulas and A-stobality described
in §2.4.

Theorem 6.4.2 (/Be81), Thm. §.1). Let uy = u, be modeled on [0,1] by o
difference scheme Q cons‘ish'ng of a three-point linear multistep formula Qp for j =
1,...,J =1, together with boundary conditions v3*' = 0 st £ = 1 and {q— 1)st-order
space cxtrapolation S (3.2.29) st x = 0 for some ¢ < J. If Qo is A-stable, then Q ©»
P-stable.

Proof. From {3.2.31) or by a simple compulation, the left-hand reflection coeffi-

A= ~(‘ - "‘)'K;A (6.4.4)

1+ xe

cient is

By (2.4.14}, the A-stability implies Rexg > 0, and it follows that the term in

parcntherses has _aodutus at most 1. This implies
) < Imet - for 2] 21 (8.4.5)

Moreover, the nonvanishing of the denominator of (6.4.4) implies by Thm. 4.3.2 that
the boundary at j = 0 is GKS-stable.
The right-hand condition v} = 0 is trivially GI(S-stable. This condition is

equivalent to the imposition of a reflection cocflicient

Az = -1, (6.4.8)




Since each boundary is GKS-stable, @ is GKS-stable by Thm. 5.2.1. it remains
1o show that there are no eigensolutions with [z| > 1. By the lirst statement of Thm.
6.1.1 together with egs. (6.4.5) and (6.1.6), we would be donc if the inequality [xef < 1
were valid. Sinee {sg} > 1 for [2| > 1, the situation is not quite this simple, but the
idea of Thm. 6.4.1 still applics, and with the use of the fact J 2 g, the proof can be
finished in either of two ways. Bypassing Thm. 6.4.1, one can return to {6.4.3) and

obtain immediately the contradiction
V= 1A Aals /6| < k9 Ine ™ = e 20 <

for any solntion with {z] > 1. (For the <wcond cquality we have made use of (2.4.8).)
Alternatively, one can shift the interface by renumbering the indices so that the old

J = g becomes a new ;' == 0, alter which A} will satisfy
AL < Ixel%le, [rel® <L
for |z} > 1. Then Thm. 6.4.1 applies directly. §

Theoren 6.4.2 has the following simple, if not very practical, anafog for probiems

in which three A-stable formulas are separated by abrupt-change interfaces.

Theorem 6.4.3. Let u, — au, be modeled on (-0, oc) by the two mnterfuce
model ) of Fig. 6.6, composed of consistent A-stable three-point linear mulitistep
fomulas Q ., Qo, and Q.. Then Q admits no exgensolutions or generalized eigensolu-
tions wath |2| 2 1, except possibly an cigensolution or generalized eigenasolution with
12{ = 1 that 15 non-strictly lefigoing 1 j < 0 and non-strictiy rightgong i 3 > J.

Proof. To begin with we have a problem with interfaces al 3 = Qand j = J 2 1,
hut as in the Jast prool, let us shift the indices so that the interfaces lie at ; = 5 and
7= J -} This will multiply both reflection coctlicicrds A. and A; by the factor
V5. T%e. Now by (3.2.5), taking into account the shift of indices, Ay has the value

Ky = Ky

A= (6.4.7)

- Ky — K¢
{Here £, 7, and t stand lor “leftgoing”, “rightgoing”, and “transmitted”; these ab-
breviations differ frotm those of {3.2.5), wherc i stands for “incident” and r for “reflected”.)
Assuthe without loss of generality a > 0. Then by Thm. 2.4.1, x, and ¢ lie in the
closed Jeft hall of the unit disk (k] < 1, Res < 0), whilc &z lies sutside the disk in
the nght hall plane {jal 2 1, Ro e 2> 0L The conliguration i« indicated in Fig. 6.7:
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F1G. 6.7

By simple geometry there follow the inequalities

[ R e Y g L

the first two terms are equal if and only if Rex, = 0 or Rex, = 0, and the latter

two il and only if {x,| = 1. Applying these facts to {6.4.7) gives

lAgt < 1, (6.4.8)

with cquality if and only if either Rex, = 0 and ix,{ = 1, or x, = x1. Obviously
one must then have |A;] < 1 for the refleclion coefficient at the left-hand interface,
also, with equality under analogous conditions.

By the first statement of Thm. 6.4.1, (6.4.8) and the corresponding bound |4,| <
1 imply that @ admits m; eigensolutions with |z| > 1. By the econd statement of

that theorem, there can be no cigensolutions or generalized eigensolutions for |

either unless |A(} = |Ag| = 1, which by the remarks above implies either Rex, = 0
of x, = K¢ = +1, and analogously at the left-hand interface. To complete the prool
it is therefore enough to show that each of these last two possibilities implies that
the transmitted signal xf2™ is non-strictly rightgoing. In the first case, Rex, = 0,
this is immediate: either |&] < 1, and the signal is evanescent (position (7) in Table
2.1), or & = =, and it is a stationary wave with C = 0 (pesition {5)). In the second
case, K&, = K¢ = 1, then we are done as before if it happens that &, = &, = %1
also. On the other hand if ke 7% ., then by (6.4.7), Az = —1, in which case the
leftgoing and rightgoing components cancel cach other and there is no generalited

cigensolution after all. g

Now let us return to the two-boundary problem. The more complicated results
of (BeB1] involve strongly A-stable schemes used in combination with the boundary
fortnula 8T {3.2.32) at j = 0. It is in this case that Beam, et al. observed P-instability.
For odd vatues of J, the formulas they considered appeared to be f-stable, but for

cven values stability held onty if ane restricted attention to values J > f{X} for a

certin function fO inercasing somewlal faster than finearly with A,
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We can explain and extend these results by means of reflection coellicients. First

we establish GKS-stability for strongly A-stable formulas:

Theorem 6.4.4 ([Be81], Thm. {.2). Let Q and Qo be defined as in Thm.
6.4.2, ezcept with § replaced by the (g — 1)st-order apace-time extrapolation boundary
condition ST (3.2.82) at j = 0. If Qg is strongly A-stable, then Q is GKS-stable.

