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Abstract

A search is conducted for a target moving in discrete time

between a finite number of cells according to a known Markov

process. The set of cells available for search in a given time

period is a function of the cell searched in the previous time

period. The problem is formulated and solved as a partially

observable Markov decision process CPOMDP). A finite time

horizon PODP solution technique is presented which is simpler

than the standard linear programming methods.
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THE OPTIMAL SEARCH FOR A MOVING TARGET

WHEN THE SEARCH PATH IS CONSTRAINED

1. Problem Statement

A discrete time search is conducted for a target moving

between a finite set of cells C = {l,...,N} . At the beginning

of each time period, one cell is searched. If cell i was

searched in the previous time period, the current search cell

must be selected from the set Ci c C . If the target is in the

selected cell k , it is detected with probability qkE[0,l] . If

the target is not in the cell searched, it can not be detected

during the current time period. After an unsuccessful search,

a target in cell i moves to cell j with probability Pij

for the next time period. The transition matrix, P = [pij]

is known to the searcher. The object of the search is to maxi-

mize the T-time -, riod probability of detection.
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2. Background

The moving target problem has received considerable atten-

tion, much of it recent. Washburn [1980] and Stone and Kadane

[1981] list the important references. Pollock [1970] solved

the problem addressed here for N = 2 and C1 = C2 = C

Washburn [1980] and Brown [1980] introduced a powerful technique

giving exact solutions for the N-cell case, if all cells are

available for search in each time period (i.e.,

Ci = C, i = l,...,N), search effort can be infinitesimally divided

between the cells, and the detection function is exponential.

Stewart [1980] adapted this technique to the search problem

considered here by using brar4:h-and-bound methods. As Stewart

observed, however, the nonconvexity of the space of possible

search plans allows this method to converge to suboptimal solutions.

Smallwood and Sondik [1973] and Monahan [1982] noted that

the 2-cell problem solved by Pollock [1970] could be modelled

as a partially observable Markov decision process (POMDP) and

that an N-cell extension was possible. This paper makes that

extension and, in addition, allows that the set of possible

search cells in a given time period be a function of the search

cell selected in the previous time period. This permits

searches to be modelled where the searcher can travel only

a limited distance between time periods. Thus, the search cell

in a given time period must be within some specified neighbor-

hood of the search cell in the previous time period.

Also reported on is a finite time horizon POMDP solution

technique which is simpler than the standard linear program-

ming techniques (e.g., Monahan [1982]), and which, initial

computati.onal experience indicates, is more quickly executed.
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3. Mathematical Development

As is standard for many problems exploiting a Markov as-

sumption, the solution technique used here is dynamic program-

ming. This method requires that the process being modelled be

defined in terms of a sufficient statistic (Bersekas [1976],

p. 122). Following Sondik [1971], Smallwood and Sondik [1973]

and Platzman [1980], we use the row vector ((k),i)( RN+l , where

Wi j(k) = P r{the target is in cell j at the beginning of time

period k , given unsuccessful search in all previous time

periods1, and i E C is the cell searched in the previous time

period. If the dependence on k is clear from context, w(k)

will be written as w . The state space then becomes H x C

where

H = S E RNIwi = 1 , > ,

and 1 and 0 can be either vectors or scalars. The vector

inequality a > b means ai > bi , Vi .

Following the dynamic programming convention of labelling

"backwards in time", we define Vn (w,i) to be the maximum

obtainable probability of detection with n time periods remain-

ing and a current state vector (ir,i). Let T.(70 E RN be n

updated for unsuccessful search in cell j , using Bayes's rule.

That is,

Tj (ir) - (1-qjrj)- rP , (1)

where P ( RNxN is P with row j multiplied by (l-qj)

If qjij - 1 , then the search in the current time period detects
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the target with certainty, and (1) is not defined. We can now

write V (r,i) in terms of Vn1 (r,j) as follows:
n -

Vn71ii) = max fq.jr. + (l-qjirj)Vn_(Tj(n)') (2)
njECt) lj J

with V0 (7r,i) = 0

Equation (2) is the dynamic programming recursion that

must be solved in each time period. It looks formidable, pri-

marily because n is real rather than discrete. We will

show, however, that V (w,i) may be expressed in a particularlyn

simple form. Namely,

Vn(w,i) = max ira , (3)
aEA(n,i)

where A(n,i) is a finite collection of N-vectors. The

dynamic programming problem then becomes one of constructing

A(n,i) from A(n-l,j).

