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ABSTRACT

A VLSI design methodology, built around the CHiP archi-
tecture, is described. The switch lattice of the CHiP archi-
tecture is the primary design abstraction. The lattice is a
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Introduction

Belween the conception of a real time signal processor and its func-
tional VL3I realization there is an enormous amount of effort devoted to
designing, revising, optimizing and testing. Since the process is cumula-
tive -- later work builds on previous work -- and since the activity
becomes progressively more detailed, more constrained and more exact-
ing, it follows thal the global design parameters should be fully explored.
Global design decisions, when correct, can have a greater effect on per-
formance than many local optimizations. When the decisions are wrong,
they can cause continual difficulty. Accordingly, we propose a design
methcdology based on the Configurable, Highly Parallel (CHiP) architec-
ture family [1® that focuses on exploring global design parameters and 1s
especially well suiled to the VL3S implementation of signal processing sys-
tems

The characteristic that distinguishes digital signal processing design
problems from other large VLSl design problems, e.g., microprocessor

design. 1s that the former tend to require the assembly of a large number

of 1dentical components while the latier often require the assembly of a

diverse colicction of components. In terms of the widely discussed
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hierarchical design methodology [2-4], this distinction means that signal
processors are characterized by a shallow hierarchy rather than a deep
hicrarchy. The emphasis on decomposition in the hierarchica! design
methodology with its resulting deep hierarchy provides less leverage for
signa' processing design problems. Our CHiP computer methodology,
though hierarchical, emphasizes the layout of hcmogeneous components
and should provide greater leverage for signal processor design situa-
tions.

The methodology is not a cookbook procedure. That is, there is not a
sequence of definite steps which if followed from start to finish result in a
real time signal processor. But there are steps: the designer programs
the algorithm for a CHiP computer, tests it, assesses the design, revises
it, programs the subparts, tests them, assesses their design. revises
them and, finally, specializes the entire system for silicon implementa-
tion.

In order to organize our presentation of the methodology. we will
develop a design as a running example. Our problem will be to design a
pipelined, eight point Fast Fourier Transform processor. The reader need
not be acquainted with the FFT, since our intent is not to producy a prac-
tical device. Rather we are using the problem as a context in which to

focus on the design activity.

Problem Statement

Naturally, the first step in any design situation is to understand the
problem. For our running FFT example Lhis can be conveniently steted
with a schematic diagram, (Figure t). lach processing element takes two
inputs, # and B’ and computes two weighted sums, B + @B’ and B - QI3

(See Stone {5, for exact details.) Our assurnptions are that the

Pl
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processors receive data bit-serially {rom off the chip, that the structurc
1s pipelined and that the resulting circuit is to be placed on a single chip.
From these assumnptions, we conclude that we will need to place twelve
processors each capable of multiplying by a constant and adding, and
that the chip will require sixteen pins for data in addition to power,

ground and any control lines.

Figure 1. Pipelined FFT schematic. .

Programming the Algorithm ‘

The next step in the methodology is to program the algorithm for a
CHiP computer. The purpose is Lo establish an unambiguous specification
of the problem and to begin initial exploration of the layout, timing and
input/output constraints. Before programming our FFT example, we

must introduce CHiP machines.

A CHiP computer is one of a family of architectures specialized for

“fine-grained” parallelism and efficient VLS| implementaticn. The main

component of the architecture (and the only one of interest here*) is the

swilch latlice. This is a homogeneous array of programmable switches
*Other, more thorough descriptions of the CHil> machine have been giver, but

‘ they focns on ite use as a gereral purpose paratlel processor [1, 6}, Our descrip-
tion here has been specialized Lo its use as a desgn abstraction.

k( ' :
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and data paths with processing elements (PEs) placed at regular inter-
vals. Figure 2 1llustrates sci.cmatic diagrams of two switch iattices The
switches and data peths are a general means of specifying information

flow arnd the processing elements serve to represent some arbitrary coms-

putational activity.

L)
SOSN8
Sanscacaus

(b)

Figure 2. Two switch lattices. Circles are switches; squares are process-
ing elements.

Ultimately, whe: the methodology has been worked through and the
design .s completed, the switches and data paths will have been removed,
the active data paths will have been replaced by wires and the processing
clemen.s will have been replaced by specialized circuits for the particu-
lar function. But at this point this stylized representation of the com-
poncents gives the designer a simple, flexible means of simulating Lhe
algorithm. The simplicily and flexibility make the revision a less painful
process and cncourage exploration and experimentation.