Proof. For GKS-stability of Q we need only prove GKS-stability for the interfaces
j = 0and 7 = J independently, by Thm. 5.2.1, and we considered the latter interface
already in the proof of Thm. 6.4.2. At j = 0, (3.2.34) gives the reflection coefficient.

¢
[z "
Ay = (Hm) % (8.4.9)

We need to show that the denominator cannot vanish, ie. zxe 3 —§ for all z with

fz' > 1. By Thm. 2.4.1, the strong A-stability implies {xo| > ¥ for all z with [2[ > 1
cxcept in the case ¢ = 1. By Thm. 2.4.2, Qg is (-dissipative, and therelore with
x¢ == | one has either z = 1 or |z| < 1. Neither of these possibilities permits zxp =

-t

Now let us show that although the medel based on ST is GKS-stable, it can no
longer be cxpected to be F'-stable, at least when the mesh ratio is large. Assume

X > 1. Then by (2.4.3), onc has x = 1/x + O{1/)}, hence
1 1
K= —1+ O(X)' Kg=14+ O(i). {6.4.10)

In parlicular this will hold for z & ~1. But for these values, the denominator of
{6.4.9) has magnitude O(x~7), which implies that the reflection coeflicient will be
very large:

|A1] 2 const. A%,

This explains the obscrved P-unstable behavior. For large A, the left boundary of Q is
“nearly GKS-unstable” it admits a righlgoing signal (x,, 2) &= (=1, —1} stimulated
by only a very weak Icftgoing signal (xe,2) = (1, —1).

£ -stability to be assured by arguments based on (8.4.3), the attcnuation
ko[, the interior must be strong enough to marc than balance the amplification
due to Ay. Since |x,/xef = 1 = O(1/3), by (8.4.10), this will require

1., _ const.
R LA qpaickiadh
-3’ < S
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or by taking the logarithms of both sides,
1 1
J log(1l — i) < const. q log N

hence
J > const. ¢ logh. (8.4.11)

This kind of relationship between X and J is just what Beam, et al. observed in
practice.

By petforming the above estimates carefully, one could derive a prccfse condition
like (6.4.11) that would be sufficient for P-stability. This would complement nicely
the third main result of [Be81], Thm. 4.3 there, which gives a bound much like (6.4.11)
thit is necessary for P-stability when J is even.

It remains to give an explanation of the odd-even clicct described above. We
have shown that for J smaller than the order of magnitude indicated by (6.4.11),
the left hand side of (8.4.3) cannot be guarantred to have modulus less than 1,
and so an argument balancing refiection and attenuation does not rule out growing
cigensolutions. However, from the above results it follows that in the region 2 = -1,
K, & —1, kg == 1, where A islarge, A; will be approximately negative. Thatis o say,
it will have large ncgativ«‘*‘ real part and relatively small imaginary part. Combining

this fact with (6.4.6) shows that the left hand side of (6.4.3) has sign approximately
(-1-1(-1 = (-1’

If J is odd, the sign is negative and (6.4.3) cannot hold, despite the large reflection

coeflicient. This is why P-instability does not occur when J is odd.

6.5 Growth rates for two-interface problems

In this scction we continue the pattern of argument of §6.3, in which necessary
conditions for instability were derived by balancing amplification by refllection at the
interfaces against aticnuation in the interior {eq. (6.4.3)). The differcnce is that here
the aim is not primarily to rule out solutions with {2 > 1, but to estimate their rates
of growth when they do occur.

Both §6.3 and §6.4 were concerned with the fact that the combination of two
GKS-stable boundaries or interfaces may be unstable Seclion 6.3 considered catastro-

phic instability in the case of fixed separatior, 85, and §6.4 considered f-instability
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i Lhe case of ixed Az, A third, retated plicnomenen is deseribied by Kreiss in various
pupers, and we have discussed this in Chapter §: if a GKS-unastable boundary is used
ir 4 stnp problem with fixed Az, the interaction of the two boundaries may convert
an instability with ;2| = 1 to exponential [Kr71, §2; Kr73, §17]. Alf of these are just
three of a variety of effects which can arise that involve “reflection back and forth”
between two boundaries. The analysis in Lhis section will consider phenomena of this
sort systematically, Lo sce what kind of refiection is really going on, and what degree
of unstable growth, if any, to expeet in various circumstances,

Again. consider a two-interface constant.coefficient modet Q of the kind described
in §6.4 and illustrated in 1ig. 6.6, with cither J constant {the “fixed Aj" case) ot
Jh = Ar constant {the “fixed Az” case). From (6.4.3), we know that a steady-state

solution (6.1.1] for some z € @ can exist only i
Ix,/xel T = 1A1Aq) (6.5.1)

for that z. It is this equation that isscrts that attepuation and amplification must

halance, Por simplicity let us write
k=K fRdd SV, A= |AAgl (6.5.2)

Then {8.5.1) can be written
A=, (6.5.3)

We usc the symbol “z=", without defining it precisely, because throughaut this section
we will ignore constant factors. (Of course, in {6.5.3) the two sides are actually equal.}
The pattern of argument we will use is to show that (6.5.3) can hold only when |2|
has a certain size, dependent on J. It then follows that one can observe no unstable
growth worse than |z|", for values of |z| in this range. Il [2f = 1 + ¢ with ¢ € 1, the

rate of growth becomes

) ms 2™ = e RO = (const)™, (8.5.4)

where E{n) denotes, say, the 23 norm ||v™|}5.

