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A TWO-PARAMETER CLASS OF BESSEL WEIGHTINGS WITH CONTROLLABLE
SIDELOBE BEHAVIOR FOR LINEAR, PLANAR-CIRCULAR, AND VOLUMETRIC-
SPHERICAL ARRAYS; THE IDEAL WEIGHTING-PATTERN PAIRS

INTRODUCTION

A vide variety of time-domain weightings for spectral analysis, whose
frequency-domain windows have very good sidelobe behavior, have been presented
in (1,2]. Since the basic mathematics descrining the response of a weignted
linear array can also be written as a Fourier transform, these
weighting-window pairs have immediate application to one-dimensional array
processing as well as gectral analysis.

ifost of the weighting-window pairs in [1,2] have no parameters in their
design equations; that is, the windows are fixed and cannot be altered, as for
example, in the Hanning and Hamming windows. A few windows, such as the
Do Iph-Cheby shev and Kai ser-Bessel [3,4], do have a single parameter in their
desiqn equations that allows for a tradeoff between the mainlobe widtn and tne
ratio of mainlobe to peak sidelobe. However, neither have any control over
the rate of decay of the sidelobes, the Dolph-Cheby shev case having no decay,
and the Kaiser-Bessel case a 6 dB/octave decay. It is obvious that in order
to control both the sidelobe decay and the mainlobe-to-peak-sidelobe ratio, a
two-parameter family of weightings is necessary. And it is desirable
{although not necessary) for the window to possess a simple analytical form
that can be easily understood and evaluated for a range of parameter values.
Such a class of Bessel weightings is presented in this report.

For the array application, the weighting is applied as a multiplicative
factor in the spatial domain; the re sponse to plane wave arrivals from various
directions is called the pattern, rather than the window. Here we will give a
two-parameter family of weighting-pattern pairs for use with arrays in one,
two, or three dimensions, and shall indicate the ideal weightings and
corre ponding patterns in all cases. Special cases of this family will be
shown to include some of the weightings that are currently employed in array
and signal processing.

s

[P U
e ki N,

o




TR 6761

RESPONSES OF ONE-, TWO-, AND THREE-DIMENSIONAL ARRAYS

L INEAR ARRAY

We consider a continuous line array located on the x-axis in the range
[-R,R) and subject to symmetric weighting wj(x) for |x] < R. For a

single-frequency plane wave of wavelength A, arriving at angle "a relative
to the nomal to the line array, the array voltage regonse, by use of
time-delay steering to look-angle él , 1s

R
g(u) = f dx expEin%(sinﬂa-sin&)] w (x). (1)
-R

By letting s = x/R and by using the symmetry of weighting W, we can express
reponse (1) as

1

1}
glu) = fds(—fylcos(us) ws), (2)
0

where nomalized weighting

Ws) = (2e7°R w(Rs), (3)
l and dimensionless parameter
= 2R cind -
u = Zn;( s1n|$a sinbx) (4)

incorporates the relevant features of array geometry, 100k angle, and the
arrival wavelength and angle.

Thus the response (2) of a line array is a cosine transform of the
nomalized weighting. As an example, rectangular weighting yields response
g(u) prooortional to sin u/u, which has its first few nulls at u = », 2r, 3v.
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PLANAR ARRAY

The \}oltage regponse of a continuous planar-circular array of radius R, to .
a plane wave of wavelength i arriving at (polar, azimuthal) angles (8, 8,), i
and subject to weighting which depends only on the distance from the center of 0
the array, is derived in appendix A, culminating in the result (A-11). It is I

1
glu) = ,_f ds s Jo(us) wis), (5)
0

where w( s) is the nomalized weighting and !

R 2 2 1/2
us 21:7 [sm '5& + sin ﬁa- Zs1n¢§l sing, cos(% -ea) . (6)
Here (9&, g() are the (polar, azimuthal) look angles; that is, the response
(5) of a planar-circular array is a zero-th order Bessel transform of the
normalized weighting, As an example, rectangular weighting w yields response

g{u) proportional to Jj(u)/u, which has its first few nulls at u = 3.83,
7.02, 10.17.

VOLUMETRIC ARRAY
The voltage reponse of a continuous volumetric-spherical array of radius

R, with weighting dependent only on the di stance from the center of the array,
is derived in appendix B. The result is given by (B-10) in the form

glu)

"

1 2,5
J‘ ds (—) sii-:(—us, ws), (7
0

where now

1/2

(8)

[
n

Zn%[-kos&cosna - Zsim& sintsa °°S(i'°a)-_l

The other parameters are as explained in the previous subsection.
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Equation (7) has the basic form of a sine transform. As an example,
rectangular weighting w yields response glu) proportional to

sin u-u cos u
, (9)
u

which has its first few nulls at u = 4.49, 7.73, 10.90.
UNIFIED FORM FOR ARRAY RESPONSES IN DIFFERENT DIMENSIONS '
The results in (2), (5), and (7) for the array voltage response in one,

two, and three dimensions, .re odectively, appear to be quite different.
However, they can all be written in the basic form

P

! 1
g(u) = j‘ ds K(u,s) ws), (10)
0

where the kernel

1
K
0 < (1)

2‘/1
(;-) cos(us) for u
o
K(u,s) = S(US) Ju(us) = s Jb(us) for u

(%)"S____sinfjus) for u =%

Here J, is a Bessel function of order u, and we have used [5; 10.1.1,
10.1.11, 10.1.12]. Thus all the regonses are basically Bessel transforms of
the normalized weighting w, with the corre pondences given in the following

table.
Table 1. Identification of Values of u in (11)
Number of Dimensions Value of u
-1/2
0
172
4
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If we substitute (11) in (10), we have the explicit result for the
re ponse pattern:

1
u
glu) = f ds s(;‘) 3 (us) ws). (12) i
0

Inpection of the properties of the Bessel function reveals that g{u) as given .
by (12) is even in u; see [5; 9.1.10]. Thus we only need to investigate g{u) o

for u 2 0. .

B s s

R Toates JUCARPL VAR
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HANKEL TRANSFORM PAIRS

The Hankel transform pair of order . is given by [6; page 136]

f(u) ds (us)szu(us) F(s) for u >0,

F(s) ds (su)ﬁ{l(su) flu) for s > Q. (13)

Thus knowledge of either function f or F for positive arguments enables
detemmination of the other function by an integral transform. Under the
jdentification

IS +4
s = e, rw o=l g, (13)
(13) takes the form
- -]
" )
g(u) = _( ds s(is) \l;‘(us) w s for u > 0, (15}
0
ws) = du u(—s) J;J(SU) g(u) for s> 0. (16)
0

Equation (15) is more general than (12) in that it allows for weighting
w( s) to be nonzero for s > 1. Equation (16) is complementary in that, given a
desired pattern g(u), it indicates what weighting w(s) is required for s > 0.
However, if we attempt to gecify some desirable pattern g(u), and then solve
(16) for the required weighting w(s), it will generally turn out that the
resultant w(s) will be nonzero for s> 1. Thus not any pattern g(u) can be
selected if we insist on a finite-support weighting w( s); rather, desirable
candidate patterns can be substituted in (16) and the corresponding weighting
w s) evaluated to see if it is zero for s> 1. If not, the candidate pattern
is disallowed and must be modified or discarded We will use precisely this
procedure in a later section when we determine the weightings that realize the
ideal patterns in various numbers of dimensions.

