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EXECUTIVE SUKMh4AR¥

Simple equations and procedures were developed that permit rapid hand-

calculation and plotting of approximations of strong upper bounds on the

spectra of linear frequency-modulated RF pulses that have a trapezoidal

envelope.a The plots of the approximate bounds consist of segments of

straight lines on semilogarithmic graph paper, and are very easy to draw.

The approach used in deriving the model involved the use of an asymptotic

expansion instead of the usual Fresnel integrals to describe the skirts of the

voltage-density spectrum.

The approximate bounds are within about I dB of the spectrum determined

using the Fresnel integrals at the center of tho central lobe and within a

fraction of a dB at the centers of the minor lobes that occur at frequencies

well above and below the central lobe. The approximation is the least

accurate in a relatively narrow frequency interval at the edges of the central

lobe, where it may underestimate the spectrum by about 5-10 dB.

Accession For

DTIC TAB
Unannounced []
Justification

By
Distribution/

Availability odes /

Avail and/or
Diut Special

aAn upper bound, in this application, is defined as a function that is never
less than the actual spectrum. A strong bound is close to the spectrum at
various points. See Figure 6 on page 12.



ESD-TR-81-100

PREFACE

The Electromagnetic Compatibility Analysis Center (ECAC) is a Department

of Defense facility, established to provide advice and assistance on

electromagnetic compatiblitY matters to the Secretary of Defense, the Joint

Chiefs of Staff, the military departments and other DoD components. The

center, located at North Severn, Annapolis, Maryland 21402, is under the

policy control of tht Assistant Secretary of Defense for Communications,

Command, Control, and Intelligence and the Chairman, Joint hiefs of Staff, or

their designees, who jointly provide policy guidance, assign projects, and

establish priorities. ECAC functions under the executive direction of the

Secretary of the Air Fbrce and the management and technical direction of the

Center are provided by military and civil service personnel. The technical

support function is provided through an Air Force-sponsored contract with the

IIT Research Institute (IITRI).

To the extent possible, all abbreviations and symbols used in this report

are taken from American National Standard ANSI Y10.19 (1969) "Letter Symbols

for Units Used in Science and Tachnology" issued by the American National

Standards Institute, Inc.

Users of this report are invited to submit comments that wuld be useful

in revising or adding to this material to the Director, ECAC, North Severn,

Annapolis, Maryland 21402, Attention: XM.
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SECTION 1

INTROUUCTION

BACKGROUND

Calculation of emission spectra is one of the steps in making

electromagnetic compatibility (EMC) analyses of radar systems. For ordinary

radars, the calculation is easy to accomplish, but in the case of chirp

radars, it is difficult it the conventional equation for describing the

spectra of linear frequency-modulated (LFM) pulses is used. The conventional

equation involves Fresnel integrals and requires that a large number of high-

precision computations be performed.

In making an EMC analysis, an upper bound on the spectrum rather than the

spectrum itself is used. It is the purpose of this technical report to

provide EMC analysts with simple equations and procedures for calculating the

approximate bounds on the spectra of LFM pulses. The first edition was issued

in February 1971.1 This revised edition presents in greater detail the

derivations of the equations and includes an additional section consisting of

numerical examples that illustrate the application of the procedures.

oBJECTIVE

The objective of this project was to provide a simple method for

calculating and plotting strong bounds, or a good approximation thereof, on

the spectra of LFM radio frequency (RF) pulses that have trapezoidal

envelopes.

A

4

1Newhouse, P.U., A Simplified Method for Calculating the Bounds on the
Emission Spectra of Chirp Radars, ESD-TR-70-273, Electromagnetic
Compatibility Analysis Center, Annapolis, MD, February 1971.

_ •,
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APPROACH

The conventional equation for the spectrum of a chirp pulse was replaced

by two equations, one of which is convenient for describing the center region

of the spectrum and the other for describing the skirts of the spectrum.

Using these equations, simple expressions were derived that yield approximate

bounds on the spectrum.

2
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SECTION 2

UEVELOPMENT OF EQUATIONS AND PROCEDURES

The simple equations and procedures developed permit rapid hand-

calculation and plotting of an approximation of strong bounds on the spectra

of LFM KFk ulses that have a trapezoidal envelope. The plots of the

approximate bounds consist of segments of straight lines on semilogarithmic

graph paper; thus, they are very easy to draw.

By definition, a bounding function is never less than the bounded

function. The functions derived here, however, may underestimate by several

db the actual spectrum in a few places, such as at the edges of the central

lobe of the spectrum. Therefore, the functions are referred to here as

approximate bounds on the spectrum.

The approximate bounds are within about 1 dB ot the spectrum at the

center of the central lobe and within a fraction of a dB at the centers of the

minor lobes that occur at frequencies well above and below the central lobe.

The approximation is the least accurate at the edges of the central lobe,

where it may underestimate the 3pectrum by about 5-10 dB in a relatively

narrow frequency interval, as illustrated in the numerical exampi-s included

in Sections 3 and 5 of this report.

4

S
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SECTION 3

DESCRIPTION OF PARAMETERS AND APPLICATION OF MODEL

The approximate bounds on the spectrum of chirp pulses can be calculated

and plotted within a few minutes using the model described in this section. A

derivation of the model is presented in Section 4.

PULSE PARAMETERS USED IN THE MODEL

The following terms and their definitions specify the pulse parameters

used in calculating critical frequencies for the model. Figure 1 shows the

pulse parameters, graphically.

fc nominal carrier frequency, in Hz

P - peak power, in watts

Tb - pulse width at base, in seconds

6r - rise time, in seconds defined as the time interval from 0 to

6, -fall time, in seconds. 100% of the voltage amplitude, as shown
in Figure 1.

In addition to those terms, one of the following is needed:

6 - frequency deviation, in Hz

D - compression ratio

Tc W compressed pulse width, in seconds.

When 8 is not given, it can be calculated using the relationship:

rD

When the pulse is not symmetrical (6r •6f), it is also necessary to know

whether the deviation is positive or negative.

.......
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NEGATIVE DEVIATION
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POSITIVE DEVIATION

vl

0
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>i

ft

TIME A

Figure 1. Parameters used to describe a chirp pulse.
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EFFECT OF PARAMETERS ON SHAPE OF SPECTRL4

A brief discussion of the effect of the pulse parameters cn the behavior

of the spectrum will be helpful in understanding the model. The carrier

frequency of the RF pulse, fc' is assumed to be very large in comparison to

the total frequency deviation, 8. For that condition, the shape of the

spectrum may be considered to be solely dependent on the shape of the envelope

of the pulse and on the magnitude and polarity of the frequency deviation.

Pulse Without Frequency Modulation (FM)

When there is no FM, the spectrum of a pulse is symmetrical, as shown in

Figure 2, regardless of whether the pulse shape is symmetrical.

PT 2

P 2 PEAK POWER OF PULSE

T 2 WIDTH OF PULSE AT HALF-
4 AMPLITUDE POINT

Z

r

WI

0€

* :I

FREQUENCY

Figure 2. Bounds on spectrum of a trapezoidal pulse without FM. _

'
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Pulse with FM

FM reduces the peak of the spectrumi however, the bounds on the skirts of

the spectrum are essentially unaffected by the FM, as shown in Figure 3. If

the pulse shape were symmetrical, the spectrum would be symmetrical about fc.

I'
SI •WITHOUT FM

IL I/ \rl
NB

I'I

/ WITH FM

'Li

110 f FREQUENCY

Figure 3. Bounds on spectrum of chirp pulse when 6 r -6f

If the pulse shape were asymmetrical, i.e., 6r * 6f, the central portion

of the spectrum would be asymmetrical as indicated in Figure 4. The shape of

the spectrum will depend upon whether the deviation is negative or positive,

as indicated in the figure. The skirts of the spectrum, however, are

symmetrical about a frequency, f0, which is displaced from f the nominal

carrier frequency. The relationship between f0 and fc is explained later in

this section.



ESU-TR-81 -100 Section 3

I ,1WITHOUT FM1, WIT . N

(WITH I

w

z/

fo f c FREOUENCY

Figure 4. Bounds on spectrum of chirp pulse when 6r < 6f and

frequency deviation is positive. If the deviation were

negative, the bounds would be the mirror image with respect

! ~to fo

00

PROCEDURE FOR PLOTTING THE BOUNDS OF THE SPECTRUM

The chirp pulse considered in this report is LFM. When the frequency

deviation is relatively small so that pT ul2/n, the bounds an the spectrum are

not influenced by the frequency modulation. For that condition the spectral

bounds can be obtained using the same procedures that are available for an

It 
f

09

LThe chirp pulse .on e th is rot frequency

unlikely that a chirp radar would be designed to have such a small amount of

,%:•ifrequency deviation, however, procedures are given here for plotting the

• spectral bounds when St < 2,/w, as well as when Br > 2/,T.

9 4
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Calculation of Bounds on Ordinary Radar Emission Spectrum (Nonchirp or Chirp

when ST < 2/w)

An ideal ordinary radar pulse has a rectangular waveform and a

(sin x/x)2 spectrum as shown in Figure 5. As a practical matter, however, a

rectangular pulse is not attainable because the leading and trailing edges

will have a finite slope due to practical circuit limitations. Therefore,

radar pulses are assumed to be trapezoidal with the dimensions shown in Figure

6a. The spectrum takes the form shown by the solid curve in Figure 6b.