Our aim is to find worst-case rates of growth £(n) for various classes of two-
intetface problems. The worst-case idea amounts Lo assuming that (6.9.3) is a sufficient
as well as necessary condition for a steady-state solution to exist. Of course for par-

ticular problems this may not be so (we might have AyAu(r, /xe)? = =1 instead of
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(6.4.3), Tor example). bat across classes of problems it shoyld be vahd. The sct of
problems to be considered is defined by the following parameters, to which we have

given labels for convenience:

(87) fixed &) (= J),
{Az) fixed Az (ie. J - o)

{1} A < 1 (GKS-stable or unstable),

(M 1 < 4 < oc (GKS-stable or unstable},

(3) A4 = oc with |z] = | (GKS- unstable),

{4} A = oo with {z] > 1 (GKS-unstable};

(D} & < kg < 1for |2} > 1 (@ totally dissipative),
(ND) & =1for z with {z] = 1 (Qp nondissipative).

A

ixeept in case (4), we assume that no Godunov-Ryabenkii vigensolution with |2 > 1
is present. As the list suggests, the acguments will depend on A but not on GKS.
stability per se. This fact supports Obs. 5.4.

We will ignore exceptional cases, such as those involving defective values of &
or z. First we classify the “best” cases (£ < const.), then the “worst” ones (K =~
{const.}™), then various cases in between. The results are summarized at the end in
Table 6.2

Case A< 1

Suppose A < 1 {case (1)). In Thm. 6.4.1, we have scen thal there can be no
steady-state solutions with {2} > 1. This rules out an exponential grpwth no matter

what combinalion of Lhe remaining pasameters above is in effect. Wh can interpret

this in terms of energy moving back and forth between intetfaces as lollpws: an initial
perturhation may persist for all time, reflecting back and forth betwebn interfaces,

but it will not grow. If Qg is totafly dissipative, it should die out.

One kind of growth may still be expected. In the case of an inferface (not
boundaryt problem, with Qq nondissipative (N D}, a signal of the above sopt trapped
between the it terfaces may radiate wavelike encrgy into the left- or righthynd semi-
afinite region. This will cause algebraic growth in . In the fixed Az case, thy growth
will look qualitatively like 12 = 1+ /1, which is not unstable because of thy ipitial
magnitude 1. In the fixed 3 case, It witi ook like £ a= Jk + Vi, which is urlstable,

sinee Jho—o 0 ash = 0. The examples of §6.1 Wustrate these citcumstances.
Ity sumanary, the case 4 <1 should grow at worst s follows. The syrabol {o) is
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a wild card indicating any of the choices of the parameter in thal position.

{A7)}(1)-(ND): unstabie algebraic growth, E == h + V1 (interlace case only);
(Az){1)-(ND}: stable algebraic growth, E == 1 + /I (interface case only);
(e)-(1)-(D): no growth.

Case A = 0o with 2| > |

At the other extremc, suppose that one or both interfaces admits an cigensolution
of the Godunov-Ryabenkii kind (case (4)), as described in §4.2, with an infinite
refiection coeflicient. Since such an interface alone would exhibit growth like {const.)",
it is natural to expect the same for the two-interface problem, or worse. [n fact there
can be nothing worse; Lhis follows from the bounded solvability from one time step
to the next of any properly defined difference model (Ass. 3.3). It remains just to
confirm that a steady state solution with E == {const.)™ can indeed oceur. This raises
the question, how can A = oo and x > 0 be reconciled with {6.5.3)?

The anawer, which will reappear throughout this section, is that a steady-state
solution with two interfaces will not have z equal to the value zp for which A = oo,
but to a perturbed value zj. Assume first x = 1, casc (N D). Then the perturbation
20 -~ zp must be large cnough to bring A(z) down to O(1), which means z5 — zo =
O{1). Since fzg] > 1, however, this is not inconsistent with J25| > 1. Hence an
exponentially growing solution (6.4.1}) may occur.

It Qy is totally dissipative {case (D)), growth of the form E == (const.)" will
still typically occur. but the perturbation argument may change. In case (&) the
attenuation k? > 0 is insignificant compared to the reflection coeflicient A(zg) = oo,
so 2 - 29 = O1) again. But in case (Az), J = O(1/h}, and x7 is not bounded away

from 0. Assume that for z == zp, A looks something like

Az |z~ 2]t (6.5.5)
Then to satisfy (6.5.3) one must have

- 279 = O(x’). (6.5.8)

For any rcasonable value of J this implies that z5 will be extremely elose to 20. In
other words, the exponential instability admitted by the two-interface system will
look almost exactly like the single-interface instability with 2 = zg.

OF course the two interfaces might interact fortuilousiy so as to rulc out such a

solution, as mentioned atready. In case (Aj), @ woulid then actualiy be stable, even
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though composed of one or two strongly unstable interfaces. In case (Az), it would
be unstable nevertheless. The reason is that for large J (small A), a perturbation
near one interface might grow catastrophically for a time before fceling the influence
of the other interface and finally decaying to 0; as A — 0 the catastrophe becomes
worse.

We are however concerned with worst-case growth, for which the summary of

models with A = oo for |z] > 1 is very eimple:
(+)-(4)-(s): ‘unstable exponential growth, E == (const.)".

Case 1 < A < 0 or A= oo, fixed A5

_In the first case indicated, one has two nonconserving but possibly GKS-stable
interfaces separated by a fixed number of grid points. The example of §6.3. exhibiting
growth E == (14})", was of this kind, namely {Aj)-(2)-{D). Obviously il Qg is
nondissipative (ND), or if A = oo instead of A < oo, growth like (const.}™ should still
be possible. There is also no distinction I -e between the boundary and the interface
situations.