*  If pattern g(u) yields v(s) =0 for s > a, the scaled pattern g{u/a) yields

a modified weighting az"*zw(as), which is zero for s > 1, as desired.
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OEFINITION OF TWO BESSEL FUNCTION RATIOS

It will be very convenient notationally in the following to employ the
shorthand notations

2
(z) Ei;iz_). =—1 i ____..___(-z /4) * (17)
a 2° 2 & KIP(avlek)
K
& (2) = °m=_1 i(_zzf_“__ (18)
a @ a k!M(at+1+k)
2 Z k=0

for these two Bessel function ratios; these types of functions have already
been encountered in (11), (12), (15), (16). They are extensions of the
Wn(z) functions discussed in (7; page 56]. Both functions, )a(z) and

(Qa(z), are single-valued and are entire in z for any a, as well as being
entire in a for any z (5; 6.1.3, 9.1.1]. Special cases of these functions

that are useful here are given by (5; 9.6.6, 10.1.1, 10.1.11, 1u.1.12,
10.2.13, 10.2.14]

Q0 =fio) = =L —
00 =l 2M(a+l)
I.(z)
dota) = 102, dy12) = L~ () = 21,2,

LQ”(z) =<;2_y’sirz|h z, Lo_ﬁ(z) =(;2)/Icosh z,

2

n

2)’i (3+22) sinh z - 3z cosh 2
£ 5

( z

d, (2 =(2>& 3+2°
~5,2(2) ={5) [(3*+z7) cosh z - 3z sinh z]. (19)

A useful prooerty, which is obvious from (17) and (18) and which will find
frequent application here, is

&3/2(2) =(r'z COShZ% - sinh z s (43/2(2) =(—'2j.(z sinh 2z - cosh z) ,
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) wia <da, A wia - § . (20)

These relations hold true for all values of z, real or complex. Properties
similar to (19) can be obtained for the 9-,,(2) functions; for example,

v A
9‘ 1/2(2) -tQ 1/2(+11) -()cosh(ﬂz) -(—) cos(z).

Other useful properties follow from the use of [5; 9.1.30 and 9.6.281],

t ] )
Jul2) = 22 dy@ =22, (21)
and from [5; 9.1.27 and 9.6.26],

Jq(z) = 71-[& _olz) - Z(a-l)bQ l(z]

z
yu(z) - :% D“’Z(Z) - 2“"”9’«—1(2}
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A CLASS OF BESSEL WEIGHTINGS

The class of 3essel weightings that we are suggesting, regandléss of the rlf
number of dimensions of the array, is given by

v
w s) =<@> Iv@ VI-sz>for0< s <1, where v > -1, B > 0, (22)

and w{s) =0 for s> 1. There are two real parameters in this class, namely, |
}

[

[}

[

v and B, For the gecial case of v =0, this weighting is already known as
Kai ser-Be ssel [3,4]; its pattern has nearly the optimum energy content within
a gecified bandwidth in the one-dimensional application to gpectral analysis.

Substitution of (22) in (12) or (15) yields the closed form for the g
pattern [6; page 30, fourth integral, and 5; 9.6.3]

1 " ,

glu) = fds s(a-‘:)“ Ju(US) (ylgs?) I (B '\/1_52'> (234) i

0 f
=}“""'1(| 2_82) =b0u+v+1(' 2-u2> for all u, if u > -1 and v > -1. (238) ﬁ

Here we have employed definitions (17) and (18) and used (20). The condition
on u guarantees convergence of integral (12) at s = 0, whereas the condition
on v guarantees convergence of integral (12) at s = 1. The first form of
{238) is more convenient computationally for u 2 B, whereas the second form is
more convenient for B > u.

1]

Weighting-pattern pair (22)-(23) are the fundamental results for the class

of Bessel weightings under consideration. They apply to one-, two-, or

three-dimensional arrays when u is gpecialized to - -12, 0, or 112, repectively,

and when u is interpreted as (4), (6), or (8), respectively. The parameter B
is nonnegative and will be shown to control the ratio of mainlobe to peak
sidelobe. For the case of one dimension, u =-3, the kernel of transform {23A)
is a cosine ( see the top Tine of (11)); in this special case,

the pattern}vﬁ(Vuz-B” was also independently and simultaneously di scovered
by Roy Streit [8].
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WE IGHTING CHARACTERISTICS

Weighting (22) is positive for 0 < s <1 since v> -1 and B 2 0; see
(5; 9.6.10]. In addition, it is zero and therefore continuous at s = 1 if

v>90, In fact [5; 9.6.7],

(1-5)"
w s) ~ oy 25 s—»1-, (28)

For v > 0, weighting w(s) is monotonically decreasing in s on (0,1); see

appendix C. However, for -1 < v < 0, W s) possesses an integrable singularity
at s = 1.

Examples of weighting (22) are plotted in figures 1-6 for v = 2, 1.5, 1,
.5, 0, -.5, regpectively. Figure 5, for v = 0, corresponds to the
Kaiser-Bessel weighting [3]. For the larger values of v, the weighting blends
snoothly to zero at s = 1, but for the gmaller values of v, the behavior of
W s) is more irreqular at s = 1, being discontinuous for v = 0 and infinite
for v < 0. The larger values of B lead to smoother functions that are
Gaussian-like; in fact, for s < 1 [5; 9.7.1],

W s)~ (—:’ﬁg% exp (- -listz> as B>, (25)

More generally,

-¥
W s)~ (2:)-*8-2\'(3 w-s )" exp(BVl-sz) as BJ1-s%—> e, (26)

The opposite 1imit for small1 8 is

2V
Ws) -(1:;— for 8 = 0. (27)

10

e
RN




- T T/

|
TR 6761 r

I

¥

/“s
v=2 ‘\::SEEEE::\\
\

2 4 .6 .8 1
S

Figure 1. Normalized Weighting for v = 2

AN B-0

\\\ z

5

3

—4
¥=15 \

N

2 4 6
s

Figure 2. Normalized Weighting for v = 1.5




TR 6761

1,

0 2 4 .6 .8
Figure 3. Normalized Neisghting for v = 1
~
sk\
SRR
ANV
4
N
0 2 4 . .6 8
Figure 4. Normalized Weighting for v = .5




TR 6761

§§N.

T~

NN

//

5

(=]
~

/

N

A
// /

&

Figure 5. Normalized Weighting for v =

1

S

N

.

NS
/
_/
~_
S~

>

Figure 6. Normalized Weighting for v = -.

1




e

TR 6761

RES PONSE PATTERN CHARACTERISTICS

The pattern was given by (23) as

glu) 9“6/:2—37) =<§,,()[Erfz), (28)

where the composite order of the Bessel function 1s
a=p+v+l. (29)

The asymptotic behavior of the pattern (28) for large u is available from (17)
and (5; 9.2.1]:

(30)

2 COS u- %ﬂ? - %‘l)
glu)~ (—

= =7 as u-»eo.

Since g is proportional to the array voltage re sponse, (30) corresponds to a
decay ~ 6a + 3 dB/octave as u —= <o. (31)

Expressed in tems of the original dimension-parameter u and weighting-
parameter v, this is, from (29),

decay ~ Su + 6v + 9 dB/octave as u-—» <
6v + 6 dB/octave for one dimension
= 16v + 9 dB/octave for two dimensions . (32)
6v + 12 dB/octave for three dimensions

Thus the greater the number of dimensions, the faster is the rate of decay of

the sidelobes of the re ponse, for a common value of weighting-parameter v.
Each additional dimension adds a 3 dB/octave decay, for a fixed v.

14




TR 6761

Special cases of the pattern (28) are available upon use of (19) and (20);

enl ). Gl
IOW)= JO(YU_Z_-B_?> for a

(:'Z-j‘ %@L (%\j‘;l"__,———("——m) for a .

u2-32
11 VBz-u€>_ Jl Vuz-B§>
VBz-u2 VUZ-BZ

A1l of these relations are valid for all u, whether u is larger or smaller
than B; of course, the former form in each line is more convenient for u < 8,
while the latter is more convenient for u > B. The third result in (33), for

u
o
ol

gf{u) =

ol —

for a =

t
—

a = 1, includes the pattern in one dimension (u = - 1. v =0} for the
2 2
Kai ser-Be ssel weighting IOGVI’SE for 0 < s < 1.

The special case of a = - % in (33) deserves extra attention; this case
will be called the ideal pattern:

oyt =, W) #-x@m)
ol (ol 3

The plot in figure 7 reveals that the sidelobes are all equal, and that the

15
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(% b cosh (B)

2c:os( uz. 82)

g Y N 7 N 2

Figure 7. Ideal Pattern gi(u)

voltage ratio

mainlobe level _
<TdeTobe = cosh(B8). (35)

The mainlobe width, as measured to the point where the mainlobe first decays
to the eventual sidelobe level, is

mainlobe width = B. (36)
The abscissa u is given by (4), (6), or (8) for one, two, or three dimensions,

regpectively. Detemmination of the required weighting to realize the ideal
pattern (34) in different numbers of dimensions is taken up in a later section.