Assuming a more intricate pulse shape (such as a trapezoid with rounded

corners) in order to model an even more realistic radar pulse generally does

not yield much practical benefit. Rounding the corners of a trapezoidal

pulse, for example, has little or no significant effect on the bounds of the

spectrum except for frequencies far from the center of the spectrum; at those

frequencies, the spurious emissions of a radar transmitter usually determine

the level of the spectrum.

In EMC analyses it is appropriate, as well as convenient, to represent

the spectrum by a bound, such as the dotted curve in Figure 6b. It is common

practice to normalize the graph of the spectral density by dividing by the

peak value, PT 2 , and expressing the ratio in decibels (dB). The normalized

graph, which is referred to as the relative spectral density, is applicable to

the energy-density and the power-density spectra as well aE the envelope of

the power spectrum, which is a line spectrum.

When a logarithmic scale is used for the abscissa (frequency) and a

decibel (dB) scale is used for the ordinate, the curves that constitute the

bounds in Figure 7a can be drawn as straight lines, as shown in Figure 7b. 2

The frequency is referenced to the carrier frequency, fc' i.e., Af - f - fc.

To plot the spectrum bounds, the following steps are required.

ý4 ason, S.J., and Zimmermann, H.J., Electronic Circuits, Signals, and Systems,
John Wiley & Sons, Inc., 1960, p. 237.

10
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0,

Zw°
71'a
0. "

TIME

a. Rectanqular pulse.

1 J

P~r 2

! .

S.

ir

w
Z

• - 0

FREOUENCY 4

b. Energy density spectrum.

Figure 5. Idealized radar pulse (nonchirp).
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0

z

Z
w
0

C-
"a v

< T

TIME

a. Trapezoidal pulse.

P'r2

w i/

SOUND

z

•,, : "\ EMISSION

FREQUENCY

b. Energy density spectrum. :

/£

Figure 6. Ordinary radar pulse (nonchirp).
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z_U.j

z

w
o3

-Il

z

I I I I

-A, 3  -Af2 0 At2  W, -f

LINEAR SCALE

a. Linear frequency scale.

Figure 7. Spectrum bounds for ordinary radar pulse (trapezoidal).
(Page 1 of 2).
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SLOPgS

S-20 dB/DECADE

z

w

z

w

w 3

Af2A 1f3--

LOGARITHMIC SCALE

b. Logarithmic frequency scale.

Figure 7. (Page 2 of 2).
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Step 1 - Calculate the critical frequencies, Af 2 and ef 3 :

6f = 1 (2)
2

A -3 (3)

where

1 1 +

T ' 6r 6f

-r - pulse duration between half amplitude points, in seconds

Sr a rise time, in seconds defined as the time interval from

6f = fall time, in seconds 1 0 to 100% of the voltage amplitude.

Note - A pulse that is not frequency modulated has a spectrum that is

symmetrical about the carrier frequency, f.1 whether or not the pulse is

symmetrical.

Step 2 - Un semilogarithmic paper, draw line I horizontally through 0 dd.

Step 3 - Starting on line 1 at 6f 2 ' draw line 2 with a slope of

-20 dB/decade.

Step 4 - Starting on line I at Af 3 , draw line 3 with a slope of

-40 dB/decade. The spectrum is bounded by lines 1, 2, and 3 of Figure 7b. A

The peak energy density level, Pd' corresponding to the 0-dB level in

Figure 7b, is obtained by:

Pd P p 2 joules/Hz (4)

where

P - peak pulse power level, in watts

15
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Calculation of Bounds on Chirp (LFM) Spectrum (When BT > 2/7)

When linear frequency modulation is applied to the pulsed carrier

frequency, the peak of the spectrum is reduced in amplitude from PTr2 to Pt/8

and the central lobe of the spectrum is broadened, as shown in Figure 3, but

the spectrum bounds further removed from the carrier frequency remain

essentially unaffected by the frequency modulation. The energy-density

spectrum of the chirp pulse is normalized by dividing by PT/B.

If the pulse is a symmetrical trapeziod, the spectrum will be symmetrical

about the nominal carrier frequency, fc' as shown in Figure 3. If the pulse

shape is asymmetrical, the spectrum will be asymmetrical, as shown in Figure

4. The direction in which the spectrum is shifted will depend on whether the

deviation is negative o" positive, with respect to time. The spectrum

boundaries further removed from the carrier frequency will be symmetrical

about a frequency, fo' which is displaced from fc' as shown below:

816 r - f)0 c 2(6 + 6 f) (5)

where W is defined in TABLE 1.

TABLE 1

VALUES ASSIGNED TO M, N, AND Q

Constants Positive Frequency Negative Frequency
Shift Shift

M 6 f 6r

N 6r 6f

+1 -1

16
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The plots of the bounds on the chirp pulse spectrum are referenced to fo0

Af - f - f (6)
0

The procedure for plotting the b-.unds on the chirp pulse when the product

OT > 2/w is illustrated in Figure 8 and entails the following steps. Several

numerical examples are presented in Section 5. Step 1 (A) is used when the

pulse is symmetrical, whereas Step I (B) is used when the pulse is

asymmetrical.

Steg 1 (A) - If the pulse is symmetrical (6r 6f), calculate the critical

frequencies, Af 2, &f 3, Afa+' Afa-' Afb+' and Afb_ as:

f2 = 1/2 (7)

2 b8

3 1T T

where

Af Af -At (9)a+ " -b -•a- a

Af - Afb - -Afb, (10)

The spectrum is symmetrical about fo' so the same plot can be used for

positive and negative values of Af.

17
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CDSLOPES-
-6 -SLOPE IS VARIABLE

w= -- WECD
zI ""

,-I ji \iI

wI I ! \

(LOGARITHIC SCALE

>

Ma '& b '& 3,ra '
FREQUENCY (Af)

(LOGARITHMIC SCALE)

a. When fb < 1/iri•

Figure 8. Spectrum bounds for chirp radar pulse. (Page 1 of 2).

Note: This figure depicts the bounds for positive values of 6f
based on Equations 13 and 14. The bounds for negative
values of 4f are plotted in a similar manner based on
Equations 15 and 16.

18
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(a 0

" I \,
I. I\
V

j4

I SLOPE IS
I \ VARIABLE

SI I
> SLOPE:

A I

<1 1 j
" I

Af A%, Af, .

FREQUENCY (Wf)

(LOGARITHMIC SCALE)

b. When Afb > 1/16

Figure 8. (Page 2 of 2).
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Step I (B) - When the pulse is asymmetrical and $T > 2/w, critical

frequencies may be calculated using the equations:

f /2 b)/ (11)

'\1 4
Af2  6)/2 (12)

where

When the spectrum is asymmetrical, positive and negative halves must be

plotted separately because f. 0 fc' as shown in Equations 7, 8, 9, and 10.

For positive Af:

&f r( 
6 r+ 6 f ) (13)

fa+ i r + f 2b

4 2Afa+ (when _< I/i)
Ab+

1 O 8 1 (when 86 > I /i) (14)
Sr + 6f - 14

Y'2(6 + 6 f

For negative •f:

-1- 6 r *ff (15)
a- 6 + 6 ( 2-r b

20
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b- - -No f(e I ) (when $6 > 1/

S{+ 6 ( - )/ (16)

12 (6r + 6f)

For the M and N values used here, see TABLE 1.

Step 2 - Draw line 1 horizontally through 0 dB (see Figures 8a and 8b).

Step 3 - If Afb is less than 1/(w6), use Figure 8a and draw line 2 with a

slope of -20 dB/decade starting on line 1 at Af 2.

If Afb is equal to or greater than 1/(w6), skip this step and use Figure

go for the next step.

Step 4 - Draw line 3 with a slope of -40 dB/decade starting on line 1 at

Af 3 in Figure 8a or ab.

Step 5 - Locate point "a" or "a'" at 6 dB down from 0 dB at £af or Afal in

Figure 8a or 8b, respectively.

Step 6 - Locate poirt "b" or "b'" at Afb' on line 2 in Figure 8a, or on

line 3 in Figure 8b, respectively.

Step 7 - Draw line 4 or line 4' through points "a" and "b" in Figure 8a,

or through points "a'" and "b'" in Figure 8b.

spectrum Bounds

For the situation where Afb < '/(w6), the spectrum is bounded by a curve

as described by lines 1, 4, 2, and 3 in Figure Sa. If b _/(16), the
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spectrum would be bounded by a curve, as described by lines 1, 4, and 3 in

Figure 8b.

The peak energy-density level, Pd' corresponding to the 0 dB level in

Figure Ba or 8b is calculated as follows:

Pd (Pb/B) joules/Hz (17)

where

- frequency deviation during pulse, in Hz

Tb - pulse width at the base of the pulse, in seconds.

Sample Calculations of Radar Emission Spectrum Bounds

Example 1. Ordinary (nonchirp) trapezoidal pulse

T - 6 x 10-6s

dr = 0.2 x 10- 6 S

6f 0 0.35 x 10-6 s

Step 1 - Calculate critical frequencies Af 2 and Af 3 using Equations 2

and 3z

-f -53.1 kHz2 WT w(6 x 10"6)

1 1I 1 1 6 1 1 1

S" f 2r 6 + 0. 35 0.25 x 10 s

22
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Af6 259.9 kHzf3 N(r6) 1/2 w[(6 x 10-61 (0. 25 x 10o 6)11/2 = 5. ~

Step 2 - Using Figure 9, draw line I horizontally through 0 dB on the

ordinate representing the peak energy-density level.

Step 3 - Startiig on line 1 at Af 2, draw line 2 with a slope of

-20 dB/decade.

