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A TWO-PARAMETER CLASS OF BESSEL WEIGHTINGS WITH CONTROLLABLE
SIDELOBE BEHAVIOR FOR LINEAR, PLANAR-CIRCULAR, AND VOLUMETRIC-
SPHERICAL ARRAYS; THE IDEAL WEIGHTING-PATTERN PAIRS

INTRODUCTION

A wide variety of time-domain weightings for spectral analysis, whose

frequency-domain windows have very good sidelobe behavior, have been presented
in (1,2]. Since the basic mathematics descrioing the response of a weighted

linear array can also be written as a Fourier transform, these
weighting-window pairs have immediate application to one-dimensional array

processing as well as spectral analysis.

Most of the weighting-window pairs in [1,2] have no parameters in their

design equations; that i s, the windows are fixed and cannot be altered, as for

example, in the Hanniwj and Hamming windows. A few windows, such as the

Dolph-Chebyshev and Kaiser-Bessel [3,4], do have a single parameter in their

design equations that allows for a tradeoff between the mainlobe widt, and tne

ratio of mainlobe to peak sidelobe. However, neither have any control over

the rate of decay of the sidelobes, the Dolph-Chebyshev case having no decay,

and the Kaiser-Bessel case a 6 dB/octave decay. It is obvious that in order

to control both the sidelobe decay and the mainlobe-to-peak-sidelobe ratio, a

two-parameter family of weightings is necessary. And it is desirable
(although not necessary) for the window to possess a simple analytical form

that can be easily understood and evaluated for a range of parameter values.

Such a class of Bessel weightings is presented in this report.

For the array application, the weighting is applied as a multiplicative

factor in the spatial domain; the response to plane wave arrivals from various

directions is called the pattern, rather than the window. Here we will give a

two-parameter family of weighting-pattern pairs for use with arrays in one,

two, or three dimensions, and shall indicate the ideal weightings and
corresonding patterns In all cases. Special cases of this family will be

shown to include some of the weightings that are currently employed in array
and signal processing.- f
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RESPONSES OF ONE-, TWO-, AND THREE-DIMEASIONAL ARRAYS

LINEAR ARRAY

We consider a continuous line array located on the x-axis in the range

(-R,R) and subject to symmetric weighting w1(x) for JxJ I R. For a

sinqle-frequency plane wave of wavelength x, arriving at angle $a relative V
to the normal to the line array, the array voltage response, by use of

time-delay steering to look-angle , is

R

g(u) = dx expLi 2(sin$-sin w(x) (1)

-R

By letting s = x/R and by using the symmetry of weighting wl, we can express

response (1) as

1

g(u) =f. ds(# os(us) w(s), (2)

0

where nomalized weighting

w(s) - (2,rPR w(Rs), (3)

and dimensionless parameter

u = 2 sinVaStn ) (4)

incorporates the relevant features of array geometry, look angle, and the

arrival wavelength and angle.

Thus the response (2) of a line array is a cosine transfon of the

normalized eighting. As an example, rectangular weighting yields resonse

g(u) prooortional to sin u/u, wbich has its first few nulls at u w, 2w, 3 r.

2
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PLANAR ARRAY

The voltage response of a continuous planar-circular array of radius R, to

a plane wave of wavelength x arriving at (polar, azimuthal) angles (6 a, 6a),

and subject to eighting which depends only on the distance from the center of

the array, is derived in appendix A, culminating in the result (A-11). It is

1

g(u) - ds s J (us) w(s), (5)
0 0

where w(s) is the nemalized weighting and

u5 2 R. sin26 + sin 26- 2sinsin a cos(e-e . (6)
Aa L-i a a c ( -q /

Here (0, ) are the (polar, azimuthal) look angles; that is, the response

(5) of a planar-circular array is a zero-th order Bessel transform of the

normalized weighting. As an example, rectangular weighting wyields response

q(u) proportional to Jl(u)/u, which has its first few nulls at u = 3.83,

7.02, 10.17.

VOLUMETRIC ARRAY

The voltage response of a continuous volumetric-spherical array of radius

R, with eighting dependent only on the distance from the center of the array,

is derived in appendix B. The result is given by (B-1l) in the form

sin( us)

g(u) = ds sl A u S) (7)

0

where now

u e 2*R 2-2coscos - 2sin sinta cos -ea (8)

The other parameters are as explained in the previous subsection.

3
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Equation (7) has the basic form of a sine transform. As an example,

rectangular weighting wyields response g(u) proportional to

sin u-u cos u (9)

U

which has its first few nulls at u = 4.49, 7.73, 10.90.

UNIFIED FORM FOR ARRAY RESPONSES IN DIFFERENT DIMENSIONS

The results in (2), (5), and (7) for the array voltage response in one,
two, and three dimensions, .re.pectively, appear to be quite different.
However, they can all be written in the basic form

1

g(u) f ds K(u,s) w(s), (10)

0

where the kernel

(-cos(us) for = - -1

K(u,s) = s ( J(us) s ,o(us) for v = 0 (11)

2rs sin(us) for v =4
U

Here J is a Bessel function of order p, and we have used [5; 10.1.1,

10.1.11, 10.1.12]. Thus all the responses are basically Bessel transforms of
the normalized weighting w, with the correspondences given in the following

table.

Table 1. Identification of Values of a in (11)

Number of Dimensions Value of v

1 -1/2

2 0
3 1/2

4
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If ve substitute (11) in (10), ve have the explicit result for the

re sponse pattern:

g(u) ds s J(us) w(s).
0

Inspection of the properties of the Bessel function reveals that g(u) as given

by (12) is even in u; see £5; 9.1.10]. Thus we only need to investigate g(u)

for u 0.

5l

L ,I

i ,
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HAN JEL TRANSFORH4 PAIRS

The Hankel transform pair of order v is given by [6; page 136]

f(u) = ds (us) J (us) F(s) for u > 0,
f

0

F(s) ds (su) J(su) f(u) for s>O. (13)

0

Thus knowledqe of either function f or F for positive arguments enables

determination of the other function by an integral transform. Under the

ilentificati on

F(s) = s?+I V s), f(u) = u g(u), (14)

(13) takes the form

g(u) = ds s J(us) w(s) for u > 0, (15)

0

w(sl = du u (UJsu) g(u) for s > O. (16)

0

Equation (15) is more general than (12) in that it allows for weighting

w(s) to be nonzero for s > 1. Equation (16) is complementary in that, given a

desired pattern g(u), it indicates what weighting w(s) is required for s > 0.

However, if we attempt to specify some desirable pattern g(u), and then solve

(16) for the required weighting w(s), it will generally turn out that the

resultant w(s) will be nonzero for s > 1. Thus not any pattern g(u) can be

selected if we insist on a finite-support weighting w(s); rather, desirable

candidate patterns can be substituted in (16) and the corresponding weighting

w(s) evaluated to see if it is zero for s > 1. If not, the candidate pattern

i s di sallowed and must be modified or discarded . We will use preci sely this

procedure in a later section when we determine the weightings that realize the

ideal patterns in various numbers of dimensions.

* If pattern 9(u) yields w(s) - 0 for s > a, the scaled pattern g(u/a) yields

a modified weighting a 4+2w(as), which is zero for s > 1, as desired.

