A FOUR-CHANNEL MULTIPLEXER FOR AN XYZ DISPLAY MONITOR. (U)

MAY 82 R E SELWAY

ARL-SYS-TECH-MEMO-59
A four-channel multiplexer for an XYZ display monitor

R.E. Selway

Approved for Public Release
A four-channel multiplexer was designed and built in early 1974 for the display of low-frequency voltages from an analog computer on a single gun XYZ display monitor. The salient features include the ability to display up to four sets of analog data as either X-Y or Y-T traces on any channel independently of other channels. The equipment has performed satisfactorily in service and is currently also used for the display of analog data generated by digital computer. Improvements in accuracy, speed, component count and reliability could be made with current (1982) technology, but refinements of this nature are not considered necessary.
CONTENTS

1. INTRODUCTION 1

2. CIRCUITS 1
 2.1 Clock 1
 2.2 Multiplexer Logic and Z-Modulation 2
 2.3 Time-base Generator 2
 2.4 External Triggering 3
 2.5 X-Amplifiers 3
 2.6 Y-Amplifiers 4
 2.7 Power Supply 4

3. CONSTRUCTION 4
 3.1 Front Panel 4
 3.2 Printed Circuit Boards 4

4. FURTHER COMMENTS 4

REFERENCES

DIAGRAMS

DISTRIBUTION LIST

DOCUMENT CONTROL DATA
1. INTRODUCTION

This memorandum gives a description of the design and construction of a four-channel multiplexer (MUX) for displaying up to four independent sets of analog data on a general purpose XYZ display monitor. The data sets may by X-Y Lissajous figures, or they may be presented as Y-T traces where T is derived from an internal time-base generator. The multiplexer was required for the display of real time, low-frequency data from an analog computer.

It was envisaged that there would not be any demand for great accuracy or stability, only f-T observing the form of analog data before recording or measuring on other media as necessary. All components were chosen for their ready availability, rather than their quality of performance.

The work was carried out in early 1974 and documented in draft form soon after. Formal publication now, in 1982, is for the purposes of wider dissemination of the information as appropriate.

2. CIRCUITS

The overall scheme of the multiplexer is shown in Figure 1. Each X- and Y-input signal is scaled and shifted as required at the first stages of amplification. Then the inputs are multiplexed in pairs, i.e. X₁ and Y₁, X₂ and Y₂, etc., to the two second stages which provide the X- and Y-output signals to the monitor.

The time-base generator provides a ramp voltage which may be used instead of the X-input signal for displaying Y-signals against time. The multiplexer logic takes in logic level signals to determine when a particular X-Y combination is to be displayed. It also provides the pulses required for operating the multiplexer switches in the correct sequence.

2.1 Clock

The clock, contained within the box marked 'Multiplexer Logic' in Figure 1, serves to provide the necessary timing pulses to multiplex the analog signals from the computer to the XYZ monitor. The clock frequency was determined by the requirement to display the widest bandwidth data possible without sacrificing dynamic accuracy. The display monitor used with this equipment is a Tektronics model 604 (Ref. 1). The X- and Y-amplifiers of this monitor have a bandwidth to -3 dB of 2 MHz, which effectively limits the bandwidth of an incoming signal to about 200kHz. The clock, generating a square wave, was designed to have frequency of 200 kHz which allowed 2.5 μs for data settling time and 2.5 μs for display time. The clock circuit is taken directly from standard circuits in the manufacturer's data sheets (Ref. 2) and is shown in Figure 2.
2.2 Multiplexer Logic and Z-Modulation

The multiplexer logic and Z-modulation circuitry is shown in Figure 3. The clock frequency is divided by two, twice, using two flip-flops (FF) to produce signals which may then be combined in appropriate ways to provide the signals S_1 to S_4 as depicted in Figure 4.

Formally, let C be the clock state (Figure 4), then A and B are the outputs from the $'\div2'$ FFs,

- $S_1 = A \land B \land a$
- $S_2 = \overline{A} \land B \land b$
- $S_3 = A \land B \land c$
- $S_4 = \overline{A} \land B \land d$

where \land denotes logical AND,
- a denotes channel 1 selected,
- b denotes channel 2 selected,
- c denotes channel 3 selected,
- d denotes channel 4 selected,
and $\overline{\cdot}$ denotes the logical inverse.