16
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If a < - 112, the pattern (28) nas increasing sidelobes as u increases; see

1
(30). Therefore, a 2 - 7 are the only cases of practical interest for pattern
(28)0

Plots of pattern (28) are given in dB in figures 8-13 for a = 2, 1.5, 1,
.5, 0, -.5, repectively, for various values of B. The program is listed in
apnendix D. The larger values of a realize the more rapid decay of sidelobes,
but, on the other hand, have wider mainlobes. Figures 8-13 indicate the
necessary tradeoffs between mainlobe width, sidelobe decay, and
mainlobe-to-sidelobe ratio that must be-considered in any weighting selection.

A small chart in the upper right quadrant of each figure indicates some

t allowable values of u and v that apply to that figure. For example, in figure
8, the pattern for a = 2 applies to all the following:

- }z {one dimension) with v =’3Z )

=
1}

or
uw =0 (two dimensions) with v =1,
or
.1 ) , , 1
s (three dimensions) with v = 7 - (37)

When we come to figure 11, for a = .5, however, the case of u = %, v = -1 has
an asterisk next to the v = -1 entry. The reason for this is that the
integral (23) leading to pattern g(u) was convergent only for v > -1, and now
we are trying to violate that condition. A similar cautionary note is
indicated in figures 12 and 13; in fact, all three cases in figure 13 violate
the condition v > -1. Degpite this preclusion, we shall find later that the
required weighting does, in fact, have the formm (22) for the corresponding v
values given in figures 11 - 13, but requires generalized functions with
singularities at the endpoint s = 1 of the interval. This extension to v ¢ -1
is desirable and important because realization of the ideal pattern (figures 7
and 13) requires values for v in this region, regardless of the number of
dimensions.
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TR 6761
F IRST NULL LOCATION
Let z_ be the smallest nonzero null location of J,(z); i.e.,
Jalzg) = 0. (38)

A short 1ist of {Zq} is given below in table 2. Then, by use of (17), the

Table 2. First Zero of J (3)
a

a Za
-0.5 1.5708
0.0 2.4048
0.5 3.1416
1.0 3.8317
1.5 4,4934
2.0 5.1356
2.5 5.7635
3.0 6.3802
3.5 6.9879
4.0 7.5883
4.5 8.1826

first null location of pattern g(u) in (28) is at u,, where

P Vs
@g-azy' =z, u, = (Bz+zf> . {39)

The results in figure 14 display the first null location as a function of

8, for varfous values of a. For large B, "o behaves as B + %ZS/B. B8y the
fdentification of a asu + v + 1, this curve applies to any number of
dimensions and to whatever value of v is selected in weighting w(s) of (22).
The curves indicate that the first null location u, js monotonically
increasing in both B and a.

24

e Saie il




e e e B T T e v

NANNN T




TR 6761

l

K
LOCATION OF PEAK uF FIRST SIDELOSE ;‘

I

By use of (28) and (21), we obtain derivative

o' ?:(Wﬁ . -u)°+1(vm. (40)

Therefore, reference to (38) reveals that the location of the peak of the
first sidelobe of g(u) occurs where g'(up) =Q; i.e,

V2

uy = (Bz‘rzafl . (41)

at+l’

K’
612-823 =z
p o/

If we employ more explicit notation in (3Y) and (41), we can express the first
peak location in temms of the first null location according to

up(B,a) = uo(B,u+1). (42)

Thus all the results in figure 14 can be applied directly to the first peak
location. For example, (42) yields

(B, - 3} = uy(B, 3); (43) }

thus the third curve from the bottom in figure 14 gives the location of the J
peak of the first sidelobe when a = - -12.

PEAK SIDELOBE LEVEL

The value of voltage pattern g(u) at location (41) gives the level of the
peak sidelobe:

Y = XA

26
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Since the orfigin value of the pattern is

9(0) = a), (45)

the voltage ratio of peak sidelobe level to mainlobe height is

g(u_) _yu(zuﬂ)
—(-U-?—-g E——Q(B) . (46)

Relation (46) is plotted in dB in figure 15 as a function of 8, for various

values of a; i.e.,
(2|
Z +1
B = 10 1og%“—-“—- . (47)
(B)

[+

The peak sidelobe level decreases monotonically with increasing B, but has no
simple behavior versus a except for very small B8 or very large B.

The results of these last two figures are combined in figure 16, where we
plot the peak sidelobe level in dB versus the first null location Ug. These
latter curves are virtually linear over a wide range. If we disregard the
sidelobe decay rate, the most desirable region of this figure is in the lower
left quadrant, i.e., snall uy and very neqative d. However, the closest we
can get (from our family) is the a = ~.5 curve, which is, in fact, the ideal
pattern; see (34) and figure 7. Furthermore, the sidelobe decay rate is then
0 dB/octave. Higher sidelabe decay rates are attained by moving toward the
upper right quadrant of the figure; for example, the a = 3.5 curve has a 6a+3
= 24 dB/octave sidelobe decay rate. This figure furnishes a very compact
display of the important interrelationships that occur between the fundamenta)
features of peak sidelobe level, mainlobe width, and sidelobe decay rate, and
allows for a quick tradeoff compari son of alternatives.
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IDEAL WEIGHTING AND PATTERN

It was shown in figure 7, in the previous section, that the pattern g(u) for

a = - -% takes on a particularly desirable behavior, nasely, a narrow mainlobe
width and a large ratio of mainlobe-to-peak-sidelobe. However, figures 11 - 13
indicated that realization of some patterns was apparently not possible in .
certain dimensions because we were violating the condition on parameter v in ¥
weighting (22) that allowed for convergence of integral (23). Here we will '
addre ss the more general problem of how to realize pattern (23),

glu) Z%*wl (Vuz-az for all u, (48)

for any u > -1, but without the current restriction of v > -1 in weighting 1
(22). This procedure will of course require a different and more general

weighting than (22), and will furnish solutions to the asterisked cases in
figures 11 - 13.

The solution for the required weightings to realize (43) for any u > -1 is
conducted in appendix E. All the weightings are zero for s > 1, as desired;
their values for 0 £ s S 1 are listed below From (E-14),

8 ]{ 2
ws) = I (B 1- + -1 for v = -1; 49
s) m 1 s S( s-1) or (49)

from (E-33),
v 2 v 2 v
ws) = (@) I G\ﬁ-s f). (l-s) + (l-s) for -2 < v < -1; (50)
v 2"M(v+1) 2T (1) g

and from (E-39),

2 2
ws) =%sz IZGV;-sZ)+ (%-- 1)S(s-1) -§'(s-1)  forv =-2.  (51)

The extended range for v < -2 is given in (E-35) and (E-36). Weighting (49)
requires a generalized function, namely, a delta function, with its
singularity located at s = 1. Weighting (51) requires, in addition, the
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derivative of a delta function, located at s = 1. The intemmediate cases in
weighting (50) require a generalized function with its singularity located at
s = 1; interpretation and approximation of this generalized function is given
in apnendix F.

It can be observed froam (49)-(51) that the leading term of w(s) is exactly
what would have been obtained from initial weighting (22) by substituting the
appropriate value of v; here we are using I_(z) = In(z) [5; 9.6.6].

However, the price of crossing the "natural boundary” at v = -1, which was
originally required for (23), is a generalized function with its singularity
located at s = 1. And the further we go below v = -1, the more singular
becomes the required generalized function; these points are elaborated upon in
appendix F.

