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1. Calculation of emission spectra is one of the steps in making
electromagnetic compatibility (EMC) analyses of radar systems. For
ordinary radars, the calculation is easy to accomplish, but in the

case of chirp radars, it is difficult if the conventional equation for
describing the spectra of linear frequency-modulated (LFM) pulses is
used. The conventional equation involves Fresnel integrals and requires
that a large number of high-precision computations be performed. In
doing an EMC analysis, an upper bound on the spectrum rather than the
spectrum itself is used. It is the purpose of this technical report to
provide EMC analysts with simple equations and procedures for calculating
the approximate bounds on the spectra of LFM pulses. This reviscd edition
presents in greater detail the derivations of the equations and included
an additional section consisting of numerical examples that illustrate
the application of the procedures.
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ESD-TR-81-100
EXECUTIVE SUMMARY

Simple equations and procedures were developed that permit rapid hand-
calculation and plotting of approximations of strong upper bounds on the
spectra of linear frequency-modulated RF pulses that have a trapezoidal
envelope.?2 The plots of the approximate bounds consist of segments of

straight lines on semilogarithmic graph paper, and are very easy to draw.

The approach used in deriving the model involved the use of an agymptotic

expansion instead of the usual Fresnel integrals to describe the skirts of the

voltage-density spectrum.

The approximate bounds are within about 1 dB of the spectrum determined
using the Fresnel integrals at the center of the central lobe and within a
fraction of a dB at the centers of the minor lobes that occur at frequencies
well above and below the central lobe. The approximation is the least
accurate in a relatively narrow frequency interval at the edges of the central

lobe, wheare it may underestimate the spectrum by about 5-10 dB.
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A

3an upper bound, in this application, is defined as a function that is never
less than the actual spectrum. A strong bound is close to the spectrum at
varicus pointa. See Figure 6 on page 12.
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ESD-TR-81-100
PREFACE

The Electromagnetic Compatibility Analysis Center (ECAC) is a Department
of Defense facility, established to provide advice and assistance on
electrcmagnetic compatiblity matters to the Secretary of Defense, the Joint
Chiefs of Staff, the military departments and other DoD components. The
center, located at North Severn, Annapolis, Maryland 21402, is under the
policy control of th2 Assistant Secretary of Defense for Communications,
Command, Control, and Intelligence and the Chairman, Joint ‘hiefs of Staff, or
their designees, who jointly provide policy guidance, assign projects, and
establish priorities. ECAC functions under the executive direction of the
Secretary of the Air Force and the management and technical direction of the
Center are provided by military and c¢ivil service personnel. The technical
support function is provided through an Air Force-sponsored contract with the
IIT Research Institute (IITRI).

To the extent possible, all abbreviations and symbols used in this report
are taken from American National Standard ANSI Y10.19 (196%) "Letter Symbols
for Units Used in Science and Technology” issued by the American National
Standards Institute, Inc.

Users of this report are invited to submit comments that would be useful
in revising or adding to this material to the Director, ECAC, North Severn,
Annapolis, Maryland 21402, httention: XM,
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SECTION 1
INTROLUCTION

BAC KGROUND

Calculation of emission spectra is one of the steps in making
electromagnetic compatibility (EMC) analyses of radar systems. For ordinary
radars, the calculation is easy to accomplish, but in the case of chirp
radars, it is difficult if the ccnventional equation for describing the
spectra of linear frequency-modulated (LFM) pulses is used. The conventional
equation involves Fresnel integrals and requires that a large number of high-

precision computations be performed.

In making an EMC analysis, an upper bound on the spectrum rather than the
spectrum itself is used. It is the purpose of this technical report to
provide EMC analysts with simple equations and procedures for calculating the
approximate bounds on the spectra of LFM pulses. The first edition was issued
in February 1971.' This revised edition presents in greater Jetail the
derivations of the egquations and includes an additional section consisting of

numerical examples that illustrate the application of the procedures.
OBJECTIVE

The objective of this project was to provide a sxﬁple rethod for
calculating and plotting strong bounds, or a good approximation thereof, on
the spectra of LFM radio frequency (RF) pulses that have trapezoidal

envelopes.

'Newhouse, P.D., A Simplified Method for Calculating the Bounds on the
Emission Spectra of Chirp Radars, ESD~TR-70-273, Electromagnetic
Compatibility Analysis Center, Annapolis, MD, February 1971,
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ESD-TR~-81-100 Section 1

APPROACH

The conventional equation for the spectrum of a chirp pulse was replaced
by two equations, one of which is convenient for describing the center region
of the spectrum and the other for describing the skirts of the spectrum.
Using these equations, simple expressions were derived that yleld approximate

bounds on the spectrum.
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ESD~TR-81-100 Section 2

SECTION 2
DEVELOPMENT OF EQUATIONS AND PROCEDURES

The simple equations and procedures developed permit rapid hand-
calculation and plotting of an approximation of strong bounds on the spectra
of LFM RF pulses that have a trapezoidal envelope. The plots of the
approximate bounds consist of segments of straight lines on semilogarithmic

graph paper: thus, they are very easy to draw.

By definition, a bounding function is never less than the bounded
function. The functions derived here, however, may underestimate by several
dB the actual spectrum in a few places, such as at the edges of the central
lobe of the spectrum. Therefore, the functions are referred to here as

approximate bounds on the spectrum.

The approximate bounds are within about 1 dB of the spectrum at the
center of the central lobe and within a fraction of a dB at the centers of the
minor lobes that occur at frequencies well above and below the central lobe.
The approximation is the least accurate at the edges of the central lobe,
where it may underestimate the 3pectrum by about 5-10 dB in a relatively
narrow trequency interval, as illustrated in the numerical exampl.s included

in Sections 3 and 5 of this report.
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ESD-TR~-81-100 Section 3

SECTION 3
DESCRIPTION OF PARAMETERS AND APPLICATION OF MODEL

The approximate bounds on the gpectrum of chirp pulses can be calculated
and plotted within a few minutes using the model described in this section. A

derivation of the model is presented in Section 4.

PULSE PARAMETERS USED IN THE MODEL

The following terms and their definitions specify the pulse parameters
used in calculating critical frequencies for the mcdel. Figure 1 shows the

pulse parameters, graphically.

fc = nominal carrier freguency, in Hz
P = peak power, in watts
T, = Ppulse width at base, in seconds

= rise time, in seconds defined as the time interval from O to

oy O
~

"

= fall time, in seconds. » 100% of the voltage amgplitude, as shown

in Figure 1.

In addition to those terms, one of the following is needed:

o]

= frequency deviation, in Hz
D = compression ratio

T, = compressed pulse width, in seconds.

When B is not given, it can be calculated using the relationship:

2 (1)
T

1
B = -
c b

When the pulse is not symmetrical (6r ¢ 65), it is also necessary to know

whether the deviation is positive or negative.
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EFFECT OF PARAMETERS ON SHAPE OF SPECTRWM

A brief discussion of the effect of the pulse parameters cn the behavior
of the spectrum will be helpful in understanding the model. The carrier
frequency of the RF pulse, fc, is assumed to be very large in comparison to
the total frequency deviation, B. For that condition, the shape of the
spectrum may be considered to be solely dependent on the shape of the envelope

of the pulse and on the magnitude and polarity of the frequency deviation.

Pulse Without Frequency Modulation (FM)

When there is no FM, the spectrum of a pulse is symmetrical, as shown in

Figure 2, regardless of whether the pulse shape is symmetrical.

{pT2

P = PEAK POWER OF PULSE

T= WIDTH OF PULSE AT HALF-
AMPLITUDE PQINT

ENERGY OENSITY IN JOULES/H2

'c
FREQUENCY

Figure 2. Bounds on spectrum of a trapezoidal pulse without FM.

TS SN L AR SREE WA | SNa BN e ey WMt R e e e W SUUED, 0y

s

AT L AT Yo Y g T peamenn o

e

P ]

v -

B <otk




ESD-TR=81-100 Section 3

Pulse with FM

FM reduces the peak of the spectrum; however, the bounds on the skirts of
the spectrum are essentially unaffected by the FM, as shown in Figqure 3. If

the pulse shape were symmetrical, the spectrum would be sSymmetrical about P

J- P‘T'z ;H1
\
]I\ _WITHOUT PM
N I \/
z \
N /
» \
§ [PTe% / \ | o~ WITH M
8 / \
Ny
5 o g —=d
&
Q
Yo
(G
@
W
2
w
fos fe FREQUENCY

Figure 3. Bounds on spectrum of chirp pulse when §, = §;.

If the pulse shape were asymmetrical, i.e., §_ # 8¢, the central portion

T
of the spectrum would be asymmetrical as indicated in Figure 4. The shape of
the spectrum will depend upon whether the deviation is negative or positive,
as indicated in the figure. The skirts of the spectrum. however, are
symmetrical about a frequency, f,+ which is displaced from £., the nominal
carrier frequency. The relationship between fo and fc is explained later in

this section.
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) R
i WITHOUT FM
., ("
Xz \
~ \
b \
3 1 ] WITH FM
\
8 \
= \
Z’ ~
% pt— B —=f
>
O
x
W
4
w
fo te FREQUENCY

Figure 4. Bounds on spectrum of chirp pulse when ér < 65 and
frequency deviation is positive. If the deviation were
negative, the bounds would be the mirror image with respect
to £ .

)

PROCEDURE FOR PLOTTING THE BOUNDS OF THE SPECTRUM

The chirp pulse considered in this report is LFM. When the frequency
deviation is relatively small so that 871 ¢ 2/, the bounds on the spectrum are
not influenced by the frequency modulation. For that condition the spectral
bounds can be obtained using the same procedures that are available for an
ordinary radar pulse, i.e., one that is not frequency modulated. It is very
unlikely that a chirp radar would be designed to have such a small amount of
frequency deviation; however, procedures are given here for plotting the

spectral bounds when 87 £ 2/n, as well as when Bt > 2/7.

1
i
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ESD-TR-81=100 Section 3

Calculation of Bounds on Ordinary Radar Emission Spectrum (Nonchirp or Chirp
when 81 < 2/w)

An ideal ordinary radar pulse has a rectangular waveform and a

(sin x/x)2 gpectrum as shown in Figure 5. As a practical matter, however, a

rectangular pulse is not attainable because the leading and trailing edges

will have a finite slope due to practical circuit limitations. Therefore,

radar pulses are assumed to be trapezoidal with the dimensions shown in Figure

6a. The spectrum takes the form shown by the solid curve in Figure: éb.

Assuming a more intricate pulse shape (such as a trapezoid with rounded
corners) in order to model an even more realistic radar pulse generally does
not yield much practical benefit. Rounding the corners of a trapezoidal
pulse, for example, has little or no significant effect on the bounds of the
spectrum except for frequencies far from the center of the gpectrum; at those
frequencies, the spurious emissions of‘a radar transmitter usually determine
the level cf the spectrum.