As Figure 2 illustrales, switch lattices differ in several respects.
Although the designer will choose a lattjce suilable for the particular

algorithm, 1t is appropriate to mention the axes of variability. The
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degree, d, of switches and processing elements refers to the number of
data paths incident to the device. Normally, we will have d =6 for svitches
and Pks although a higher degree for Plis may be convenient wnen there
are multiple inputs and outputs. (See below.} In Figure 2(u). d=¢ and in
Figure 2(b). d=4.

The corrider width w refers to the number of switches separating two
neighboring PEs. {In Figure 2(a), w=1, in 2(b), w=2.) The more distinct
data paths that must pass belween two processing elements, the wider
the corridor width must be. Since the switches will ultimatlely be
removed, there is no harm in specifying a large corridor width. However,
by caliing explicit attention to corridor width, we causec the designer to
focus on data routing and to appreciale the consequences of haphazard
routing on density and packing. Notice that the corridor width is related
to the number of distinct data paths passing between two Plis, not to the

nuinber of wires in cach data path {which is set later).

Onc programs the switch lattice simulator by giving "cenfiguration
settings"” for the switches and program text for the PEs. A configuration
seiling specifies which of the incident data paths a switch is to connect.
[f no configuration setlting is given the data paths are isolated. In the
figures we simply draw lines through switches to specify active settings.
The program text is given in a conventional sequential programming
language that has been extended with facilitics to specify timing.*

Returming to our FI'T example, we can specify our first embedding.
Figure 3 allustrales a direct embedding of the FFT intcerconnection (Fig-
ure 1) in a switch lattice where w=2 and 4=8. Because of the number of
data paths crossing from the upper half of the layout to the lower half, a

*tor the Blue CHIP Project’s pilot simulator, thie laiguage is Pascal.

oy
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widtn w=2 1s required. Notice that the layout is the same for each of the

three files.

Figure 3. Switch lattice embedding of the FI'T.

The execution of the CHiP computer is synchronous, so the develop-

ment of the PE code is a simple matter. Each PE executes a variant of

L READ B: READ R’
Ce B+ QB
C e« B ~Q1
WrITE C, WRITE C'
GoTO L

where the variant is determined by which PE ports the variable comes

from or goes to. For example, PE 1.1 would execute I
L: READ B FROM West, READ B' FROM Southwest
CeB+ @B
C e B -8
WRITE C TO Fast, WRITE C' TO Southeast
GoTO L

PEs with degree greater Lhan eight have their perts numbered.

Although the development of the program is the responsibility of the

designer, there are library embeddings available that embody careful

analysis and rescarch.




Assessment and Revision

The next activity in the methodology is to assess the initial design
and make appropriate unprovements. The goal here s to cvaluate Low
the design can be globally imnproved before investing any effort in tne
detailed layout. Obviously, this activity will require a certain amount of
judgement and experience.

Cur rFT has several favorable characleristics. It has a nearly square
aspect ratlo (4.3} and has edge-to-edge data flow. The latter property is
important in order to reach the bonding pads which are most con-
veniently located on Lhe perimeter. The main liability of our initial
design ts the nonlocal data flow, i.e., the presence of long data paths.
When the design is laid out, some wires will have to be as long as the side
of a PE.

1o solve this long data path problem, we observe that to achieve
edge-tc-edge data flow, il 1s not necessary for the flow to be unidirec-
tional as it 1~ in our imitial design. In particular, an allernative strategy is
to routce the data towards the center of the layout and then back out
towards the perimeter. To achieve such an in-and-out data flow, we place
the second file (2z) of processing elements in the center of the layout
and place tne first and third files around the edge. Figure 4 illustrates
this layoul. The resuit is a design which still has edge-lo-edge data flow
and short, local connections. (This particular optimization may not gen-
eralize for larger shuffle graph problems, but the concept of in-and-out.