There are however qualifications for the cases (A7)-(3)-(D) and {Aj)-(2)}-(D). Let

Qo be fixed and totally dissipative, and suppose first A = co. Asin the last discussién,
we are once again led to the perturbation (6.5.8), which is extremely small except
when J is near 0. But this time |zp| = 1, so that {6.5.6) implies that |z|, although
perhaps larger than 1, may be extremely close to it. Therefore the growth, although
exponential, will be slow in this case unless J == 0. On the other hand suppose
Alz) € Amaz < 00 for some Apmas. Then {6.5.3) can only hold for J small enough
so that x”/ A, > 1, say J < Jo. For practical exampies of this type, such as
the interaction of GKS-stable interfaces with Qg = LW, Jg usually seems to be 0 -
dissipation almost always produces stability. This is why the example of §6.3 had Lo
be so contrived. Unfortunatcly, it is generally hard to prove that Jg is so small, even
for particular examples.

In summary,
(A7)-(3)-(ND): unstable exponential growth, £ = (const.|*;
(A7)-(3}-(D): weak exponential growth, E = (const.}*, const. — 1 € I;
{A7)-(2)-(ND): unstable cxponential growth, E = {const.)™;
(A))-(2)-(D): E = (const.)® Tor J < Jo, no growth for J > Jo.
Case 1 < A < ™ or A= co, fixed Ar
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The rmost interesting set of cases remains: th ose with fixed Az and either 1 <
A 2 x {(;KS-stable or unstable) or 4 = oo but |2 = 1 (GKS-unstable). Depending
o owhe b kind of interface is present and whether Qg is dissipative, four different
rates of growth may be expected.

The case (Ar)-(2)-{D) has already becn settled by our discussion of the case
(A }{2-(D). There we argued that for J > Jg, no growth will occur. In the fixed
A situation, we are only concerned with the limit J -+ oo, and so one should expect
no growth here. B. Gustafsson has stated a theorem to this effect in [Gu8i). Similar
results for particular examples appear in [Gu72}, §7.

Suppose that again 1 < A < oo, but Qg is nondissipative—-case {Az)(2)-(N D).
Whether or not @ is GKS-stable, in general it will be susceptible lo exponential
growth in t (rol n), E = (const.}. There are two ways to see this. One is to think
of reflections back and farth as f increases. In the worst case, a signal might bounce
repeatedly betweer: the two interfaces, increasing in magnitude by a factor 4 > 1 with
each cireuit. i the fined Ar case the travel time will be O{1) between bounces, and so
one has a growth rate (const.)'. Alternatively, one can argue again by perturbations
20 — 2. If 20| = &{zp) = 1, then typically if |25] == 1 + ¢, we will have x(zp) == 1 —e.
Since J = O[1/4),{6.5.3) becomes the condition

- "= Al (8.5.7)
which implics ¢ & h. In other words, following (6.5.1), we should observe growth like
E(n) = (1 + &)™ = (const.)'.

Note that growth at this rate, althongh stable (take ag = const. in {4.2.5) or {1.3.1}),
doces not become weaker as h — 0. This contradic < .he impression given by Beam, et
al in [BeR1), but supports their view that a conce st ine P-stability may be uselul.

Consider now the case of Qg nondissipative ut .4 = oo. This is the situation
mentioned by Kreiss in which a lincar instability may be converted to exponential.
The exponcntial growth is however nol of type (const.)”, but of the weaker form
Jt == (1/h)'. We can sce this by (he usual perturbation argument. Once again,

consider }2j] = 1 + ¢ and assume thal [6.5.5) holds. Then the condilion {8.5.3) i
(1= ! (6.5.8}
¢
For this to be satisfied, « will have magnitude ¢ = hlog(1/h). Therclore by (6.5.4) we

will ubserve growth like
1
E{n) = (1 + hlog ;‘)('/’“ 2 (const.)' WeklT/A) g (1 R) e S
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Compare [Kr71]. §2, or {Kr73), cq. (17.10).
Finally, what will happen if A = oc but Qg is tatally dissipative® No mutter
how large J is, it will stifl be possible Lo choose f - 2g to satisfy {6.5.6). Hawever,

25 — 2o will have to be excecdingly smull. Eq. (6.5.4) gives the rate of growth
E(n) = (1 + )", (65.9)

which is exponential for fixed ./ but with a constant that decreases rapidly with J.
In practice this growth will be completely insignificant, sod @ will exhibit nothing
warse than whatever instability is caused by its individually unstable interface {or
interfaces). This conclusion applies in particular ta two-boundary preblems involving
borderlne GKS-instabilities of type |x| < 1, as discussed in §5.4. This confirms
Obscrvation 5.10.

In summary. for these situations of fixed Az type we have

(Az)-(2-{D): o growth
(AL2R{N DY stable growth, £ 2 {ronst}
(Az1)-($)-(P): =« able growih, extremely weak
(Az)-(3)-(N D). unstable growth, I = (J)¢

Let us symmarize the results of thes and the previous section. The details have
been complicated, but the main idea s simple For a growing eigensolution to exist,
the amplification by reflection at the houndaries must buiance the dissipation in the
interior, ax indicated by (6.5.3). In a model cantwinng an interface with reflection
cocficient A{zp) = oc, one therefore investigates perturbations 2 — 2 Lo reduce
A(zp) to the right size The growth rate is then given by E{n) = [£|™.

This analysis does not depend on whether auy GKS-unstable interfaces are pres-
ent, confirming Observations 5.4 and 510, In a problem of fixed Ar type, GKS-
instability at eithet interface will make itsell felt near that interface in the usnal way,
bul interaction of the two interfaces will not warsen the cflect unless the reflection
coeflicient arguments inaicate that it should.