In EMC analyses it is appropriate, as well as convenient, to represent

the spectrum by a bound, such as the dotted curve in Figure 6b. It is common
practice to normalize the graph of the spectral density by dividing by the
peak value, PTZ, and expressing the ratio in decibels (dB). The normalized
graph, which is referred to as the relative spectral density, is applicable to
the energy-density and the power-density spectra as well as the envelobe of

the power spectrum, which is a line spectrum.

When a logarithmic scale is used for the abscissa (frequency) and a

decibel (dB) scale i3 used for the ordinate, the curves that constitute the

bounds in Figure 7a can be drawn as straight lines, as shown in Figure 7b.2
The frequency is referenced to the carrier frequency, fc' i.e,, Af = £ -~ fc.

To plot the spectrum bounds, the following steps are required.

2Mason, S.J., and Zimmermann, H.J., Electronic Circuits, Signals, and Systems,
John wWiley & Sons, Inc., 1960, p. 237.
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AMPLITUDE IN VOLTS
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Step 1 - Calculate the critical frequencies, Af, and Af3:

. 1
b, = = (2)
A, = —— (3)
w/té
where

1 1 |
- = - (z +<)
§ 2 6r Gf

T = pulse duration between half amplitude points, in seconds
§ = rise time, in seconds defined as the time interval from

8¢ = fall time, in seconds 0 to 100% of the voltage amplitude.

Note ~ A pulse that is not frequency mcdulated has a spectrum that is

symmetrical about the carrier frequency, f whether or not the pulse is

cl
symmetrical.

Step 2 - Un semilogarithmic paper, draw line 1 horizontally through 0 as.

Step 3 - Starting on line 1 at Af,, draw line 2 with a slope of
-20 dB/decade.

Step 4 - Starting on line 1 at 4f;, draw line 3 with a slope of
~40 dB/decade. The spectrum is bounded by lines 1, 2, and 3 of Figure 7b.

POV T

The peak energy density level, Py, corresponding to the 0-dB level in

1

Figure 7b, is obtained by:

FLRPY

Pd = PTZ joules/Hz (4)

where

A B I g SR

)

P = peak pulse power level, in watts

T . e
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Calculation of Bounds on Chirp (LFM) Spectrum (When Bt > 2/w)

When linear frequency modulation is applied to the pulsed carrier
frequency, the peak of the spectrum is reduced in amplitude from Pt to Pt/8
and the central lobe of the spectrum is broadened, as shown in Figure 3, but
the spectrum bounds further removed from the carrier frequency remain
essentially unaffected by the frequency modulation. The energy-density

spectrum of the chirp pulse is normalized by dividing by Pt/8.

If the pulse is a symmetrical trapeziod, the spectrum will be symmetrical
about the nominal carrier frequency., fc' as shown in Figure 3. If the pulse
shape is asymmetrical, the spectrum will be asymmetrical, as shown in Figure
4., The direction in which the spectrum is shifted will depend on whether the
deviation is negative o« positive, with respect to time. The spectrum
boundaries further removed from the carr}er frequency will be symmetrical

about a frequency, f which is displaced from fc' as shown below:

ol

B(S§_ - 46.)
r £

fo = fc +Q 2(8 + &) (3)
r £

where @ is defined in TABLE 1.

TABLE 1
VALUES ASSIGNED TO M, N, AND Q

Constants Positive Frequency Negative Frequency
Shift Shift
M 65 dr
6r 8¢
Y +1 -1

16
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The plots of the bounds on the chirp pulse spectrum are raeferenced to £o0
Af - £ - € (6)
o]

The procedure for plotting the bcunds on the chirp pulse when the product
Bt > 2/7 is illustrated in Figure 8 and entails the following steps. Several
numerical examples are presented in Section 5. Step 1 (A) is used when the
pulse is symmetrical, whereas Step | (B) is used when the pulse is

asymmetrical.

Step 1 (AR) - If the pulse is symmetrical (&, = 4.), calculate the critical
frequencies, Af,, of3, Af,,, 8f,_, Afp,, and Af,_ as:

1
12
of. = 4 <f3 \ (7)

Y )
(8)

()"

Af =

EN
o~

where {
1,1<l_+1_> :

8 2 6! 6f

8 8
8 v T 2 (b T r ) af,. = oL, (9) ;

; b
) ’
4 !
~') ) !
N af,, = 28f,, YR (10) !

The spectrum is symmetrical about fo' s0 the same plot can be used for

o

positive and negative values of 4f.

17
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RELATIVE ENERGY OENSITY IN dB
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a. When Afb < V/w§ .

8. Spectrum bounds for chirp radar pulse. (Page 1 of 2).
This figure depicts the bounds for positive values of Af
based on Equations 13 and 4. The bounds for negative
values of Af are plotted in a similar manner based on
Equations 15 and 16.
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Figure 8. (Page 2 of 2).
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Step 1 (B) - When the pulse is asymmetrical and 8t > 2/, critical

frequencies may be calculated using the equations:

V2

a'u

‘ Af 1 )
2 b)
Va
1 ]
Aty = 37 (T (

onf =~

)’

where

(1)

(12)

When the spectrum is asymmetrical, positive and negative halves must be

plotted separately because £, # £,

For positive Af:

M8 6r+ 6f
M e = T3 V-3
T £ b

2Afa+ (when 8 < V/7)

b+
MB 1 (when 88 > t/n)

6r * 6£ 1 - Z N
2(6t + Gf)

For negative Af:

-NB 6r + 6f
Afa- " T +8 v 2T
f b

20

as shown in BEquations 7, 8, 9,

and 10.

(13)

(14)

(15)
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20f,_ (when 86 < 1/w)
af,  ={ =K ! (when B8 > 1/7)
§ + 6 (16)
r £ 1= M
2 (Gr + Gf)

For the M and N values

SteE 2 - Draw line

SteE 3 - 1If Afb is
slope of =20 dB/decade

used here, see TABLE 1.

1 horizontally through 0 dB (see Figures 8a and 8b).

less than 1/(w§), use Figure 8a and draw line 2 with a
starting on line 1 at Af,.

If Af, is equal to or greater than 1/(n8), skip this step and use Figure

8o for the next step.

Steg 4 - Draw line

Af3 in Figure 8a or 8&b.

3 with a slope of -40 dB/decade starting on line 1 at

Step S - Locate point "a" or "a'" at 6 dB down from O 4B at Af, or Af,' in

Figure 8a or 8b, respectively.

Step 6 - Locate poirt "b" or “b'" at Afb' on line 2 in Figure 8a, or on

line 3 in Figure 8b, respectively.

Step 7 - Lraw line 4 or line 4' through points "a" and "b" in Figure 8a,

or through points "a'"

spectrum Bounds

and "b'" in Figure 8b.

For the situation where Afb ¢ 1/(n6), the spectrum is bounded by a curve

as described by lines 1, 4, 2, and 3 in Figure 8a.

If 8fy > V/(w8), the

21
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spectrum would be bounded by a curve, as described by lines 1, 4, and 3 in
Figure 8b.

The peak energy-density level, P4, corresponding to the 0 dB level in
Figure 8a or 8b is calculated as follows:

Pd = (Prb/e) joules/Hz (7

where

B = frequency deviation during pulse, in Hz
T, = Pulse width at the base of. the pulse, in seconds.

Sample Calculations of Radar Emission Spectrum Bounds

Example 1. Ordinary (nonchirp) trapezoidal pulse

T = 6x 10 %g
§ = 0.2x10%s

6£ = 0.35 x 10-6 s

Step 1 - Calculate critical frequencies A£2 and A£3 using Equations 2
and 3:

Afz - N—T-——_-6 = S53.1 kHz
(6 x 10 )
L [
§ 2 61‘ Gf 2 0.2 0.35 0.25 x 10-6 s
22
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L = ! = 259.9 kHz

1 - - T
a(t8) 2 n{(6 x 10 6) (0.25 x 10°%)172

Af3 =

Step 2 - Using Figure 9, draw line 1 horizontally through O dB on the
ordinate representing the peak energy-density level.

Step 3 - Startiag on line 1 at Af,, draw line 2 with a slope of
-20 dB/decade.

Step 4 - Starting on line 1 at Af,4, draw line 3 with a slope of
-40 dB/decade.

The spectrum bounds are described by lines 1, 2, and 3. To indicate the
accuracy of this approxinmation technique, portions of the energy-density

function are plotted in I"igure 9.

The peak energy-~dens’ .ty level corresponding to the 0 4B point is
calculated as follows:

Agsume: Peak power (P) = 1 x 108 watts
From Equation 4,
(p1?)

(1 x 10%) (6 x 107)2
= 3.6 x 107° joules/Hz.

Py

Example 2. Linear chirp pulse

To i1llustrate the procedure for determining the approximate bounds on the

spectrum of a typical chirp pulse, the following example is considered where
the pulse parameters are:

23
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1 x 108 Hz, positive deviation
102 x 107%s
- -6
Gf 1 x 107 s
101 x 10”%s.

Step - Determine if g > 2/(w7) and if the pulse is symmetrical.
2/(n7) = 0.0063 x 10%, which is less than 8,

s

r™ 6f and therefore the pulse is symmetrical.

Since the pulse meets these conditions, calculate of,, Af,, Af Af

as’

a=’

Afy .. and Af,

Step 1 (A):

1/6

At

Af
a+

Af

k Y

af

according to Step 1 (A).

0.032 x 106 Hz

1
-64] 72
[1 x 10%/(102 x 10 Gﬂ

>  (10%)s™!

Al-

1

1078

1

1076

+

V:(

V.
1 —6+]74 1
- l1 x 108/(102 x 10 6)] (v x 10%) 72 = 0.10 x 10° Kz
6 -6
10 10
- (- —< )= 0.50 x 108 Hz
102 x 10
6
~0f = -0.50 x 10° Hz
a+ )
6
2f = 1.0x 10 Hz
a+

25
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- -1.
Afb_ ZAfa_ = 0 x 10" Hz

Now, plot the gspectrum bounds as follows and as shown in Figure 10.
Step 2: Draw line 1 horizontally through 0 4B.

Step 3: 1s Af, > 1/(n6)?

6
1
1/(n8) = —?‘— = 0.32 x 105 Hz, which is less than 4f,. Therefore,

line 2 is not used in the approximation of the spectrum bounds. Procead to

Step 4.

Step 4: Starting on line 1 in Figure 10, at Af a Af,, draw line 3 with a
slope of -40 dB/decade,

Step 5: Locate point “a" 6 dB down at Af = Af, ..