The explicit assignment of v values in (48)-(51) leads to table 3 for the
weighting-pattern pairs. With regard to application of (48)-(51) to the array

% Table 3. Weighting-Pattern Pairs; u > -1

Weighting ' Pattern
19 4 .02
(50) with v = -% }H_Z(VLT-BT)
(51) }HI(W)

processing application in various numbers of dimensions, we have table 4 for
the required weightings, where we have specialized the values of y. In all

cases, the pattern realized is the ideal one of (34):

g;(u) =9_i(Vu -82)= (—E)‘Acos(vuz-az) for all u. 152)
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Tabte 4. Required Weighting for Ideal Pattern
Number of Dimensions Value of u Required Weighting
1 -3 (49)
2 0 (50) with v = - %
3 3 (51)
The weighting given by (49) for one dimension, namely, u = -1/2, has

already been presented by van der Maas [9]. However, the application of (49)
to the realization of (48) for any u > -1 is new. Additionally, all the
results in (50) and (51) for any 4 > -1, and their application to two- and
three-dimensional array processing in table 4, are new. An approximation to
the ideal pattern in two dimensions, namely, weighting (50) with v = ~1,5, is
treated is detail in appendix F.
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SOME OTHER WE IGHT INGS A

Another candidate class of weightings for consideration is

- (1 ) A0 s J
2 w
-S

of which (49) and (51) are representative examples, exclusive of the .

generalized functions. This class is somewhat similar in form to the earlier
case in (22). Substitution of (53) in (15) yields pattern

1
gl = [ as s@u J (us) 8% (ﬁvém (54)

0

This integral converges at s = 0 for u > -1, but needs no restriction on v
what soever,

To our knowledge, evaluation of (54) is not possible in closed form for
general v; however, the following cases are evaluated in appendix G:

g(u) =)u+l<“v_2‘?) =LOH+IW> for v

- 0; (55)

alu) (9”@/,,_2?) -fw
=‘QH(VB_2F) ‘gu(ll) for v = 1; (56)
glu) =}u_1<\(u—2-7) Foat - P for v =2 (57)

Numerous ecial cases for one, two, or three dimensions are available from

(55)-(57) by setting u = - %, 0, or -12, re pectively.
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As an example, if we take (54) and (56) for v =1, we have

gds s() J, (us) II@VT-?) =BH(W> —}u(u). (58)

Addition of a S function immediately yields, for u > -1,

1

V)
gds s(;s) J (us) 16—82-‘ Ilévl-s‘?) +f(s-1) =9J( uz_g-’-)’ (59)
-s

which has already been presented in (49) and table 3. A similar combination of
(54) and (57) yields the results of (51) and the bottom entry of table 3.

Additional results for v = 3, 4, ... are possible via the method of appendix u.

One other two-parameter family of weightings that affords a closed form
pattern is available from [10; 6.688 1], by identifying u =1, x =u, 2 = iB,
cost = s, and by using [5; 9.6.3 and 9.1.35]:

j\d(zycodus) <%:-') ( +ﬁ /- =k for v > -1. (60}

0 VI- s

This result is restricted to the line array. The weighting is continuous at
=1 if v 2 1, and the pattern (60) decays at 3+3v di/octave. How good this
pattern is has not been pursued.

A1l the above results have been aimed at getting closed form results for
the pattern; however, this is by no means necessary. One could consider the
class of weightings (53) for any v, or the class

exp(-stz) (1-52)“ for0 < s<1 (61)

for example, numerically by substitution in (12) or (15) and use of some
integration rule like Simpson's. Once the patterns have been numerically
evaluated and plotted for a sufficiently broad range of values of B and v,
good candidates can be selected at will and the corresponding weighting, (61)
or {53) for example, easily evaluated. For the line array, this numerical

approach is readily accomplished by use of an FFT.
34
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DISCUSSION

The ideal pattern was defined in (34) as (2/")(% COSW , and the
correponding weightings were given in (49)-(51). HNow in the one-~dimensional
apnlication, u = -1/2, van der Maas [9] has indeed shown, by taking the limit
of a Dolph-Cheby shev di screte array design, that there is no pattern with a
narrower mainlobe for a gecified sidelobe level (and vice versa) than (34).
However, strictly peaking, we have not proven that same result for the other
values of u, i.e., other numbers of dimensions. Instead, we have adopted (34)
as an ideal pattern and shown that it can be realized by finite-support
weighting functions with a generalized function whose singularity is centered
at the edge of the array. Conceivably, there might be a different weighting
that would realize a pattern that gets further into the left-lower quadrant of
figure 16. However, we conjecture that this is not possible and that the
leftmost curve in figure 16 is the ultimate attainable region for any
weighting in any number of dimensions.

SUMMARY

We have presented a two-parameter class of Bessel weighting functions that
have a closed form pattern with controllable mainlobe width, mainlobe-to-
peak-sidelobe ratio, and sidelobe decay rate. These results have application
to arrays in one, two, or three dimensions. In addition, the ideal pattern
and the corregponding weightings required in various numbers of dimensions
have been derived and presented. Where a generalized function is required, a
method of approximating it has been presented and illustrated by a numerical
example. Various weijhtings already extant in the literature were shown to oe
pecial cases or limiting cases of the general results given here.
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Appendix A
DERIVATION OF RESPONSE OF FPLANAR ARRAY

e

Let the receiving array lie in the x-y plane, and let a plane wave of

wavelength 1 arrive at polar angle 8, and azimuthal angle 05; see figure
A-1. Then if the time of arrival of the plane wave at the origin is denoted

rA

Y,

I

!
!
I
!
[

9-\'//

______ N7

Figure A-1. Geometry for Planar Array

as 0, the time of arrival at a general point x,y in the plane of the array is

X cose_+y sine

C, = -sing, - 2, (A-1)

where A =c/f, ¢ is the speed of propagation, and f, is the frequency of
the plane-wave arrival.

To look in direction #y, &, the receiving array should employ
steering-delay

. - X Cos g +y sin ey -
9 sin 4, = (A-2)
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at the general point x,y. If, also, weighting Wa(x,y) is used in the
receiving array, the array output voltage re sponse at frequency fo is

g = j.fdx dy wy(x,y) exp [‘iz"fg(-c; 9)]

= .”\dx dy wz(x,y) exp[—iZw 1;- P1 - i2n % PZ] . (A-3)
where we define angle functions

P1 = sm& cosgt-s1n$cosea, P2 = s1n$ s1n92-s1nbas1‘nea, (A-4)

and where the integration is carried out over all x,y where weighting wp £ 0,
Thus the planar array can have arbitrary geometry in the x,y plane; equations
(A-3) and (A-4) are general results for the array re sonse.

If weighting w, contains an impulse at x,, y,, then we have

wo(x,y) = § (x=x ) §(y-y ), (A-5)

with array re sponse

= 2 X9 .. Yo
g = expi-i2n - P1—121r Y PZ . (A-6)
which never decays in amplitude with increasing angle.

SPECIALIZATION TO CIRCULAR ARRAY

As a special case of the above, consider a planar-circular array of radius
R with weighting independent of angle; i.e.,

wz(x,y) = ul(szi-yz) for x?'+_y2 < R2 . (A-7)

0 otherwi se
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Then re ponse (A-3) becomes

R

(=]
]

And from (A-4), we have

/\’ 2 2 2 2 A
P1 +P2 = [sin e' + sin ”a - 2$in& sinﬂ‘cos (&'°aﬂ
ie

g
= sinie - siniae
Now let
r = Rs

in (A-8). There follows, for resgponse (A-8),

1
g(u) = y ds s Jo(us) ws),
0

where

R 1

ie
us wa,sinae &— sinbae a} s

and

wWs) = ZwR?'wl(Rs) for0 < s< 1.

b
J\ dr r S‘ de wl(r) exp [-iZw;(Pl cose + P2 sine)]
0 -%
R
2n S drr wl(r) Jo(&r; \/P12+P22>.
0

(A-8)

(A-9)

(A-19)

(A-11)

(A-12)

(A-13)

L A s e n
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Thus the voltage re ponse g(u) is given by a zero-tnh order Bessel
transform over (0,1) of nomalized weighting w(s). Dimensionless parameter u
incorporates the received wavelength A, the array radius R, and the various
look and arrival angles.

40
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Appendix B
DERIVATION OF RESPONSE OF VOLUMETRIC ARRAY

Consider a plane wave of wavelength A arriving at angles 6, o.; see
figure A-1. The time of arrival (relative to the origin) at a general point 1]
X,¥,z in the volumetric array is [11; eq. 3]

1 . . .
ta = CE( cose  sinp +y sine  sing + 2z cosba]. (B-1)

To look in direction & » & the delay used at location x,y,z should be o

b 9 =%[x cosq sintSA +y sine)Q sin E‘q + 2z cosl}:J. (B-2)

The response of a weighted array, at frequency fo, is then

g = gSde dy dz w3(x,y,z) exp [:-iano(‘CaFCx)]

=S§J dx dy dz wy(x,y,z] exp [—i%'— xP1+yP2+zP3>:), (8-3)

where w3 js tne weighting and

©
i

1 cosqE sin 32 - cos e, sin ba,

©
[}

2 sini sints! - sin 8,y sin Bas

v
n

3 cos Q - cos ta. (8-4)

The integration in (3-3) is over all x,y,z where w3 # (. (B-3) is the
general result for any time-delay steered volumetric array.
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SPECIALIZATION TO SPHERICAL ARRAY

Let weighting w3 depend only on the distance from the array center; that

is,
2 2 2 2 2
wix,y,z) = "10{ +y +2 )for X +y2+z < RZ, (8-5)

where R is the sphere radius. Then the voltage response of the array is, from

v 2 2 .2 .
g = H.S dx dy dz wl(x +y +2 )exp [-12—1- xPl+yP2+zP3)]

R

R " "
; dr rzé‘ dp sing f de wl(r) exp[ﬂ'Z%(Plcose sinMstinesint+P3cosb]
-
R n

2r S\ dr rzwl(r) j‘ d¢ sing exp(-iZ:% P3cos¢9 JO(Z% "P12+P2 sina, (3-6)
0 0

where we have chamged to polar coordinates.