Stoep 4 - Starting on line I at Af 3, draw line 3 with a slope of

-40 dB/decade.

The spectrum bounds are described by lines 1, 2, and 3. To indicate the

accuracy of this approxcimation technique, portions of the energy-density

function are plotted in ]Pigure 9.

The peak energy-densa.ty level corresponding to the 0 dB point is

calculated as follows:

Assume: Peak power (P) - 1 x 106 watts

From Equation 4,

Pd - (PT 2 )
- (0 x 106) (6 x 10-6)2

- 3.6 x 10- joules/Hz. ;

Example 2. Linear chirp pulse

To illustrate the procedure for determining the approximate bounds on the

spectrum of a typical chirp pulse, the following example is considered where

the pulse parameters are:

4

23tq i .
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8 ", 1 x 106 Hz, positive deviation

Tb 102 x 10-6s

6 r 6f 1 x 10-68
T 101 x 10-6s.

Step I - Determine if 8 > 2/(wT) and if the pulse is symmetrical.

2/(eRT) a 0.0063 x 106, which is less than 8,

Sr = 6f and therefore the pulse is symmetrical.

Since the pulse meets these conditions, calculate Uf2f Af' Afa+' Afa-'

Afb+' and Afb- according to Step 1 (A).

Step I (A):

A - 1 (1 x 106/(102 x 10"6)J/2 0032 106 Hz

10 101

1/ 212- 1 0 - ) 0 , 3 1 6

f 3 . !, 1 x 106/(102 x 1o-6) (1 x 106) 1 /2 . . 10 x 106

Afa+ 16 (1 10 -6 ) 0.50 x 106 Hz
a+ 2 ~~102x10-

afa - -&f -0.50 x 106 Hz&- a+

Afb 2Af - 1.0 x 106 HZ

,i a25
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Afb- = 2Af_ -1.0 x 10 6 Hiz

Now, plot the spectrum bounds as follows and as shown in Figure 10.

Step 2: Draw line 1 horizontally through 0 dB.

Step 3 Is Afb > 1/(.6)?

/ - - 0.32 x 106 Hz, which is less than &fb" Therefore,

line 2 is not used in the approximation of the spectrum bounds. Proceed to

Step 4.

Step 4: Starting on line 1 in Figure 10, at 4f a 4f,30 draw line 3 with a

slope of -40 drB/decade.

Step 5: Locate point "a" 6 dB down at Af - Afa+'

Step 6: Since Afb+ > 1/(w6), for this example, locate point b at

af a Afb 4 on line 3.

Step 7: Draw line 4 through points a and b.

The approximate bounds of the spectrum are formed by the solid lines 1,

4, and 3 on Figure 10. Line 2 is not used in this particular example because

Afb > 1/(n6). The pulse is symmetrical, therefore the spectrum is also

symmetrical and the plot can be used for either positive or negative values of
Af.

The peak energy-density level corresponding to the 0 dB is calculated as

follows:

26
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Assume: peak power (P) - 1 x 106 watts

From Euation 17:

P PT/Pd Pb/

0 (1 x 106 ) (102 x 106 )/1 x 106

- 10.2 x 10 joules/Hz.

To indicate the accuracy attained in the above example, the spectral

power-density function, calculated using a double precision algorithm, also is

plotted in Figure 10 using the symbol "x" to designate representative points

on the energy-density function.

Additional numerical examples are given in Section 5.

Fit of the Approximate Bounds to the Spectrum

The fit of the approximate bounds obtained with the method described

varies over the spectrum, and is best for values of Af greater than 38. At

about Af - 38, the difference between the approximate boun-4 and the peaks of

the lobes in the spectrum are less than 1 dB. As Af is increased further, the

difference rapidly approaches zero. In the region represented by line 1, the

difference usually is in the order of 1 dB.

The largest difference occurs in the region represented by line 4 at

Point b. For long symmetrical pulses, the approximate bound here usually

underestimates the spectr-m by les than 6 dB, but for asymmetrical pulses,

especially when Tb is not much larger than either 8r or Sf, the approximate

difference may be as much as about 10 dB. Because line 4 is used to represent

only a small part of the overall spectrum, this difference is acceptable for 4

most spectrum analyses.

28
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SECTION 4

DERIVATION OF THE MODEL

This section and the appendixes present derivations of the formulas used

in procedures given in Section 3. Since all of the information required to

apply the procedures is given in Section 3, Section 4 can be skipped by the

reader who is not interested in the derivations.

APPROACH TO DEVELOPING THE MODEL

The equation of the spect-um of a chirp pulse involves Fresnel integrals

and thus is cumbersome to evaluate. 3 By expressing the Fresnel integral in

the form. of an asymptotic expansion and using only the first few terms, a

siaiple expression was obtained that yields a very accurate approximation of

the spectral voltage-density function, except for frequencies within two

relatively narrow intervals, 0 to 12 and 03 to a41 as indicated in Figure 11.

The simple expression also yields an accurate approximation at the center of

each of those intervals, namely at points a and a+, so that even within those

intervals a good estimate of the spectral voltage-density can be obtained.

Using the expression derived for the spectral voltage-density function,

formulas were derived for functions thax; bound the chirp spectrum.

DESCRIPTION OF THE CHIRP SIGNAL

The parameters that describe a LFM or chirp pulse are shown in Figure 12. A

jI trapezoidal envelope is used because the skirts of the spectrum are very

sensititive to the slopes of the edges of the pulse. A rectangular envelope

is adequate if only the in-band region of the spectrum is of interest?

however, in electromagnetic compatibility analyses the skirts of the spectrum

are of primary concern. Therefore, the skirts must be represented
realisticailly.

3Cook, C.E., "Pulse Compzession -- Key to More Efficient Radar Transmission,"
Proc. IRE, Vol. 48, March 1960, pp. 310-316.

A 29
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Figure 12. parameters describing a ceiirp pulse.
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The time waveform of the pulse can be expressed by (see Reference 2):

t2

v(t) - A(t) cos (2w(fot + - (18)

where

fo is the reference frequency used here for a chirp pulse

'V(t - t 1)16 r, t1 < t < t 2

At) t2  -3 (18a)
A(t)

tV(t 4 - t)/4f ,I t3 _<i t < t 4

0, t4 < t < t1

k m b/ ( b)

The derivation will be made assuming that the deviation is positive,

i.e., the frequency is shifted upward during the pulse. The model developed

can also handle negative deviation using a procedure that is explained at the

end of this section.

As explained in APPENDIX H, the Location of the origin of the chirp

signal on the time scale, relative to t,, t 2 , etc., affects the closeness of

the fit of the approximate bounds to the spectrum. Studying the appendix will

be more meaningful if the reader goes through this section first. The origin

of the signal is located so that:

tI- -rtb//r + 6 (19)

t 2 tI + 4 (20) i
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t3 t 4 -6f (21)

t 4 - f Tb/( 6 r + 6f) (22)

With this time scale, the instantaneous frequency is equal to fo when

t - 0. Other time parameters used in the derivation are:

tr - (t 1 + t2)/2 (23)

tf = (t 3 + t 4 )/2 (24)

T - tf - tr (25)

T t - t (26)
b 4

1 +~ (27)1I 1
6r 6f

VOLTAGE-DENS ITY S PECTRUM

The basic expression for the voltage-density spectrum, V(f), is:

-j 2ift
V(f) = I v(t)e dt (28)

The spectrum for the time waveform described by Equation 18 is:
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V(f) - F(f) + G(f) (29)

where

t 2
1 4 j2w (kt /2 + (f - f) t]

F(f) = - f A(t)e o dt (30)
2 t 1

t 2
1 4 -j2w (kt /2 + (f + f) t)

G(f) = - I A(t)e 0 dt (31)
2 t

1

The spectrum F(f) is centered on +fop and the spectrum G(f) on -fo.

Determining the energy-density spectrum, E(f), one of the steps in deriving

the model can be accomplished by using either F(f) or G(f), as explained in

APPENDIX A. In the derivation that follos F(f) :i.11 be used.

By performing the mathematical manipulations shown in APPENDIX B, F(Af)

can be expressed in the form:

2
V -jwtf /k 4 1

F(Af) - -e - [X Z(X) - U(x.)] (32)
4k i1-1 i i

i

where

&f f -f (33)
0

1 6 r 62 6 r 3 - -6f *4 - f
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i " T tI - r2kAf (35)

Xi 2 Xi 2
Z(X. ) a I cos (rt /2) dt + j f sin (wt /2) dt (36)

. 0 0

- - 1 x 2I-3 (I - X 2

O(X,) e (37)

i 1, 2, 3, 4

Equation 36 is called the complex Fresnel integral. APPENDIX C presents

some asymptotic expansions that can be used to evaluate the integral. Using

the asymptotic expansions, approximations that can be used in place of

Equation 32 were derived in APPENDIX D. These approximations are as follows:

v e1/4
F(Af) - e. a < f < n3  (38)

kt i
j2¶r (-- - Af)

i 2

V 4 e

F(Af) - - - , Af < a or Af > n
2 iIa 2 1 4

86 6 (kt - Af) (39)

t1(l 2
4ut)

F(O) e 4 (40)2 rk

F(r W F F(O) (41)

F(dff) - F(O) (42)

35
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where

36 r - (43)

1 6 + 6 2Tb

L2 + (44)

03 - B(6r 5f -b 2T

0 - B6 f (46)

r f ba ( 6
•4 + 6 -- f 2- 2b

Af a kt (47)r r

Aff - ktf (48)

Figure U-I in APPENDIX D shows the frequency bands that are defined

by Sit a2' 113' and 04* As explained in that appendix, the approximations that

yield Equations 38 and 39 are not valid when 0I < Af S<i2 or Q3 < Af < 04

BOUNDS ON THE VOLTAGE-DENSITY SFECTRU4

The fur.ction IF(Af)l, which describes the magnitude of the spectrum,

contains lobes, as shown in Figure 13. To simplify mathematical modeling, the

usual practice in making EKC analyses is to represent the spectrum with a set

of smooth curves that bound the spectrum. The functions used as the bound

should satisfy two requirements - simplicity of expression and production of

a close-fitting bound or a good approximation thereof.
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IF(Af)

F(A 2  o -Q3 Q4  Af

Q4 Af

Figure 13. The voltage-density spectrum IF(Af)I and its bound F(Af).

p

The function that we will use as a bound on the spectrum is denoted by

F(Af). By definition the bound should satisfy the condition:

I F(4f) >_ IF(Af)I (49)

Expressions for F(Af), which has the general characteristics indicated

in Figure 13, will be derived using Equations 38 through 42.