Step 6: Since Afp, > 1/(wd§), for nhis example, locate point b at
o5 = Af), on line 3.

tep 7: Draw line 4 throuyh points a and b.
>zep ° 2 2

The approximate bounds of the spectrum are formed by the solid lines 1,
4, and 3 on Figure 10. Line 2 is not used in this particular example because
Afb > 1/(nf§). The pulse is symmetrical, therefore the spectrum is also
symmetrical and the plot can be usad for either positive or negative values of

Af.

The peak energy-density level corresponding to the 0 4B is calculated as

follows:
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Assume: peak power (P) = 1 x 106 watts

From Byuation 17:

Pyt be/B

- 6
= (1 x 106) (102 x 10 6)/1 x 10
-t
= 10.2 x 10 ° joules/Hz.
To indicate the accuracy attained in the above example, the spectral
power-density function, calculated using a double precisicn algorithm, also is
plotted in Figure 10 using the symbol "x" to designate representative points

on the energy-density function.
Additional numerical examples are given in Section S.

Fit of the Approximate Bounds to the Spectrum

The fit of the approximate bounds obtained with the method described
varies over the spectrum, and is best for values of Af greater than 38. At
about 4f = 38, the difference between the approximate boun” and the peaks of
the lobes in the gpectrum are less than 1 dB. As Af is increased further, the

difference rapidly aprroaches zero. In the region represented by line 1, the
difference usually is in the order of 1 dB.

The largest difference occurs in the raegicon represented by line 4 at
Point b. For long symmetrical pulses, the approximate bound here usually
underestirates the spectrum by less than 6 dB, but for asymmetrical pulses,
especially when T, is not much larger than either 6: or Gf, the approximate
difference may be as much as about 10 dB., Because line 4 is used to represent
only a small parct of the overall spectrum, this difference is acceptable for

most spectrum analyses.

28
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SECTION 4
DERIVATICN OF THE MODEL

This section and the appendixes present derivations of the formulas used
in procedures given in Section 3. Since all of the information required to
apply the procedures is given in Section 3, Section 4 can be skipped by the

reader who is not interested in the derivations.

APPROACH TO DEVELOPING THE MODEL

The equation of the spectrum of a chirp pulse involves Fresnel integrals
and thus is cumbersome to evaluate.3 By expressing the Freanel integral in
the form of an asymptotic expansion and using only the first few terms, a
simple expression was obtained that yields a very accurate approximation of
the spectral voltage-densgity function, except for frequencies within two
relatively narrow intervals, Q, to 02 and 03 to 04, as indicated in Figure 11.
The simple expression also yields an accurate approximation at the center of
each of those intervals, namely at points a_ and a_, s¢ that even within those
intervals a good estimate of the spectral voltage-density can be obtained.
Using the expression derived for the spectral voltage-density function,

formulas were derived for functions that bound the chirp spectrum.

DESCRIPTION OF THE CHIRP SIGNAL

The parameters that describe a LFM or chirp pulse are shown in Figure 12.
trapezoidal envelope is used because the skirts of the spectrum are very
sensititive to the slopes of the edges of the pulse. A rectangular envelcpe
is adequate if only the in-band region of the spectrum is of interest:
however, in electromagnetic compatibility analyses the skirts of the spectrum
are of primary concern. Therefore, the skirts must be represented
realisticalily.

——

3Cook, C.E., "Pulse Compression =-- Kay to More Efficient Radar Transmission,"
Proc. IRE, Vol. 48, March 1960, pp. 310-316.

29
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Figure 12. parameters describing a chirp pulse.
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The time waveform of the pulse can be expressed by (see Reference 2):

2

v(t) = A(t) cos [Zﬂ(fot + )-f‘,ﬁ )) (18)

wiere

fo is the reference frequency used here for a chirp pulse

(V(t = €)/8., t, <t <ty
v, t, <t <t
A(t) -W 2~ ’ (18a)
V(t4 - t)/Cf. 1:3 Lt
L0, ty <t <t
k = B/Tb (1)

The derivation will be made assuming that the deviation is positive,
i.e., the frequency is shifted upward during the pulse. The model developed
can also handle negative deviation using a procedure that is explained at the

end of this section.

As explained in APPENDIX H, the location of the origin of the chirp
signal on the time scale, relative to t,, ts etc., affaects the closeness of
the fit of the approximate bounds to the spectrum. Studying the appendix will
be more meaningful if the reader goes through this section first. The origin

of the signal is located so that:

€, = =T /(6 + &) (19)

t = t, +& (20)

[P,

 TUSROUNCI
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t, = t, - 3§ (21)

t, - Gf rb/(ér + Gf) (22)

With this time scale, the instantaneous frequency is equal to f, when

t = 0. Other time parameters used in the derivation are:

. o= (t, +1t,)/2 (23)
t, = (t3 + t4)/2 (24)
i
]
T = tf - tr (25)
!
26 ;
| . L t, -t (26) !
3 !
i
L]
; AR R A
1 § 2 6§ 5 -
: r 1 4

) (27) : i
|

Rl Faathe-4

VOLTAGE -DENSITY SPECTRUM

e

The basic expression for the voltage-density spectrum, V(f), is:

@ ~jenfe !
ViE) = [ wv(t)e dat (28)

—0

The spectrum for the time waveform described by Equation 18 is:

33
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v(£) F(f) + G(f) (29)

where

t 2
jem [kt /2 + (£ = £) t]
e ) dt

1 4
F(f) = '; [ A(e) (30)

t
1

2
-j2n (kt /2 + (£ + f) t]
o de

4
S/ A(t)e (31)

1
G(f) =
2 t

1
The spectrum F(f) is centered on +£°, and the spectrum G(f) on -f,.
Determining the energy-density spectrum, E(f), one of the steps in deriving
the model can be accomplished by using either F(f) or G(f), as explained in
APPENDIX A. 1In the derivation that follows F(f) 11l be used.

By performing the mathematical manipulations shown in APPENDIX B, F(Af)

can be expressed in the form:

2
v -jwAf k4
F(Af) = —— & L — x Zix ) - ¢(x )} (32)
4k i=t § i i i
i
where
Af = £ - £ (33)
o
&, = $; 6 = =6, 6y = -8 6y = 8¢ (34)
34
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X, =
Z(x ) =
i
O(xi) -

i =

Bquation 36 is called the complex Fresnel integral.

some asymptotic expansions that can be used to evaluate the integral.

Section 4

‘% €, - Y2/x Af (35)
Xy 2 Xy 2
é cos (wt /2) dt + 3 5 sin (wt /2) dt (36)
L. 2
3= (Vv =x)
-}e 2 1 (37)
1, 2, 3, 4

the asymptotic expansions, approximations that can be used in place of

Equation 32 were derived in APPENDIX D.

F(Af)

F(Af)

F(0)

F(Aft)

Flaf,)

ju/4
e Q, < bf < A, (38)
2 /x
Kt
i
jamt (—— - Af)
i 2
v 4 e
¥ - —— L , Af ¢ @ or Af > Q
2 iw 2 1 4
8N § (kt - Af) (39)
i i
142
3n(3)
S L (40)
2 /k
~ X F0) e
5 (41)
" l'p(o) 42
3 (42)

35
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where

86
z le_ (43)

1 6r + Gf 21b
§ § e
r T g
4 = - 3(3—;—3- - ?)* 2t (44)
r £ b b
. $ /
£ f 8
Q - B - — - femtmegmene. (45)
3 (Gr + 6f tb ) Zrb

8é e
£ g ' (46€)

Afr = ktt (47)
Aff a ktf (48)

Figure D=1 in APPENDIX D shows the frequency bands that are defined
by ﬂ1, ﬂz, 03, and ﬂ4. As explained in that appendix, the approximations that
yYield Bguations 38 and 39 are not valid when Ql < Af < nz or ﬂ3 < Af < 94.

BOUNDS ON THE VOLTAGE-DENSITY SFECTRUM

The furction |F(Af£)|, which describes the magnitude of the spectrum,
contains lobes, as shown in Figure 13. To simplify mathematical modeling, the
usual practice in making EMC analyses is to represent the spectrum with a set
of smooth curves that bound the spectrum. The functions used as the bound
should satisfy two requirements -~ simplicity of expression and production of

a close-fitting bound or a good approximation thereof.

36
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| Ftan |

=

1

Figure 13. The voltage-density spectrum [F(Af)| and its bound F(Af). _

B

The function that we will use as a bound on the spectrum is denoted by :
F(Af). By definition the bound should satisfy the condition: :
i

%

%

F(af) > |F(af)] (49) %

3

Expressions for F(Af), which has the general characteristics indicated

in Figqure 13, will be derived using Bgquations 38 through 42.

BOUNDS ON IN-BAND REGION OF SPECTRUM

[ ST S

For the interval between 92 and na, which we refer to as the in-band

region, Equation 38 will be used to describe F(Af). As indicated in Figure 13,

ATl e

37 ,
5‘
H
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the amplitude of the voltage-density spectrum is nearly constant in this

region:

\'4
[F(Af)| = —2'7_- Q, < of < A, (50)
k
It follows that:
- T
Fo) v = . T /R (51)
%

Near the lower end of this spectral region, where:

L€ = Af = Kkt (52)
r r

BPquation 41 is used to obtain:

F(AE) = 5;—9’- . L (53)
wx

Therafore, at 4f = kt,, F(Af) is approximately 6 dB dewn with respect to
F(0) when:

Af = Af, = Kt (54)

38
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Equation 42 is used to obtain:

F(ag,) = -F-;°—’ - (55)
'k

Thus at 4f = ktg, F(Af) is approximately 6 dB down with respect to
F(0).

BOUNDS ON THE SKIRTS OF THE SPECTRUM

When
86 '
B <R = - +‘6 - /;f (56)
r £ b
or
[
£ /4
M > 94 = T3 3 + 121 (57)
r £ b

the variable |x;| or |x4] > 1 and the voltage-density spectrum can be expressed
in the form of an asymptotic expansion, as explained in APPENDIX D. Although
it is not apparent at this point in the derivation, two frequencies critical

in determining the bounds are Af = x1/(nS5). Therefore, the asymptotic

expansion is expressed in two ways. When 1/n8 < 8 < |a£], it is convenient to

uge:

jamt (ke /2 - Af)
e 1 1

v 4
F(Af) = -— L (58)
2 1= 2
8r § (kt - Af)
1 1
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(59)

Sin né_ (kt_ - Af) ]
3 T

Sin ﬂéf (ktf - Af)

"6r (ktr - Af) ]

ESD-TR-81-100
where
61 - 6: 62 - -6r 63 - -Gf 64 = Gf
when 8 < |Af| < 1/(%n§) it is convenient to use:
Vej1r/2
F(Af) = ey
Jmkee? + 82/4) o T32ME AL
: (kt_ - Af)
r
; ejnk(t: + 82/4) P
(ktf - Af)

u&f (ktf - Af)

The derivations for these equations are given in APPENDIX E.

First we consider the case where B < 1/%§6 and then the case where

g8 > 1/u6.