If Ci = C , Vi , then the search problem as formulated

becomes a standard POMDP and can be solved using the linear

programming methods of Sondik [1971], Smallwood and Sondik [1973],

or Monahan [1982]. Allowing that the action selected in the

previous time period can constrain the actions available in the

present time period requires an augmented state space

(ft x C vice fl) and represents a generalization of the

standard model. However, as the next theorem shows, the basic

form of the POMDP solution remains the same. Specifically, Vn (i,i)

is piecewise linear and convex.
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Theorem: For n = 0,...,T , V (r,i) is piecewise linear and

convex in w . That is,

V (r,i) = max ira , (4)
aE A Cn, i)

where A(n,ij is a finite set of N-vectors.

Proof: We proceed by induction. (4) holds trivially for n = 0

and A(O,i) 0 For n = 1 , it also holds, since from (2),

V 1(i,i) = maxJECiqJ

- max 7Ta,

aEA(l,i)

where A(li) = {qjdjj(Ci I and C DER N  is a column vector

with a 1 is the jth place and 0's elsewhere.

Now assume (4) holds in time period (n-i). From (2),

-Ti a jr + (1-.q. Tr.) max (T.(On ECiL J J a3  ,j

- max qir. + (l-qjrj) max (-qjj) -1 irPaj}jEC i  ajEA(n-I,j)l-jj"

max {qjij + IrPjaj
jEC. i i

a j EA(n-l, j)

= max ira (5)

aEA(n,i)

5
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where A(n,i) = {aER Ia = jqj + Pjaj; jEC. and a.EA(n-l,j)}. (6)

So V (Or,i) is of the proper form and the proof is complete.

For any finite n and iEC , A(n,i) is a finite set.

However, using (6) to generate A(n,i) and assuming (for

illustration purposes only) that the number of elements in C.

is M for all iC , the number of vectors in A(n,i) is M

times the number in A(n-l,i) . Since there are M vectors in

A(l,i) , there are apparently Mn vectors in A(n,i) . This

equals the number of possible search paths for the n-time period

problem that begin with cell i and suggests that total enu-

meration of search paths might be as effective as this procedure.

Fortunately, this is not necessarily the case. Following

Smallwood and Sondik [19731 we note that some of the vectors in

A(n,i) can be removed and the maximization of (5) left unchanged.

We say that aEA(n,i) is dominated if for every rEJ,

max *a = max Ra • (7)
aEA(n,i) aEA(n,i)a * ii

Dominated vectors can be removed from A(n,i) and need not be

used in the construction of A(n+l,j) .

Sondik [1971] first provided a linear programming technique

to identify dominated vectors for the POMDP. Following a slight

modification in Monahan [19823, we solve the following linear

program to check aEA(n,i) for dominance:
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min x - ra (8)
7r,X

s.t. x > Tra , VaEA(n,i) but a a

Whenever the minimal value of x - na is non-negative, a is

dominated and can be removed from An) The linear program-

ming solution technique need not necessarily continue to opti-

mality. As soon as the objective function becomes negative, a

is determined to be not dominated. (This method is similar to

the branch-and-bound technique of Stewart [1980] in that both

are enumerative procedures to systematically eliminate search

paths which can not be optimal.)

Once the reduced vector sets A(n,i) have been generated

for all iEC and n = (0,...,T) , the maximum probability of

detection and the optimal T-time period search plan can be de-

termined for any initial target distribution 7 . Assume that

before the search begins, the searcher is in cell i , and thus

the initial search cell must be in C. . Then the maximum

obtainable T-time period probability of detection is

max ira (9)
aEA(T, i)

(If the searcher's starting cell, i , can be any element in C

(9) is maximized over all iEC to find the maximum probability

of detection.) The cell searched in time period T is that

j(C i used in (6) to construct the argmax of (9). If cell j

is searched in time period T and the target is not detected,
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then (9) is resolved for time period T-1 with T. (w) replacing)

w and A(n-l,j) replacing A(n,i).