BOUNDS ON IN-BAND REGION OF SPECTRUM

For the interval between n and i3 which we refer to as the in-band
2 3

region, Equation 38 will be used to describe F(Wf). As indicated in Figure 13,
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the amplitude of the voltage-density spectrum is nearly constant in this

region:

FI(A f - 2 < Af < n3 (50)

It follows that:

V V b
F() (5- )

2,'k 2 8

Near the lower end of this spectral region, where:

Lf - Af - kt (52)
r r

Equation 41 is used to obtain:

F(Af ) - (53)r 2

Therefore, at Af - ktr, ;(Af) is app'oximately 6 dB dorn with respect to

F(O) when:

Af - &ff - ktf (54)
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Equation 42 is used to obtain:

;(O) V (55)P(,Af ) - - -- q
f =2 v'

Thus at Af a ktf, F(Af) is approximately 6 dB down with respect to

F(o).

BOUNDS ON THE SKIRTS OF THE SPECTRUM

When

Af < Q r (56)
I 6 + 6 f 2T•r ÷ f 2b

or

f > C +(
r f b

the variable 1-X11 or I X4j > 1 and the voltage-density spectrum can be expressed

in the form of an asymptotic expansion, as explained in APPENDIX D. Although

it is not apparent at this point in the derivation, two frequencies critical

in determining the bounds are Sf a i1/(1T6). Therefore, the asymptotic

expansion is expressed in two ways. When I/r6 < 8 ' IAf, it is convenient to 'I
use: 4

j21.t (kt /2 - Af)
F(Af) V 4 _ (58)

2 i-i 2
81 6 (kt -Af)

i .i

39
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where

- 6 r 62 6 r 63 E f " 4U 6
f

When B < [&fj < 1/(Of) it is convenient to use:

Vej 11/2
F(4f) -(59)4w

1t 2 + 62/4) o-j2 Af Sin w6f (kt -f f)

- J~ f (ktf -A f) 16f (ktf - Af)

The derivations for these equations are given in APPENDIX E.

First we consider the case where 8 < 1/%6 and then the case where

For the Case When 8 < 1/6

When B < 1/v6 the bound on the skirts of the spectrum is found by using

Equation 59, as explained in APPENDIX F.

When $ < IJJf < "1/i,:

F(Af)/ ~(k I )(60)"At' 'kf- At)
4 kt -f)l ÷ (kt f ,)4

40
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When Lf is slightly more negative than ktr:

F(Af) " 4w (k- - Af (61)
r

When Af is slightly more positive than kt,:

F(Af) j4t (ktf Af) 1  (62)

When -1/(r) 't Af << ktr

(63)
S~V

F(Af) - -2wAf

When ktf << Af < 1/(Ir6f):

(64)
V

F(Af) -21-

When A( <-1/(7r ), or A4 > I/(Y6f

F(Af) (65)26(tAf ) 2

The curves described by these equations are shown in Figure 14.

Critical Frequencies. The critical frequencies at which the above curves

intersect are as follows. Equating the curves given by Equations 51 and 64,

gives:

A2 -- (66)',y T b
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Equating the curves in Equations 61 and 53 gives:

- 20 r r+ (67)
-20 (6r + 6f 2T

Equating the curves in Equations 62 and 64 gives:

20+6 f - (68)

Equating the curves in Equations 51 and 65 gives:

(8) ('"• (69)

where

1+ (70)

T r f

For the Case When 8 > 1/n6

When 6 > I/iv6, the bound on the skirts of the spectrum is found by using

Equation 58. As explained in APPENDIX G, the results are as follows:

n "6 r I(kt 1 Af) (kt )

+ +2
f ~(t 3  f) (kt4 Af)

When Af is slightly more negative than ktj:

" V 1F(Af) (72)

8w2 6 (kt - Af)2

r 1

43



ESD-TR-81 -100 Section 4

The approximation given by Equation 72 will be used when

I-40 < Af < kt1 , where &f-40 is given by Equation 76., For- most chirp radar

pulses, the approximation causes an error of about 5-6 CdB at Af Af 4 0

Which corresponds to point "b" in Figure 10. Because this error exists over a

very small interval of frequency, it is acceptable for most EMC analyses.

Similarly, when kt 4 < U < &f+401 where 4f+40:

V I
F(Af) a - (73

82 6f (kt4 - Af)2

When if << kt, or f >> kt 4 -

F(&f) - 2 (I1) . (74)
(2fr f2 )r 6 f 26 (irf)2

The parameter 6 is defined by Equation 27.

For the kinds of pulses used in most chirp radars, the approximation

given by Equation 74 is in error by about 6 dB when lifI - S, and less than I

dB when jifj > 3$. Equating 51 and 74 yields:

i 3  a ( )'/ aI (75)

Equating 72 and 74 yields:

""ir ( / ) (76)-f40 = + •f/
r f /

2(6r + 6f
r -4'
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Equating 73 and 74 yields:

66f 1 (77)M+40 "(6r + 6 f) / 7-r
I/ ,

2(5 + 6f

The curves described by these equations are shown in Figure 15.

BOUNDS ON ENERGY-DENSITY SPECTRUM

Up to this point, the curves that approximate the bounds on the voltage-

density spectrum have been derived. Next, we want to approximate the bounds

on the single-sided energy-density spectrum E(f). The relationship between

these two functions, which is derived in APPENDIX A, is:

E(f) - 2 IvCf)1 2  - 21F(f) 12, f 0 (78)

Note that we have defined the energy-density spectrum as being single

sided, i.e., it exists for positive frequencies only. This is in contrast to

the voltage-density spectrum, which existu for both negative and positive

frequencies.

Using fo as the reference frequency and letting tf f - fo, we have:

E(Af) - 21V(Af)i 2  - 21F(Af)I 2  (79)

The bounds of E(Af) are given by:

i -f 21F(&f)12 (o
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With this relationship, we can express the approximate bounds for the

various regions of the energy-density' spectrum using Bluatiors 51 through

77, which describe the bounds on the voltage-density spectrum.

Starting with Equation 51 we get:

E(0) - 2(F(0)]2 M v2 T /(20) (81)

Assuming a 1-ohm resistive load:

p V 2 /2 V2  (82)
rme

where

V is the peak instantaneous voltage, as indicated in Figure 12

Vrms is the effective, or root-mean-square voltage

P is defined as the average power over one cycle while the envelope

of the pulse is at its maximum value, i.e.., when t 2 _ t <_t 3 . P is

referred to as the peak .ower of the pulse.

Using Equations 81 and 82 gieras the bounds at Af - 0%

E(0) - PTb/ 8  joules/Hz (83)

RELATIVE ENFRGY DENSITY

For convenience, the bounds on the energy-density spectrum are normalized

to the peak value and expressed in docibels. The normalized function, which

is denoted by e(Af) ana is referred to as the relutive energy-density

spectrum, '.s obtained by.

C(tf) * 10 log(E(Af)/E(o)J = 20 ].og[F(Af;/./(o)] (84)
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The various equations used to obtain C(Uf) are shown in Figures 16 and

17. A logarithmic scale is used for the abscissa and a dB scale is used for

the ordinate so that the functions can be plotted as straight lines.

As indicated in these figures, the bounds on the relative energy-density

spectrum in the vicinity of the -6 dB points are labeled a- and a+ in the

figures, and are more closely approximated by straight lines drawn through

points a- and b- and through points a+ and b+. Curves B and C in Figures 16

and 17 were useful for locating points b_ and b+.

In the model described in Section 3:

SJf-40 when 66 > 1/i/
4f- 20 when 86 < 1/w

b .f+4 0 when $ 6 > 1/w
afb 1 (86)

U +20 when 06< 1/n

METHOD FOR HANDLING NEGATIVE DEVIATION

As explained in the discussion associated with Equation 18b, defining k,

the derivation assumes a positive frequency deviation during the pulse

(frequency is shifted upward). With this condition the rise time tends to

have the greatest influence on the negative region of the spectrum, and the

fall time, on the positive region.
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The labeled curves and lines correspond to the curves shown in Figure 14.

The relative amplitude is found by:

Line A, 20 log (F(0)/F(O)] - 0 dB

Line through points a- and b, is a better.bound than Curve B. Point a-

is located 6 dB down at Af.- M ktr (see Equations 52 and 53) and point b

is located on line D at Afb, - At- 20 (see Equation 74).