We have not discussed borderline GRS-anstable interfares of type C = 0. 1t
turns oul that the effect of such a case ix typically to introduce a sipiare ruot on the

right band side of (6.5

with similir changes elsewhere. This may weaken unstable

growth rates, but it does not change thelr behucior qualitatively This is why Obs
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TABLE 6.2
fixed Ar fixed &y
dissipative nondiss. dissipative nondiss
T
A<t no growth 1+ vt fo growth RVt
DA
rd
. ~ N
| N > .
t« 4 2 nprowth | ocetat)f fconst 1™ {ranst.)®
AN ;
‘ ,/ -
//‘
k. s
T I N, - {const.]” (comt)®
4= izl 21 fconst )™ {runst.}™ i
]
W N

E = P-unatable
& == CKS-unstable

{assuming individual interfaces

are GKS-stable in first two rows)
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5.10 differentiates borderline eases of type ja| < 1 from those of type € = 0. {On the
other hand, with " = 0 it usnally happens that A is finite also. as we saw in §5.3.)
The growth rates we have oblained in thiy section arc summarized in Table 6.2,
Once again we emphasite that Lhese rates listed are typical ones, and may be false
for special problums; also that our mode! has involved just two interfaces, a scalar

equation, and constant coefficients.

6.6 Three or moare interfaces

In this final section we will make sorme remarks on stability for problemns with
three or more mterfaces. Such configurations come up in the design of composite
boundary or interface formulas They are also impotiant to the =nalysis of adpative
mesh refincment schemes, where one would like to be able to defive bounds on growth
rates without requinng the nutnber of grid points between mesh refinement interfaces
to approach infinity. One nught also think of any model with variable cocflicients
which we have searcely mettioned in this dissertation us consisting, of a series of
distinet difference formulns separated by interfaces betwern each pair of grid points.

The purpose in viewing any of these problems in teriis of interfaces is Lo obtain
results by reflection and transmission arguments that mght se M ult Lo oblain
atherwise. A particular arca where there is o great aced for suck results is in the
study ol totally dissipative formulas, For one-dimensional mest refincinent problems,
for example, experience shows that virtually any mesh solinement scheme applied
with a tetatly dissipative formula such as LW will be stabic Yot no geteral theorems
along these fines are known, except for the singlesinterfae. resits discyssed in §6.2.
As a general rule, although dissipativity hoips guarantee the fact of stability, it seems
to make the proof of stability more difficult. For example, establishing stability by
the encrgy method for a dilerence formuba with variable roeflicients is usually more
ditheult when the furmuli is dissipative.

Consider o twodel @ i which a finite collection of vonstant difference Tormula
are joined by interfaces separated by a fixed number of grid points By the results of
Chapter 4, we know precisely how ta cheek Tor GRS instabiiity of 7. in principle. In

ecach region botween interfac

s, adetermine for each = with 2 2 1 the set of leftgoing
and rightgoing sigoals  Ar vact interface, corpute the rflection and (ransa.ission

matrices that vonneet themn tox ter Then Thn 131 Lhes the following form. Q
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s GRE stabic of end only of the abote conditions permit no solution wath = > | of

sngpested i Fig 6.8:

— [ b
— N Fic. 6.8
—_—— T

I b werds, instability

s equivaient te the existence of a solution v} = "¢,

ssstong of parely

efreaing components in the left seriinfinite Interval, and purely
sehtgaing components oy e right semenfinte interval, with any cornbination of left-

ard sghteomnz sigpals permotied in-between.

Tr practae, such an analysis will be exeendingly diflicult. Therefore one asks,
what wrupie progerties of the refleetion and transmassion coeflicients might guarantee
tou of the Turm of Fig 6 % ean ocear® As with the models with one ot

[EESEEITTEN

oo arterfiees considered] catlier, an obvicus property to ook for is econservation of
coergy Here s an abstraet formulation of the kind of arguinent that might be used.
Xuppose that between cach pair of points (7 — )4, 3/ one can define a net energy

Aux @, v the right), satislying the following two properties for all z with 2| > 1:

/v d, < O {resp. > 0} in a region were only leftgoing (resp. rightgoing) me les
Aare present;
ra) &, Ly il gk is not an interface.

Vor an interface at ph Lo “conserve energy” with respect to @ then means simply that
s1t) hoids at that interface as well as at non-interface points. One obtains immediately

e following suflicient condition for stability:

Theorem 6.6.1. Let ¥ satisfy conditions (1) und {u) above. If {ii) holds also at
a.f 1uzerface points jh. and in uddition af least one inequality in (i) or (i) is strict,
then () 1o GKS-stable.

Praof 1T there exists an unstable dgenselution or generalized eigensolution, let
the corresponding viloes @) be computed. Let j_h and 7, h be points lying to the

ift and the ryght all of all interfaces, respectively. Then condition {i) implies

%, <0<,
wiile condition {u) implies
b, 2P0 2 (6.6.1)
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I any of thow nequabitios ix strict, then these two equations are inconsistent. §

Unfortunately, Tor realistic peabilerms it is not an casy matter Lo derive a function

® that is conserved at intetfaces. For example, let Q consist of a threa-point Lncar

multistep formula @ for ue = u, applicd between an arhitrary finite number of “crade
mesh refinctnent” interfaces of the kind deseribed in Example 3 4 of §83.2. (This ix
equivalent to applying ¢ on a unifarm mesh with a finite number of coetficicnt changes,
with all coellicients positive.} Let & be simply the £ cnergy flux ©, — &y, where &,
and @ arc defined as in §3.3. Then we showed in §3.3 that energy is conserved for
[2» = 1 when an inchlent signal is present on one side anly . ard this result can be
readily extended to twe-sided incidence. From this one can conclude as in Thm. 6.6.1
that Q admits no cigensolutions or generalized cigensolutions for (20 = 1 with strictly
antgoing signals in one or both semiit Snite region. Yet for 12! > 1, the argument
breaks down, for 1t tyrns out that crude mesh refinement interfaces no longer conserve
@. Thus Thin. 6.6.1 is not applicable  even thoug® one can show that Q is £5-stable
here by standard energy method arguments {Ri67).

This example suggests that the f2 Rux may genetally be an nnworkable choice for
¢ The same conclusion is suggested by the observation of §3.3 that in most problems,
the g energy is not conserved even for 2] = 1.