cdue-to-edge data flow could have wide application.)
The assessment and revision activity is iterated.
In the sccond design the aspect ratio is now square -- & minor

improvement. Unfortunately, the corners of the layoul are unused. This
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area can be used for bonding pads for the input/output wires of the ac;a-

cent PEs It could alsc be used for other logic depending on how the

design develops. (Sec beiow. ) }

When studying the way data enters and leaves the PEs in Figure 4,
one sees that there are two different processing element geometries: The
external Pts are alike and the internal Plis are alike* [t iz obviously

unidesirable to have to require two designs for the same function, so we

reprogram the external switches to convert the external PE geometries
to the internal form. (See Vigure 5.} This gives one layout form. Furth-
ermore, if we reflect on how this stylized diagram will finally be impie-
mented, 1t 1z clear that since the two data paths will probably extt [rom =
PF together, the global data flow will be optimized if (1) they enter the 0
togetiier and (2) these entry and exit points are on opposite corners of a
PE. We take these two conditions as constraints to be carried over to the
next phase of design. If we can accomplish these two in the next phase
we will have a better global organization. If we cannot, we return to this

point to reassess and revise.

Round Two

The process of programming the CHiP machine has resulted in an
unambiguous specification of the algorithm, a routing of the data flow, a
global .ayout and, presumably, the development of some test data that
was used when the algorithm was run on the CHiP architecture siinulator.
But this first program is not intended to specify the algorithm in great
enough detail for direct VLSI design and layout. In particular, the func-

tional activity of the PPFs is probably too complicated at this earlv stage.

* }beinternal PEs are not quite alike -- the (clockwise) meaning of the data putis
differs among them. This will be easily corrected later by a simple wire crosscver.

L—L—-—.—____’ ' — .



Figure 5. A reprogramming of perimeter interconnections.

In our FI'T example, the inner product step is such a complicated

activity.

So the methodology dictates that we iterate the program-assess-
revise cvele untii the functional activity of the PEs is sufficient v simpic
te be airectly implemented in VLS] or can be implemenicd by an availl-

able library layout Smce the interconnection and global lavou: wre now
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fixed. 1t is necessary oniy to implement the specified actviiy of the P
Tiis s accumplished by programining the CiiP architecture ' imple-

mient Lo algorithm specified by the PE code(s) 1t s tias eratae

e e m

activiiy thatl cives the methodology its hicrarchical capau..y
JUring each subsequent round of prograrming-assessei-rovis.orn,

1L 15 important to establisn that the current CHEIP uLregram correcly

[P

mp.ements tne speaidication of the previous lever This s o 7roorement
of anv top-dewnh design effort, anc it is aided nhere by tiie previousiy
developed test data. (Nouce that the test data mav have Lo Lave s form
cnanged to reflect the changed level of detall. For exampic, at ane level
the program can be simuiated on words of data while at the next jevel it
might require bit-serial data.)

We return briefly to the I'FT example ta give a second level of layout.

i’ostulate a linear array of PEs to perform the inner product step based

on a pipelined multiplier {7 . The layout will have two serial inputz. # and
A, and will produce two serial ocutpuls, B+ @B' and B - QI . The
coeflicient. @, will be stored internally to the layout, although 1 will be
shifted through to form the intermediate products. By our analvsis frem
the previous level, the current layoutl will receive 1ts input at one corner
and must deliver its output to the opposile corner. This suggests a
“sniaked"” arrangement {or the linear array of processing elements. (See

Figure 6. Each PE has a input and output the three data values as well

as Lhe partial product. The B value is carried along to be availabie at the

end for summing and differencing in the last cell. The control lines could

either be broadcast or transmitted sequentially {7 from the control cir-

cull that we will place in the corners of the global design.

As before we should next program the activity of the Ptis. This time
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Figure 6. A pipelined inner product layout
there wili be a lew different cells since the multiplier requires a few [7’
and there 1s a sumi/ditference cell. Then we embark on another sequence
of assess and revise iterations. Having illustrated how the "opposite
corner’ data flow property established at the top levei becomes a con-
straint to be impiemented at the second level, we forego further detailed

design.

Design Specialization

The programi-assess-revise cycle conlinues until the processing per-
formed at cach PE can be directly implemented as a VLSI design. The
nceeded cells are either produced or acquired from a library. Then the
design is specialized. That is, the VLSI designs replace the PEs in the last
CHiP program layout. The active data paths are replaced by wires and all
of the switches are removed. This result is then used to speciulize the
next higher level program, 1.e., it replaces the PEs in its predecessor lay-
out, ete. When the activity is completed, our stylized CIIP jattice is gone
and what remains is a completed VLSI design. For our example. see the

schematic in thgure 7.
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Figure 7. The specialized layout; the wide spacing is for showing inter-
connections.