Line through points a+ and b+, is a better bound than Curve C. Point a+

is located 6 dB down at Afa+ " ktf (see Equations 54 and 55) and point b+

is located on line D at Afb+ - Af+ 2 0 (see Equation 75).

Line D, found by using Aquations 63, 78, 82, and 83, is:

10 log 1 10 log

Line ___,found by using iquations 64, 78, 82, and 83, is:

10o log [Tb3f2
Trb T•f b2Wf

Line F, found by using Equations 65, 78, 82, and 83, is:

10 log [ (iif) . . 10 log

Figure 16. (Page 2 of 2).
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The labeled curves and lines correspond to the curves shown in Figure 15. The

relative amplitude is found by:

10 log [E(f)/E(0)) 20 log [;(f)/;(0)]

Line A is: 20 log IP(O)/F(O)] - 0 dB

Line through points a_ and b_, is a better bound than curve S. Point a

is 6 dB down at 4fa. - ktr (see Equations 52 and 53) and point b is

located on line D at Afb- - 4f- 4 0 (see Equation 71).

Line through points a, and b•, is a better bound than Curve C. Point a+

is 6 dB down at a+ S ktf (see Equations 54 and 55) and point b+ is

located on line 0 at Afb+ - &f+ 4 0 (see Equation 72).

Line D, found using Ecuations 69, 78, 82, and 83, is:

log P --.- 10 log [ ) 41 g 2 (irlf)4 PT b T b• a(2rf4

Figure 17. (Page 2 of 2).
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When the deviation is negative:

k - -8 /Tb, (87)

and the roles of Sr and Sf are interchangedi consequently, ktI and kt 2 are

positive, and kt 3 and kt 4 are negative. In the model described in Section 3,

the parameters Q, M, and V' given in TABLE 1 enable the model to accommodate

either positive or negative frequency deviation.

DISPLACEMENT BETWEEN fo AND fc

Two key frequencies included among the parameters describing the chirp

pulse are f. and f.1 as shown in Figure 12.

fo the instantaneous frequency at t - 0, the asymptotic frequency

of the skirts of the spectrum.

fc the instantaneous frequency that corresponds to the midpoint

of the base of the pulse; the nominal center frequency.

When 6r - ,fo = fc' but when 6 r # 6f, fo and fc are displaced from one

another. Since fo is not a given parameter it must be calculated.

When the deviation is positive:

*B(6r -
6 f)

" + + 6 f)(88)0o fc 2"(6 6r

When the deviation is negative:

S(6r - 6 f)f = f -(89)
o c 2 (6 + 6)

r f
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Equations 88 and 89 are derived in APPENDIX 1.

Consider the following example. Given;

6r - .Iva 6f . tvs

B a I Mtz, positive deviation

f a 1100 MHZ

Calculate fo using Equation 88:

f - 1100+1 ( 1)
o 2 (.1 + 1)

a (1100 - *41) MHz

Using fo as the reference:

At , .41 MHzc

A plot of the bounds on the spectrum of this example would have the

characteristics shown in Figure 18. Two numerical examples of asymmetrical

pulses are also included in Section 5.

54



Section 4
EsD-TR-81 -100

SI-

I

fo fc

FREQUENCY

Figure 18. Relationship between f. and fc for the

example on the preceding page.
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SECTION 5

NUMERICAL EXAMPLES OF THE

BOUNDS ON CHIRP SPECTRA

To aid the reader in applying the procedures for plotting the spectral

bounds on chirp pulses, seven numerical examples are presented here. The

given parameter values that describe the chirp waveforms and calculated

parameter values that are used in plotting the spectral bounds are listed in
TABLE 2. The resulting graphs, which are shown in Figures 19 through 25,

illustrate the effect of the pulse parameters on the overall shape of the

spectrum.

In Examples 1 through 5, the pulse shapes are symmetrical, i.e.,

Sr = 6f. For that condition, the spectrum and its bounds are symmetrical

about the carrier frequency, fc, so that fo a f*c

In Examples 6 and 7, the pulses are asymmetrical. Plots of the bounds

for these two examples are shown in Figures 24 and 25. The bounds for example

7 are also plotted in Figures 26 and 27, which have linear frequency scales.

Each of these two figures includes a graph of the energy-density function
(solid line) as well as the bounds (dashed line) to show how well the bounds

fit the spectral-density function and to better show the effects of pulse

asymmetry. Each graph shows the relative spectr•' density as a function of
the variable 6f (scale along the bottom of the graph) and as a function of the

variable Afc (scale along the too of the graph)

where

Af f f-fo

Arc f - fc 'JC "I

f a frequency of interest
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fc - carrier frequency of the chirp pulse

fo the frequency about which the lower skirts of the spectral bounds

are symmetrical.

•te relationship between f and fc is illustra&ted graphically in Figure

12. The offset, fo - fc' is given by Equation 5.

As illustrated in Figures 26 and 27, that part of the spectral bounds

between point a and a+ is nearly symmetrical about fc. whereas, the bounds to

the left of point b_ and to the right of point b+ are symmetrical about f0 .

The relative energy density function, e(Af), in Figure 26 appears as a

smooth curve. Actually, th.ere are minor ripples with an amplitude of about

ti dB and with a period of i/Tb.
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APPENDIX A

TREATMENT OF NEGATIVE FREQUENCIES

(Equations in this appendix that already appeared in the body of the

report will be identified by their original numbers.)

The voltage-density spectrum of a linear FM trapezoidal pulse may be

expressed in the form:

V(f) _ v(W) a-j2wft dt

where

v(t) - A(t) cos 12w(f t + kt 2 /2)]o

A(t) - amplitude of trapezoidal pulse in the interval tI to t 4 .

Using Euler's formulas:

e)y = cos y + j sin y

e0ly - cos y - j sin y

we obtain the formulas:

1 t4 ej2w [kt2/2 + (f -f)t]
P(f) - f A(t) eo dt (30)

2 t

i
1 t4-J2% (kt2/2 + (f +f)t)

(;f ft Ami a- 0 di (31)

2 't 1

V(f) - F(f) + G(f).

Thus the voltage-density spectrum consis.. or Lae s,. of two spectra: F(f),

which is centered on +f, and G(f), which is centered on -f * The following

69



ESD-TR-81 -100 Appendix A

analysis will show that IG(f)I is approximately 20 dB less than IF(f)i in the

region fo/2 < f < 2f, and IF(f)I is approximately 20 dB less than jG(f)j in

the region -2fo < f < -fo/2. Based on these inequalities, we state that:

IV(f)l -IG(f)i, -2f 0 < f < -fo/ 2  
(A-1)

IV(f)l -. F(f)j, fo/2 < f < 2fo (A-2)

These relations permit the bounds on V(f) in the region fo/2 < f < 2 £o

to be determined only by considering the bounds on IF(f)l in that region.

To justify the statement concerning the relations b tween IF(f)l and

IG(f)I, consider the expression for the positive part of the spectrum centered

on +fo of a symmetrical trapezoidal RF pulse having no FM as:

F(f) V sin w T&f sin 6Af

where T is the mean pulse length and 6 is the rise and fall time of the pulse

and 4f - f - fo. For f - fo/2, we have:

F(f /2) (3

G(f /2) - /2-9

or 1G(f,/2)I is about 20 dB less than jF(fo/2)1. Fbr f - 2f., we have

F(2fo) 3f 2

G(2f ) -( - -° - 9

or JG(2fo)j is about 20 dB less than JF(2fo)j.

70



ESD-TR-81 -100 Appendix A

These relations also apply to an asymmetrical trapezoidal RF pulse having

FM, as can be demonstrated by considering the bounds on the skirts of the

spectrum as expressed by Equations 74 and 65 in APPENDIX G and APPENDIX F,

respectively. Equations 30 and 31 can be rewritten to show that.

F(f) - G* (-f) (A-3)

Thus:

IF(f)1 2  -IG(-f)1 2  (A-4)

Using Equations A-I, A-2, and A-4, we have:

IV(f)1 2 , IV(-f)l2, when f 0 /2 < Ifj < 2f (A-5)

Thus, the energy density at f is equal to the energy density at -f. Next, we

will use Sakrison's interpretation of energy density. 4

The energy-density spectrum of the chirp pulse can be expressed as:

1v(+f)V2 + IV(-f) 1 2 - 2 IF(f)12 (A-6)

Using this approximation in determining the bounds on the energy-density

spectrum causes an error of approximately 1% for the spectral region

fo/2 < f < 2f., since:

- L.IV - j+G IG+2 100

4 Sakrison, D.J., Communication Theory" Transmission of Waveforms and Digital
Information, John Wiley and Sons, Inc., New York, NY, 1968, p.48. ,

71



ESD-TR-81-1 00 Appendix A

7b justify Equation A-6, consider applying v(t), the chirp signal, to the

input of an ideal bandpass filter which has passbands centered at f o * fr and

each has a bandpass of Aft, as shown in Figure A-I. If the bandwidth, A, is

so small that V(f) is approximately constant in the interval If * fri ' a/2,

the Fourier transform of the output, y(t), is:

V(-+f r) when If-f r 1  4/2

Y(f) - r If+f r 1 &/2 (A-7)

0, elsewhere

If the output, y(t), is the voltage across a 1-ohm resistive load, the

energy dissipated in the resistor is:

J) y2 (t) dt,- J) I,(f)I 2  df (A- 8)

A IV(f )12 + IV(-fr )•2

By using Equations A-i, A-2, and A-4, the above yields:

J 2 y(t) dt *A IF (f r)1' + I.(-f r )12 2A IF( r)12 (A-9)
t

i

I
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z
_JU_

Z Z -- ~a .m---sA .m-

-f 0 + fr
FREQUENCY

Figure A-I. Band-pass filter used by Sakrison to interpret
the energy-density spectrum (see Reference 4).