Alternatively, in analogy to the developiients of §6.2 §6.5, we could base ¢
insteas on amplitudes. Cansider again a problem with only one leftgoing and one

rightgoing solution between each pair of inteeface: Onn natural choice is
&, = Ja, k! - [agxii,

but this turns out to be no better than the £; definition considered above. However,

the possibility

sgn ('a.xi\ ~ jagn} )
shows promise, For this measure of & ta be copsersed at an interface means that the
interface admits no solutions in o whick v cach side, G radiated wave bas larger

amplitude than the ncideat one This is o natueal extension of the arguments

involving 1A] < 1 of the last two seetions. and there ate indiations that it may
make it possible to prove stubility for some realistic probicis
Unfortunately, we have <o far oblained no new resuity with teflection and trans-

retesion arpuinents of this hid Bal we helieve they are worti anvestigatin g, if only

because so Lol s kroswn at present hoat saltionicefae problems
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APPENDIX A. PROPERTIES OF STANDARD DIFFERENCE MODELS
In the following three pages the propertics of cleven common scalar difference

formula, (3) dispersion relation in & and 2, (4) dispersion relation in € and w, (5)
group velocity C{€,w . (61 initial terms of Taylor series w = w{¢) for branch through

angin {= modified equation), {7} orders of dispersiou {a} ard dissipation (3), (8) z-

reversing andor f-reversing, and (9) r-dissipative and/for t-dissipative. A dispersion

seal only at isolated points (for formulas with some dJissipation).
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APPENDIX B. PROOFS FOR (¢, INSTABILITIES

The purpese of this appendix is to prove Thms. 4.2.3 and 4.2.4. Recall that we
are considering a diffrrence model @ for an initial boundary value-probiem on ¢ > 0,
¢ 2 0 and that Q denates the homogeneous furmula applied away from the boundary.

The symbols § and 5,7 denote the operators

Sofet et e {7 e Ihomag. budry data), (H1}

n n

Sie g oo it data), (13.2)

with ot induoed by

foneems enoroand g with respeet o oroand {, respectinely
2T A0 (ER ) We suppase that @ bas a strietly rightgoing generalized

censnton Then the slaims of §12 took the form

Thm. 4.23. (3™ > const.

Conjecture. (877 = vonst n if an infinnee reflection coeflis present,

),

Thm. 4.2.4. 137 > const, n,

We wilt prove Thino 420 feat then

V123 The outliee of the proofs is
as foliows. Fet Ak be hxed, and connder the Cauchy probler: modeled by @ ir.,
rpnuree the howpdary to begin with Canstraet a wiave packet consisting of energy oo
one or more sty schbzeng waseiihe modes. Initially the wave packet s desigued
to havs width Noand be to the beft of =0 But after a time O{N), the etergy will

have traveted into 1 > O as ltustratad e Fig 1304

t=10 t=N
— —
i
{ b it
- 3| e———
N o)
] i
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In fact if {j - {jz is the ¢3 norm (3.6.2) on 3 > 0, we will have ¥ ; = OVN)
Now the key iden is this: the solution {17 obtained under Q u dentical en 3 = 0
to the solutson {7} obtamned tf Q 1 appired wnth initia!l datg zero and boundary dats
equal to the numbers {g"} produced when {x;‘} 13 tnserted n the boundary condilions

(4.2.3).

Tn other words, we can study the initial boundary value problem by means of the

Cauchy problem. The distribution {v]} would be an exact solution of @ with g \
as well as of @, if it happened to satisfy the howogeneous boundary conditions. It
doesn’t, but it does satisfly @ if we take just the right inrhomogencous “equivalent
boundary data.” Note the similarity with the arguments of §3.5. and of Fig B.1 with
Fig 3.9

I the initial wave packet is made up ol s strictly sghtgoing generaized vigensolu-
tion times a slowly varying envelope, then the homogencous boundary consditions are

nearly satinfied and g is small In fact we will show that one gets 'y = O, VN,

Danee o0 = OGN Thin 421 Tllows, To prone Thm 423,

we view the

tag et as boundary data but as forcing data £ oapplied at evesy step, whick we

Lo late tegnetial data foby the discrete Torer of Dubanie!

« principie o this

nsoont ta bave norm (1), soothe growth rate i OV N rather than

cotteat
N

Tre fitwming argurwnt s divaded into Sur parts Pirst we consuler two-level

waler wes antyoaed show tn benimas D and B2 st o oamooth wave packet

B e ccvmed Thee we prove the two tbeerems for the twe oyl ase Finally

w ond st b enterae to poneran e ST oor o inadels

Lemmas on propagation of a smooth wave packet

v : fotares b

The vor ol the proolois the Tolew ro Jenmon wetol ~rates “Hat i wave paosed

e wnnoth, then U propagates apip-oxirarely o sroap scity o Provong thas

r

roguaires the estimabion of a Fearics intogral tat bos astanidarg fore e divntes

teot o 4 ) o
through by e carnier omiftahion ¢ S chen what rerncons ot swere wond
af el That geverns toe propmgalior of a smoet s wonadis L e s
diffivenes spdel of the equation w — -0 whae [ L

etimpates Tor vk ot dsoare o
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and Wahlbin [75), very precise statements ean be made about how small the error
v(z) = 1%z + Ct} wiil be, and how this depends on the smoothness of the initisl
packet and the behavior of the dispersion relation at (£o,wo).

However, all we necd is a very special case. Therefore rather than appeal to
existing theorems, which would introduce undetermined constants and obscure the
essential simplicity of what is going on, we give the following argument from first
principles.

Let & and & be fixed and let Q be a two-level constant-coefficient Cauchy stable
difference formula that admits a solution e*@s=¢2) with £, wy € IR. By Thm. 2.3.1,
there exists some group velocity C € IR such that the dispersion function w = w(€)
satisfies

w = wg + C(€ - o) + 7(£),
vieR (B.3)
e S MIE - &)

for some constant M. By Cauchy stability, we have Imw > 0 for all £, which implies

Im7(€) > 0 also. Since 5~ €' is a contraction map for Imn 2> 0, this implies
et — etwerCle- ] < dlr(g)] < MH(E - &)’ (BA)

for any t > 0.