6
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DEFINITION OF TWO BESSEL FUNCTION RATIOS

It will be very convenient notationally in the following to employ the

shorthand notations

JI(Z) 40 2 k
k

L( z) I 1 (-z 2 /4) (17)
2 k!iP( +l+k)

(z Z/4) k

a z)-z 2 k O klP(cL+l+k)

for these two Bessel function ratios; these types of functions have already
been encountered in (11), (12), (15), (16). They are extensions of the

4 n(Z) functions discussed in (7; page 56]. Both functions, k9(z) and

are single-valued and are entire in z for any a, as well as being
entire in a for any z C5; 6.1.3, 9.1.1]. Special cases of these functions

that are useful here are given by [5; 9.6.6, 10.1.1, 10.1.11, 10.1.12,
10.2.13, 10.2.14]

11

LQ(O) =910) ( 20p)+1,

Solz) = 1o(z), z) - ,4 1(z) = zI(z),

z

L(Z) =G&sinh z , (z) =(2) cosh z,

(2 'z cosh z - sinhz O
-1(z 3~; 9 L(3  2 r ~- z sinh z -cosh z)

z

( ) ,z, (3+z2 ) slnh z - 3z cosh zI ~5/2, ' -[1"Z

L. 5/ 2(Z) = (L(3+z ) cosh z - 3z sinh z). (19)

A useful prooerty, which is obvious from (17) and (18) and wAich will find

frequent application here, is 7

1
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9(±iz) = .(z), L (+iz) = 9(z). (20)

These relations hold true for all values of z, real or complex. Properties

similar to (19) can be obtained for the k-(z) functions; for example,

Other useful properties follow from the use of [5; 9.1.30 and 9.6.28],

)",Z) 4'+Oa +1 (
9(z) = -z +(Z), i2(z) = z Q 1 z), (21)

and from [5; 9.1.27 and 9.6.26],

(z) : - z-F L~(z) - 2(0-1)LQ1 (z •

8
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1
A CLASS OF BESSEL WEIGHTINGS

The class of Bessel weightings that we are suggesting, regardless of the

number of dimensions of the array, is given by

W( s) v( f-s for 0 < s < 1, where v > -1, B >0, (22)

and w(s) = 0 for s > 1. There are two real parameters in this class, namely,

v and B. For the special case of v = 0, this weighting is already known as

Kaiser-Bessel (3,4]; its pattern has nearly the optimum energy content within

a specified bandwidth in the one-dimensional application to spectral analysis.

Substitution of (22) in (12) or (15) yields the closed form for the

pattern [6; page 30, fourth integral, and 5; 9.6.3]

g(u) =fds s(~ J,(us) I (B Y1S2) (23A)
0

u,++I for all u, if i > -1 and v > -1. (23B)

Here we have employed definitions (17) and (18) and used (0). The condition

on u guarantees convergence of integral (12) at s 0 0, whereas the condition
on v guarantees convergence of integral (12) at s 1 1. The first form of

(238) is more convenient computationally for u 2 B, whereas the second form i s

more convenient for B u.

Weighting-pattern pair (22)-(23) are the fundamental results for the class

of Bessel weightings under consideration. They apply to one-, two-, or

three-dimensional arrays when 1 is specialized to - -, 0, or -, respectively,

and when u is interpreted as (4), (6), or (8), respectively. The parameter B

is nonnegative and will be shown to control the ratio of malnlooe to peak

sidelobe. For the case of one dimension, L, =-, the kernel of transform (23A)

i s a cosine (see the top line of (11)); in this special case,

the pattern)'pl(u "-) was also independently and simultaneously discovered

by Roy Streit (8].

9



TR 6761

WEIGHTING CHARACTERISTICS

Weighting (22) is positive for 0 _ s < 1 since v > -1 and B 2 0; see

[5; 9.6.10]. In addition, it is zero and therefore continuous at s = I if

v > 0. In fact (5; 9.6.7],

w(s)- as s--1-. (24)

For v 0! 0, weighting w(s) is monotonically decreasing in s on (0,1); see

appendix C. However, for -1 < v < 0, w(s) possesses an integrable singularity
at s=1.

Examples of weighting (22) are plotted in figures 1-6 for v = 2, 1.5, 1,

.5, 0, -. 5, resectively. Figure 5, for v = 0, corresponds to the
Kaiser-Bessel weighting [3]. For the larger values of v, the weighting blends

smoothly to zero at s = 1, but for the smaller values of v, the behavior of
w( s) is more irregular at s = 1, being di scontinuous for v = 0 and infinite

for v < 0. The larger values of B lead to smoother functions that are
Gaussian-like; in fact, for s < 1 [5; 9.1.1IJ,

A s) e exp( -B2s) as B--0 . (25)

More generally,

w( s)~ (2w) fB- 2BS exp (B4fl)s as BY- ,s. (26)

The opposite limit for small B is

w(s) - s-) forB = . (27)

10
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Figure 6. Normalized Weighting for v =-.5
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RESPONSE PATTERN CHARACTERISTICS

The pattern was given by (23) as

Were the composite order of the Bessel function i s

= + v + 1 . (29)

The asymptotic behavior of the pattern (28) for large u is available from (17)

and (5; 9.2.1]:

S"(3)
g(u)-u+ as u-*o.

Since g is proportional to the array voltage response, (30) corresponds to a

decay-- 6a + 3 dB/octave as u--w. (31)

Expressed in terns of the original dimension-parameter j and weighting-

parameter v, thi s i s, from (29),

decay - 61, + 6v + 9 dB/octave as u-'

6v + 6 dB/octave for one dimension

,6v + 9 dB/octave for two dimensions . (32)

66v + 12 dB/octave for three dimensionsJ

Thus the greater the number of dimensions, the faster is the rate of decay of

the sidelobes of the response, for a common value of weighting-parameter v.

Each additional dimension adds a 3 dB/octave decay, for a fixed v.

14
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Special cases of the pattern (28) are available upon use of (19) and (20);

for example,

2 o) =1 f cos for = - -I

c Joo shu Bu for a 
=  0

0

g(u) = 1(33)~u, (21 sinh(fB )= (2 sin for =

I 1 ~i - for a = 1

All of these relations are valid for all u, whether u is larger or smaller

than B; of course, the former forn in each line i s more convenient for u <. B,

while the latter is more convenient for u 2 B. The third result in (33), for

a = -, includes the pattern in one dimension (N = -- , v = 0) for the

Kaiser-Bessel wighting lo(BVI- S) for 0 < s <

The special case of a = - in (33) deserves extra attention; thi s case

will be called the ideal pattern:

gj(u) Juf-

co fora=- . (34)

The plot in figure 7 reveals that the sidelobes are all equal, and that the

15
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(2.)/ cosh (0)_ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _

0 B

U

Figure 7. Ideal Pattern g1(u)

voltage ratio

nialobe level cohB.(5
sidelooe MiEr oh()i(5

The mainlobe width, as measured to the point where the mainlobe first decays

to the eventual sidelobe level, is

mainlobe width = B. (36)

The ab si ssa u i s g iven by (4), (6), or (8) f or one, two, or three dimen sion s,
respectively. Determination of the required weighting to realize the ideal

pattern (34) in different numbers of dimensions is taken up in a later section.

16
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1If < < -7, the pattern (28) has increasing sidelobes as u increases; see
1

(30). Therefore, -- are the only cases of practical interest for pattern

(28).

Plots of pattern (28) are given in dB in figures 8-13 for = 2, 1.5, 1,

.5, 0, -. 5, respectively, for various values of B. The program is listed in

appendix D. The larger values of a realize the more rapid decay of sidelobes,

but, on the other hand, have wider mainlobes. Figures 8-13 indicate the

necessary tradeoffs between mainlobe width, sidelobe decay, and

mainlobe-to-sidelobe ratio that must be-considered in any weighting selection.

A small chart in the upper right quadrant of each figure indicates some

allowable values of A and v that apply to that figure. For example, in figure

8, the pattern for o = 2 applies to all the following:

1 3
u - - (one dimension) with v = 7

or

= 0 (tw dimensions) with v = 1,
or

=1 (three dimensions) with v--1 (37)

When we come to figure 11, for a = .5, however, the case of v = , v = -1 has

an asterisk next to the v = -1 entry. The reason for this is that the

integral (23) leading to pattern g(u) was convergent only for v > -1, and now

we are trying to violate that condition. A similar cautionary note is

indicated in figures 12 and 13; in fact, all three cases in figure 13 violate

the condition v > -1. Despite this preclusion, we shall find later that the

required weighting does, in fact, have the form (22) for the corresponding v

values given in figures 11 - 13, but requires generalized functions with

singularities at the endpoint s = 1 of the interval. This extension to v < -1

is desirable and important because realization of the ideal pattern (figures 7

and 13) requires values for v in this region, regardless of the number of

dimension s.

