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Abstract
A search is conducted for a target moving in discrete time
. between a finite number of cells according to a known Markov
process. The set of cells available for search in a given time
period is a function of the cell searched in the previous time
period. The problem is formulated and solved as a partially

observable Markov decision process (POMDP). A finite time

horizon POMDP solution technique is presented which is simpler

than the standard linear programming methods.
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THE OPTIMAL SEARCH FOR A MOVING TARGET

WHEN THE SEARCH PATH IS CONSTRAINED

1. Problem Statement

A discrete time search is conducted for a target moving
between a finite set of cells C = {1,...,N} . At the beginning
of each time period, one cell is searched. 1If cell i was
searched in the previous time period, the current search cell
must be selected from the set C; ¢ C . If the target is in the
selected cell k , it is detected with probability qke[o,lj . If
the target is not in the cell searched, it can not be detected
during the current time period. After an unsuccessful search,
a target in cell i moves to cell j with probsbility pij
for the next time period. The transition matrix, P = [pij] '

is known to the searcher. The object of the search is to maxi-

mize the T-time —ariod probability of detection.
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2. Background

The moving target problem has received considerable atten-
tion, much of it recent. Washburn [1980] and Stone and Kadane
[1981] list the important references. Pollock [1970] solved
the problem addressed here for N = 2 and c;=¢C;=¢C.
Washburn [1980] and Brown [1980] introduced a powerful technique
giving exact solutions for the N-cell case, if all cells are
available for search in each time period (i.e.,
¢, =¢,i=1,...,N), search effort can be infinitesimally divided

i
between the cells, and the detection function is exponential.

Stewart [1980] adapted this technique to the search problem
considered here by using brarch-and-bound methods. As Stewart
observed, however, the nonconvexity of the space of possible

search plans allows this method to converge to suboptimal solutions.
Smallwood and Sondik [1973] and Monahan [1982] noted that

the 2-cell problem solved by Pollock [1970] could be modelled
as a partially observable Markov decision process (POMDP) and
that an N-cell extension was possible. This paper makes that
extension and, in addition, allows that the set of possible
search cells in a given time period be a function of the search
cell selected in the previous time period. This permits
searches to be modelled where the searcher can travel only
a limited distance between time periods. Thus, the search cell
in a given time period must be within some specified neighbor-
hood of the search cell in the previous time period.

Also reported on is & finite time horizon POMDP solution
technique which is simpler than the standard linear program-
ming techniques (e.g., Monahan [1982]), and which, initial

computational experience indicates, is more quickly executed.
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3. Mathematical Development

As is standard for many problems exploiting a Markov as-
sumption, the solution technique used here is dynamic program-
ming. This method requires that the process being modelled be
defined in terms of a sufficient statistic (Bersekas [1976],
p. 122). Following Sondik [1971], Smallwood and Sondik [1973]

. N+1
and Platzman [1980], we use the row vector (w(k),i)€ R

, where
nj(k) = Pr{the target is in cell J§ at the beginning of time
period k , given unsuccessful search in all previous time
periods}, and i € C is the cell searched in the previous time
period. If the dependence on k is clear from context, w(k)

will be written as 7w . The state space then becomes I x C

where
N
I=1{rn€R |7TL=1,7>0},

and 1 and 0 can be either vectors or scalars. The vector
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inequality a > b means a; > bi , Y1 .

Following the dynamic programming convention of labelling
"backwards in time", we define Vn(n,i) to be the maximum
obtainable probability of detection with n time periods remain-
ing and a current state vector (7w,i). Let Tj(w) € RN be

updated for unsuccessful search in cell j , using Bayes's rule.

That is,

-1
Tj(“) = (l-qj“j) "Pj ’

NxN

where Pj € R is P with row j multiplied by (l—qj) .

It anj = 1 , then the search in the current time pericd detects




the target with certainty, and (1) is not defined. We can now

write Vn(w,i) in terms of Vn_l(ﬂaj) as follows:

w,i = LMo -. -.) . -3 ’
Vn( ,1) ??z.{qjﬂj + (1 anj Vn—l(Tj(")'J)} (2)
i

with Vo(ﬂ,i) =0 .