Thus, the energy-density spectrum of the chirp pulse can be expressed as:

IV(+f)12 + IV(-f)1 2  2 IF(f)12  (A-6)

i3/

I.
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APPENDIX B

DERIVATION OF THE VOLTAGE-DENSITY
FUNCTION (EQUATION 30)

(Equations in this appendix that have already appeared in the body of the

report will be identified by their original numbers.)

Starting with Equation 30:

F(f) - 1/2 t e 2w kt/2 + (f-f)t dto dA~ft)=[k/2 /2

we will proceed to derive the solution to this integral. Using Equation

18a, the equation above becomes, by referring to Figure H-1:

F(f) = F(f) + F(f) + F(f) (B-1)
12 23 3 4

where

SJ21 kt2/2 + (f -f)t

"1/2 it o dt (B-2a)

t3 j21T kt2/2 + (f-f)t
1/2f V e + •o-0 dt (B-2b)
ta

t4 V(t4-t) - +

= /2 ft3  6 ~ 1 k 2 2 (fftd6f

Using Rererence 4, several general. relationships will ,e used to evaluate

these integrals:

ftb eJ21 kt2/2 + (f°-f)t I -e o k Z() - ZXa)/

a (B-3)

Derivation of B-3 using formula 7.438 where a n nk,

2b = 2n(f -f), and c - 0, follows:

5 National Bureau of Standards, Handbook of Mathematical Functions with

Formula-, Graphs, and Mathematical Tables, National Bureau of Standards
Applied tMathenatics Ser'Les, June )964, Equations 7.9.38 - 7.4.41.
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t

tb ej2 kt/2 + (f 0 f)t at fb os n 21 kt2/2 + (f "-f)t dt +

aa
a + sin 2k (f kV + r at

S't (ff 2 (wkt + iw (f - )

Cos 21" kt-/2 + 'o' dt at irk

a

(f f)2 S (irkt _w(f-f)2

+___ sin)+ i -S [b

ivk /kw t a

7(f _f) 2  T(f -f) 2  t

-2- C (X) -sin -- 4 S ( a

C ko s k k

w(f _.f)
2  w(f _ f)2

Co 0O C (X~ b - sin - S ( b

r(f 0 it (f0 -()b si •- siCo 2k 4 Cf - C (X ) s k Xb)

a I _f)2 W(f -f)2
-co0 S(Xe) s Bin S------ S

-Cos k K

T7hrefore:

e 32n ÷ý + f f )t I j~ c f( )])B 3

• b o dt 7 1 e K. Z x ) -- 3)

a
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where

X i " •i t I + V -2/k (f -f)

Z(X ) - + j S(s)

which is the complex form of the Fresnel integral.

Integrating by parts gives:

tb ej2v [kt 2 /2 + (fo "f)tt
b t ef tdt

ta

I• f tZb -Jlr(f -k2)/2

-tab Z(Xa) it

Derivation of B-4.

The left side of B-4 may be rewritten with the aid of Euler's formula as:

.tkkt 2
j. t 2w E -t -+ (f -f )t ] b k t2
"e 20 dt t coo 2w[--- + (f -f)t)dt

a
tb 2

+ j j t sin 2wj--j + (fo -f)t] dt.
a

Integrating each term, on the right side, by parts and applying formula 7.438

of Reference 5, we ohtain:

it'(f -f )2  if a -f.4)2 t (f -z
t 0 C(X) + sin o S(X) b b coo 0 dX

7T cos k k
a a

t 1(to _f12 S(t (fo -f)2I(f0-) b
sin k dx + (coo S(X) sin ()

a a
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t b (fo _f 2S() sin Tf _f) dXC
_j b __. k dX + j S- k dX

a a

w(fi t) 2 ((fo _)2 2I (f _ f) 2

Xb) +t sin S(X b ) - t cos C( b

Tr(f _f) 2  i(f _f)Z

-jt cos k S(X ) + jt sin 0 C(xa)a k a a k a

f(f 0 4)2

Co O 0 C(x b) cos k nXb
0 k Xb V• + i 2k7

Cos (f 0_f)2 Co. r(fo0 _f )z

k Xa C(Xa) k sin f la
+ (2w12

0 2~b Xi t 2 o b

"(f -f) 2  S(Xb) "(f f) 2  co 2

+ sin k Xb a -+ sin c o --

V(f -f) 2  S(b 'if-f) 2 CosX2

+ )CO k 4b +i- k -o

"(f -f)2 S(() j (f -f)2 Cos I X 2
oa 2 a

fk >a Ij Cos _2"

'(f f )2 C(xb) Iifo -f) 2 sin 2 X 2

"+ j sin k 0' b -" sin X b i. '2k kk~~~ ' WIkr(2
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W(f _f) 2  C(Xa) W(f _f)Z Cos X 2- j s in 0 1- j sin
k XA a + k sin

These terms correspond term-for-term with the expression of the right side of

B-4 when expanded in similar type terms.

Using Equations B-3 and B-4:

V 0e -jn (f o 0 "f )2/k

F f 277

{~ ~~ ~~X )/ 
7 ')~ 2  

~-x 22~) 7 2 772
I+i -(t X -j¶(¶ X2i)/2-t, -t - Z(x•, e-•

+ Z(x 3 ) -Z(x2

4.-[(4 4. Z X4 -)

-j(1 -2/
+3 X 3 (B-5)

DLrivation )f B-5 follows.

The expansion of 3-1 by B-2a, B-2b, B-2c, B-3 and B-4 yields:

F(f)( ' t 2 Z(X 2 ) X2 Z(x 2 ) ejI(1 - X•)/2F~) '/' r 8r + . 8r

- t1 Z(X 1 ) X1 Z(X 1 ) *-jw(1 - X2)/2 t 1 Z(X 2 )

6 w6 --- 6 -

r r r r

9
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tI Z(x 1 ) t 4 Z(X 4 ) t 4 Z(X 3 )
+ a Z(X 3 )Z(X 2 ) + 4 - -

t4 Z(X4 4 44 e-jW X4)/2 t 3 Z( 3)

f f f f

x3 Z(X3 ) 3-j(1 -

f f

Thir expansion corresponds term-for-term wic.h the right side of B-5 when

it is expanded in similar type terms.

Derivation of 32 from B-5

From B-5, we have:

V -j:(f - f) 2 /k X2 Z(X2 O112
F(V) - o Z(x 2 ) -0 + r +2Mf I, Z(2 •

X1 Z(XI) 4-x1 X4 Z(X 4)

6T •r7 + Z(x 3 ) -Z(X2 ) + 6 ,J2k
r r f

Ix3 4 4 X3 Z(4 (3 ) +*(X 3 16- M k~- Z(X3 ) - + 72N
f f f

V IJ~ IfZ/ 1 I IIII I #(I II

F(f) V-Tfk.)2)jx

X2 Z(X 2  O(X 2 ) X3 Z(X 3)

rr f

*(3 x4 Z(X) #(X)
+-6-1 (32)

f f

80i



ESD-TR-81 -100 Appendix C

APPENDIX C

EXPRESSING THE COMPLEX FRESNE.L INTEGRAL AS AN ASYM4PTOTIC EXPANSION

(Equations in this appendix that have already appeared in the body of the

report will be identified by their original numbers.)

The integral in Equation 36:

Z%'x) - XCos (11t2/2) dt +. j Xsin (?t 2 /2) dt (C-1)

is referred to as the complex Fresnel integral. The vector, Z(X) , generates

Cornu's spiral, shown in Figure C-i, where X is varied as the independent

variable.

Reference 5 gives several types of expansions that can be used to

evaluate the Fresnel integral. Using (7.3.9) and (7.3.10) of Reference 5, the

integral can be expressed as:

u e j i/4 e-J•r(1 - X2)/2 g ~J#12/2
Z((X) pe- g lx / (C-2)

where

-1, X<0
u (C-3)

+I, X > 0

(-1)= 1 . 3 ... (4m .- I (C-4}
(x) (WX2)2m

g mx) (-1)m 1 . 3 ... (4m + 1)
g(x} w)2 (C-5)

UsLng the above relationsh.ps, the functions within the brackets in

Equation 32 can be written In the form:
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(xiZ(xi) - O(Xi)l Xi ui e + [IXj f(Xi) -1) -

- J WX2/2 
(C-6)

- {1Xi g(Xi)) " •

where

f(X,) e 2- Xi (37)

An approximation of C-6, when Ilxi > 1.1 may be obtained by deleting the

summation in C-4 and including only the first term in summation of C-5 to

obtain:

Xi u i e3 ejw412 1c-7)

(xi Z(xi) - *(Xj)l 2 (C-7)

When 1Xi) > 1, tho approxi.mation expressed by the right side of (C-7) is in

error by less than 0.05 dB when compared with the left side. This is evident

by computing the numerical values of thase quantities for lXij - I with the

aid of the tables in Reference 5. The risults of such a computation are 0.636

and 0.639, respectively, thereby yielding:

i: O. 639

ii
20 log 0o.041 dB.
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APPENDIX D

APPROXIMATIONS OF F(Af) AND E(Af) USING ASYMPTOTIC EXPANSIONS

(Equations in this appendix that have already appeared in the body of

this report will be identified by their original numbers.)