In the integral on g, let t = cos #; the inner integral in (8-6) becomes,
by use of [10; 6.677 6],

Lo T r‘V 2 2’1‘_ 2’

dt exp(-12n7P3t) Jo<2u-: P1 ~l-P2 t )
1

_ r rv 2 Zlﬁ_ 2

=2 J dt cos(ZwTP3t> Jo<2"i P1 +P2 t )

o'-‘-’)n—-

=2 ’ (B-7)
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where we define

Q= \,Elz*P22+P32 .

Then the response is, upon substitution of (B-7) in (8-6),

R sm(Zn—Q)
g=4nfdrr wl(r)
0

Now let r = Rs; then the response can be written as

1
g(u) = S‘ ds(%jssﬂ-'%lﬁ wi s),
0

where
W) x (20¥ 2 R (rs),
and dimensionless parameter
« 2R
us 2170.
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(B-8)

(8-9)

(8-10)

(8-11)

(B-12)

The quantity Q, involving the look and arrival angles, can be expressed as

Q= [2—2 cosn&coséa-ZSirwx simia cos(ge-ea)].

(3-13)

Thus the general result, (B-10), for the volumetric array is given by a sine

transform of the normalized weighting w.
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Appendix C
MONOTONICITY OF BESSEL WEIGHTING

We investigate here the behavior of weighting (22):

2 \'
Ws) = (I-B's IV(B 1-s> for 0 < s < 1. (C-1)

Let y = 3y1-s¢; then (C-1) becomes

wms) = g~ yY I(y). (C-2)

Now [5; 9.6.28]

a%{y"lv(y)-} =y’ (¥, (C-3)

which is positive for v 2 0, y > 0; see, for example, [5; 9.6.10]. Tnus (C-2)
i s monotonically increasing iny if v 2 03 therefore (C-1) is monotonically
decreasing in s if v 2 0.
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Appendix D
PROGRAM FOR CALCULATION OF PATTERN (28)
q
10 Alphaz-,9%
28 FLOTTER I3 "“32T2A"
I LINIT 29,179,3%,:45
40 OUTFUT Tas; wsse i
SR SCRLE 9.=5+P1,-78,8
20 GRID FI,14 4
o FENUF ’
30 FOF EB=2 T2 & STEF 2 ]
g B2=E+E '
1 £ F=FNHInu:nuiAlpha, B
118 FOR UJ=a¢ T B STEF .aS
120 VERHInuwsnu Rl pha, SORCBE -1«
1:8 FLOT U, 20«LGTCRABSCY<Fi)
149 HE®T W '
159 FOR U=E TO e+«fFl STEF .95 ;
123 YSFHIrnuw=nui Al pha, SRRCL*J=B2 1«
s PLOT U, 208=LGTIRBSIY-F))
122 HEXT L
129 PEMHUP !
Io9 MEXT B
=19 EMD
ety 1
DEF FHGammavxs 1 GAMMACK Y  via HART, page =75, #5231
H=IHNT
= -N |
IF cH:9: JF JRCxe) THEN 2348
PRINT "FNGammacx' IS MOT DEFINED ForR 3 = "3
STOP
IF R>3 THEM 3228
Gammaz=1
GOTD e
P=32,289543S 3131 +M+71,089259R823403+F+ ", 142 SR, 220134891 30E-20
P=43,9410202133+FR+(22, 95230290238 +R%0 12, 302 crfxF o
R=43,94132093121+F%04, 39950474535 -R* T, 1SB7SEE i S
GammazZ=pP 0 VGAMMACZHR Y far B I
IF N:2 THEN 488
IF K<2 THENW 4%59
Gammas=Gammaz
GOTOD Sav
Gamma=Gammac
FOR K=1 TQO H-2 !
Gamma=Gamma# 4K :
HEXT K
Z0TO S99
R=1 ‘
FOR K=9 T3 1-N
R=R+H+k )
ME®T K
CammazGammad R .
RETURH Gamma '
FHNEND
i !
lh
,!a
47 [
|
|
|
{
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STe DEF FHIroasena i, i ! I s e

a0 IF ABSc(h3:1 THEM =S

S50 A=, 737334560243

S IF Hu=8 THEH RETLRN FNJg: s

ST IF Nu=.5 THEN RETURH Rx3IM:w. Y-

o0 IF Hus-.5 THEH RETURN R=CL0:

S39 IF Hu=1 THEN RETLIRN FNJ1v: .

Y] IF Hus-1 THEH RETURN -FNJl""*

n1e IF Hu=1.9 THEN RETURN A« SIH . : ]
s IF Hu=-1.9 THEH FETURH -Rxu: S0
TS IF Huy=2 THEH RETLRN (2#%#FNJlCHi=WaFHIo 00 03
B4l IF Hu==-2 THEH FRETURH (Z*FNJLloav=ReFHTo ek
ot

3N <:AY DR (AY=A) THEN 239

A

53 H*FNuamma-ﬁ*l)'

- .

B Big=AB3(3"

° FOr H=1 T3 100

T T=T«R " HE*LN+AM)

33347

Big=MARX.EBig,ABS %)

IF ABSC(TI{=1E-11+AB3(5» THEM 739

MERT N

PRINT “183 TERMS IM FMHJnusrmuchHu M RT "G
PRUSE

D=12-LGTCABSCBrg-San I ND. OF 2IGHIF. DIGITS
IF K>3 THEH 3=S~i4+R)~K

RETURN S

FHEND

1

DEF FNJo VoJodHy via 3,41 0 F.403 of AT SS
V=HBS (R

IF v>3 THEN 319

Txysy-9

~ R OO~ R O )

O QO Q0 QL O 00 0 D OO0 —) -t
A R R N A YR

3] Joz. 03444793 =T+ , 01839444 -T>, 099021
(5 Jozl =T/ 2,243939¢-T+(1,2655203-T~ Ie 7 icg=-T=Jo
9 GOTD 278
10 T3
229 Jo=3,S12E-5-T+' ,0B137237-T+(, 00072305 -T+, 0031447 0
3D Jo=, 72733450 T*fF.fE-’*T*u.BB‘S TIa+T . o
3340 3=, 0028207 2T+ [ GdOSHI2T+T«r , QOFII22T-T« HHELIST2 00
259 Tey=, 73539318 -T%: 04186337 +Te 2, 33d4E-S-Te 1
160 Jo=Jo«CN3: T SQR: W2
STy RETURN Jo
2EY FMHEND
3349 !
1o DEF FHJL1 kD oKy wra 404 8 3,3, oF AME TS
1919  r=RR3 X

1929 IF ¢-% THEN 1979
1ez9 T=YVeyr 9
1048 J1=.004432193-T«. 20031761 -T+, 30001193

1950 Jlzie [ S-T*r 582¢9985-T* , 2199357 2=-T= ,0:30d394-T=11 001,

1oe®  GOTO 1139

1079 T=3 ¢

1959 T1=,90017105-T+ 2024951 1-T+. . Q@1128S53-T«, 33320022
1920 J1=, 793723456+ T 0], SBE-S+T*#(,D165%687+T+J1 ..

1199 5=2,086373872-T+ , 60074348+ T+, 00072824 -T+, QA3
1118 T=V-2.3%58612449+T+(,. 1249961 3+4T+ S, 85E-S-T*z ..

1129 J1=3GNc 2 )#J1«C0S:TH -SQARCY »

{1390 RETOURH J1

1140 FNEND

1159

48




"3

0

o
DD G 0D S T D

— e e e
I R S TS

-~
[

OO |

&

TR 6761

DEF FHIruw. . Huy oo { Iri: !
IF HB-AH;'I THEN (Z3a

IF Wu U.THEN FETLIRH FHIoC:

IF Nu=,5 THEH RETURM A+« E-1-E . X
IF Hu=-,5 THEM RETURN A=< E+1-E.