17
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FIRST NULL LOCATION

Let z be the smallest nonzero null location of Ja(z); i.e.,

(za) = 0. (38)

A short list of (Z.l is given below in table 2. Tlien, by use of (17), the

Table 2. First Zero of JT(z)

aZ a

-0.5 1.5708

0.0 2.4048

0.5 3.1416

1.0 3.8317

1.5 4.4934

2.0 5.1356

2.5 5.7635

3.0 6.3802

3.5 6.9879

4.0 7.5883

4.5 8.1826

first null location of pattern g(u) in (28) is at uo, where

2 -B2t = z, u= (B2+z2 (39)

The results in figure 14 display the first null location as a function of
8, for various values of a. For large 8, u0 behaves as B + iz2/B. By the

identification of a as p + v + 1, this curve applies to any number of
dimensions and to whatever value of v is selected in weighting w(s) of (22).

The curves indicate that the first null location uo ismonotonically

increasing in both B and a.
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LOCATION OF PEAK UF FIRST SIDELOI3E

By use of (28) and (21), we obtain derivative 1

g'(u) = a -(

Therefore, reference to (38) reveals that the location of the peak of the

first sidelobe of g(u) occurs vkere g'(up) - 0; i.e,

(2/.,  Up = 82+ . (41)

If we employ more explicit notation in (39) and (41), we can express the first

peak location in terms of the first null location according to

u p(B,a) = u0(83,C+1). (42)

Thus all the results in figure 14 can be applied directly to the first peak

location. For example, (42) yields

-PB u u(B, 1~ (43)

thus the third curve from the bottom in figure 14 gives the location of the

peak of the first sidelobe When a = -

FEAK SIDELOBE LEVEL

The value of voltage pattern g(u) at location (41) gives the level of the

peak sidelobe:

26
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Slce the origin value of the pattern is

g(O) -- (d(), (45)

the voltage ratio of peak sidelobe level to mainlobe height is

g(u ) ___(___ (46)

L(B)-

Relation (46) is plotted in dB in figure 15 as a function of a, for various
values of a; i.e.,

-~2dB I0 Lg (zQ+' j
dB = 10 log (4?)

(B)

The peak sidelobe level decreases monotonically with increasing B, but has no

simple behavior versus a except for very small B or very large B.

The results of these last two figures are combined in figure 16, where we

plot the peak sidelobe level in dB versus the first null location uo. These
latter curves are virtually linear over a wide range. If we disregard the
sidelobe decay rate, the most desirable region of this figure is in the lower

left quadrant, i.e., small uo and very negative dB. However, the closest we

can get (from our family) is the a = -. 5 curve, which is, in fact, the ideal
pattern; see (34) and figure 7. Furthermore, the sidelobe decay rate i S then

0 dB/octave. Higher sidelobe decay rates are attained by moving toward the
upoer right quadrant of the figure; for example, the a = 3.5 curve has a 6a+3

= 24 dB/octave sidelobe decay rate. This figure furnishes a very compact
dislay of the important interrelationships that occur between the fundamental

features of peak sidelobe level, mainlobe width, and sidelobe decay rate, and
allows for a quick tradeoff comparison of alternatives.

27
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Figure 15. Peak Sidelobe Level of Pattern g(u) = . (f '")
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IDEAL WEIGHTING AND PATTERN

It was shown in figure 7, in the previous section, that the pattern g(u) for

1= -2 takes on a particularly desirable behavior, namely, a narrow mainlobe

width and a large ratio of mainlobe-to-peak-sidelobe. However, figures 11 - 13

indicated that realization of some patterns was apparently not possible in

certain dimensions because we were violating the condition on parameter v in

weighting (22) that allowed for convergence of integral (23). Here we will

address the more general problem of how to realize pattern (23),

g(u) i+V.1 (fu ) for all u, (48)

for any i > -1, but without the current restriction of v > -1 in weighting

(22). This procedure will of course require a different and more general

weighting than (22), and will furnish solutions to the asterisked cases in

figures 11 - 13.

The solution for the required weightings to realize (48) for any j > -1 is

conducted in appendix E. All the weightings are zero for s > 1, as desired;

their values for 0 < s S 1 are listed below. From (E-14),

=4S ZT B 7 jB1s)+S( s-1) for v = -1; (49)

from (E-33),

w( s) = - I, (B(G- + for -2 < v < -1; (50)
\U V I 2vr( vii) 2vr( vii) IG

and from (E-39),

w(s) 5 12 (B s) + s- - (s-1) for v = -2. (51)
1-s7V

The extended range for v < -2 is given in (E-35) and (E-36). Weighting (49)

requires a generalized function, namely, a delta function, with its

singularity located at s a 1. Weighting (51) requires, in addition, the
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derivative of a delta function, located at s = 1. The intermediate cases in

weighting (50) require a generalized function with its singularity located at

s = 1; interpretation and approximation of this generalized function is given

in apnendix F.

It can be observed from (49)-(51) that the leading term of w(s) is exactly

what would have been obtained from initial weighting (22) by substituting the

appropriate value of v; here we are using I-n(z) = In(z) [5; 9.6.6j.

However, the price of crossing the "natural boundary" at v = -1, which was
originally required for (23), is a generalized function with its singularity

located at s = 1. And the further we go below v = -I, the more singular

becomes the required generalized function; these points are elaborated upon in

appendix F.

The explicit assignment of v values in (48)-(51) leads to table 3 for the

weighting-pattern pairs. With regard to application of (48)-(51) to the array

Table 3. Weighting-Pattern Pairs; > -1

Weighting Pattern

(09) (u2B2

(50) with v = - "_

(51) u _B~

processing application in various numbers of dimensions, we have table 4 for
the required weightings, where we have specialized the values of v. In all

cases, the pattern realized is the ideal one of (34):

- cos - for all u. 152)gi(u)3
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Table 4. Required Weighting for Ideal Pattern

Number of Dimensions Value of u Required Weighting

1
1- (49)

32 0 (50) with v=--

3 - (51)

The weighting given by (49) for one dimension, namely, i = -1/2, has
already been presented by van der Maas C9]. However, the application of (49)

to the realization of (48) for any v > -1 is new. Additionally, all the

results in (50) and (51) for any p > -1, and their application to two- and

three-dimensional array processing in table 4, are new. An approximation to

the ideal pattern in two dimensions, namely, weighting (50) with v -1.5, is

treated is detail in appendix F.
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SOME OTHER WEIGHTINGS

Another candidate class of weiqhtings for consideration is

W( = I = B2" - for 0 < s < 1, (53)

of which (49) and (51) are representative examples, exclusive of the

generalized functions. This class is somewhat similar in form to the earlier
case in (22). Substitution of (53) in (15) yields pattern

1

g(u) = ds s J(us) B . (54)
0

This integral converges at s = 0 for p > -1, but needs no restriction on v

what soever.

To our knowledge, evaluation of (54) is not possible in closed *form for

general v; however, the following cases are evaluated in appendix G:

g(u) = u = +1( _-u) for v = 0; (55)

P B- Q-(u) for v = 1; (56)

g(u) = ) _1 (u) - uB ) for v 2. (57)

Numerous special cases for one, two, or three dimensions are available f,'om

(55)-(57) by setting 0 = - -, 0, or , resectively.
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As an example, if we take (54) and (56) for v = 1, we have

1

Addition of a g function immediately yields, for p > -1,

which has already been presented in (49) and table 3. A similar combination of

(54) and (57) yields the results of (51) and the bottom entry of table 3.