In what follows the Fourier transform and its inverse are defined by®
X e o R
no=g f_ e adn e} = /_ e ade (85)

Lemma B.1. Let plz) belong to C} (twice continsowsly differentiable with
compact support) and satisfy 9 € L,. Let Q be applied with initial date

oz} = e~ p{z).
Then for any n > 0 end any = € IR, v™{x) satisfles
[o"(z) - elwet=6Tp(z — CO)| < MtligTh, (B.8)
where t = nk and M is the constant of (B.S).

*Sce the footnote on p. 13 regarding thin choice of signs in the exponenta.
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Proof. Obviously p € L, hence v© € Ly also, and we can use Fourier transforms.
We get

w(z) = /_ : =) gg
= /_ :-""“"i(c ~ Go)dg
- / - [,-(-. O 4 gt _ oo Cle-tat | =t _ £0)dE.
The integral involving the first term in brackets is just
ot =tox) /:: - EM-Cgre _ £1) 6 = oot~ todlp(z — ).
So we have, using (B.4),
v(z) ~ eitet=tosip(z C,)l = I/_:(,w« _ e+ ClE-Eolit)ymrEr e _ g )dE
< j_: M€ ~ Eo)*1p(€ — olldE
=me [ 1emenae

=M [ FeNde = ML

If p is smooth, then the right hand side of (B.6) is small. To make p smooth
we will broaden it, while continuing to hold A and k fixed, although the same results
could be oblained by leaving p fixed and reducing A and k.

Lemma B.2. Suppose fz) = P(cz) for same fized function P € ct with P €
L. Then
1 = 1PNy (87)

Proof. Define y = ¢z. Then
. 1 dplz) 1 / d1P(ez)
WiEY = o | ot = ] s
o= =) ¢ Tdr? = wl) dz? 4

1 [ seyrd*Ply) 4 dz
=% /0"/ —d—v[iy—)(;%)' a3

= & [ e ruay = avero.
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Now define n = §/¢. Then
7 = [ @ie = « | 1Paiag

=c[\mans =¢ [IFmln = s o

Proof of Theorem 4.2.4

Now let Q be a model of ap initial boundary probiem problem on 2 = yh, 5 > 0,
consisting of the formula Q described above for j 2 ¢ together with the boundary
formulas (4.2.3)

Jmax max
Sjev] ™" =g", (88)

jomb om—1

where each S,, is a vector of length £. We assume % 2 0.

Theorem 4.2.4. Suppose Q is Cauchy stable but { admits o strictly rightgoing
generalized eigensolution

$=12") ainl (B.9)
with |z| = x| =1.and C; > 0 for v = I,...,q. Then

1Sl > comst.n ¥ >0, (8.10)

Proof. As described above, the idea of the proof is as follows. We solve the
Cauchy problem for Q with initial data v®(z) whose support is in = < 0, obtaining
v*(z) for n > 0. Then the restriction of v" to z = jh, § > 0 is identical to the
solution that would have been obtained under Q with v° == 0 and the boundary data
{g"} defined by {B.8). In particular, given N, we will pick initial data v° such that
fix°lla = 0 and

le¥liz > const. VN, (8.11)

where |} - ||z denotes the discrete ¢ norm {3.6.2) on § > 0, but such that g satisfies

conat,

liglls < 7R

(B13)

These two bounds will then imply (B.10).
Here are the details. Let P € C} be a fixed funclion with P(z) > 0 on (-1,0),
P(z) 2 0 clsewhere, and P € Ly, and write Pi,,, = sup|{z)]. For example P
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might be .
da'rr ze€(-1,0,
Plz) = { ° s€ (-0, (B.A3)
Let N be given and set T == Nk. Consider the Cauchy the problem for Q with initial
data

W)= T acelnlsh  ale) = PE/CT). (814
=i

Let M; be the constaat of Lemma B.1 for the wave «,,3,. For any n write ¢ = nk.
By Lemmas B.1 and B.2, we have then

o) - Taedsmats - Ct)| < t Tl Mallshy
[ i
- BB .
In particular, for n < N and hence ¢ < T, this equation together with (B.14) implies
- i apf JB  nk Ay
i-Teer(dr-7) <7

<7 (8.15)

where A = 1Pl T lad MC2.
Now we are equipped to show that |igil; is small, where g is the “equivalent
boundary data” {B.8). Given n and { = nk, define for all o and 5§

6;" = P(_?‘) Ea\xf:““.

Then we have

g~ =50 <

e - Z““:'.-'P(% _ l—ralz)l
e (-5)-A7)

L LIR)

Therefore for some Ay < oo,

fop=* -877°1 £ % for 0 €5 €Jmasr ~1 L0 < O0qu. (B.186)
Now by definition, ¥ is the generalized cigensolution (B.0) times the constant P{—¢/T),

which implies

Jmazx fmas
S;09]7" =0,
1m0 g1
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Consequently we have from {B.8)

Imax ¥mazx
o™ < 3 Y WS,lie}= - 37l (Ba7)

=0 owm—1

By (B.18), each summand on the right is O(T~'). Therefore

WIS < (B.18)
for some A;. Henee
N 2
= S < ev(2) = A (B9)
nel

and taking the square root gives (B.12).

The other half of the argument is to show that JJuN|l; is big. Now by definition
of the numbers «,, we know that the generalized cigensolution (B.9) cannot be zero
at more than ¢ — 1 consecutive grid points without being identically zero. It follows

that one has
S 2‘: ~pf 3B
E a.xlz P(E'._T_' - 1)

7m0 |vemd
for some Ay, 50 long as T > To > th/max; C,. Squarerooting and using (B.15), we
get {B.11), as desired. 3

: ]
> AT (2.30)

Proof of Theorem 4.2.3 (two-level case)

Now we prove

Theorem 4.2.3. Suppose Q is Cauchy steble but Q admits & strictly rightgoing
gencralised eigensolution (B.9), ez before. Then

HS$™ls = const. v (B.21)
Jor infinitely many integers n > 0.