IF Hu=1 THEHW RETLRN FHI1{X:
IF Nu=-1 THEH REYLRH FHNI1
IF Hu=1.5 THEH RETURH R#*\
IF Hu=-1.5 THEH RETURN RA#:

0
1i<E+ vl Eovotaz
ly*sE=-v v+, - E

IF Hu=Z THEH RETURN (XK*FMNIav SEFHI L e E
IF Hu=-2 THEH RETURM cWsFHIouE —2«Fl1 iy

H=Mu
IF CIHT A *AY QOF <(A-=9> THEM 1315
K=R==-Huy

3=T=1~ “HEFNGammacH+1 3

R=,2S5#%#K
Big=RB3.3:

FOR N=1 TO 159
T=T*R-{H# H+A
S3=35+T
Big=MHAX"B13,A
IF RBS(Tra=

BS

THEH taza

MEXT H

PRINT "189 TERMI IH FHInuxnuihHu,s: AT “oruii
PAUSE

D=12-LGTYAESBig- 31 VMY, OF SIGHIF,., LISITE
IF K8 THEMW S=%¢i4*R)~K .
RETURN 3

FHEHWD

|

DEF FHIo(xn VolocHy wia 3.8.1 0w 2.5.2

W=ABS (X3
IF ¢>3.7S THEM 1558
T=v#7 14,8525

[o=.2893732+ T+ , 0263763+ T+, 0345213
To=1+T+0 3, 5190220+ T+ 02,9833 3424+T*e |, Z0aTq432+T+12 400

GOTO 1590

=3.75-%
[0=.80915231~-T+7,32a2%
To=, 39294228+ T, 01228532
[o=lo%EHP Y + “2ORCY )

RETURN Io

FNEMD

!

DEF FNIt<wD PI1dRs wya 9.3.3 4 2.2.4

W=RABZ KD

IF %>3.75 THEM 1&30

T=<'(v14.0629

11=,02658733+4T+7,830201532+T+.09 332411;

T1=0%( 54T+, 37390534+ T#(, 51493389+ T> , 1503325 +TxI1 . v
GOTO 172

T=3.795/%
[1=.910315955-T+,02288967-T* &
11=2.39834223-T+#7,03988024+T*v ¢
T1=5GH 021 ENP YD SAR (Y Y
RETURPN 11

FHEND
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Appendix E
DERIVATION OF WEIGHTING FOR IDEAL PATTERN

WAe want to realize pattern (23),

glu) -ym,l@u -8°/) for all u, (E-1)

for any u > -1, but without the restriction v > -1, which was required for
convergence of integral (22). 90(2) was defined in (17) et seq.

We begin the derivation for the required weighting to realize (E-1) by
substituting (E-1) in (16):

0

u
W s) = J‘ du u(%) Ju(su)}uwd@uz-BZ) for s > 0. (e-2)

It is important to observe that we must allow all s > 0 in (E-2); nopefully,
when we evaluate w(s) from (E-2), it will be zero for s> 1.

Now we already know from (22) and (23) that (E-2) yields

wWs) = ifu>-1, v> -1. (E-3)
0 for 1 < s

Letting a = usv+l in (E-2) and (E-3), and eliminating v, we have the useful
integral identity

8

VI—52> a-u-l ( N
du “(%)uJu(su)éla(Vuz-BZ) - (“—B_ Lymi-1 Bﬁ? for v < s<1 .

0 forl< s
(E-4)

Qg_s

For convergence of this integral at u =0, we require u > -1, whereas for
convergence at U =, we nust have a > u; i.e., -1 <y < a

51
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Now we have the relation (5; 9.1.30]

m u-1
U(%) Ju(su) = - %a%{u(gs Ju_l(su)} for s > 0. (E-5)

Thus (E-2) can be expressed as }

o
w-1 :
wMs) = - '1§3% £du u(%) Ju-l(S“)ﬂuwd(v“Z'B )} for s > 0. (E-6) 1

Appeal to (E-4) now reveals that

vil
1l d Vl-s2 ], 2'
s d—s-{( ) ) I\NI(B 1-s )}for 0<s«<l

wis) = . (E-7)
0 forl < s

e m . calad

orovided that u > 0, v > -2.

e

-

We have succeeded in extending the range of v fron v > -1 to v > -2, as
desired, but have apparently aitered and restricted the range of u from u > -1
tou > 0. However, this last restriction is due solely to the method of
derivation, and may be restored to u > -1, by observing that the right-hand
side of (E-7) is analytic inyu (in fact, constant), and that the function w(s)
defined by (E-2) is analytic* in 4 for u > -1. Thus (E-7) gives the required
weighting to realize pattern (E-1), provided that

uw> -1, v> -2. (E-8)

However, care must be taken, in the evaluation of the derivative in (E-7), to !
account for any generalized functions that may be generated. i

* We are using the fact that ,9(,(1) is an entire function of a, regardless ¥
of the value of 2; see (17) et seq. ;
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In (E-7), define the function

1
2 v+ 2
(1'5) lv+1(3u1‘5 for 0 ¢ s< 1

wl( s) = . (£-9,
0 for 1l < s

Then there follows

ws) = - %% wl(s) for all s, ifu > -1, v > -2. (E-10)

We now break the region v > -2 into the three subcases (i) v > -1,
{(ii) v = -1, (iii) -2 < v < -1.

(i) v»> -1

As s=>1l-, w(s) in (E-9) approaches 0, since v+l > 0. Thus wi(s) in
(E-9) is continuous for all s, and we find, by the use of [5; 9.6.28] in
(E-7), that

@)v xv(a'ﬁt?) for 0 < s <1

wis) = (E-11)
0 for 1 < s

which checks (22), as it must of course, for v > -1.

We observe that

W s) ~ _(__1_)_(1-s)" as s»l- (E-12)
P V+ . L

Thus for -1 < v < 0, there is an integrable singularity in w(s) at s = 1. For '
v>0, wis) iscontinuous at s =1, while for v = 0, ws) has a discontinuous
step of value -1 at s = 1.

-
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(ii) v = -1

Now, from (E-9),

IOGSM-SE> for 0 < s < 17

’ (E-13)
0 forl < s

1. Thus, from

"‘1(5) =

This function has a discontinuous step of value -1 at s
(E-10) and [5; 9.6.28 and 9.6.6],

{B > I_1(8V1-52> +§(s-1) forog
1-s

A
w
A

—

w( s)

0 for 1 < s

8 : 1163%-5 2)+S(s-1) for0<sgl
= V{'S . (E-14)

0 forl«< s

The Bessel function portion of this weighting approaches the finite value
B2/2 as s»1-. The integrable singular.ty at s = 1 of the previous subcase

for v > -1 has evolved here into a §-function for v = -1 at s = 1.

This weighting w{s) in (E-14) realizes the desired pattern in (E-1) for
v = -1, namely,

9;:(""2-82) for u > -1, (E-15)

The special case of a linear array, u = -1/2, yields the ideal pattern

} i(vu—z?) =(?2>%C°S(W) ' (E-16)

This weighting-pattern pair, (E-14) and (E-16), is already known for the line
array under the name of van der Maas [9].
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An alternative way of obtaining the -~sult (E-14) is by taking the limit
of (E-11) as v—> -1. First we observe that

\4
Tim (}%;_2) I (BVI?) -8B I_IGM_-?? for s < 1, (E-17),
v V'——“ <

v>-1 1- 52

since I (z) is an entire function of v wnen z # 0 (5; 9.6.1J. We then
define a difference or remainder function (for v > -1) as

\4
R,(s) = @) IV(BVI_-—:Z) - V—L? II(BM—-—?) for s< 1, (E-18)
1-s

where we used [5; 9.6.6]. The area under the remainder function s R,(s) in
a small region near s =1 1s

]
1 (2e-4) v
[assaea= at[t@ I (Bt) - B Il(Bt):i
1% >

v+l
- (EB;—“) IMGVZS-EE) - IO<BV2e-t:2>+ 1 forvo> -1,  (E-19)

where we used [5; 9.6.28]. Therefore,

1
lj;“_l ‘Y ds sR (s) =1, regardless of ¢ (>0). (E-20)

1-¢

Thus since factor s is 1 at the upper limit of integration,

1im

2 |

R,(s) =§(s-1). (E-21)
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Therefore, combining (E-17) and (E-21), we obtain

Tim (E;>vlv(3%_-?> =8 II(BV].—-?> +§(s-1) forsci, (E-22)

v=»-1
1-s
in agreement with (E-14).