Additional results for v = 3, 4, ... are possible via the metnod of appendix G.

One other two-parameter family of weightings that affords a closed form

pattern is available from [10; 6.688 1], by identifying . = 1, x = u, z = iB,

cos t = s, and by using [5; 9.6.3 and 9.1.35]:

1 / 1

ds2 Cos( uS) j ( u for v > -1. (60)fds)cu) V IV
This result is restricted to the line array. The weighting i s continuous at

s = I if v _> 1, and the pattern (60) decays at 3+Jv diB/octave. How good thi s

pattern is has not been pursued.

All the above results have been aimed at getting closed form results for

the pattern; however, this is by no means necessary. One could consider the

class of weightings (53) for any v, or the class

exp(-B 2 s2 ) (1-s2)v for 0 < s < 1 (61)

for example, numerically by substitution in (12) or (15) and use of some

integration rule like Simpson's. Once the patterns have been numerically

evaluated and plotted for a sufficiently broad range of values of B and v,

good candidates can be selected at will and the corresponding weighting, (61)

or (53) for example, easily evaluated. For the line array, this numerical

approach is readily accomplished by use of an FFT.
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DISCUSSION

The ideal pattern was defined in (34) as (2/wY cosu2-B2), and the

corresponding weightings were given in (49)-(51). Now in the one-dimensional

application, t = -1/2, van der Maas [9] has indeed shown, by taking the limit

of a Dolph-Chebyshev di screte array design, that there is no pattern with a

narrower mainlobe for a specified sidelobe level (and vice versa) than (34).

However, strictly speaking, we have not proven that same result for the other

values of u, i.e., other numbers of dimensions. Instead, we have adopted (34)

as an ideal pattern and shown that it can be realized by finite-support

weighting functions with a generalized function whose singularity is centered

at the edge of the array. Conceivably, there might be a different weighting

that would realize a pattern that gets further into the left-lower quadrant of

figure 16. However, we conjecture that this is not possible and that the

leftmost curve in figure 16 is the ultimate attainable region for any

weighting in any number of dimensions.

SUA4MARY

We have presented a two-parameter class of Bessel weighting functions that

have a closed form pattern with controllable mainlobe width, mainlobe-to-

peak-sidelobe ratio, and sidelobe decay rate. These results have application

to arrays in one, two, or three dimensions. In addition, the ideal pattern

and the corresponding weightings required in various numbers of dimensions

have been derived and presented. Where a generalized function is required, a

method of approximating it has been presented and illustrated by a numerical

example. Various wei)htings already extant in the literature were shown to oe

special cases or limiting cases of the general results given here.
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Appendix A

DERIVATION OF RESPONSE OF PLANAR ARRAY

Let the receiving array lie in the x-y plane, and let a plane wave of

wavelength x arrive at polar angle $a and azimuthal angle ea; see figure

A-1. Then if the time of arrival of the plane wave at the origin is denoted

z

x

Figure A-i. Geometry for Planar Array

as 0, the time of arrival at a general point x,y in the plane of the array is

x Cos a a + y sin eaa a c(A-I)

where A = c/fo, c is the speed of propagation, and fo is the frequency of

the plane-wave arrival.

To look in direction OA, e, the receiving array should employ

steeri ng-del ay

x cose, +y sin e, (A-2)Z =-sin c

37
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at the general point x,y. If, also, weighting w2(xy) is used in the

receiving array, the array output voltage response at frequency fo is

= dx dy w2 (x,y) exp i2r P1 " i2w y- P2  (A-3)

where we define angle functions

P sinI c ose,- sin cosed ' P2 sin sin-sinhasinea  (A-4)

and where the integration is carried out over all x,y where weighting w2  0.

Thus the planar array can have arbitrary geometry in the x,y plane; equations

(A-3) and (A-4) are general results for the array response.

If weighting w2 contains an impulse at xo, yo, then we have

w2 (xy) =S(x-xo) (y-yo), (A-5)

with array response

g = exp 1 2w P -i2w Lo P2 (A-6)

which never decays in amplitude with increasing angle.

SPECIALIZATION TO CIRCULAR ARRAY

As a special case of the above, consider a planar-circular array of radius

R with weighting independent of angle; i.e.,

*~~~o x2 xy * l~ ) +y 2< R 2~(A-7)
0 otherwise )
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Then response (A-3) becomes

dr r do wl(r) exp [i2r(P 1 COSS + P2 sine)]

0 -w

2w dr r wl(r) '1- . (A

0

And from (A-4), we have

fj2_2'= [ 2,12

P1
2 22 s + sin 6 a L si flAco S al

Ssin e si e . (A-9)

Now let

r Rs (A-IJ)

in (A-8). There follows, for response (A-8),

1
g(u) d .ds s Jo(us) w(s) , (A-11)

0

where

u -21x e sinh 8e (A-1 )

and

w( s) a 2 w(Rs) for 0 < s <
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Thus the voltage response g(u) is given by a zero-tn order Bessel

transform over (0,1) of normalized weighting w( s). Dimensionless parameter u

incorporates the received wavelength x, the array radius R, and the various

look and arrival angles.

I4
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Appendix B

DERIVATION OF RESPONSE OF VOLU14ETRIC ARRAY

Consider a plane wave of wavelength A arriving at angles 6a, ea; see

figure A-i. The time of arrival (relative to the origin) at a general point

x,y,z in the volumetric array is [11; eq. 3j

a - cose sina + y sinea sin A + z cOS (8-1)

To look in direction , *, the delay used at location x,y,z should be

! =[x cos sins + y sine sin + z o (B-2)

The response of a weighted array, at frequency f0 , i s then

g = S dx dy dz w3(xy,z) exp [-i21rf (C+T

=ffdx dy dz w3(x,y,z) exp [-fLi(x 1+YP2+zP,))J 83

where w3 is the weighting and

P1 = cos 9 sin - cos ea sin ha ,

P= sin sin - sin ea sinOa,

P3 =cos - cos 6a* (8-4)

The integration in (3-3) Is over all x,y,z where w3 A 0. (B-3) is the

general result for any time-delay steered volumetric array.
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SPECIALIZATION TO SPHERICAL ARRAY

Let weighting w3 depend only on the distance from the array center; that

i s,

w3 (x,y,z) = wI  for x 2+y 2+z2 < R2, (B-5)

where R is the sphere radius. Then the voltage resonse of the array is, from

(B-3) and (B-5),

9 dx dy dz wi +~ exp [iLxP+YP2+zP3 )

R Tr

dr r 2  dU sinA-f do wl(r) exp1i2 (Pic°se sin6+P 2 sinesin)+P 3 cos)]

R

- 2w dr r w1(r) f dO sinO exp (-i2Wr P3COs) Jo P(2VrA1 +P2 " sino) (3

0 0

where we have changed to polar coordinates.