For the Case When 8 < 1/%é

When 8 < 1/%§ the bound on the skirts of the spectrum is found by using

Equation 59, as explained in APPENDIX F.
when 8 < |Af]| < 1/né:

- Vv 1
F@f) »~ & (I(kt_r'-'&f)l + |

40

1 | (60)
(ktf ~ Af)

s - ¢ G B 4 e o P P o= e e ey g A RSPy
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When Af is slightly more negative than kt,:

t i |
4n (ktr - Af)

(61)

When Af is slightly more positive than ktf:

v

2
’4n (ktf - Af)l (62)
When -1/(ﬂ6r) < Af <« ktr:
(63)
F(Af) Yy
When ktf << Af < 1/(néf):
' (64)
> \'4
F(Af) = SnAf
When Af < -1/(ﬂ6r), or Af > 1/(n6f):
v (65)

F(AE) = —
26 (nAf)

The curves described by these equations are shown in Figure 14.

Critical Frequencies. The critical frequencies at which the above curves

intersect are as follows. Equating the curves given by Equations 5! and 64,

gives:

/e (66)

Af -

A}~
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Equating the curves in Equations 61 and 53 gives:

Af - —.z_s_si.— 1 - 6!. ’ 6f (57)
=20 (6r + Gf) th
Equating the curves in BEguations 62 and 64 gives:
286 §_ + 8
£ r £
Af N ————— 1 - (68)
T+20 (5r + 6f) Zrb
Bquating the curves in Bjuations 51 and 65 gives:
1 B yVa 131
Af3 - 5 (‘l‘_) 4 (3) 72 (69)
b
where
1 1 1 1
A (S L
5 77 &) (70)
r f

For the Case When 8 > 1/%6

When 8 > 1/n§, the bound on the skirts of the spectrum is found by using

BEquation 58. As explained in APPENDIX G, the results are as follows:

- |

Flag) » 5 - L —s :

' gt r | (kt, - Af) (kt, - BF) !

, (71) |

. L ' . ” l

> 3 - 2 2 !
, £ | (kty - af) (kt, =~ Af)

When Af is slightly more negative than kty:

—_ R

v ! (72)

2 2
8n Gr(kt1 ~ Af)

F(Af) =

43
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ESD~TR-81-100 4 Section 4

y

The approximation given by Equation 72 will be used when -
’
85_40 < Af < kty, where 40f_,, i8 given by Bquation ZG.( For- most chirp radar
pulses, the approximation causes an error of about 5-6¢dB at Af = Af 40
- .
which corresponds to point "b" in Pigure 10. Because this error exists over a

very small interval of frequency, it is acceptable for most EMC analyses.

Similarly, when kt, < Af < Af+40. where Af+4°:

F(Af) = —Y ! - (73)
8x° 8 (kt, - Af)
When Af << kt1 or Af >> kt4:
F(Af) = (e %—) - Y (74)
(214€) r O 28 (7A£)

The parameter § is defined by Eguation 27.
For the kinds of pulses used in most chirp radars, the approximation

given by Equation 74 is in error by about 6 dB when |Af| = B, and less than )
4B when [Af| > 38. Equating 51 and 74 yields:

. 1 (B4 (LA
af - (‘b) (5) (75)

Equating 72 and 74 yields:

8§
T 1
A£—40 = 6§ + 6§ (78]
r £ §
1= f ——f
2(6r + Gf,

'
i
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Equating 73 and 74 yields:

Bof . 1

+40 (6r + Gf) /——-g_
1 X

- YyrT————
2(6t + 6£)

Section 4

(77)

The curves described by these equations are shown in Fiqure 1S.

BOUNDS ON ENERGY-DENSITY SPECTRUM

Up to this point, the curves that approximate the bounds on the voltage-

density spectrum have been derived. Next, we want to approximate the bounds

on the single-sided energy-density spectrum E{(f). The relaticonship between

these two functions, which is derived in APPENDIX A, is:

E(f) s 2 iv<f;|2 - 2lF(f)12, £>0

(78)

Note that we have defined the energy-density spectrum as being single

sided, i.e,, it exists for positive frequencies only. This is in contrast to

the voltage-density spectrum, which existas for both negative and positive

frequencies.
\

4

Usiﬁg f, as the reference frequency and letting Af = £ = f,, we have:

v E(Af) = 2[V(AE) |2 = 2|F(A£)[2
The bounds of E(Af) are given by:

E(Af) = 2|F(Af)]2

45
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With this relationship, we can express the approximate bounds for the
various regions of the energy-density’ spectrum using Bquations S1 through

77, which describe the bounds on the voltage~dsnsity spectrum.
Starting with Bjuation 51 we get:
-~ - 2 2
E(0) = 2[F(0)] = Vv rb/(ZB) (81)

Assuming a 1-chm resistive load:

2 2
= v
P Vi/2 =2 Ve (82)

where

V is the peak instantaneous voltage, as indicated in Figure 12
Veps is the effective, or root-mean-square voltage

P is defined as the average power over one cycle while the envelope
of the pulge is at its maximum value, i.e., when t; < t ¢ tj- P is

referred to as the peak nower of the pulse.
Using Equations 81 and 82 gives the bounds at 4f = O:
E(0) = Prb/a joules/Hz (83)

RELATIVE ENER3Y DENSITY N

For convenience, the bounds on the energy-density spectrum are ncrmalized
to the peak value and expressed in decibels. The normalized function, which
is denoted by €(Af) ana is referred to as the relative suergy-density

gpectrum, '8 obtained by-

C(Af) = 10 log(E(A£)/E(0)] = 20 log(F(Af}/F(0)] (84)

47
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The various equations used to obtain e¢(Af) are shown in Figures 16 and

17. A logarithmic scale is used for the abscissa and a dB scale is used for

the ordinate so that the functions can be plotted as strajight lines.

As indicated in these figures, the bounds on the relative energy-density

spactrum in the vicinity of the -6 dB points are labeled a_ and a, in the

figuras, and are more closely approximated by straight lines drawn through

pointa a_ and b_ and through points a, and b,. Curves B and C in Figures 16

and 17 were useful for locating points b_ and b,.

!
i In the model described in Sectien 3:

8f_,o when 86 > 1/
Afb_ - (85)
Af when B8 < 1/7
{ |~ =20
Af+40 when 8 § > 1/x
e Af . when 8 6§ < 1 ®e)
| 0F 5o When < /7

METHOD FOR HANDLING NEGATIVE DEVIATION

As explained in the discussion associated with BEquation 18b, defining k.,

the derivation assumes a positive frequency deviation during the pulse

Y (frequency is shifted upward). With this condition the rise time tends to

have the greatest influance on the negative region of the spectrum, and the

fall time, on the positive region.
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ESD-TR-81-100 Section 4

The labeled curves and lines correspond toc the curves shown in Figure 14.
The relative amplitude is found by:

Line A, 20 log ({F(0)/F(0)] = 0O 4B

Line through points a_ and b_, is a better.bound than Curve B. Point a_

is located 6 dB down at Af,_ = kt. (see Bjuations 52 and 53) and point b_
is located on line D at Afb_ = Af-zo (see Equation 74).

line through points a+ and b+, is a better bound than Curve C. FPFoint a+

is located 6 dB down at Af, = ktg (see Equations 54 and $S) and point b+
is located on line D at Af,, = Af _,, (see Bquation 75).

Line D, found by using .)guations 63, 78, 82, and 83, is:

10 log L4 3 Pg = 10 log ——E—-—z-
(nAf) b Tb(wAf)

Line E, found by using Equations 64, 78, 82, and 83, is:

0 tog [—E—
rb(wAf)

Line F, found by using Equations 65, 78, 82, and 83, is:

10 log [——2—0 . 2] o 10109 £
§° (=Af) b rbG (nAf)

Figure 16. (Page 2 of 2).
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ESD-TR-81-1CN Section 4

The labeled curves and lines correspond to the curves shown in Figure 15. The

relative amplitude is found by:
10 log (E(f)/E(0)) = 20 log (F(£)/F(0Q))
Line A is: 20 log [P(O)/F(Q)] = 0 dgB

Line through points a_ and b_, is a better bound than curve B. Point a_

is 6 4B down at Afa_ = kt, (see Bgjuations 52 and S53) and point b_ is
located on line D at Afb__ = Af_ 4o (see Equation T1).

Line through points a, and b,, is a better bound than Curve C. Point a,

is 6 dB down at A£a+ - ktf (see Equations 54 and 55) and point b, is
located on line D at Af,, = Af ., (see Bjuation 72).

Line D, found using Equations 69, 78, 82, and 83, is:

10 log[ 4 L. 10 log { 8 ]

2 4 Pt rbdz (wAf)‘

§7 (nAf) b
Figure 17, (Page 2 of 2).
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When the deviation is negative:

k = -B/T, | (87)

and the roles of §,. and 6; are interchanged; consequently, kt, and kt, are
positive, and kt, and kt, are negative. In the model described in Section 3,
the parameters Q, M, and M given in TABLE 1 enable the model to accommodate

either positive or negative frequency deviation.

DISPLACEMENT BETWEEN fo AND fc

Two key frequencies included among the parameters describing the chirp

pulse are fo and fc' as shown in Figure 12.

f, = the instantaneous frequency at t = 0, the asymptotic frequency
of the skirts of the speactrum.

fc = the instantaneous frequency that corresponds to the midpoint

of the base of the pulse; the nominal center frequency.

When §,. = &g, £, = f,, but when §. ¥ 6, f, and f_ are displaced from one

another. Since £° is not a given parameter it must be calculated.

When the deviation is positive:

B(6_ - &)
r 4

fo = fc+5-(-6——:—6—)- (88)
r f

When tha deviation is negative:

B (8_ = 6.)
r £

f<> = £c-—————-—2(6 T30 (89)
r b4
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Bquations 88 and 89 are derived in APPENDIX I.

Consider the following example. Given:

B = 1 MHz, positive deviation

LY
"

1100 MHz

Calculate £, using BEquation 88:

1 () = 1)
2 (1 + 1)

£ = 1100 +
o
= (1100 - .47) MHz
Using £, as <he reference:

Af = .41 MHz
C

Saction 4

A plot of the bounds on the spectrum of this example would have the

characteristics shown in Figure 18. Two numerical examples of asymmetrical

pulses are also included in Section 5.
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Figure 18. Relaticnship between £ and £, for the
example on the preceding page.
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SECTION 5

NUMERICAL EXAMPLES OF THE

BOUNDS ON CHIRP SPECTRA

To aid the reader in applying the procedures for plotting the spectral
bounds on chirp pulses, seven numerical examples are presented here. The
given parameter values that describe the chirp waveforms and calculated
parameter values that are used in plotting the spectral bounds are listed in
TABLE 2, The resulting graphs, which are shown in Figures 19 through 25,

illustrate the effect of the pulse parameters on the overall shape of the
spectrunm.