An alternative and simpler equivalent form of (E-22) is

val (V?)"I\,(V?) = f—lg-f) +2§(s) for s2o0. (£-23)

The derivation of (E-23) is similar to that given above in (E-18)-(E-21).

(iii) <2< v < -1

We return to (£-7) and (E-9). Observe that [5; 9.6.7]

. 2 v+l
wl(s)~ _i_s_z___ as s»1-, (E-24)

2v+1r(v+2)
Since we now have

-1 < v+l < 0, (E-25)

there is an integrable singularity in wj(s) at s = 1. Thus the derivative
in (E-10) will generate a generalized function with a singularity located at

s = 1. We handle this case by defining an auxiliary function

2 v+l
_(lilsl_ for 0 < s<1
"M ve2)
0 for 1 < s
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Then using (E-9), the difference

v+l v+l -
V - 2 2
1-s I @‘/I-SE'-M‘_ for 0 < s <1
B V+1 2\)1‘1r|( \’+2)

wl(s) - A(s) = (E-27)
0 for 1 < s

is a continuous function of s; in fact,

2 2 vie
w (s) - A( s) ~ B—E-L—— as s—»l-, (E-28)

2v+3ri( v+3)

which approaches zero since v > -2. Therefore, the required weighting w( s) in
(E-10) can be expressed as

wis) = --lgd—g{wl(s) - A(s) +A(s)}

{05 o) L)1 s

2"I"(v+1)
= D(s) + G(s), (E-29)

where both D(s) and G(s) are zero for 1 < s, The difference function D(s)
possesses an integrable singularity at s = 1; in fact (recall (E-25)),

2 _ 2 V+1
D(s)~ L-(I—SL— as s-»l-. (E-30)

2 7(ve2)

The last term in w(s) in (E-29) is a generalized function; from (t-2b),
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1 d
"EH-S-A(S)

G(s)

1
e s ) U6

v
1-s%) 2 :
Ull-s for s> 0, (E-31)
G

2P(v+l)

where the sub G denotes a generalized function. Here step function

0 fort< 0
Ult)= . (E-32)
1l fort>20

Combining (E-29) and (E-31), the required weighting is

(E2) 1 ) - L) 1)]

2°P(v+l) 2'P(vel)

ws) =
0 forl < s

(E-33)
We have now completed the consideration of the three subcases delineated
under (E-10). We now wish to extend v to values that are equal to and less

than -2, so that we can handle the volumetric array discussed in (37) et seq.

We return to (E-6) and employ (E-5) again:

(4
-2
..14d4) 1.4 "\l 1.%62) .
3T {"s'ds}‘ du u(—s) uu_zlsu) u+v+l(”'3 for s > 9.

(E-34)
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Recourse to (E-4) yields

o [t AT e

for 1 < s

(£-35)

provided that v > -3, 4 > 1. However, the last restriction on u may be
restored to s > -1, by the argument under (E-7). Thus (£-35) gives the
required weighting to realize pattern (E-1), provided that

w > =l, v> -3, (£-30)

The only subcase of (E-35) that we consider in detail is:

(iv) v = -2

We now can write (£-35) as

wis) = ‘ls {:%ag{ (VI_:)U(I s)}} (E-37)

Then [5; 9.6.27]

(E-38)
(Vl s*)U(l-5) + §(s-1).

1..

Therefore [5; 9.6.28],
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(E-39)
BZ B2
= R <BV1-S ’V(l-s) H3 -1 S( s-1) - §'(s-1).
1-s
Here we have used (21) and
2§'0s-1) = §(s-1) + §' (1), (E-40)
which follows from
f(x)§'(x-a) = [f(a) + f'(al(x~a) + 0{(x—a)2}] §'(x-a)
= f(a)§'(x-a) - f'(a)§(x-a). (E-41)

This required weighting, (E-39) for v = -2,has both a § function and a §'
function at s = 1.

Summary

The required weightings to realize pattern (E-1) are given by

(E-11) for v > -1

(E-14) for v = -1

(E-33) for -2 < v < -1 for u > -1. (E-42)
(E-39) for v = -2

(E-35) for ~3 < v < -2
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Appendix F
APPROXIMATION OF A GENERAL IZED FUNCTION

Equation (50) or (E-33) gives the required weighting, for -2 < v < -1, to
realize pattern (48) in tems of a generalized function which is difficult to
interpret. Here we address this intrepretation by means of an approximation
to the generalized function (E-31). We begin by approximating the (singular)
auxiliary function A(s) defined in (£-26) by an ordinary function A () and
then derive an approximation to generalized function G(s) of (E-31) according
to the same rule, namely,

W

- d -
Ge(s) -3 7 Ae(s). (F-1;

In particular, consider A_(s) as shown in figure F-1; that is, A.(s)
is still given by (E-26) for 0 < s < l-¢, but then tapers linearly to zero at
s =1 in order to be everywhere continuous. The height H of Ae(S) at s = l-e
is, from (E-26),

_ ev#l(l-e/Z)v+l

H = P Tor) (> 0). (F-2)
For snall ¢, we have
ev+1
H ~ INETY4) as e-»0+, (F-3)

which tends to + as ¢—»0+, since we have, from (E-25),
-1 < v+l < 0. (F-4)

The result of applying (F-1) to fiqure F-1 is shown in figure F-2. The
large positive pulse in (1l-¢, 1) has height proportional to

1 v
H V(1-¢/2)" €
R 2 B ) B
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| I
|

Ag(s) |

~

(1- s2)v+i
v+l r(v+2)

b= = e — = e

s
0 1-¢€ 1
1
Figure F-1. Approximation to Auxiliary Function A(s) ;
G H
e(s) ’\Qs
[
AREA C———I-> |
[ |
! |
0 1-€ 11 s
!

(1 ) sz)v ]\
2V (vH1)

~

Figure F-2. Approximation to Generalized Function G(s)
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which is tending to infinity since -2 < v < -1. The area of this positive

pulse is
1 H H Ev+l _
g C = 15 dS'e—s = - ; ]n(l-e)~ m as e~=»0+, (F-G) i
-c

This area is also tending to +® as ¢e»0+; recall (F-4). The rate of increase

-1
of C is greater, the closer v is to -2. (For v=>-1, H=>1, C-¢-; In(1l-¢); thus
area C~1 as e»0+. This is the unit area impulse presented in (49) for 3
v = -1.)

Figure F~2 is one approximation to generalized function G(s) defined in
(E-31). Its most important feature is the impulsive-like positive pulse near
s = 1. An alternative approximation is afforded in figure F-3, where the area

~

C of the impulse at s = 1 is given by (recall (F-6))

vl
€

Frevar (e :

-~

The notation used in (E-31) for the generalized function,

2\)
6{ s) =._£i:§_l_ , (F-8)
2°I(v+l)
G
conceals the positive impulsive behavior at s = 1 that the series of
apnroximations in figures F-1 through F-3 indicate must be present. In fact,
(F-8) is negative for 0 < s < 1, by reference to (F-4).

The alternative approximation we obtain to weighting {50) is tnen, from
(E-29) and figure F-3, .
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Gels)

0 1-€ 1
7 s \
| 1
(1 -89V

2V T (v+1) \ |

\ |

Voo

Vo

Figure F-3. An Alternative Approximation to Generalized Function G(s)

W g(s)
TRANSITION PORTION

AREA C

Figure F-4. An Approximation to Weighting (50)
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Wl s) = D(s) + f;e( s)

v
(-B_“'S) IV(B Vl-sz) for 0 < s < l-¢

= s, (F-9)

v v
(1@) Iv([;vl-sz)- _ﬁl_—_sz_)_ for 1-¢ < s <1

2'M(v+41)

The plot in figure F-4 illustrates this approximation. The “transition
portion” in (l-e, 1), which is the bottom line of (F-9), is singular at s = 1-;
however, this is an integrable singularity, as may be seen by reference to
(E-29) and (E-30). The impulse at s = 1 is of finite area C given by (F-7).