In the integral on 6, let t = cos 0; the inner integral in (8-6) becomes,

by use of [10; 6.677 6],

-1

2 dt cos(21,P,3 t "Tt2

sin (2, 4X)
=2 r , (B-7)
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where we define

Q 1 P 2(8-8)

Then the response is, upon substitution of (B-7) in (B-6),

R si n(2rQ)
g 4w dr r2 w1(r) (8-9)of 2 w 4

0

Now let r Rs; then the response can be wri tten as

g(u)= ds sin(us) w(s) (8-1O)
ifi0

where

w(s) Y (2w) 3 / 2 R3w 1(Rs), (3-I1)

and dimensionless parameter

u v 2w-Q. (R-12)

The quantity Q, involving the look and arrival angles, can be expressed as

Q= [2-2 coScoSa-2Snt sin0 a cos(( -Oa)} (B-13)

Thus the general result, (8-10), for the volumetric array is given by a sine
transfonm of the normalized weighting w.
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Appendix C

MONOTONICITY OF BESSEL WEIGHTING

We investigate here the behavior of weighting (22):

w(s) : (BV Iv(4I 7) for 0 < s< 1. (C-i)

Let y = 3y,; then (C-i) becomes

w(s) = B- 2v yV IV(y). (C-2)

Now [5; 9.6.28]

d-l VI (Y Y I 1 (y), (C-3)

which is positive for v > 0, y > 0; see, for example, [5; 9.6.10]. Tnus (C-2)

i smonotonically increasing in y if v > O; therefore (C-i) ismonotonically

decreasing in s if v a 0.
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Appendix 0

PROGRAM4 FOR CALCULATION OF PATTERN (28)

10 Al I ph 5

20 PLOTTER IS982'
:0 LIMIT 25,175.35.245
40 OUTPUT 705; "VS5'
50 SCALE 0.6*PI,-70,0
60 GRID P1,*10
* 0 PENUP
so0 FOP' B=2 TO 8 STEP 2
soi BZB

10 F-FN munu Alpha, B
110 FOR U=0 TO B STEP .05
120 Y'FN Inumu::fU l pha, SOP.B2-U*U )
Ito PLOT U,20'tLGT'.ABSL'CF))
140 NEXT U
150 FOP U=B TO tt*PI STEP .05
160 Y-FNJiuxriu0Al pha, SOP (U*U-B2 *.

170 PLOT U, 20-LGT (ABS: (/F))
1S0 NEXT LU
190 PENUP
200 NEXT B
210 END

2 30 DEF F"Garria2':) IGAMMA' X vi a HART, page 275, #5231
240 N=INT(X)
2.50 R=X-N
260 IF (.N;0 A3 -OR (RP1 >0) THEN 290
270 PPINT 'FNGaruma(XV IS NOT DEFINiED FOR 4
280 STOP
290 IF P 0 THEN 320

300 Ganra2l1
310 GOTO .360
220 P=3. 36954359131+R*( 1. 9850630453+R-.1 4292S007949+Pr . ?30124641:36E-2 'I

-- A' P=4:3.9410209189+F*(22.9630SO0036+P*: 12.8021698:1 UtR±P,
340 Q=4:3. 941O209191+F:*(4. 39050474596 -R*0§7. 1507506329E-R))'
-350 Gamma2zPyO GAMMA(2tR.' for 0 R 1
360 IF N)2 THEN 406
370 IF N<2 THEN 450
380 Gamma=Camma2
:390 GOTO 500
4u0 Gamra=amma2
410 FOR K=1 TO N-2
420 Gmaam*XK
430 NEXT K
440 GOTO 500
450 R=I
460 FOR K=O TO 1-N
470 R=Rq'.+K)
480 NEXT K
490 iGamma=Gamnga2x P
500 RETURN Gammak
510 FNEND
520
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-' - DEF FN r.Jr, .Nu . :: j ,-, ''

540 IF A B't:: 1 THEN 650
550 A=. 773:4:-456080 3
5,L1 IF Nu=, THEN RETURN FNJo,-
570 IF Nu=.5 THEN RELIURt A*SIN.;:,..::

,0 IF Nu=-.5 THEN RETURN A.IIC;:A?
590 IF Nu=l THEN RETURN FNJI :.: -X
600 IF Nu=- 1 THEN RETURN -FN .JI, -

P310 IF Nu= 1.5 THEN RE:TURN A*,SIN'.:.-.CCS : , 1 N 3
620 IF Nu=- 1.5 THEN FETURN -A* k-,;I N ,+C-
': _l IF Nu=2 THEN RETURN (2*FNJ('.:,-X*FNJ:,,

640 IF Nu=-2 THEN RETURN ( -2*FNJI : :':,- *FNJ.: A

6, O A=N
6etAJ IF , I NT,- A A) OF: , .A>=O) THEN 60

670 KA==-Nu
:- 3=T 1. = -2 'A*FNG k.ra& At 1 )A ,
'?¢0 R=-. .25 *0:::*.:.:

700 Bi g=AB$ f tS)
710 FOP 1=1 TO 100
7-20 T=T+R. ,N*.N+A))
7:0 S=S+T

740 Big g=MAX'Big,RBs'.r,
750 IF ABSKT',.=1E-11,.BS:S' THEN 790
7__0 NE: T N
770 PRINT "100 TERMS IN FNJnu.rnu.A4u, 2, AT "A:tu

7:30 PAUSE

790 D=12-LGT(ABS(B1i,." -B.' I NO. OF '.IGNIP. :IrGITS
:600 IF KO THEN S=$'B(4*R)-K
:318 RETURN S
:320 FNEND

ii.4 DEF FN.Jo(:'' Jo(X) vi 9.4.1 ::...4.3 ,t irl 5 5
850 'Y=RBS ( ,

60 IF "3 THEN 910
:370 T=',',Y, 9
,;:: 0 Jo. 0444479-T' . @039444-T .00021 )

370 Jon l-T* 2 .249999T-T-( I . 2656203-T-, . 16:. -:,-T .,,
900 GOTO 970
10l0 IF THEN3 10

8 Jo,:. 5 1 -E -5- T *00 01:37237-T*. 0001,-2 -T-. 0001447p:,

190 .O. 79788456-T-" 7. E-7T*(.. 015P.74O+T--:,

100 3. 002625,3 -T . 000541 -,5+T ,I . 000 -_ ..0.2 C'r, 1 5
950 T,' 73 5359814-T*, .04166397+T* 54E--T*.
'?1.0 Jo .o*COS T S'QRT ',.)

9110 RETURN Jo

110 FNEND

4 13 DEF FNJl,:0; Jl1') '. ll '?.4.4 :. ":1 4 ," Frr .

1 10 YABS, X ,
1048,O IF (, THEN 1071
10 313 T =Y,* Y 9

10630 Jl=:* I .1-T- .5362. 9985-T-' , 10935-1 -T ' •l O.aa i; - J 1 'I

1060 GOTO 1130
1070 T=3 e'
1080 .I= .0001 "105-T-, . 00249511 I-T-'. 0011 7,65-*:-T-'. 0 :'0z( -::'

1110 T=Y-&I.z,,5619449 T.P(.1249961,'+T4.f .6!5E - =- - T * :, ' -

112 J $1 ='SGN, ;...) * J I *COS(" T ) ."$OR ("(
1130 RETURN It
1 140 FNEND
1150
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1160 DEF Ftll ..tU, Nu,..) I ,..
1170 IF AE":.k :I THEN 1290
1 1 -' 0 A-. 3 ":=S9422 '0401
11 90 E=E::P,
1 200 IF 'aL=0 *THEH RETLIRN FNIo(.
1 10 IF Nu:.5 THEN REIURN A*,E-1 E,
1 ' IF Nu=-.5 THEN RE:TUN A* .E+l 1 E
1 0 IF u=1 THEN RETURN FNII(<. .,.
1-40 IF Nu:-1 THEN RETURN FNII,'- .,
1 50 IF tlu=l.5 THEN RETURN A* ,:-X-I.--E+.::.,i E.
1 2A IF Nu=-1.5 THEN FETURN A*., -1:,-E-,:.r. E,
I '7 IF Nu=2 THEN RETURN <X*FNI o k -2*FtflI I , ,. .. -:
1-8-0 IF HU-2 THEN RETURN I:.,FiI o ., -2-Fr41I

129.0 1=Nu
1:100 IF ,INT.A' . ) OF, ,i=0 THEN 1320
1 :10 K=A=-Nu
1 20 S= T = I A "*FNar, i +1 ) ) 1
1 -:3 0 R=. 2 5: X
1,40 Big=RBS,. S .
1-50 FOR N=1 TO 100
1 b0 T=T * R.(" N*-'M +A .'
1 0 S=S+T
13 8 1 B i ;=rMA Bi g, ABS '
I .9 0 IF ABST):=IE-11 ,AB'-(S ) THEN 14:30
1400 NE2T N
1410 PRINT "100 TERMS. IN FNInuxnu(N,'u, A AT
1420 PAUSE
14:30 D=12-LGT<ABS, Bi g. 'S I NO. OF SIG IIF. DIGIT*-3