The voltage-density spectrum F(Af) for a trapezoidal chirp pulse is given

by Equation 32 as:

2
V -jw•f /K 4 1

F(-f) - -e - X Z(x (Xi) (D-1)
4k i-I 6 1i i LIi

A simpler expression is desired so that we can obtain some insight into the

behavior of F(Af). When the approximation given by C-7 is applied to

Equation 0-1, F(Af) can be exp-essed by:

/",, 4 [Xi ui eJw/4 ejX 2/21
F(Af) -X--e-j" _ L (D-2)

4k2J1J

when JlXi > 1, and

-1, Xi < 0

U,
1 , X, 0

k -- ,6 = 6 6 -- 6 6 , -6, 6 aTI r 2 r 3 f 4 f

Af - f -f, V/ikt r-v'7kaf
i

Figure D-1 depicts graphs of Xi as a function of Af for i - 1, 2, 3, and 4.

When Af is in the shaded interval betwoen Q, and P,2, JXII and/or IX2 1 are less

than uni.ty, and when Af is in the shaded interval bewteen 03 and S4' 1X3)31

and/or IX4 1 are less than unity; thus, in these two intervals, Equation D-2,

which depends upon the approximation given by Equation C-7, is not valid.
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By referring to Figure D-I, Q, is determined by noting that for •I the

value of XI +1. Likewise, S2, S13, and Q4 are defined for X2 - -1,

X3 +1, and )4 - -1, respectively. Based on these conditions, we have:

r r (D-3a)
r + f b

a2 "- r r 6 + (D-3b)

- ( f - )f "'S(D3c
b!3 b 

( 3 ) 
b

6f +/T (N-3d)•4 + 6 ÷ f 2+

From Equations 19, 20, and 35 we see that when X, and X2 are of the same

sign:

A- , R or 4f > Q (D-4a)

5 1 2

"Likewise, when X3 and X4 are of the same sign:

3

/2k Af < SIf 3 or Af > n (D-4b)Sf' 34f

The approximation given by Equation D-2 with the aid of Equation D-4a and

D-4b can be expressed as:
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F(&f) e-*~ 2 /k a e Tr (Af) -Yf (6f)] (D-5)

4ki r e

where

af < al

o f > 11

2 2

ejWX12/2 ejWX2 /2

y (Af) , 2  eX 2
2  (D-5a)

2II 2)
(lrx1 ). (wX2 )

22

e Tf j2x/2 _J lX 3/2
"f(Af) 4 2 2(D-b)

', IX4 ) X )

The approximation in Equation 0-5 is obtained by noting that EquAtion

D-2, with the aid of Equations D-4a and D-4b, can be expressed as,

F( a -. , 2 /k A X 1 - X 2ý , j) / 4 - e j , l / 2 - _ _ _2 / 2

2 2
4- X4 4 4 Xu3  e______R4 2 J- w 3 /2

U3)7 ~ 4 ( _t)_3)

when &f < Q, or Af > 94" (D-5c)

Let u1 - u 2 - u 1 2 when X, and X2 are of the same sign.

If X, and X2 are both positive, then u 12 - 1.
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If X, and X2 are both negative, then u -1 .

Likewise, let u3  u - u 3 4 when x3 and are of the same sign.
If x3 and are both positive, then u3 4 X X .

If )3 and X4 are both negative, then u3 4 - -1.

F(Af) - • ej•- -_12 (k ejw/ 4 
- rf) - Yf (Af)

Leta - u34 u 1 2 , then:

[ 2
F(Af) -- k a jn/4 -Yref r Yf(Af) (J-5

For Af < Q = I -1 O

Af > Q a - -1 + 1 - 0
4f

n2 < f <a 3, a +1 + 1 - 2

For the in-band region of the spectrum where <2 ~ Af < S1 the term

lyr(Af) + Yf(af)l may be neglected since:

I'r(Af) + Yf(AC)I << 26i (D-6)

"by noting that from APPENDIX C, IXj > I and from Equations D-5a and D-5b let

6 r 6 f a 6, Ix 1t " Ix 2 1 " Ix3 1 - 1x4 1 x in the denominators of Equations D-

Sa and D-Sb and [y * Iyf 1. Then:

e 2 X2
+ 2 2ly 6)+ Yv iAf <lr(A l+1- f ( AfI <x 2  [e 2 -
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Since X1 -- )2 ,, ,", then

1-Y (Af) +-Yf(Af)I << 22 2 "i (x1 - x2) 2x1

_____ W2/k

Thus, myr(4f) + Yf(Af)I << 2/k for R2 < If < 13

With the aid of inequality in Equation D-6, D-5 can be expressed for the in-

band region of the spectrum as:

F(4f) a V eJl/4 2 < at < Q3 (D-7)

2ýk

Thus, the amplitude of the spectrum at If - 0 iS:

,F(O)M 2 (D-8)

From Equation D-5, the expression for F(4f) for the out-of-band region of the

spectrum is given by:

F( Af) - -V -jwAf2/k 2 ] (
-F•((A) f)lf (D-9)

Af < Q

af > S4

2
2 J1?X /2

V -wAf 2/k 4 1 e i
or F(Af) - - a e -

4ki-i 2
i OrX.)

9.
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2 2 2
jtr/2 [ kt - 4 Af t + -f I

- -jwf /k 4 k e 
k

4ki 2 2

V 4 1 e
F(Af) - E -- (D-10)

2 1-I 6 2
8T i (kt -Af)

i

for Af < QI

Af > a4

when Uf & ff . - 0 + 0 i.e., when Af is midway between 03 and SI
f 2 3 4

Af - Aff -6 + 6' 2 ,b (D-11)

Based upon the definition of Xi and Equation D-11, we have:

UX4 ' f Afr (D-12)

and from the definitions of Z(Xi) and O(Xi) we have:

[X4 Z(x 4 ) - (x4 )J- (X3 Z(X3 ) - O(X3 )J- 0 (D-13)

in which case Equation D-I yields:

I
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2

v f/k 2 1
F(Af ) - -e - Z ) " ( ) (D-14)

f 4k i-1 6 ii

Using the same procedure for obtaining Equation D-5, the above result can

be expressed as-:

- 2

F(Aff) - V "j-faff 2 /k (.-14)f 1/ - r(Aff)] (D-15)

Since:

lyr (Af)l << ,ik

I Af f2 (D-16)

F (A f f) f . Ic
4rk

and then

IF(Aff)I ( V (D-17)4/;:

From Equations D-8 and D-17 we have-

F(Off) I

In a similar manner, it can be shown that when Af - uf .j • ( * + 2),

i.e., when Af is midway between S1 and f12- so that:

2Af

F(Afr) r v a 4 (D-19)S4/k-
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ESD-TR-81 -100

and

F(Afr (D-20)

F(O) 2

From Bquations D-7, D-8, D-9, D-18, and D-20 the relative energy density,

defined by:

E(Af) - F(.af) 
(D-21)

F(O)III

is expressed by:

E(Af) 1, a <2 < A 
(-2f

3
2)

2 3

j2fft •-- - Af

i~t( 7 2i
k 4 __________(0-23)

E(Af) - - E
4 i1- 2

16W 6 (kt 6Af)i i

for Af < QI

Af > 14

Then:

- 1 (D-24)

r' 4

and

E(Af L 
(D-25)
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A tabulation identifying the approximating equations for E(Af) is given by-

Region of &f Applicable Equations

<l Af < a (D-22)

af < fla or Af > n 4 (D-23)

4f = - (l + 12 ) (D-24)
r 2 1 2

I
f " (n + a ) (0-25)

f 2 3 4

An example of an application of the approximations derived in this

appendix is shown in Figure 0-2. The points on the graph are values of E(Af)

accurately calculated by evaluating the integrals in Equations B-2a, B-2b, and

B-2c with the aid of a computer algorithm involving double precision. The

solid curves were obl:ained by applying the approximations derived in this

appendix. Curve I was obtained using Equation D-22 with the results expressed

in dB. Curve 2 was obtained using Equation D-23. Curve 3 was obtained by

plotting;

Y Yr(Af) + Yf(Af)
20 log

and clearly depicts the inequality in Equation D-6. Point 4 was obtained

using Equation D-25, expressed in dB.
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APPENDIX E

F(Af) FOR SKIRTS OF SPECTRUM (DERIVATION OF EQUATION 59)

(Equations in this appendix that have already appeared in the body of the

report will be identified by their original numbers.)

Starting with Equation 58, we will derive Equation 59, which is used to

determine the bounds on the skirts of the spectrum:

j2wtikt /2 - &f)
2. i

V 4 e
F(Af) "- E (58)

2 i-i 2
8w 4 (kt - Af)i 2.

where 6 6, 62 -6r,63 -6f 6 - 6f

From Equations 19-27 we have:

t, - r - 6 /2 (E-la)

t 2  = t + /2 (E-lb)

t 3  - t -
6 f/ 2  

(E-lc)3 f f

t - t + 4 f/ 2  (E-Id)
4 f fEld

SLet* -i 2Wti (kt /2 -f) (E-2)

4
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Using the above equations, we can get:

6

-M 2vt 1 (- ) - 2s (t - ) [- tf

2 r6

01 - t2 k - w6 rtk -f k r 2w t Af + w 6 Af
rr 4 r r

2*_ 6r2 w6 k - &f) -27tAf t0\aw (r 4/ r (tr r

k t2t (r~3f - 1 (.)k (tr+ r) 1

62
2 

r2
t k + w 8 t k +.k--- 2w t 4f - 46 Af

r r r 4 r r

- wk (t + w 6  (kt- Af) - 21rt Afi 2 t 4u pr r r r

03 is the same expression as 01 except subscript r is replaced by subscript f.