The clock also provides the timing signal for the Z-modulation of the X-Y signal to the monitor.

If T is the waveform of the time-base blanking signal (see section 2.3) then the Z modulation is given by

$$Z = C \land (S_1 \lor S_2 \lor S_3 \lor S_4) \land T$$

where \lor denotes logical OR.

Details of pin connections on the logic devices shown in all the diagrams may be obtained from the manufacturer's data sheets (Refs. 3 and 4).

2.3 Time-base Generator

The maximum sweep frequency of the time-base generator is determined by the requirement not to allow the chopping between channels to be visible on the screen. The chopping period between two adjacent
channels is 5 \mu s. Since all four channels are multiplexed in sequence the chopping period per channel is 20 \mu s, i.e. beam ON for 2.5 \mu s and OFF for 17.5 \mu s.

The model 604 monitor has a screen graticule measuring 100 mm wide with 10 divisions marked. It was considered that at the highest sweep frequency used each of the four traces should have a minimum of 50 signal samples/division. This means a total of 200 samples/division for all channels. At 20 \mu s/sample the maximum sweep frequency is therefore equivalent to a minimum sweep time of 4000 \mu s/division. Using the standard 1,2,5 method of providing sweep time ranges the minimum sweep time selectable was determined as 5 ms/division.

Figure 5 shows the time-base generator circuit. An internally adjustable reference voltage is set up which is integrated in the first amplifier at a rate determined by the RC combination selected. The integrator output is attenuated and buffered at the second amplifier to provide a signal amenable to processing at logic levels in the logic gates following. The first gate acts as a Schmitt trigger, the second combines the triggering inputs (section 2.4) and the third inverts the signal for clocking the monostable multivibrator. The outputs from the monostable multivibrator are used to drive switches Q1 and Q2 to reset the integrator to zero volts output after the Schmitt trigger detects a time-base voltage of +10 V.

2.4 External Triggering

Figure 6 shows the circuit used for providing an external trigger pulse. The comparator detects a zero-crossing of the input analog signal. The switch marked + or - serves to gate the comparator output to logic elements which produce a positive pulse on a rising or falling input signal, as appropriate. These pulses are only effective after the 10 V threshold has been reached by the time-base integrator.

The waveforms, with and without external triggering, are shown in Figure 7.

2.5 X-Amplifiers

Figure 8 shows the circuit for one channel of X-input. The circuit as far as the summing junction of the last amplifier is duplicated three times to give a total of four separate inputs. The input scaling ranges from 20 V/div to 0.1 V/div. A switch is provided which selects either independent X inputs (for Lissajous-type figures) or the time-base function. A shift control is also provided to position the origin anywhere in the screen. The switches Q1 and Q2 are controlled by the MUX logic signals S_1 and S_1.
2.6 Y-Amplifiers

Figure 9 shows essentially the same circuit as for the X-amplifiers with the exception of the time-base input.

2.7 Power Supply

The power requirements for the equipment are met by the circuit of Figure 10. The Analog Devices module 920 H supplies ±15 V at 200 mA and the 903 H supplies ±5 V at 500 mA.

3. CONSTRUCTION

3.1 Front Panel

Figure 11 shows the layout of the front panel. The input sockets are arranged as a group of 4 mm banana sockets in the lower right-hand corner. The power on-off switch and indicator lamp are mounted just above. The external trigger input socket is mounted to the left of the indicator lamp and the triggering control switches are situated above the input socket. The sweep time selector switch is mounted in the top right-hand corner.

The X-Y display controls are set up as four columns of six controls which are, from the top, the Y sensitivity, channel selection switch, Y shift, X sensitivity, X or time-base selection switch, and X shift. Miniature components were used where possible in order to reduce the overall size of the equipment, so that the monitor and the multiplexer could fit side-by-side in a standard 19 inch (483 mm) rack.

3.2 Printed Circuit Boards

The circuits were laid out on six general purpose printed circuit boards like that shown in Figure 12, one each for ±15 V power supply, X-amplifiers, Y-amplifiers, multiplexer logic and Z-modulation, time-base generator, and ±5 V supply. These boards were mounted in a card cage which was fitted into an instrument box measuring 235 mm wide, 148 mm high, and 280 mm deep.