1440 IF K"'O THEN S='.*(4*R).K
1450 RETURN 3
1460 FNEND
1470
14:'30 DEF FNIot.' 1 2' Io vX:, via 9.8.1 9.,f-.2
1490 Y=APS(X>
1500 IF Y>3.75 THEN 1550
1510 T=Y*Y-14.0625
1520 Io.2659732+T*,.036.768 T*.0045813)
15:30 Io1+T, 3.515G22'i'+T,. 3.O099424+T'.:.--6742+T-I -.
1540 GOTO 1590
1550 T=3.75..Y
1560 Io=.0091628 1-T*' . 02057706-T*'. .026:55"7:-T-'.. 01647 ::3-T*. 0.32':77'
1570 1o=.39854228+T*'& .01_328592+T*(.00225-;1'9-T ... cIO157565-T+Io-.'3
1580 Io=Io*EXPCY'' SQRt Y.'
1590 RETURN Io
1600 FNEND
1610

1620 DEF FNI I I1:,) ,' i a 9.8 ; . . . .4
1630 Y=RBS ( :
1640 IF ",:3.75 THEN lh.90
1650 T=Y'r' 14.0625
1660 I1=.02658733 T*',00301532+T*.0rJ03411,

1670 I1=.2**(.5+T*<.87S0594+T*(.51498869+T '. 1%3::74 T: II .....

1680 GOTO 1730
1690 T=3.75,Y
1700 I1=.01031555-T*.0228296"-T*'..Oc %1-T':.C:n3-6-4-T-9
17103 IIs.39894228-T*<.398824+T*".OO'i6b01 3Tr' .OcZ'163,",1-T*I1.".'"

1720 11=$G,::.*11*E::P'.SQR(Y'
1730 RETURN II
1740 FNEND
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Appendix E

DERIVATION OF WEIGHTING FOR IDEAL PATTERN

We went to realize pattern 14),

g(u) = +V 1( a for all u, (E-1)

for any u > -1, but without the restriction v > -1, which was required for

converqence of integral (22). 9(z) was defined in (17) et seq.

We begin the derivation for the required weighting to realize (E-1) by

substituting (E-1) in (16):

00

w(s) = du u J (su) u6 1) for s > J. (E-2)(S V 1+ v+ 1

It is important to observe that we must allow all s > 0 in (E-2); hopefully,

when we evaluate w(s) from (E-2), it will be zero for s > 1.

Now we already know from (22) and (23) that (E-2) yields

w((S) 8 if P > -1, v > -1. (E-3)

0 for1< s

Letting a = j+v+l in (E-2) and (E-3), and eliminating v, we have the useful

integral identity

fdu (~)~ su~.(r~2)= (~7~) -~- I 1 5V~for U < s <1

0 0 for 1 < s (E-4

s (E-4)

For convergence of this integral at u = 0, we require u > -1, whereas for

convergence a: u =oo, we must have > P; i.e., -1< , < a.
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Now we have the relation [5; 9.1.30J

u J(su)- -1 -{ u _j(su for s > 0. (E-5)

Thus (E-2) can be expressed as

- d u u(2 i )

-X S) - fd j SO for s > U. (E-6j

Appeal to (E-4) now reveals that

s ) fs -... I v+ 1 s/)]for 0 < s <

w~s) =  , (E-7)
0 for 1<s J

provided that v > 
0, v > -2.

We have succeeded in extending the range of v froin v > -1 to v > -2, as

desired, but have apparently altered and restricted the range of P from v > -1
to v > 0. However, this last restriction is due solely to the method of

derivation, and may be restored to v > -1, by observing that the right-hand
side of (E-7) is analytic in u (in fact, constant), and that the function w(s)

defined by (E-2) is analytic* in p for 1 > -1. Thus (E-7) gives the required
weighting to realize pattern (E-1), provided that

v > -1, v > -2. (E-8)

However, care must be taken, in the evaluation of the derivative in (E-7), to

account for any generalized functions that may be generated.

* We are using the fact that 9(z) is an entire function of a, regardless

of the value of z; see (17) et seq.
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In (E-7), define the function

1- 2) v41 V '+1 (B f7's) for 0 < s < 1

1(s),.2( 

-+

0 for < s

Then there follows

ws)- 1 d W(s) for all s, if v > -1, v > -2. (£-1d)s ds

We now break the region v > -2 into the three subcases (i) v > -1,
(ii) v = -1, (iii) -2 < v < -1.

(i) v > -1

As s-1l-, wl( s) in (E-9) approaches U, since v+1 > 0. Thus w1 ( s) in

(E-9) is continuous for all s, and we find, by the use of [5; 9.6.28] in

(E-7), that

V

I V s ,(Bfor 0 < s <
w =s] =, (-11)

0 for I < s

which checks (22), as it must of course, for v > -1.

We observe that

(1-s) v
w ( 1 S)- r as s-*l-. (E-12)

Thus for -1 < v < 0, there is an integrable singularity in w(s) at s 1. For

v > 0, w(s) is continuous at s = 1, while for v = 0, w(s) has a discontinuous

step of value -i at s =1.
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(ii) v = -1

Now, from (E-9),

W z ( s ) = •{ - 3
0 fort< s

This function has a discontinuous step of value -1 at s = 1. Thus, from

(E-1O) and [5; 9.6.28 and 9.6.6],

B ~ -s I 1 8A7)~ s-1) for 0 s s 1

O for 1 < s

B I (3f6-72)+ ~s-1) f or 0 s s :j I

- ~ 0 for 1 <s (-4

The Bessel function portion of this weighting approaches the finite value
B2/2 as s-h1-. The integrable singular, ty at s I of the previous subcase

for v > -1 has evolved here into a S-function for v = -1 at s = 1.

Thi s weighting w( s) in (E-14) realizes the desired pattern in (E-1) for

V= -1, namely,

Nu , f or v > -1. (E-16)

The special case of a linear array, v = -1/2, yields the ideal pattern

This weighting-pattern pair, (E-14) and (E-16), is already known for the line

array under the name of van der Maas [9].
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An alternative way of obtaining the r-sult (E-14) is by taking the limit

of (E-11) as v-. -1. First we observe that

lim- ( ) I(B= ' -- s- ) for s < 1, (E-17)k

since Iv(z) is an entire function of v mien z A 0 L5; 9.6.1j. We then

define a difference or remainder function (for v > -1) as

R ( I s) -7T~ IJB4~ I1(BPsi) for sB fl- 1, (E-18)
Rv~Vs) -- I

where we used [5; 9.6.6]. The area under the remainder function s Rv(s) in

a shall region near s = 1 is

1 ( 2

Ids sRV( S) j =t!)IV(t -B8 1 (Bt)

1-E 0

(V (I. - I( 7 + I for v > -1, (E-19)

where we used [5; 9.6.28]. Therefore,

1

l- ds s R (s) = 1, regardless of e (>0). (E-2)

1-c

Thus since factor s is 1 at the upper limit of integration,

lim R s) s-1). (E-21)
V.P -1 V
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Therefore, combining (E-17) and (E-21), he obtain

-i- B I,(BRI-) + £(s-1) for s < 1, (E-22)

in agreement with (E-14).

An alternative and simpler equivalent form 
of (E-22) is

S(Vs) (Vi V) V-s + 2S(s) for s> 2. (E-23)

The derivation of (E-23) is similar to that given above in (E-18)-(E-21).