Equation (2) is the dynamic programming recursion that
must be solved in each time period. It looks formidable, pri-
marily because n is real rather than discrete. We will
show, however, that Vn(n,i) may be expressed in a particularly
simple form. Namely,

Vn(n,i) = max  Ta , (3)
a€A(n,i)
where A(n,i) is a finite collection of N-vectors. The
dynamic programming problem then becomes one of constructing
A(n,i) from A(n-1,3j).

If c; =C., Vi , then the search problem as formulated
becomes a standard POMDP and can be solved using the linear
programpring methods of Sondik [1971], Smallwood and Sondik [1973],
or Monahan [1982]. Allowing that the action selected in the
previous time period can constrain the actions available in the
present time period requires an augmented state space
(I x ¢ vice 1) and represents a generalization of the
standard model. However, as the next theorem shows, the basic
form of the POMDP solution remains the same. Specifically, Vn(n,i)

is piecewise linear and convex.




Theorem;

convex in

For n=26,...,T7, Vn(n,i) is piecewise linear and

T . That is,

Vn(n,i) =  max wa ,
a€A(n,i)

where A(n,i) is a finite set of N-vectors.

Proof: We proceed by induction. (4) holds trivially for n =

and A(0,i) =0 . For n=1, it also holds, since from (2),
Vy(m,i) = max q.7w.
1 jec, I3
i
= max Ta ,
a€a(l,i)

where A(l,i) = {qjgjljeci} and ngRN is a column vector

with a 1

is the jth place and 0's elsewhere.

Now assume (4) holds in time period (n-1). From (2),

Vn(n,i)

r

max {q.m. + (l-g.m.) max (T.(ma.)
jec; 33 33 as€a(n-1,3) J J

\

1

-1
max {q.7. + (l-qg.7.) max (l-gq.7.) “TP.a,
jec, | 73 ajealn-1,3) J 3 )]

.3

max {gq.m. + wP.a.}
sec, 33 373
ajEA(n-l,j)

max Tma
a€A(n,i)

(4)

0

(5)




where A(n,i) = {a€R

Nla = gjqj + Pjaj; j€Ci and ajGA(n-l,j)}. (6)

So Vn(n,i) is of the proper form and the proof is complete.

For any finite n and i¢C , A(n,i) is a finite set.
However, using (6) to generate A(n,i) and assuming (for
illustration purposes only) that the number of elements in Ci
is M for all iéC , the number of vectors in A(n,i) is M
times the number in A(n-1,i) . Since there are M vectors in
A(1l,i) , there are apparently M? vectors in A(n,i) . This
equals the number of possible search paths for the n-time period
problem that begin with cell i and suggests that total enu-
meration of search paths might be as effective as this procedure.

Fortunately, this is not necessarily the case. Following
Smallwood and Sondik [1973], we note that some of the vectors in
A(n,i) can be removed and the maximization of (5) left unchanged.

We say that a¢A(n,i) is dominated if for every €Il ,

max Ta = max ma . (7)
a€A(n,i) acA(n, i)
a ¢ &

Dominated vectors can be removed from A(n,i) and need not be
used in the construction of AaA(n+l1,j) .

Sondik [1971] first provided a linear programming technique
to identify dominated vectors for the POMDP. Following a slight
modification in Monahan [1982], we solve the following linear

program to check a¢A(n,i) for dominance:




~

s.t. X > ma , Va¢€A(n,i) but a # a

nell

Whenever the minimal value of x - n; is non-negative, ; is
dominated and can be removed from A(n) . The linear program-
ming solution technique need not necessarily continue to opti-
mality. As soon as the objective function becomes negative, ;
is determined to be not duminated. (This method is similar to
the branch-and-bound technique of Stewart [1980] in that both
are enumerative procedures to systematically eliminate search
paths which can not be optimal.)

Once the reduced vector sets A(n,i)} have been generated
for all i¢c and n = (0,...,T) , the maximum probability of
detection and the optimal T-time period searéh plan can be de-
termined for any initial target distribution w . Assume that
before the search begins, the searcher is in cell i , and thus
the initial search cell must be in Ci . Then the maximum
obtainable T-time period probability of detection is

max Ta (9)
a€a(T,1i)
(If the searcher's starting cell, i , can be any element in C ,
(9) is maximized over all i€C to find the maximum probability
of detection.) The cell searched in time period T is that
jec, used in (6) to construct the argmax of (9). If cell j

is searched in time period T and the target is not detected,
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then (9) is resolved for time period T-1 with Tj(n) replacing
n and A(n-1,j) replacing A(n,i).