In Examples 1 through 5, the pulse shapes are symmetrical, i.e.,

8§, = 8¢« For that condition, the spectrum and its bounds are symmetrical
about the carrier trequency, fc’ so that fo = fc.

In Examples 6 and 7, the pulses are asymmetrical. Plots of the bounds
for these two examples are shown in Figures 24 and 25. The bounds for exampla
7 are also plotted in Figures 26 and 27, which have linear frequency scales.
Each of these two figures includes a graph of the energy-density function
(solid line) as well as the bounds (dashed line) to show how well the bounds
it the spectral-density function and to better show the effects of pulse
asymmetry. £Each graph shows the relative spectr~! density as a function of
the variable Af (scale along the bottom of the graph) and as a function of the
variable Af . (scale along the too of the graph)

where
Af = f - f
Af s £ -~ f

£ = frequency of interest
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fc = carrier frequency of the chirp pulse

fo a the frequency about which the lower skirts of the spectral bounds

are symmetrical.,

The relationship betwaen fo and fc is illustrated graphically in Figure

12. The offget, fo - fc' is given by Bguation S.

As illustrated in Figures 26 and 27, that part of the spectral bounds
between point a_ and a, igs nearly symmetrical about fc; whereas, the bounds to
the left of point b_ and to the right of point b, are symmetrical about fo.

The relative energy density function, e€(Af), in Flgure 26 appears as a

smooth curve. Actually, there are minor ripples with an amplitude of about

$1 dB and with 2 period of 1/Ty.
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APPENDIX A
TREATMENT OF NEGATIVE FREQUENCIES

(Bjuations in this appendix that already appeared in the body of the
report will be identified by their original numbers.)

The voltage-density spectrum of a linear FM trapezoidal pulse may be
expressed in the form:

vin = [T v(t) eI 4
where
v(t) = A(t) cos [2m(f t + kt2/2)}
A(t) = amplitude of trapezoidal pulse in the interval t'.1 to tq.

Using Euler's formulas:

eJy = Ccos y + j siny

e.JY = cosy -3 8siny

we obtain the formulas:

ty . 2 -
P(£) _15 It A(L) e321! (ktc/2 + (fo f)t]) dt (30)
1
1 tu 428 (xt/2 + (£_+f)t)
G(f) = 3 ftl A(t) @ ) at (31)

v(f) = F(f) + G(£).

Thus the voltage-density spectrum consis.s or the wsu: of two sapectra: F(f),

which is centered on +f, and G(f), which is centered on -fo. The following
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analysis will show that |G(f)| iz approximately 20 dB less than |F(f)]| in the
region £,/2 < £ < 2f, and |F(f)| is approximately 20 4B less than {G(f)]| in
the region -2f° < £ < —fo/2. Based on these inequalities, we state that:

[vi£)]| =]c(er], A < £ < ~£,/2 (A-1)
Ivie)| ~|r(e)|, £,72 < £ < 2¢, (A=2)

These relations permit the bounds on V(f) in the region f_ /2 < f < 2 £,
to be determined only by considering the bounds on |F(f)| in that region.

To justify the statement concerning the relations b..tween |F(f)| and

|6(£)], consider the expression for the positive part of the spectrum centered

on +f, of a symmetrical trapezcidal RF pulse having no FM as:

F(OAf) =

[ sin ntAf sin wéAf
7 |

ntAf ‘ “nd46f

where T is the mean pulse length and § is the rise and fall time of the pulse

and 4f = £ - f,. For £ = £,/2, we have:

P(£_/2)
S(£_/2)

or |G(£,/2)| is about 20 dB less thar |F(f,/2)|. For £ = 2f,, we have

\
Fea ) | N .
G(2f ) ' f

(o]

[+

or |G(2£,)]| is about 20 4B less than |F(2£,)
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These relations also apply to an asymmetrical trapezoidal RF pulse having
FM, as can be demons*rated by considering the bounds on the skirts of the
spectrum as expressed by Equations 74 and 65 in APPENDIX G and APPENDIX F,
respectively. Equations 30 and 31 can be rewritten to show that:

F(£) = GY(-f) (A=3)
Thus:

|F(£)]|2 = |G(-£)]2 (A=4)
Using Equations A-1, A-2, and A-4, we have:

|vig) |2 » [V(-£)|2, when £ /2 < |£] < 26, (R=5)

Thus, the energy density at f is equal to the energy density at ~f, Next, we

will uge Sakrison's interpretation of energy dens:Lt:y.4
The energy-density spectrum of the chirp pulse can be expressed as:
[V(+€) ]2 + |v(-£)]|2 =~ 2 |P(£)}2 (A=6)
Using this approximation in determining the bounds on the energy-density

spectrum causes an error of approximately 1% for the spectral region

fo/z < £ < Zfo, since:

5;_2' GZ‘ G2_1
v F+G 9G+G 100

4Sakrison, D.J., Communication Theory: Transmission of Waveforms and Digital
Information, John Wiley and Sons, Inc., New York, NY, 1968, p.48.
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To justify Bjuation A-6, consider applying v(t}, the chirp signal, to the

input of an ideal bandpass filter which has passbands centered at f = & f,. and

each has a bandpass of AHz, as shown in Figure A-1, If the bandwidth, 4, is

so small that V(f) is approximately constant in the interval |f & £ | < 4a/2,
the Fourier transform of the output, y(t), is:

V(+f ), when If-frl < 8/2
Y(f) = V(~fr), |f+£r[ < 472 (A-7)
q, elsewhere .

If the output, y(t), is the voltage across a 1-ohm rasistive load, the

energy dissipated in the resistor is:

STLovRe) ar = [ Jve)|? at (A-8)

s & |V(E )2 + |v(-£ ]2
r r
By using Bjuations A-1, A-2, and A-4, the above yields:

)

y2(e) ar =~ 8 [R(E )2 « [G(-£0]2 ~ 28 |F(z ]2 (A~9)
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Appendix A

[ 4
w
w
(7]
<
g 2 - A -9 —e A
-Q
z 5
-3
T
@ . -
-t (o] +f,
FREQUENCY
Fiqure A-V. Band-pass filter used by Sakrison to interpret

Thus,

[vi+€) |2 + |V(-£)]2 =~ 2 |F(£)|?

LB L g G ¢ 57 M @ £

——

the energy~density spectrum (see Reference 4).

the energy-density spectrum of the chirp pulse can be expressed as:

e s e it A . i —— -

73/74

(A-6)
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APPENDIX B

DERIVATION OF THE VOLTAGE-DENSITY
FUNCTION (EQUATION 30)

(Equatione in this appendix that have already appeared in the body of the
report will be identified by their original numbers.)

Starting with Equation 30:

ty ; 2 -
F(£) = 1,2 ftl A(t) e 3 2T [kt /2 + (£ -Bre]

we will proceed to derive the solution to this integral. Using Equation

18a, the equation above becomes, by referring to Figure H-1:

F(f) = PF(f) + F(f) + F(f) (B=1)
1, 3 3
where

t2 V(t-ty) . 2 g l

{5 = vz ——— 2T [kt 72+ (E 0] (B-2a)

! r
£3 - 2 ;

T e,zn[ Ke2/2 + (£ f)t] at (B-20)
ty Vite-t) 2 -

g5 = 172 [ ——— e°" [kt /2 + (£ f)t]dt (8-2¢)

(3 ts Gf

Using Rererence 4, several general! relationships will -e used to evaluate
these integrals:

o jan{ke?2 (£ -f)t] N 1 iwiE_~£)2/k
e ¢ 1 o lar = g om0 [

2(x,) - Z(xa)]
(B-3)

a

Derivation of B-3 using forwmula 7.438° where a = nk,

2b = Zw(fo-f), and ¢ = 0, follows:

5National Bureau of Standards, Handbook of Mathematical Functions wWith
Formula~, Graphs, and Mathematical Tables, Naticnal Bureau of Standards
Applied Mathematics Series, June 1964, Equations 7., 9.38 = 7. 4.41.
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t

. 2 _
}."b eI?" ‘kt /2 + (g f)‘l at = ]tb cos 2% [xt2/2 + (f -f)cl at +
t a o
a £
b 2
+3 ft sin 2% [kt S+ (fo-f)t] at
a
t x2(f -f)z
{ P cos 2n [ktz/?. + (f -f)t‘ ac = 7%-(- cos — ¢ T2 (kt 4w (£ _-)
’, ° E et °
n2(f -6 /7 €,
+ sin — s|——= (nkt + ¥ (fo—f)
/kw? t,
n(f -£)2 x(f -£)? €t
1 O O D
= 73R 1% T Tk C (y) + sin — s (x)
ta
w(f -£)2 x(f -£)2
-rcos——_—C(x)+sin—-—T—‘S(xb
w(f ~£)2 n(f -£)2 !
- cos —-—?—k-———- C (x,) - sin —5— ‘Xa’\
2 2
t - -
P i |5 e, ~orefae = 3 et 1-—-———'-”f°f)s( )
Jésxnnz ° t = 3 yepices % xb)-sn Y Xp
a
ne -£)2 nif -£)2
- cos ——-T-"S(x ) + 8in —— Six, )
Therefore:
2 » 612
tb ]211[5—;- + (fo- f)t] . 3'(50 £
’ - } - 7 -
T e dt = o= @ x (z(x,) (x,)) {B=3)
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where

X n Xt + 72K (f -f)
i i o

z(xi) = C(xi) +3 S(xi)
which is the complex form of the Fresnel integral.

Integrating by parts gives:

t .
P Qi et2/2 + (£ ~E)ly

a

2
~Jr (1 - x&r/2
1 e b
tb Z(Xb) - m{xb z(xb) -7 ]

<3 (1 -xi)/z ” (B~4)

2
ﬁe-jﬂ(fo -£)° {

1 -
-, 2{x,) +m[xa 2 )+
Derivation of B-4.

The left side of B-4 may be rewritten with the aid of Euler's formla as:

t té t 2

ok
R L LA VT {b t cos 2n[’—‘—§- + (£ -£)tide
a

t
2
+3 {b t sin 21![k-—'—; + (to -f)t] dt.
a

Integrating each term, on the rignt side, by parts and applying formila 7.438

of Reference 5, We ohtain:

. m(E ~£)? L +£)2 6t n(E ~£)¢ ctx)
- {cos -———‘-‘—————C(x) + 8in —_— S(x)é -{ cos X dx
a a
£, LECRE S LI e n(E -f)7 n(f_ -£)°2 t
-é 3in ——T—&dx *%ﬁ [cos—'—']-(‘——S(x) - 9in Cix)}
a a
77
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' tb n (fo
-j { cos
a

k

Appendix B

-£)2 (£, ~£)?