(iii) -2 < v < -1

We return to (E-7) and (E-9). Observe that [5; 9.6.71

w,(S) (2) as s-ol-. (E-24)

Since we now have

-1 < v+1 < 0, (E-25)

there is an integrable singularity in W1 (s) at s = 1. Thus the derivative
in (E-1O) will generate a generalized function with a singularity located at

s 1 1. We handle thiscase by defining an auxiliary function

1-2 l~+2 for 0 < s < 7
A(s) v 0 for 1J (E-26)

0 for 1 < s
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Then using (E-9), the difference

1I+( 8~7l'- 2(i (2Y'1  for 0 < s <

12S J'v + 2 )

w1 ( s) A(s) = 
IE-27)

0 for I < s

i s a continuous function of s; in fact,

2 jS)V+2wz~) -A( }~B 2(1-s2>v
w2(3s) - Ms) )  as s-l-, (E-28)

2v+3r( v+3)

which approaches zero since v > -2. Therefore, the required weighting w( s) in

(E-10) can be expressed as

w(s) =- d w1(s) A(s)+ A(s)

i, = I s2 2 vI)J T

. -s I dA( s)

B D(s) + G(s), (E-29)

where both D(s) and G(s) are zero for 1 < s. The difference function O(s)

possesses an integrable singularity at s = 1; in fact (recall (E-25)),

B2(1s
2 )v+1

D(s)' 2vs2 - as s-Nl-. (E-30)
2 l(v+2)

The last term in w(s) in (E-29) is a generalized function; from (E-2b),
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G(s) I dA(s)- T- A( s)

Z I d /h-s -2 s(i2

2 v+lr(v 2 ) s -

- v(.I t(I- s)f for s > 0, (-12vp( v+) )[ G

where the sub G denotes a generalized function. Here step function

{Ofor t <
Ult)-- •(E-32)

for t > (3

Combining (E-29) and (E-31), the required weighting is

( ) ( _s) -s 2 )V + L-si. for 0 < s < 1

2Vp(v+1) 2vF(v+l)
G

w( S)

0 for I < s

(E-33)

We have now completed the consideration of the three subcases delineated
under (E-1O). We now wish to extend v to values that are equal to and less

than -2, so that we can handle the volumetric array discussed in (37) et seq.

We return to (E-6) and employ (E-5) again:

1AS d ~idu d V P2Pvj(Z72
as s Ms L ,-2( su)j~L+~kU/

1 d ) p-2
- - du u _2u .1 ,-/J) for s > 0.

(E-34)
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Recourse to (E-4) yields

1) d d for 0 < s <

VA S) =(E-35)

0 for 1 < s

provided that v > -3, v > 1. However, the last restriction on u may be
restored to > -1, by the argument under (E-7). Thus (E-35) gives the

required weighting to realize pattern (E-1), provided that

V> -1, V > -3. (E-36)

The only subcase of (E-35) that we consider in detail is:

(iv) v = -2

We now can write (E-35) as

w( s) - f- -i I o (B1s(B7 (1-sJ. (E-37)

Then [5; 9.6.27]

s ds foB S I

I- - .!7 a) 1 (1 -2 (-2s) TJ(1- s) - 0 (0) S-1

(E-38)

Therefore [5; 9.6.28],
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- s ~L ~ ) (1-sJ -( (s-i) - '( s-i)

(E-3 )
2  ) -U(s) + 1- )(S-) -1

Here e have used (21) and

wsich follows from

= f(a)8'(x-a) - f'(a2S(x-a). (E-411

This required weighting,(E-39) for v = -2, has both a function and a S'"
function at s = 1.

The required weightings to realize pattern (E-1) are given by

(E-11) Sr v > -1

(E-14) for v -- -1
(E-33) for -2 < a -1 for u > -1. (E-41)

(E-39) for v > -2

(E-35) for -3 < v < -2
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Appendix F

APPROXIMATION OF A GENERALIZED FUNCTION

Equation (50) or (E-33) gives the required weighting, for -2 < v < -1, to

realize pattern (48) in terms of a generalized function which is difficult to

interpret. Here we address this intrepretation by means of an approximation

to the generalized function (E-31). We begin by approximating the (singular)

auxiliary function A(s) defined in (E-26) by an ordinary function AE(s), and

then derive an approximation to generalized function G(s) of (E-31) according

to the same rule, namely,

1 dG (s) - - A--A (s). (F-ij
E sds r.

In particular, consider A.( s) as shown in figure F-i; that is, A,(s)

is still given by (E-26) for 0 j sS 1-c, but then tapers linearly to zero at

s = 1 in order to be everywhere continuous. The height ri of AE( s) at s i-c

i s, fran (E-26),

H v+(1-/2)v4l  (> 0). (F-2)

P (v+Z)

For small , we have

v+1
H E P+TJ as c-*O+, (F-3)

which tends to +00 as e-wO+, since we have, from (E-25),

-i < V+1 < 0. (F-4)

The result of applying (F-i) to figure F-i is shown in figure F-2. The

large positive pulse in (I-c, 1) has height proportional to

H c V(1-/2) V41 VC r v+z) - - as c-0O+, (F-5)
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ACE(s)j

H - - -- - - - - -

I2 V+
2v+1I [',2

Figure F-i. Approximation to Auxiliary Function A(s)

G E(s) H

AREA C b..-

0 I

(1 92)vII

Figure F-2. Approximation to Generalized Function G(s)
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which is tending to infinity since -2 < v < -1. The area of this positive

pulse is

1 v+1

C ds H 1 In(1-E). £ as c--O+. (F-6)
d es C pv+ 2)1- e

This area is also tending to +a* as e-a.0+; recall (F-4). The rate of increase

of C is greater, the closer v is to -2. (For v---1, H-v 1, C-l - In(I-e); thus

area C-1 as e-.O+. This is the unit area impulse presented in (49) for

V = -1.)

Figure F-2 is one approximation to generalized function ((s) defined in

(E-31). Its most important feature is the impulsive-like positive pulse near
s = 1. An alternative approximation is afforded in figure F-3, where the area

C of the impulse at s = 1 is given by (recall (F-6))

V+1

C --. (F-7)

The notation used in (E-31) for the generalized function,

G( s) = (1s2)l-
2vF(v+1) G

conceals the positive impulsive behavior at s = 1 that the series of

approximations in figures F-i through F-3 indicate must be present. In fact,

(F-8) is negative for 0 _< s < 1, by reference to (F-4).

The alternative approximation we obtain to weighting (50) is then, froth

(E-29) and figure F-3,
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lg(s)

AREA C

0 1-f 1

(I S2

2v1'(F+1)

Figure F-3. An Alternative Approximation to Generalized Function G(s)

Figure F-4. An Approximation to Weighting (50)
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, (s) O(s) + (s)

E

ly, S1 I a T, -ST for 0- < s<

2VF(v+1 )

The plot in figure F-4 illustrates this approximation. The "transition

portion" in (1-E, 1), which is the bottom line of (F-9), is singular at s = 1-;

however, this is an integrable singularity, as may be seen by reference to

(E-29) and (E-30). The impulse at s = 1 is of finite area given by (F-7).

As c-iO+, area C of the impulse tends to infinity; see (F-7) and (F-4).

However, the area under the main portion of the approximation (s)

precisely cancels this singular behavior; that is, as E-*O+,

-s

a a

vtl v~l vil(1-a)'+ +V+.r-a+z) - - -- (F-l)

which is -. Since the L.-ea under the transition portion is

1 1 2, s+1 B2 v+ 2

dsOs) ds B E-
d ds)D(s)- ds , as -.,bO+, (F-li)

which tends to 0 as E-*O+, the area under approximation C (s) remains finite

as e-v0+, Indeed it must remain finite, because Hankel transform (12) or (15)

must remain finite in order to realize pattern (48), wich is entire in j, v,

u, and B.