Although it is straightforward, the specialization process is not quite
as trivial as just suggested. Ils success depends on several conditions.
First, the aspect ratios and cell sizes must be properly controlled during
the design process in order to pack the cells easily. This condition is
casily mect as long as the PEs perform closely related operations [In our
running example, the top level cells were identical; the second level cells
were sufficiently similar to justify an assumption of equal size.

Another complication for specialization is power and ground routing.
We recommend the following strategy. Perform the routing prior to spe-
cialization but after all the VLSI cells are designed. At that point it is
known, relaliveiy, where power and ground enter the cells. Then, route
the power and ground wires within each CHilP’ lattice layout starting at
the lop level. This permils a convenient top-down routing with the added

advantage of knowing the target sites for the bottom level connections.

A word about simulatlion. As the program-assess-revise cycele is per-
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formed, cach program can be simulated in isolation using the daia (possi-

biy revised) {rom: the previous level. Moreover, the composit desiwgn can

level for the Plis of the previous level. Once the PEs have been repiacec
by Vsl cells, however, it 13 unclear to what extent the design mettodo.-
ogy call assist in cflicient simulation. [t is obviously compativie wiun
hierarchically-based VLI design rule checking [8] and elecirical itilesi ity

checeking [9 .

Summary and Discussion

The methodology we have presented focuses on global design issues
of a VLSl implementation - data flow, functional decomposition, geometric
layoul of components. lf we use '+’ to denote 'one or more appilcat.ons

of’, then the CHiP architecture methodology could be described as

(program  test (assess, revise, test)™)* specialize

This methodology leads to a design with a shallow hierarchy. making it
most effective for highly regular algorithms such as digital signal pro-
cessing systems.

The CHIiP architecture is crucial to the methodology. The switch lat-
tice provides a medium that mirrors raw silicon: it is planar; it has
integrated processing and interconnection facilities; it is described
geometrically; external data is available only at the perimeter. Conse-
quently, programming an algorithm for a CHiP architecture, though rea-

sonably convenient, gives a good approximation to a VLSI layout.

It is this [eature, a convenient programrning absiraclion imposing R

VLSI-like counstraints, that perhaps most distinguishes the CHiP metho-

dology from others in which the specification form is divorced from the
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technology.

Related Results
There are three points to be made about related research.

First, from our study of configuration settings we have developed a
library of efficient embeddings for commonly used interconrnection struc-
tures. These include single corridor, planar, linear area binary trees {1,
10, toruses with no long data paths {10, shuffle-exchange graphs with
narrow corridors, etc. For example, Figure 8 shows a 64 node shuffle-
exchange graph embedded in a lattice with w=1 and 4=8. This embed-
ding, due to Paul Morrissett [11 is of interest because, in general, the
shutlTle-exchange graph requires very wide corridors [6.. In addition,
there are general embedding techniques known for common laycut prob-
lems: the Aleliunas-Rosenberg technique for bending data paths around
corners [1_, and lacing for maximizing the number of data paths through

a region of the graph [10}.

Figure 8. A 64 node shuffle-exchange graph.

Second, we have developed another methodology, called Processor

Displacement, thal assists the designer in balancing pin limitations with
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chip arca utilization [12. This approach to determining the optimal
amount of multiplexing is compatible with the CHiP architecture metho-

dology described here.

Third, the CHiP computer is intended to be a general purpose paral-
lel processor and as such it physically implements a switch lattice with
programmable switches and microprocessors as processing elements |1 .
Were CHIP computers generally available, a signal processing system
could be buit simply by running the top level program of our methodol-
ogy. This solution to constructing a special purpose signal processor
probably would not have sufficiently good performarnce to serve most
applications. Although easily accomplished, this would be Loc general a
solution for a high performance device. Our methodology on the other
hand can lead to high performance but requires much effort. There could
be a compromise solution: We are exploring the possibility of semispe-
cialized CHiP computer which would replace the general purpose
microprocessor PEs with functional units tailored to a specific applica-
tion. CORDIC processors are good candidates for these specialized PEs

[13.
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