As ¢—»0+, area C of the impulse tends to infinity; see (F-7) and (F-4).
However, the area under the main portion of the approximation Ws(s)
precisely cancels this singular behavior; that is, as e—0+,

-£

1- v 1
g\eds(@)lv(\BmN j ds(ﬂlﬁ":‘—])_-;
a

a
v¥l v+l v+l

_ (1-a) - € ~ - € , (F-1u)
["(v+d) HE™)

which is -C. Since the c.ea under the transition portion is

1 1 821" g2*2
g ds D( S)~ ‘S’ ds -z-rm-)——— =m as E-)O“’, (F-ll)
1-¢ l-¢

which tends to 0 as ¢—» 0+, the area under approximation We(s) remains finite

as ¢e>»0+. Indeed it must remain finite, because Hankel transform (12) or (15)
must remain finite in order to realize pattern (48), which is entire in 4, v,
U, and B.
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Thus our final approximation to w{s) is simply

\'4
<b1-s )Iv@u—si for 0 < s < 1l-¢
w(s) =

€

+C4(s-1), (F-12)
0 for 1-¢ < s ¢ 1

and is shown in fiqure F-5. It is very important to observe that the simple
expediant of approximating w(s) by

(Vi-s )vlv@v;-s. for 0 < s < l-¢

0 otherwi se (F-13)
is totally inadequate because, as e-»0+, the area under the cusp at s = l-¢
tends to infinity, and cannot possibly yield an entire function for the
pattern. The impulse is necessary to compensate for the singular behavior of
(F-13) near s = 1; it allows us to realize the “finite part" of the Hankel
transform of (F-13) for ¢ = 0.

(As v=»-1, the value of Cin (F-7) tends to the finite value 1, which is
the impulse in (49). And as v—»-2, the doublet of (51) could probably be
extracted as a limit from (F-12); this procedure nas not been pursued.)

The result of using approximation (F-12) with (F-7), for v = -1.5 and
B =4, isdisplayed as the patterns in figures F-6 through F-8 for ¢ = .1,
.01, .001, regectively. We have selected y = 0, that is, two dimensions, and
are approximating the ideal pattern for B = 4 shown in figure 13. It is seen
that the approximations become progressively better as ¢ decreases, and that
the result in figure F-8 is indeed very close to figure 13.

The approximation Qe(s) in (F-12) and figure F-5 used, for the impulse
area, the value C given by (F-7) as a limit of (F-6) for small . A better
approach is not to use the limiting value, but to use the actual value of the
pertinent function, since we would like good approximations for moderate
values of ¢, not just very small e. This procedure is considered in detail in
{12], with the result
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\4
w(s) = (__B_v{s?) Iv@\/f:_s?) U(1-e-5)

v+l
. 2;;) Iv+1<BVZs-e2)S(s-l). (F-14)

The patterns for this approximation are depicted in figures F-9 through F-11.

The result in figure F-11 for ¢ = .1 is now better than the result for
€ = .00l in figure F-8; and all we have done is to modify the area of the
impulse at s = 1. The result for ¢ = .15 in figure F-10 indicates a modest

change from the ideal and would be acceptable in some cases. The progran for

the pattern evaluation is 1isted at the end of this appendix.

Another possibility is to relocate the impulse in (l-¢, 1) to best
approximate the ideal pattern in figure 13. More generally, a shaped narrow
oulse, which is concentrated toward the boundary at s = 1, could be used;
these possibilities are discussed further in [12].

Some additional results involving delta functions and Bessel transforms
are given here in appendix H.

/\
(Wels)
'y
L7 ~AREA C
s
1
|
A
|
Figure F-5. Final Approximation to Weighting (50)

67




TR 6761

oe T
" Hn

&L

tn

-10

dB

|

705 m 2n 3n 4n 5n 6n !
u

Figure F-6. Pattern of Approximation (F-12) for ¢ = .1
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Figure F-7. Pattern of Approximation (F-12) for ¢ = .01
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Figure F-9.
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Pattern of Approximation (F-14) for ¢ = .
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Figure F-10. Pattern of Approximation (F-14) for ¢ = .15
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Figure F-11. Pattern of Approximation (F-14) for ¢ = .1
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PROGRAM FOR PATTERN EVALUATION

Epz=.1 P Pattern for Merghtaing «F-.d0
Mu=8

Nu=-1.5%

Bess

DIM Goaiadad

COM 1, Bo,Mu, Hu, M2
M21=Mu*2+1

T=2+Ep=z-Eps~2

FlesT uHu+l ' #FHInu<nucNu+l (Bo*SaRT
A=

B=1-Ep:

FOR [u=8 Td 248
U=Tu+PI. 49
S=iFHSCAY+FHSCBL I #.5

N=2

H=(B-R>»%.9

F=iB-fAs-"3

Yo=9E39

T=9

FOR k=1 T N~1 STEP &
TaT+FHSCR+H*K

NEXT K

S$=5+T

W 3+TH«F

IF RBSW-Wo 1 =RBHIY*+1E-4 THEN 318
Yaosy

H=N#*2

HaH*.S

F=F+,%S

B30TO 139
Gulur=FlesFNIrnuxnunMa, Ui+ P Wattage Rezponse
PRINT Tw,Geluz

NEXT Tw

PLOTTER IS "3372A"

LIMIT 25,175, 35,:24%
QUTPUT 785;"VY35"

SCALE 9v,249,-79,0

SRID 49,19

PENUP

FOR Twu=3 TO 248

PLOT ITu,20#LGTCRBSCGCIud~153¢@) 30
NEXT Iu

PENUP

END

)

DEF FN3¢So

COM J,Bc,Mu,Nu,M21
T=1-S*3
TiaFNJnuxnufMu,Uss
T2=FHInuxnu{Nu, Bc#SAR(T>>
RETURN S-MZ1#T "Nu*T1#T2
FNEND

1

FHIJnu<nu and FNInuvnu are listed in Appendi D
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Appendix G
EVALUATION OF A BESSEL INTEGRAL VIA RECURSION

The integral of interest is

1 |
g,(u,8) = 0fds K(u,s)(r‘js_—z;y Iv@Vl:?), (6-1)

where the kernel K is the Bessel function as given in (11). We have, via
[5; 9.6.28],

-

p)
7 9,/%8)

1

8 v~1l
\Y ds K(u,s) B|l——m I @l-s)
0 2 V‘l

-S

8 g,_1(u3). (6-2)

(This relation actually holds for any kernel K, not just (11}.) Since, from
(G-1),

9,(u,0) =0 if v >0,

we have the integral recursion

B
gv(u,B) = g dt t gv_l(u,t) for v > 0. (6-3)
0

We already know the starting case of

1
I G
g,lu,B) = gds s(ﬁs) Ju(us) IO(BV1-52)=£U+1(VuZ-B£); (G-4)

see (23). Substitution in (G-3) yields
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B
gl(u,B) = S dt t}“l(l/uz-t )= t‘f dx x9u+1(x)

0 ul-B

QH(W) -9u(u),

where we employed (21).

Now we employ (G-3) and (G-~5):

B
go(u,B) = J dt t[}uWUZ-t2> -9u(u)]
=9u_l(x/u2_a )-)Pl(u) - “i;j}u(u);

the integral evaluation follows from direct compari son with (G-5).

The last case for v = 3 follows in similar fashion:

a3(u,8) }qu) Fotw - 3,y - .
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Appendix H
TWO BESSEL INTEGRALS THAT YIELD GENERALIZED FUNCTIONS

The starting point is the Hankel transform pair in (15) and (l0).

let w(s) = §(s-a) (where a > 0) in (15), we get
a u
glu) = a(—u-) Ju(au) for u > 9
Substituting (H-1) in (16) then yields the useful relation
¥
-1
fdu uJ (su) J(au) =3 §(s-a).
0
On the other hand, if we let the weighting be a doublet,

wis) =ls§'(s-a), then g(u) = -u(%fJu_l(au)-

The inverse relation (16) yields

ad
sV 1 2
-(3) S §(s-a) = of du u” J (su) J ) (au).

However, since

f(s)f(s-a) = [f(a) + £ (a)(s-) + ...] §'(s-a)
= f(a)§'(s-a) - f'(a)f(s-a),

then
o0
Fau gm0 gyt =~ s ok G
uu ullsu) [ _plau) = - 33 (s-a) 22 s-a).
0

Equations (H-2) and (H-6) are the desired results.

If we

(H-1)

(H-2)

(H-3)

(n-4)

(H-5)

(H-6)
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