65

65



TR 6761

Thus our Final approximation to w(s) is simply

I-S Ifor < s< 1-e/

w S) +(s-1), (F-12)

0 for I-e < s <

and is shown in figure F-5. It is very important to observe that the simple

expedient of approximating w(s) by

is~~ ~~P ttly~)v(W~*Ifor 0< s < I-}
0 otherwise (F-13)

is totaIly inadequate because, as - O+, the area under the cusp at s =1-

tends to infinity, and cannot possibly yield an entire function for the

pattern. The impulse is necessary to compensate for the singular behavior of

(F-13) near s = 1; it allows us to realize the "finite part" of the Hankel

transform of (F-13) for = 0.

(As v-P-1, the value of C in (F-7) tends to the finite value 1, which is

the impulse in (49). And as v-- 2, the doublet of (51) could probably be

extracted as a limit from (F-12); this procedure has not been pursued.)

The result of using approximation (F-12) with (F-7), for v = -1.5 and

B = 4, is displayed as the patterns in figures F-6 through F-8 for £ = .1,

.01, .001, respectively. We have selected w = 0, that is, two dimensions, and

are approximating the ideal pattern for B = 4 shown in figure 13. It is seen

that the approximations become progressively better as e decreases, and that
the result in figure F-8 is indeed very close to figure 13.

The approximation W'(s) in (F-12) and figure F-5 used, for the impulse

area, the value C given by (F-7) as a limit of (F-6) for small e. A better

approach is not to use the limiting value, but to use the actual value of the

pertinent function, since we would like good approximations for moderate

values of c, not just very small e. This procedure is considered in detail in
(12], with the result
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;f(s) W ( -) , L(B's) U(--s)

( 2s)S (F-4.

The patterns for this approximation are depicted in figures F-9 through F-li.

The result in figure F-11 for e = .1 is now better than the result for
= .001 in figure F-8; and all we have done is to modify the area of the

impulse at s = 1. The result for e = .15 in figure F-10 indicates a modest
change from the ideal and would be acceptable in some cases. The program for

the pattern evaluation is listed at the end of this appendix.

Another possibility is to relocate the impulse in (I-s, 1) to best

approximate the ideal pattern in figure 13. More generally, a shaped narrow
oul se, which is concentrated toward the boundary at s = 1, could be used;

these possibilities are discussed further in [12].

Some additional results involving delta functions and Bessel transforms

are given here in appendix H.

WE(s)

_-S2) rI- AREAC

0-

Figure F-5. Final Approximation to Weighting (50)
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0~

ti 0
V=-1.5
84

-10

-20

-30

dB

-40- -

-50-

-60

-70oT

U

Figure F-6. Pattern of Approximation (F-12) for E .
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IA='

19= -1.5
B=4

-10

-20 __________ 

_

-30

dB

-40-

-50

-60

-701 2w 110 TVi34 y5TT 61

Figure F-7. Pattern of Approximation (F-12) for c .01
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v= -1.5
8=4

-10

-20

-30

dB

-40

-50 N___

-60

-701 _____ _____ ____

0 IT 2T! 3 T 4V 5 n 6 n
U

Figure F-8. Pattern of Approximation (F-12) for E .001
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-0

-20

-30

dB

404

-60- _ _ _ _ _ _ _ _ _ _

0 712vi 3v 4 f,- 5v 6vf
U

Figure F-9. Pattern of Approximation (F-14) for c =.2
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0

1j= 0
y=-1.5

B 4

-10-

-20 _____

-30

dB

-40

-50- - _ _ - _ - _

-60

-701
0 2I IT 3TV 4f TV 5 i T

U

Figure F-10. Pattern of Approximation (F-14) for c .15
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0

,J=0
1=-1.5

B =4

-10

-20

-30

dB

-40-

-50

-60

-701
0 TI 2TI 31 vv O 5 n 6 n

U

Figure F-11. Pattern of Approximation (F-14) for c .1
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PROGRAM FOR PATTERN EVALUATION

I.' Ep- = 1 Pat t erm for lwE gh 9 1o rig *.F

.li Mu=0
30 N u=-
40 Bc=4
50c DIM >GL:240j)
6 0 CON U, Bc ,Mu,Nfu, M2 1
70l M2l=Mu*2+l
SO c T=2 +E p s-E ps'2
? 0 FI e =T k Nu + I FN I rnuxnu~ Nu~ 1 I Bc QSO R, T

110 B=1I-Eps
120 FOR 1u=0 TO 240
13-l0 U=IuL*PIX/40
140 S=FNSRk?4. FHS (B':5

1701 F=:B-A.'-3
180-: Vo=9E99
190 T=O
200 FOR =1 TO N-1 STEP 2
210 T=T+FNS(R4H*K)
220 NEXT K
230 S=S+T
20 V=.'ST *F

.250 IF ABSk~Ve-Vo ' =AiBW:;,,*1E-4 THEN 310
260 vo~v
2710 N=N*2
280 H-H*.5
290 F=F-.5
300 GOTO 190
10 G (I u.-=FIe *FNJn u,r iukt.Mu, U)+V o YIlt age -E I po-1Se

320 PRINT I'a, Gr Iuj
3:0 NEXT It.

340 PLOTTER IS "9872Fl"
350d LIMIT 25,175,35,245
:360 OUTPUT 7015; "VS5"
370 SCALE 0,240,-70,@l
380o GRID 40,10
390 PENUP
400 FOR I'a0 TO 240
410 PLOTIu2LT:A:eG(u(Of
4 20 NEXT It.
4S30J PENUP
440 END
450 1
460 DEF FNS(S),
470 CON U,Bc,Mu,Nu,M;:1
480 T=1-S*S
490 Tl=FNJnuxnuCMu,U+,S)
500 TZwFNlnuxnu.'Nu,Bc*SOR.T))
1510 RETURN S-MZL*T.Nii*T1*T2
520o FNEND
530 1

FNIJnu q-,u and FN I nunu ure 1 1 st.ed i n Rppond-ji D
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Appendix G

EVALUATION OF A BESSEL INTEGRAL VIA RECURSION

The integral of interest is

g,(u,B) ds K(u,s) I (BV7), (G-1)

0

where the kernel K is the Bessel function as given in (11). We have, via

[5; 9.6.28],

| ~ ~ ~ ~ ~ ~ 1 Yu') dKusB --

I= gV1 (u,3). (G-2)

(This relation actually holds for any kernel K, not just (11).) Since, from,

(G-1),

gV(uO) = 0 if v > 0,

we have the integral recursion

B

g =(u~s) = dt t gv-l(u,t) for v > 0. (G-3)

0

We already know the starting case of

(u,B) = ds s (Jus (G-4)

see (23). Substitution in (G-3) yields
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B
g1 (u,B) 5 tt. 1 ~u-' d 1(x

(G-5)

where we employed (21).

4ow we enploy (G-3) and (G-5):

g2 (u,B) = dt tE.- u2t2)-j(u1

32
=9w-l( )- -(u) - -- -4(u); (Ga-6)

the inteqral evaluation follows from, direct comparison with (G-5).

The last case for v = 3 follows in similar fashion:

g34uB)~~ ' 412( ~ (~2 u ~~l~ 1 u a u). (G-7)
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Appendix H

TWO BESSEL INTEGRALS THAT YIELD GENERALIZED FUNCTIONS

The starting point is the Hankel transform pair in (15) and (16). If we

let w(s) = 1(s-a) (Where a > O) in (15), we get

g(u) = a ( UJau) for u > . (H-i)

Substituting (H-i) in (16) then yields the useful relation

du u J(su) J(au) s-a) (H-2)

0

On the other hand, if we let the weighting be a doublet,

w(s) =i S'(s-a), then g(u) = -u( a._}(au). (H-3)

The inverse relation (16) yields

1 -S '1 s-a) = du u2 J(suO J-(au). (-4)
-S-

0

However, since

f(s) s-a) I (a) + f'a)(s-a) + S'(s-a

= f(a)V'(s-a) - f'(a)S(s-a), (H-5)

then

,fu 2 ~su) J -,(au) z ' s-a) + (H6

0

Equations (H-2) and (H-6) are the desired results.
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