Alternatively (and perhaps more simply), one can note that

each aEA(T,i) has associated with it, not just the cell searched

in time period T , but a series of T cells, built up by the

sequential application of (6). When a particular a(A(T,i)

maximizes (9), the sequence of cells associated with the vector

a is the optimal search path.
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4. The Dual Definition of Dominance and a Geometric Interpretation

The linear programming dual of (8) is

max v (10)

ks.t. X i a.i - v > a
i=l i -

A > 0
Al=1

where i = (l,...,k) indexes all vectors in A(n,i) except a

The duality theorem of linear programming (Dantzig [1963],

p. 125 or Luenburger [1973], p. 72) states that the primal has

a finite optimal solution iff the dual has a finite optimal

solution; and when feasible optimal solutions exist, the two

optimal objective functions are equal.

We know that aEA(n,i) is dominated when the minimal

value of the objective function of (8) is non-negative. In this

case, the duality theorem requires that (10) is feasible and

that the optimal value of v is also non-negative. Thus, from

the constraints of (10), there exists a linear combination of

elements in A(n,i) except a which (in a vector sense) is

greater than or equal to a . And the strength of the duality

theorem allows the implication to hold in the other direction as

well. That is, if such a linear combination of vectors in

A(n,i) exists, then a is dominated.

The dual characterization of dominance allows a simple

geometric interpretation. If B is the convex hull of all

9



vectors in A(n,i) except a , then a is dominated iff

3 b E B such that b > a

10
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5. Alternative Solution Techniques

The POMDP solution procedure described above requires

extensive calcualtions. To reduce A(n,i) to its minimal size,

each a(A(n,i) must be checked for dominance by solving a

potentially large linear program. The question naturally arises

as to whether a simpler or more quickly executed procedure could

be found, even if such a procedure did not necessarily reduce

A(n,i) to its minimal size.

What is possibly the simplest such reduction scheme is to

compare each aj and ak (aj s ak ) in A(n,i) , and to dis-

card a. if a < ak or ak if ak S aj . The vectors re-

maining can then be further reduced using linear programming

methods, or the larger-than-minimal A(n,i) can be used directly

to construct A(n+l,j) by (6). Both of these procedures were

coded for the IBM 3033 at the Naval Postgraduate School, and,

for the search problems examined, the latter method, using no

linear programming at all, generated optimal solutions more

quickly and required less computer storage. Both methods appeared

preferable to using only linear programming methods to check

for dominance.
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6. An Example Problem

A simple 5-cell search problem is described by the following

parameters.

-1 0 0 0 0

0 .75 .25 0 0

P= 0 .25 .5 .25 0

o 0 .25 .5 .25

0O 0 0 .25 .75,

C 11{,2,3,4,51

C 2  {2,3)

C3  { 2,3,41 searcher's starting cell:1

C 4 ={3,4,51 T = 7

C5 ={4,5) wT(7) = (0,0,0,0,1)

=i q,Vi

12



The target starts in cell 5 and the searcher in cell 1. Since

C1 = 2 , the initial cell searched is 2 . After the initial

search, cell 1 is inaccessible to both the searcher and the

target.

The optimal search path and the maximum obtainable prob-

ability of detection (Pd) are given in Table 1 for q of

.2, .4, .6, .8, and 1 . Using the simplest reduction method

(i.e., no linear programming), the number of vectors in A(7,1)

increased from 3 for q = 1 to 187 for q = .2 . The CPU time

required to obtain the optimal solution increased from 24 seconds

for q = 1 to 536 seconds for q = .2

CPU
q optimal search path Pd # vectors time

in A(7,1) (sec)

.2 2 3 4 5 5 5 5 .357 187 536

.4 2 3 4 5 5 4 5 .594 89 280

.6 2 3 4 5 4 5 4 .757 49 179

.8 2 3 4 5 4 5 4 .867 26 169

1.0 2 3 4 5 4 3 2 .934 3 24

Table 1. Example Problem Results
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