Proo]. The most obvious proof was described in §4.2, cspecially Fig. 4.3. To
adapt that argument to the presenl framework of considering the Cauchy problem
modeled by Q, we could consider the process illustrated in Fig. B.2:

t= t=N
AN \  Fic.R2
, —
of1) O(N)
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It scems clear that this kind of setup should produce growth with respect 1o initial
data proportional to vN. However, no matter how smooth the envelope in F: ig. B.2
is, the solution will not satisly the boundary conditions for Q exactiy, and we are
faced again with the problem of treating “equivalent boundary data.” It turns out
that this can be done by means of Duhamel's principle, but in the end one gains
d the process of Fig. B.2 rather than that of Fig. B.1.
Therefore consider agsin exactly the aetup of the last prool. Let {v}} again
denote the solution obtained under @ on (—o0, 00} with initial data (B.14). Since § is
the solution operator for the model @ with homogencous boundary dats, we have in
general v**! % So™. However, for each n 2> 1, let {#*'} be defined by the formula

¥

thing by having

Imax
Y St =y, (B.22)
=0

with g*, as usual, given by (B.8). By Ass. 4.1 (solvabiity}, i,'" is a bounded function
of g™, and with (B.19) this implies

Jeety s ST (B13)

Now by (B.8) and (B.22), we have Sv™ = v™*! < g™+ that is,
g Ry
Iterating this equation (Duhamel’s principle}, one obtains
o = N e SEV  TNT SNIGY 4 N, (B.24)
where the last term is 0. This implies
Ny < N - I

WISV max US"U mas 157

hence by (B.23) and (B.11),
max  [|S™} > const. [jo™| > const. V.
0gaSN-1

This proves (B.21). §

Extension to multilevel difference models
To prove Thms. 4.2.3 and 4.2.4 in full generality, we must extend the above ar

guments to formulas involving vectors rather than scalars and an arbitrary number of
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levels rather than two. The extension to vectors is straightforward, given Assumption
2.1 (diagonalisability) and the consequent developments of §2.5, §3.6, and §1.2, so we
will not discuss it. What we will do is indicate how the extension to multilevel {but
scalar) schemes can be treated. We will describe only Lemma DB.1, as this is the heart
of the provfs.

Let Q be an a2 + 2-level scalsr difference formula applied on (—ao, 00). We can
reduce @ to a two-level model of dimension » + 1 in the standard way [Ri67] by
introducing the vectors

w™(z) = (v™(z), v"* 2, ..., o Ho(2) . (B.25)

If Q has the form {2.1.3), then the equivalent two-ievel scheme has the structure of &

companion matrix,

[} 1
0 1 O
v tiz) = R w"™(z). (B.16)
O [} 1
QiQ, - QIi& QTiQe
Taking the Fourier transform, we obtain
W (€) = GlEy"(8), (B.17)

where each w™(£) is & vector of length & + 1 and G(§) is a square matrix of this size
called the emplification metris. By itcrating {B.27) and taking the inverse transform,
we obtain the representation

©(z) = [ Gl (et e, (B.18)

For any wave number £, the eigenvalues of G(£) are the amociated frequencies w.
Typieally there are 5 + | of these, but for some values of § scveral eigenvalucs will
come logether with multiplicity greater than 1, and C(£) will be defective (cf. Thm.
2.1.1). It is this possibility that makes (B.28) more complicated than the corresponding
sealar formula. However, if §o and wy are real, then Cauchy stability implies that wo
is simple (Thm. 2.2.1), and Thm. 2.3.1 shows further that one can choose w = w(§)
with w{€o} = wo such that a bound (B.3) is satisficd. These facts make Lemma B.1
extend as follows to muitilevel formulss.

Lerr aa B.1'—multilevel case. Let p{z) delong to C} end setisfy p" € Ly. Let
Q be applied with initial data '

Wz m ety Cf) n=0,...,8 =nk
Then for any n > 0 and any z € IR, v"(z) satiafies

|v‘(:) —eflost—tem) s c:)l < const. ti"lly, (B.29)

where ¢ = nk.
Proof. The initial data have the vector form

#%z) = (plz), e plz ~ Ck), ..., e plz ~ Cok))T e~50%,
and the Fourler transform of this is
wO(6) = WIONE - &),
where W(¢) denotes
W) = (1, ot OU-tDh | oleoas ClE—tanob)T (8:30)

By the argument sbove, G(£) has an eigenvalue e**{€* for all £ such that u(€) satisfies
(B.3) and Imw(€) > 0. The corresponding eigenvector is

W(E) = (1, ek goettleh)T, (8.31)
Because W is an eigenvector of G, (B.28) ean be rewritten
we)= [ o]+ wio - wee - eokerae

= [ [e=eriie + cemer - weente - e de
From this expression we need only the first component, which is v*(z). By (B.31), the
first component of the integral of the first term is simply
L]
f_ LEIHE - Gy e

This is exactly the integra) we estimated in the proof of Lemma B.1, and we showed
that it diflers [rom e¥(wet—¢o%lp(z — Ct) by at most Mi||p"|[,. Therefore (B.29) will
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be catablished if we can bound the integral of the second term correspondingly,

[ crommio - wienpe - eoherde] < com tirtn. (B}

Now by Cauchy stability, |G| is uniformly bounded for all n. Moreover from (B.30),
(B.31), (5.3), and the fact used before that n — €' is & contraction map for Imy > 0,
one has

WLE) — W€l < const. (€ = o).
Eq. (B.32) l’oilows from these {acts, since as before we can eliminate the term (¢ - ¢o)®
by replacing p by 1;" [l
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