4. FURTHER COMMENTS

The equipment was built in early 1974 and hence only reflects the technology readily available at that time. No doubt the circuitry could be modified now (1982) with improvements in accuracy, speed, cost, component count and reliability. However, the equipment has performed to expectations so far and it is not anticipated that any further refinement will be necessary.
REFERENCES

FIG. 1 SCHEMATIC DIAGRAM OF MULTIPLEXER
$f = 200 \text{ kHz}$
FIG. 3 MULTIPLEXER LOGIC AND Z-MODULATION CIRCUITS
FIG. 4 MULTIPLEXER LOGIC AND Z-MODULATION TIMING
FIG. 6 EXTERNAL TRIGGER CIRCUIT
FIG. 7 TIME-BASE WAVEFORMS
FIG. 10 POWER SUPPLY
FIG. 12 GENERAL PURPOSE PRINTED CIRCUIT BOARD
DISTRIBUTION

AUSTRALIA

Department of Defence

Central Office

Chief Defence Scientist
Deputy Chief Defence Scientist
Superintendent, Science and Technology Programmes
Controller, Projects and Analytical Studies
Defence Science Representative (U.K.) (Doc Data sheet only)
Counsellor, Defence Science (U.S.A.) (Doc Data sheet only)
Defence Central Library
Document Exchange Centre, D.I.S.B. (17 copies)
Joint Intelligence Organisation
Librarian H Block, Victoria Barracks, Melbourne
Director General - Army Development (WSO) (4 copies)
Defence Industry & Materiel Policy, FAS

Aeronautical Research Laboratories

Chief Superintendent
Library
Superintendent - Systems
Divisional File - Systems
Human Factors Group File
Author: R.E. Selway

Materials Research Laboratories

Chief Superintendent/Library

Defence Research Centre

Library

Central Studies Establishment

Information Centre

RAN Research Laboratory

Library

Navy Office

Navy Scientific Adviser
RAN Aircraft Maintenance and Flight Trials Unit
Superintendent, Aircraft Maintenance and Repair

.../cont.
DISTRIBUTION (CONT.)

Army Office

Army Scientific Adviser
Engineering Development Establishment, Library

Air Force Office

Aircraft Research & Development Unit
Scientific Flight Group
Library
Air Force Scientific Adviser
Technical Division Library
Director General Aircraft Engineering-Air Force

Department of Industry and Commerce

Government Aircraft Factories
Library

Transport Australia
Library

Universities and Colleges

Adelaide Barr Smith Library
Latrobe Library
Melbourne Engineering Library
Monash Hargrave Library
Sydney Engineering Library
N.S.W. Physical Sciences Library
Queensland Library
Tasmania Engineering Library
Western Australia Library
R.I.T. Library

SPARES-(10 copies)

TOTAL - 69 copies
A four-channel multiplexer was designed and built in early 1974 for the display of low-frequency voltages from an analog computer on a single XYZ display monitor. The salient features include the ability to display up to four sets of analog data as either X-Y or Y-T traces on any channel independently of other channels. The equipment has performed satisfactorily in service and is currently also used for the display of analog data generated by digital computer. Improvements in accuracy, speed, component count and reliability could be made with current (1982) technology, but refinements of this nature are not considered necessary.
This page is to be used to record information which is required by the Establishment for its own use but which will not be added to the DISTIS data base unless specifically requested.

<table>
<thead>
<tr>
<th>16. Abstract (Contd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Imprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Research Laboratories, Melbourne</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Technical Memorandum 59</td>
<td>736165</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21. Computer Programs Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22. Establishment File Ref(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>
A FOUR-CHANNEL MULTIPLEXER FOR AN XYZ DISPLAY MONITOR
(AUSTRALIA)
R E SELWAY MAY 82 ARL-SYS-TECH-MEMO-59
UNCLASSIFIED

END
8/83

DEPARTMENT OF DEFENSE
DEFENSE PRINTING OFFICE
Washington, D.C. 20301
SUPPLEMENTARY INFORMATION
ARL-SYS-TECH-MEMO-59

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES

SYSTEMS TECHNICAL MEMORANDUM 59

A FOUR-CHANNEL MULTIPLEXER FOR AN XYZ DISPLAY MONITOR

by

R.E. SELWAY

ERRATA

ON FRONT COVER AND TITLE/SUMMARY PAGE THE AR NO. IS NOT CORRECT, PLEASE AMEND TO READ AR-002-885.