Alternatively (and perhaps more simply), one can note that

SRR ST

each a¢€¢A(T,i) has associated with it, not just the cell searched

in time period T , but a series of T cells, built up by the '

_——

sequential application of (6). When a particular a¢aA(T,i)
maximizes (9), the sequence of cells associated with the vector

a is the optimal search path.
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4. The Dual Definition of Dominance and a Geometric Interpretation
The linear programming dual of (8) is
max v (10)
k ~
s.t. ) r.a, -v>a
. i =
i=1
Al =1
A >0
where i = (1,...,k) indexes all vectors in A(n,i) except a .

The duality theorem of linear programming (Dantzig [1963],

p. 125 or Luenburger [1973], p. 72) states that the primal has
a finite optimal solution iff the dual has a finite optimal
solution; and when feasible optimal solutions exist, the two

optimal objective functions are equal.

We know that a€A(n,i) 1is dominated when the minimal

value of the objective function of (8) is non-negative. In this
case, the duality theorem requires that (10) is feasible and

that the optimal value of v is also non-negative. Thus, from
the constraints of (10), there exists a linear combination of
elements in A(n,i) except ; which (in a vector sense) is
greater than or equal to ; . And the strength of the duality
theorem allows the implication to hold in the other direction as

well, That is, if such a linear combination of vectors in

~

A(n,i) exists, then a is dominated.

The dual characterization of dominance allows a simple

geometric interpretation. If B is the convex hull of all
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vectors in A(n,i) except a , then a is dominated iff

3b € B such that b > a .

10
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5. Alternative Solution Techniques
The POMDP solution procedure described above requires
extensive calcualtions. To reduce A(n,i) to its minimal size,
) each a€A(n,i) must be checked for dominance by solving a
potentially large linear program. The question naturally arises
as to whether a simpler or more quickly executed procedure could
be found, even if such a procedure did not necessarily reduce

; A(n,i) to its minimal size.

! What is possibly the simplest such reduction scheme is to
compare each aj and a, (aj # ak) in A(n,i) , and to dis-
card ay if ay 2a or a if a < ay - The vectors re-
maining can then be further reduced using linear programming
methods, or the larger-than-minimal A(n,i) can be used directly
to construct A(n+l,j) by (6). Both of these procedures were
coded for the IBM 3033 at the Naval Postgraduate School, and, 3
for the search problems examined, the latter method, using no
linear programming at all, generated optimal solutions more
quickly and required less computer storage. Both methods appeared
preferable to using only linear programming methods to check

for dominance.
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6. An Example Problem

A simple 5-cell search problem is described by the following

parameters.
B! 0 0 0 0 ]
0 .75 .25 0 0
P=10 .25 .5 .25 0
0 0 .25 .5 .25
[0 0 0 .25 .75

c = {1,2,3,4,5}

C1 = 2

c, = {2,3}

C3 = {2,3,4} searcher's starting cell: 1
Cy = {3,4,5} T =7

C5 = {4,5} n(7! = (0,0,0,0,1)

q; = 4,1

12
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The target starts in cell 5 and the searcher in cell 1. Since
C1 = 2 , the initial cell searched is 2 . After the initial
search, cell 1 is inaccessible to both the searcher and the
target.

The optimal search path and the maximum obtainable prob-
ability of detection (Pd) are given in Table 1 for q of h
.2, .4, .6, .8, and 1 . Using the simplest reduction method

(i.e., no linear programming), the number of vectors in A(7,1)

increased from 3 for g =1 to 187 for g = .2 . The CPU time
required to obtain the optimal solution increased from 24 seconds

for g =1 to 536 seconds for g = .2 .

q optimal search path Py # vectors tgig

in A(7,1) (sec)

.2 2 3 4 5 5 5 5 .357 187 536

.4 2 3 4 5 5 4 5 .594 89 280

.6 2 3 4 5 4 5 4 .757 49 179

.8 2 3 4 5 4 5 4 .867 26 169

1.0 2 3 4 5 4 3 2 .934 3 24

Table 1. Example Problem Results

13
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