-%()dx+jzbsin X -Cpf()dx
a

n(E «£)2 x(f_ -£)2 LIE -£)2

C(xb) + tb sin

nif -£)2 n(f -£)? a(f -£)2

o

S(xa) + jtb cos —— — S(xb) -jtb sin * C(xb)

n(f  -£)? ne -£)2

-jt cos
ja

- COo8

cos

o
j [of )
S(xa) + ]tasin m ()(a

n(f_ -£)2
o]

Sy cos X
Xp 7 ¥ w7 oK

con o .2
Xa C(xa) % sin 3 X%,

n(f_ -£)2
o
- gin X

n(f_ -f)
[]

= wr oK

2 r.2
S(xb) n(fo -£)° cos T X%
Xp TI- T sin K v 3

2 X2
Xq S(xa) w(fo -f) > Xa

+ gin X

(e -£)?
o]

-j cos %

T ¢ sin T cof R

3
S(xb) w(fo -£)¢ cos 2 xzb

.xb-m-jcoa K e 3

x2
nig -£)? S(x,) nie_ -£)2 cos 7 x4

o
+ ) cos — Y

o
Xa 7% ° j cos X T e

2 / €12 sin = x2
‘l(fo -f) C(xb) n,fo - sin 3 xy

+jsin———k —"y,bjr-jsin " TR
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-£32 -£12 LA
w(fo £) Clx.) n(fo £)¢ cos 7 X3

L a
-~ j sin m xa—m-bjsin % >

These terms correspond term~for-term with the expression of the right side of

B-4 when expandged in similar type terms.

Using Equations B-3 and B-4:
- £12
) Ve j'n(fo £)c/k

X

, % LRI RV,
ér(tz S5 7'32‘)2("2) T WK

X o -iT( = xH/2

MCIERNEE LRS-

+ [Z(x3) - Z(xz)l

[TV R

~jn () - x%)/z

+l-(-t + ¢t +x4 )Z( ) - =
3 a TR TTVXR) XY T

£

-in(1 - x3)/2

-(-t+!- +X3\z( ) + =5 (B~5) :
37 7 TYTE) TS Y RTE :

Dberivation 3f B-5 follows.

T NERAE erwmnise ol ees s

The expansion of B~1 by B-2a, B-2b, B~2c, B=3 and B-4 yields:

- -r)2 _imi] - o2 ;
rigy = Ve InE, “ENT/K G eg Elxp)  Xp 2(x)) , e A A o
27X 5 8 7X 2.4 5,

: -3 - x2
; ) t, Z(x1) . X, Z()(‘) e jw (1 x1)/2 i t, Z(xz) . .
3 5 /X X3 3 :
r r r - j

T

e o

—\i_
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t, 2(x,) t, 2(x,) t, z(x,)
1 1 4 4 4 3
+ 3 + Z(xa) - Z(xz) + 3 - s -
r £ £

- - y2
t, z(x4) X4 z(x4) e in (1 x‘)/2 AN Z(xa)

- + - + -
65 6£75f WXk . 5£ Gf

- - y2
A X3 Z(x3) . e pLEQ! x3)/2
Gt.v'ﬁ Gfﬂz

Thic expansion corresponds term-for-term wich the right side of 8-5 when

it is expanded in similar type terms.
Derivation of 32 from B-S

From B~S5, we have:

Xy Z(xz) 0(x2)

2 TRt S _Vx

F(f) =

- - 2
Y o e~ 02k [

Xy Z(X1) 0(x]) X4 z(x4)
M T S S Ll S L e

°(X4) Xy Z(XB) 0(x3)
L Zxy) - 5, 7% "627&

V_ -im(E_ -£)2/k
4k. o

Se Sy

X, 2(x,) ®(x))
F() = ! U L

Xy Z(xz) 0(x2) X3 Z(x3)

- + -
tsr 6: 6!
0(x3) X4 Z(x4) 0(x4)
e 3 -3 (32)
£ b4 14
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APPENDIX C
EXPRESSING THE COMPLEX FRESNEL INTEGRAL AS AN ASYMPTOTIC EXPANSION

(Equations in this appendix that have already appeared in the body cf the
report will be identified by their original numbers.)

The integral in Equation 36:
X X
z(xi) = gi cos (nt/2z) dt + 3 gi sin (mt2/2) 4t (C=1)

is reierred to as the complex Fresnel inteqral. The vector, Z(y) , generates

Cornu's spiral, shown in Figure C-1, where Y is varied as tne independent

variable.

Reference S glves several types of expansions that can be used to
evaluate the Fresnel integral. Using (7.3.9) and (7.3.10) of Reference 5, the

integral can be axpressed as:

in/4 - - W2 2
; x) = L s £0x) eI T XT2 L gy I ™2 (C=2)
where
-1, X < 0
g = (C=3)
*1, x>0
1 « 3 sealdm -1)
] £(x) ~——{1 +§ } (C-4)
; m= ("x2)2m
1 : .| Y
i 1 (=1) 1 « 3 «.a (4m + 1) -
g(x} TX m-O 2,2m + 1 (€-5)

{(nx*)

Using the above relationships, the functions within the brackets in

Equatinn 32 can be written in the fomm:

81
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T

4
(xiZ(xi) - @(xi)l =y vy e

- layg 9ty 3

where

.=
1 1z 0 - xg)
@(xi) - —ne

An approximation of C-6, when
summation in C-4 and including only
obtain:

Appendix C
“4n(1 - x2)/2
+ lmyy E(x) -1 3 :
2 (C-6)
o IME/2
(37)

Ixi] > 1, may be obtained by deletinj the
the first term in summation of C-5 to

iy
jaxs/2
2™ (Ce7)

(xi () - Q(x‘)] ~ ol

(nxi)z

When Ixil > 1, the approximation expressed by the right side of (C-7) is in

errcor by less than 0.05 dB when compared with the left side.

This is evident

by computing the numerical values of thage quantities for lxil = } with the

aid of the tables in Reference 5.

The rasults of such a computation are 0.636

and 0.639, respectively, thereby yielding:

0. 639

20 log o6} ~ 0. 041 dB.
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APPENDIX D
APPROXIMATIONS OF F{Af) AND E(Af) USING ASYMPTOTIC EXPANSIONS

(Bguations in this appendix that have already appeared in the body of
this report will be identified by their original numbers.)

The voltage-density spectrum F{(Af) for a trapezoidal chirp pulse is giver
by Equation 32 as:
) 2
\'4 -jnAf A&k 4

;
F(Af) = —e I — Z(x ) - & (x,) (0-1)
ak =y [xi X X3 ]

1

A simpler expression is desired so that we can obtain some insight into the
behavior of F(Af). When the approximation given by C-7 is applied to
Equation D=1, F(Af) can be expressed by:

jv/4 . 2
v -jmag2sx 4 4 Xy vy © RALIRE
FIAf) =~ z;~e 121 E- - > (D=2}
i /2 (my; )
when |x|; > 1, and
-1, < 0
x5
u =
i
1, >0
X, 2
K = B 6 = 6,6 26,6, =-6.,6 =38
'rb' 1 r’ T2 r’ 3 £ 4 f

A = £-f, x = ‘&t - (T/k ot

Figure D=1 depicts graphs of Xj a9 a function of Af for i = 1, 2, 3, and 4.
When Af is in the shaded interval between R, and ©,, |x;| and/or |x,| are less
than unity, and when 4f is in the shaded interval bewteen I3 and Q,, |X31
and/or |x4] are less than unity; thus, in these two intervals, BEquation D-2,

which depends upon the approximation givarn by Equation C-7, is not valid.
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By referring to Figure D-1, Ry is determined by noting that for {i; the

value of x1 = +1. Likewise, 5, 13, and 14 are defined for x; = -1,

x3 = +1, and x4 = -1, respectively. Based on these conditions, we have:

8 &
Q. = - r_ /-8 (D-3a)

1 Gr + 6f 21b
6: 0-r: / B8
N, = f | = - — ]+ — {D-3b)
2 § +4 T 2t
r £ b b
§ $ .
f f /
iy =8l -5 ) Tm (b=3c)
r £ b b
8s
1] = 4 + v £ . (0-34d)
4 § +§ 2t
r £ b
From Byjuations 19, 20, and 35 we see that when x; and x3 are of the same
sign:
X1 = X —_
— - -V , Af <Q1 or Af >92 {D-4a)
r
Likewise, when X3 and x4 are of the same sign:
X4 - X3 —_
—_— = /& , Af < f1_ or Af > Q (D-4b)
Gf 3 4

The approximation given by Bquation D-2 with the aid of Equation D~4a and
D-4b can be axpressed as:

87
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v -ijfz/k jn/4
F(Af) » — e ar'ke - y_ (Af) - y_ (AF) (D-5)
& r f
where
Af < 31
a = Or
Af > Qu
a = 2, Qz < Af < 93
.2 .
e TX,/2 e)"x§/2
Yy (Af) = ————— - ——— (D=-Sa)
t (ry, ) (ny.) 2
X X2
Iz amdye
Y (Af) = - (D~5b)
£ (g, 2 (axa) 2
X4 X3
The approximation in Bguation D-5 is obtained by noting that Equation
D=2, with the aid of BEquationa D-4a and D-4bh, can be expressed as:

2 2
X9 T X%, LI &Iy /2 I,/

?
6r 'z (wxz)2 (‘Nxz)2

2
F(AE) & %; o TITMAL /K

2 2
FOLY OV | § SVE

1/ X% T X33\ jnsa
) - T3 I
£ 2 (nx o) (*x4) ;
t
(D=5¢) |

when Af < Q; or Af > Qe

|
let u; = Uy = u;, when x; and y; are of the same sign. i,
If )y and Xy are both positive, then gy = Y. !

a8
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If X, and Xy are both negative, then U, = -1
Likewise, let uy = U, = Uy, when x4 and X4 Are of the same sign.
1f X3 and Xq are both positive, then Uy = 1o
If X3 and Xq ATS both negative, then gy = -1,

Afz

A L - T oiT/4 _ -
F(A£) o ° X [(u:44 u, ) Yk e Yr(Af) Ye (Af)]

AN L ® &J7/4 _ - -5
F(Af) % ° k [a. ’k e Yr(Af) Yf(Af)] (5=5)

ForAf(Q1,u-1-‘I~0
Af)ﬂq,a--l+1-0

Q. < Af <0, a= +1 + 1 = 2
2 3
For the in-band region of the spectrum where Qz < Af < QB' the term

IYr(Af) + Yf(Af)l may be neglected since:

|Yr(Af) + 00 <« 27k (D=~6)

LR T RN T

b ol A RURT L SN

by noting that from APPENDIX C, Ixil > 1 and from BEquations D-5a and D-5b let

6: ~ Gf ~§, |x1l ~ |x2| - |x3| ~ |x4| » x in the denominators of Equations D=

Sa and D-Sp and hrl - |y Then:

. 2
lyr(Af) + v 80 ] < Jy (AB)] + by o) < 2 3

2rET

t— b -

fl‘

R L TN

89
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Since x, ~ x, = =6 Y2, then :

2
2 n
[y (88) v v a0 << |52 [-2— (X, = X, zx]
"8 x
2.6 /X ¥2 /k
<< wa » —-‘“—l-x—r‘< 27k

Thus, |y (8£) + v (8f)] << >k for 2 < Af <,

2

With the aid of inequality in Equation D=6, D-5 can be expressed for the in-

band region of the spectrum as:

Flaf) » —— "4 g

< At < Q: (D=7)
2’k

2

Thus, the amplitude of the spectrum at Af = 0 is:
|F(0)]| » —— = ‘-;-,/-82 (D-8)
27k

From Equation D-5, the expression for F(4f) for the out-of-band region of the

spectrum is given by:

. 2
ALY 3 .
F(AE) ~ - = o lvt(u) + Yf(Af)J (D-9)
Af < Q'
Af > 94
2 2/2
inx
v -9%Af 4 1 e i
or F(Af) #« = — @ J /% L —
im1 § 2
i (my )}
i

T T VR —— e =

o JE
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2 2 2
jn/2 {2kt - 4Af t + —Af ]
v jAf2/k 4 x ! tox
-i% e
F(Af) » =« — ¢ L —_
& i= 2 2
i 2n (kt - Af)
kt i
i
j2ne |\ —— <« Af
i 2
v 4 1 e
F(Af) ® = =~ T — (D~10)
2 i=1 6 2
an i (kt - Af)
i
for Af < 91
Af > 04

1 . .
when Af = Aff -3 QS + 94 i.e., when Af is midway between Q3 and 04.

86f Béf
Af = Aff e T (D-11)
T b

Based upon the definition of Xy and Bgquation D-11, we have:
X3 = =Xqs O0Ff = Af {(D=12)
and from the definitions of Z(xi) and O(xi) we have:
Xq 2(x) - 0()(4), - [x3 2xy) =~ dlx,)] = 0 (D=13)
in which case Equation D-1 yields:

91
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M % ! (x ) ~8%{x ) (D=14)
— e — z -4 -
a i=1 6‘ X5 ,xx

Using the same procedure for obtaining BEquation D=5, the above result can

be expresged as:

. 2
-jnlf .
v £ /k [ s LYZ I -
F(AE,) * ° /k e Y (Af ) (D-15)
Since:
Iy (a8)] << 7k
2
jﬂ(l_Aff ) (D-16)
rag,) - L VT
ey
and then
IF(Aff)l . = (D=17)
ar'x

From Equations D=8 and D-17 we have:

F(At!)
F(0)

- .‘2.. (D=18)

1
In a similar manner, it can be shown that when Af = A:r =3 (n1 + 92),
i.e., whean Af is midway between 91 and 02, X, ® X, 80 that:

1 Afl‘z
IR (= - =)
P(aL ) = o 4 x (D-19}
r a'x

92
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. and
| F(AE )
! r 1 .
: —_— . = D-
: F(0) 2 (p-20)
i.
|
l From Bquations D-7, D-8, D=9, D=1 8, and D-20 the relative energy density,
: defined by:
1
'&
I 2
g E(Af) = i—:‘%{—’-\ (D-21)
i.
|
! is expressed by:
oo
> |
= D- i
L kl E(Af) 1, QZ < Af < Af3 (D-22) ;
‘- Kt ?
% Lan
! '2"t — -
! i\ (P :
k 4 Q .
E(Af) = L (D~23) : !
4 i=i 2 2 H
" 16w § (xt -4t i '
i i 1
3 [
for Af < Y] N I
1 1 V
* {
T
Af > 94 _ '
Then: . |
E(4f ) = = (0-24) o
r 4 §
{
. i
|
E(Af,) = - (D-25) ’
£ 4 {
|
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A tabulation identifying the approximating equations for E(4£f) is given by:

Ragion of Af Applicable BEquations
91 < Af < 92 (D-22)
Af < Q‘ or 46f > 94 (D=~23)
Af. = L@ +Q) (D-24)
r 2 1 2
AE, = T (B + Q) (D-25)

An example of an application of the approximations derived in this
appendix is shown in Figure D=-2. The points on the graph are values of E(Af)
accurately calculated by evaluating the integrals in Bguations B-2a, B-2b, and
B-2c with the aid of a computer algorithm involving double precision. The
solid curves were obtained by applying the approximations derived in this
appendix. Curve 1 was cbtained using Equation D-22 with the results expressed
in 48. Curve 2 was obtained using Bquation D=23, Curve 3 was obtained by

plotting:

Y:(At) + Yt(ﬁf)

20 log e '

and clearly depictas the inequality in Equation D-6., Point 4 was obtained
using Equation D-25, expressed in dB.

94
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APPENDIX E
F(Af) FOR SKIRTS OF SPECTRUM (DERIVATION OF EQUATION 59)

(Equations in this appendix that have already appeared in the body of the
report will be identified by their original numbers.)

|
i
‘.
‘\ Starting with BEquation 58, we will derive Equation 59, which is used to
detarmine the bounds on the skirts of the spectrum:
|
| jare {kt /2 - Af)
] i i
i \'4 4 e
1 F(0f) = - g (58)
{ 2 i=mj 2
: 8n § (kt - Af)
' i i
!
where 61 Gr, 62 dr, 63 Gf, 64 Gf
i
' From Equations 19-27 we have: '
= - -1 2_‘
t, tr 6{/2 (E-1a) j
"‘ ;
E
= -1
: t, e, +8./2 (E-1b) E
j 2
‘ t, = te - Gf/2 (E-1c) 1
|3
? b
: b
; t4 = tf + Gf/Z (E-14) L
s i
z Let ¢, = 2‘!”:i (kti/Z -Af) (E=2) 'g
: »
: Ze
: 5
i ;
g
97 2_
1 &
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Using the above equations, we can get:

[
r
kt § k t_  =—
1 r r -~ 2
¢1 - 21!1:1 < 2 - A!) = 2% (t:r -3 ) [ 2 - Af]

2
§
2 )4
¢, = 1n;r k-ﬂ'&rtk-ﬂk n -ZntrAf+w<SrA£

2
2 6:
¢, = 1k <t --—) - n§_ (kt_ = Af) - 2m Af t
1 r 4 r r : r

§
xt 5§ \|x (: + -5>
2 r X 2
¢, = 2111:2(2 -Af) = 2n L [ 2 - Af
2 6:'2
¢, = ®t. " k+7 S tk+Uk——-2m ¢t LHFf -~ A5 Af
2 4 r r 4 r r

2]

s 2
| 2, ’r
: ¢, = TR\t <+ T 6: (ke - Af) e Af

b, is the same expression as ¢, except subscript r is replaced by subscript f.

04 is the same expression as ¢2 except subscript r is replaced by subscript £,

Then:
6, = mk(tZ + 6%/a) - 2n Aft - 7§ (kt_ - &%) (E-3a)
1 r r r r r
6. = k(> + 62/8) - 27 Aft - w6 (kt_ - Af) (E-3b)
2 r r T r r
e wk(t? + 62/a) - 2n afe, - m6. (ke. - Af) (B-3c)
£ Thits + 84/ T aft, g ktg ¢
!
!
98
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_
"I

i 2 2

1 ¢4 = nk(tf + 8 f/4) 2 r Aftf - nt (ktf - Af) (E~3d)

!

* We will now examine the case where the leading and trailing edges of the

! pulses are steep, as in most chirp pulses, i.e.,

' , th

} k 6 << |tr, and 6. << Itfl so that

‘ tr~t1~t2,tf-t3-t4and6~6r-6f. Then :

(kt1 - Af) = (kt2 - Af) = (ktr - Af) (E-4a)
E
‘{ (kt4 - Af) ~ (kt3 - Af) =~ (ktf - Af)
With these approximations, BEquation 58 is rewritten to give:
3¢, 30, 3oy 3, . ,
F(Af) = —"5{- 2 o m— — 2} !
8r 61(kt1 - Af) 62(kt2 - Af) 63(kt3 - Af) 64(kt4 — Af)

e . e .

. 2 2 .
j . { e;«x(zt + 6 /4)  ~jomefe -jm6 (kt_ - af)
' F(Af) » — <-
on2

§ (kt_ -~ Af)2
r r

) 2 2 -j2maft jnd (kt - Af)
_ ejﬂk(tr * sr/q) . e F.e T r

W

2
- Gr (ktr - Af)

%

[N

»

2 2 . . .
ejwk(tf + Gf/4) e-JZnAftf e-jﬂGE\ktf-Af)

2
- &6 _(kt_ - Af)
f( £ s

s

: i
2 ..
; i
99 .
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2 2
°jwk( tt + GtM e-jsztr Qjmsf(ktf - Af) }

2
5:““: - Af)

jwk(tz . 62/4) -jane Af -jn&r(ktr - Af) jw&r(ktr - Af)
F(Af) = ~— Ye LR r -8 = e
gx? § (ke - Af£)°
X T

-jwéf(ktf - Af) jnt(ktf - Af)]}
+ e

2 2
Imk(e_ + sf/u) e-ijthf [e - e

2
Gf(ktf -~ Af)

or

jﬂk(t:2 + 62/4) -jandf
r r e

v
F(Af) = —— { e P
31!2 (ktr - Af)

. -jné_(kt_ - Af) Ind_(kt_ - Af)
e r r - e T T

. (-‘)
| § (xt_ - Af)
r T

2 2 -jme Af
jvrk(t!E + 65/4) . tA

+ e ——— e
(ktt. - Af)

=48 4 (ke = Af) ) ‘jwéf(ktt -a2)

6:(11::ﬁ - Af)

. (+1) &
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Further reduction yields:

, ) kel o+ g2qy  TIATAE
Faf) = < &7/ e v r - (59)
ry T(RE_ - BE)

sin =8 (kt = Af)
r r
* n§ (kt - Af)
T r

. 2 2 ~jeme Af -
ejﬂk(tf s82/0 £ [sin "8, (ke Af)]
n(ktf ~ Af) wéf(ktf - Af)

This concludes the derivation of Byuation 59, however, we will check to

see 1f the equation degenerates into the conventional equation for a pulse

having no FM when we let k = 0,

If the pulse is symmetrical, from Figure 12 and BEquations 23 - 27, we have

6: = Gf, tr = -t/2, and tf = 1/2. Byuation 59 becomes:

" jn[k(rz + 62/4) + 1/2]
Flag) » =~ © (E-5)
3
oITTAE sin w6 (-k1/2 = Af)
. n(~kt/2 - af) ° M8 (-kt/2 = Af)
. g imuaf sin 16 (k1/2 = Af)
Fkt/2 - : 8 (k1/2 - AF)

Letting k = 0, Equation E-5 can be written:

101
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(E-6)

v T ain ntdf sin néAf
Flag) = 3 [ TTof . msu]

which is the conventional expression for the positive part of the spectrum

(centered on + fo) of a symmetrical trapezoidal RF pulse with no FM.

102
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Appendix F
APPENDIX F
BOUNDS ON SKIRTS OF SPECTRUM WHEN
1
B < 8 and § = Gr - Gf < Tpr T L tz, te t3 ~ t4

(Equations in this appendix that have already appeared in the body of the
report will be identified by their original numbers.)

Using Bguation 5S¢, we can write the inequality:

1 sin x, 1 sin x¢
+ (F-1)
(ktr - Af) X, (ktf - Af) Xg

v
|F(ag)] <ar

where

»
1}

3 (kt - Af)
r r

Y, = nt(&tf - Af)

The bound on the skirts of the spectrum determined from Huation F-1 may

be divided into three regions of Af for convenience of graphical construction.

(1) If Af is slightly more positive than ktf, we shall refer to the

bound as Fc(f) , which is depicted by curve C in Figure F-1 and determined
from Bquation F-1 Dby:

-~

1

(62)
ktf - Af

v_
C £ 4n

If Af is zlightly more negative than ktr, we shall refer to the bound

as FB(f) . which is depicted by curve B in Fiqure F-1 and determined from
Equation F-1 by:

Fs < 4r ke - &f] (61)
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(2) Because

si
—:—1 ‘ & 1, another bound on the spectrum is given

by:

1

v
Fenl <o || we, a0

1
* l ke, - 4f) | (F~2)

If Af i3 considered to be sufficlently greater than ktg, then the bound can be
estimated from Ejuation F-2 by:

- v
P (8f) < Si37 (64)

-

where FE(Af) is depicted as curve E in Figure F-1.

The range of Af where:

£y

Fpl8f) > FL(0f)

is approximately determined by noting that in this range:

v _ oo 1
mAf > 4n  (Bf =kt )

or Af > 2kt,~ 8

Thus, when 4f > Zkt, * B, Fp(Af) > F.(4f) and Bjuation 64 should be used as
the bound.
If Af is conaidered to be sufficiently less than ktr, then the hound can be
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If Af is considered to be gufficiently less than ktr, then the bound can be
estimated from Bquation P-2 by:

o v
PD(E) £ - 29bF (63)
where PD(At) is depicted as curve D in Figure F-i.

The range of Af where:

{
F L88) > F_(Af)

is approximately determined by noting that in this range:

oY
Af < 2kt = B

Thus, when 4f < Xt = 8, P (Af) > P (42) and Equation 63 should be used as
the bound.

(3) vhen §l§_l < TiT, a bound on the spectrum is given by:
lecag)| < Vz{ ! s+ L 2} (P-3)
4n 6r(ktr ~ Af) 6£(kt‘ ~ Af)

for a certain range of Af.

if Af is sufficiently greater than Zktt, then the bound determined from
Equation F-3 will bae:
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~ v
FF(Af) Y

3 (65)
2n-8AL

whers PF(At) is depicted as curve F in Pigure F~1. PFor this 4f, the
inequality:

- A

FLAF) < P_(AS)

will be satisfied, and the lower bound on Af, for this condition, is
determined by noting that:

v < v
2‘"2&“2 - 2wAf
or
1
log] 2 75

Thus when g ¢ l—-:

LY
;B(Af) is the bound on the aspectrum for ktt > At > 2 ktr (61)
;c(Af) is the bound on the spectrum for kt£ < Af < 2 ktt (62)
;D(At) is the bound on the spectrum for 2 ktr > &f > - %3 (63)
;‘E(Af) is the bound on the spectrum for 2 ktt < £ < 1—6 (64)
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F.(Af) is the bound on the spectrum for |4f] > -'ﬁ . (65)

These bounds are depicted in Fiqure F=-1. The frequencies at vwhich these
bounding curves intersect are defined as critical frequencies. The critical
frequencies are determined by solving simultaneously the equations that
represent the corresponding bounding curves. Thus to obtain 4f,, solve

Equations 51 and 64, simultaneously, and obtain:

1
Af = -’-—- (66)
2 ﬂ‘tb

In a similar manner, the critical frequencies Af,, Af_,, and Af, 5, are found
to be expressed by:

- LB )alla
Af3 ” (T (E) (69)
b
Af-zo = 2(1‘.: (67)
and
Af+20 = Zktf 168)

108
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APPENDIX G
BOUNDS ON SKIRTS OF SPECTRUM WHEN g8 > %E
(Equations in this appendix that have already appeared in the body of the
report will be identified by their original numbers.)

By raferring to Figure F-1, we observe that the point of intersection of

1
curves F and E occurs at Af = ;E In APPENDIX F, the inequalities:

L]
kt£<2ktf<;—6-

were obtained for the condition that the leading and trailing edges of the

chirp pulse were "gteep."” Under these conditions:

which means that

1
B < Fr3

and is depicted in Figure PF-i1,

One method of visualizing a necessary change in Figure F-1 when
congidering the condition 8 > %Z is to assume that the point of intersection
of curves F and E shifts to the left due to an increase in the value of §
until %g < 8, while curve E is maintained as fixed. With the removal of the

restriction on the pulse edges being “"steep,” Bjuation 58 may be used to

1
determine the bounds of the spectrum for the condition pry < 8 , which are

depicted in Figure G-1 and obtained in the following presentation.
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From Equation 58 we have:
t

Appendix G

i
jowe| — - af
i\ 2

A4 e

4
F(Af) = o == [
2 i=

2
8w i (kti - Af)

O-I-‘

The bounds on F(Af) are expressed as:

! +

2 8
8x r

2
(kt1 - Af) (kt2

i —

- Af)

S '(kt3 - a8)? (kt

When Af is slightly more negative than kty,
expressed by:

v

8n2 6: (kt1 - Af)2

1

r

?B(Af) -

when Af is slightly more opositive than kt4,
expressed by:

A 1

L

on’ % (ke - an)?

F.(8f) =

f When Af << kt, or Af >> kt,, the hound
by:

(71)

- Af)

the bound becomes cuvrve B and is

(72)

the bound becomes curve C and is

(73)

becomesa curve D and is expressed

Rt e (o w )t ra 74)
4n” AL r 4 2n” AL7S

, For sufficiently large |Af| wherse Af << kt,, the range of Af such that:

PD(At) > Fa(At)

LR
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is determined by setting:

\'] 5 \'/
m2ae s 8:26r(kt1 - a6

or
1 §
Af (1 :3 \’6 ) < kt1
r
Since t, < 0 and Af < 0, then 1 ¢ %- /%—-should be small but positive.
Thas is: r
v /¢
Af(Y - > V3 ) < )u:1
r
Then: .
Xt 86 1
Af < . - .
1 § + 8§
1 - 3- z— r b4 1 - £
r 2(6{ + Gf)
and

e e e
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Bﬁr .

6‘_¢6£ . Bt
2(6 + 6.)
r £

of caf_, 0 = - (76)
Thus, for Af < Af-do’

FD(Af) > FB(A!)

In a similar manner, the range of Af may be determined for Af >> ktg
guch that:

FD(Af) > Fc(Af)

by setting
) 5 v
20 ag%s 86, (kt, - A£)2
f 4
Then:

Since 4f >> kt, > 0, the left side of the inequality cannot be negative, as
that would bound the magnitude of Af from above. Thus, - (kt4 - Af) > 0 and:

1
-2-Af. \/3; < = (kt4-A£) = -kt‘+Af

g e il aaiand

I
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or
1 $
kt4<A£(1 -3 ‘/“)
Af > Kty . B% 1
1 - % ‘,EE 6: M Gf 1 - V// 5;7
28 +68))
r 4
and
86
£ 1
BE> AL ® T 3. ¢ T
r £ ] - r
2§ + 6§ )
T r

Thus, for Af > Af4°x
FD(Af) > Fc(At)

1
Thus, when B > ;E s

FB(At) is the bound on the spectrum for kt1 > Af > A£-40

Pc(At) is the bound on the spectrum for kt,K < Af < Af40

4

PD(Af) is the bound on the spectrum for Af > Af4o

FD(At) is the bound on the spectrum for Af < At_40

Appendix G
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(73)

(74)
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These bounds are depicted in Figure G-1.

The intersection of curves determined by Bquations 51 and 74 is denoted

as the critical frequancy, Af3, and is given by:

. 1 B8 Ve Ll
Af3 n (1: ) (5) (75)

Likewise, the critical frequencies Af_,, and 4¢,40 dre given by Bquations 76
and 77, respectively, and are depicted in Figure G-1l.
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APPENDIX H
CHOOSING A LOCATION FOR THE ORIGIN ON THE TIME SCALE

(Equations in this appendix that have already appeared in the body of the
report will be identified by their original numbers.)

Equation 74 is used as an approximation of Bquation 71 when |A£| is
large, compared to kt, or kt4. The error in the approximation depends upon
the location of the origin.

When the pulse shape is symmetricali (§ = éf), the approximation is best
when the origin is located midway between t, and t4e When the pulse shape is

asymmetrical, §,. << Gf for example, the terms containing Gr in Bquation 7

-~

r
have more influence on F(Af) than the terms containing 6f; for this case the

approximation given in BEquation 74 is better when the origin is located closer
to t, than to t,. On the other hand when §  >> 6f, the approximation is
better when the origin is located closer to tye Thus, the origin should be
located closer to the steeper edge of the pulse.

Al though an optimum method for loczting the origin on the time scale was
not found, the approximation given by Eqiation 74 appears to be best when the

origin is located such that:

b
t, = — (19)
1 6: + éf
-8 1
r b
b, T+ S (20)
r b
P
£'b
ty " T e Y (21)
£
P ¢
£'b
S S (22)

.-
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1 2 r b r
tr = 2 I 8 * 2 (23)
b o b4
£ 2 § + 6f 2

LATEENE A y¥ .
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APPENDIX I
DISPLACEMENT BETWEEN f° AND £,

As shown in Pigure 12, f, is the instantaneous frequency at t = 0, and £
is the instantaneous frequency at the canter of the pulse. The bounds on the
skirts of the spectrum are symmetrical about fo' whereas the peak of the
spectrun tends to be centered about f_ (see Figure 4). As explained in
Section 3, fo and fc are displaced when the pulse shape is asymmetrical.

Using the relationships shown in Figure 12 the displacement is determined to
be:

- 2 -
fc fo - k(Tb/. + t‘) (I-1)
Using BEquation 19 to express t,, we can rewrite Bjuation I-1 as: . .
T § 1
¢ ° b r bd

Se =% (1-3)
6: + 6f

From this we get BEquations 88 and 89.
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