ý4 is the same expression as 02 except subscript r is replaced by subscript f.

Then:

2 2
-1 ffk(tt + 6 /4) - 2w Aft - w6 (kt - Af) (E-3a)r r r r r

- irk(t2 + 62/4) - 2w Aft - w6 (kt -Af) (E-3b)r r r r r

3 wk(tf + 6f/4) -2w 4ft f W 6
f (kt f 4f) (E-3c)
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it~2 +62 f(E-3d)

we will now examine the case where the leading and trailing edges of the

pulses are steep, as in most chirp pulses, i.e.,

r << Itrl and 6 f << It f, so that

t ta t, tat3 - t4 and 66 - 6. Then:
r 1 r f

(kt - Af) - (kt - Af) - (kt - Af) (E-4a)
1 2 r

(kt - Af) a (kt - Af) a (kt - Af)
4 3 f

With these approximations, Equation 58 is rewritten to give:

SJ$IJý2 J3 eJ104 2"

F(Af) = 9 2 _ e 2 e e...
8w2 L 6(kt1 - Af) 2  6 2 (kt 2 - Af) 2  63(kt - Af) 2  6 4 (kt 4 -- Af) 2 '

2 2

jwk(t 62 /4) -j2rAft -jw6 (kt - Af)
r r r r r

F(Af) a -V e e e el2
82 6 (kt Af) 2

r r

2 2 - j2wAft jwr6 (kt - P)
j irk(t + 6 /4) r r r

e r r .ee
2

-6r (ktr -Af)

Jk(t 2 + 62/4) -j2wAft -jr6 (kt -Af)f ff f f
e .e e

-6 (kt - Af) 2

* f if
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jlrk(t 2+ 6 2/4 -j21tAft Ji6 (kt - af)
f f f f f

6 (kt f- Af) 2 J

Jkt2 + 2 /4 jg f -ji6 r(kt r- af) jiw6 r (t r- Af)
I( f jwv 2 6 4fe~tA r ra r r

FA)Ur f a [ -e

S2 ([6 (kt f A t) 2 J

or

[w~ 2 +2 /) -j2itrtAf
F4) V e r r e

jnw 2 6k /4)

F(Af) 2 (kt r-f Alt) k

-jir6Oct (kt- r r

r r

jlrk(t 2+ 6 2/4) i 2ff ttfAf
f f e

(kt -Af)
f

f'6(t 6 (kt f Af)I
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Further reduction yields:

Sjik2(t2 + /4 j2 rf

F(Af) V e jeT/2 e i(kt r r ) (59)
r

sin TS (kt - &f)
r r

)6 (kt -(-f)

This concludes the derivation of Bluation 59, however, we will check to

see if the equation degenerates into the conventional equation for a pulse

having no FM when we let k - 0.

If the pulse is symmetrical, from Figure 12 and Equations 23 - 27, we have

6r 6f , tr -T/2, an- tf a-r/2. BRuation 59 becomes:

V ej[k(T2 + 6 2/4) + 1/2]

F(Af) - (E-5)

e j1T'TAf snn -T2&f) sin (-kT/2 - Af)

- e sin t6 (kT/2 - &f)
v (kT/2J -f) " W6 (kT/2 - Af J

Letting k - 0, Equation E-5 can be written:

I1
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F(f) - sin YrAf " sin "Af1 (E-6)
2 T-af iT64fJ

which is the conventional expression for the positive part of the spectrum

(centered on + fo) of a symmetrical trapezoidal RF pulse with no FM.
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APPENDIX F

BOUNDS ON SKIRTS OF SPECTRUM WHEN

r f bp< T tr " 1 * 2 ' tf t 3 -t 4

(Equations in this appendix that have already appeared in the body of the

report will be identified by their original numbers.)

Using Equation 59, we can write the inequality:

V ___ _ sin Xr s sin Xf{f - (ktr Af) Xr (kt - Af) Xf

where

X = irS (kt - Af)×r r r

Xf . itsf (ktf - af)

The bound on the skirts of the spectrum determined from Equation F-i may

be divided into three regions of Af for convenience of graphical construction.

(1) If Af is slightly more positive than ktf, we shall refer to the

bound as F c(f) , which is depicted by ct-ve C in Figure F-i and determined

from Equation F-i by:

V 1
FC - Ikt - Af (62)

If Af is slightly more negative than ktr, we shall refer to the bound

as F B(f) , which is depicted by curve B in Figure F-1 and determined from

Equation F-i by:

V 1
F- Af (61)

r
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(2) Because sI- 1, another bound on the spectrum is given

by-

IOA~ 1 1 ' t
( - (ktr - Af) + Ctf - U) (F-2)

If Af is considered to be sufficiently greater than ktf, then the bound can be

estimated from Equation F-2 by:

V
FE(Af) _< 2-- (64)

where FE(Af) is depicted as curve E in Figure F-1.

The range of Af where:
'1

F (Af) > FC(Af)

is approximately determined by noting that in this range:

v v 1 .

&-f i (Atf- kt)

Thus, when 4f > 2ktf u /, FE(Af) > FC(af) and Equation 64 should bm used as

the bound.

If Af is considered to be sufficiently less than ktr, then the bound can be

f 105
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If tf is considered to be sufficiently less thanu ktr, then the bound can be

estimated from Equation F-2 by:

- V
P (f) < - 2--• (63)

where FD(af) is depicted as curve D in Figure F-i.

The range of Af wherez

FD (Af) FB(Af)

is approximately determined by noting that in this range:

V V 1
2Af-w (Af - kt

r

or.

Af < 2 kt *
-- r

Thus, when Af < Zkt , FD(Af) > F (Af) and Equation 63 should be used as

the bound.

(3) When _< yj a bound on the spectrum is given by:

4)w2 (2+ (-3

-w (kt A) f (kt f Af) 2 )

for a certain range of Af.

Zf Ut is sufficiently greater than 2ktf, then the bound determined from

Equation F-3 will be:
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* V
F(4f) ( - 2 (65)

where P F(A) is depicted as curve F in Figure F-I. For this Af, the

inequality:

F (Af) < F E(Af)

will be satisfied, and the lower bound on Af, for this condition, is

determuined by noting that:

V V
2 2 s 1-W4*1

2W 64f

or

Jul

ifi 2i
Thus when 7-T

F B(Af) is the bound on the spectrum for kt > Af > 2 kt (61)

FC(At) is the bound on the spectrum for ktf < Af < 2 ktf (62)

FD(Af) is the bound on the spectrum for 2 ktr > af > - (63)

F (Af) is the bound on the spectrum for 2 kt < f < (64)
E f0
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F (4f) is the bound on the spectrum for lfit >' • (65)
F

These bounds are depicted in Figure ?-I. The frequencies at which these

bounding curves intersect are defined as critical frequencies. The critical

frequencies are determined by solving simultaneously the equations that

represent the corresponding bounding curves. Thus to obtain if 2, solve

Equations 51 and 64, simultaneously, and obtain:

if 2 1 (66)

In a similar manner, the critical frequencies Af31 At- 20, and &f÷2 0 are found

to be expressed by:

if -_ (- 1/4 1(1/2 (69)f3 (-T ) (69)

Af -20 kt (67)

and

Af+20 Zkt f (68)

i

I
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APPENDIX G
1

BOUNDS ON SKIRTS OF SPECTRU•4 WHEN B >

(Equations in this appendix that have already appeared in the body of the

report will be identified by their original numbers.)

By referring to Figure F-i, we observe that the point of intersection of
I

curves F and E occurs at 4f - In APPENDIX F, the inequalities:

I
ktf < 2kt& <-7

were obtained for the condition that the leading and trailing edges of the

chirp pulse were "steep.* Under these conditions:

ktf(t + t4
T b 2 2

which means that

and is depicted in Figure F-1.

c One method of visualizing a necessary change in Figure F-1 when

considering the condition 0 > -is to assume that the point of intersection

of curves F and E shifts to the left due to an increase in the value of 6- 1
until 76 < ,while curve Z is maintained as fixed. With the removal of the

restriction on the pulse edges being *steep,6 Equation 58 may be used to

determine the bounds of the spectrum for the condition L < 8 , which are

depicted in Figure G-1 and obtained in the following presentation.

109
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From Equation 58 we have:

i2w t -~ -a

V 4 1 1

F(Af) - -- E -
2 i"I 6 2

8w i (kt -Af)i

The bounds on F(Af) are expressed as;

Ff) V I 1 + 1Fw 2 8r (ktl Af))2  (kt 2  Af)l2

+-+ (71)

6f I(kt 3  At) 2  (kt 4 Af) 2

When Af is slightly more negative than ktI, the bound becomes c'xve B and is

expressed by:

V 1 1I
"(Af) a- - (72)

82 r (kt - Af) 2

When Af is slightly more positive than kt 4 , the bound becomes curve C and is

expressed by: 1t
FC (Af) " -y - ( 273 )8C w 2 (kt - Af) 2

When Af << ktI or Af >> kt 4 , the bound becomes curve D and is expressed

by:

FDIf) v 1 + v
,D(A) 4 42 -2 2w 2 At2  (74)

For sufficiently large IALf where Af << ktl, the range of Af such that:

FD (f) > FB (Af)
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is determined by setting%

V V

2 Af 26 26 (kt 1 - Af)2

Then:

1
t Af I < kt -Af

Or

Af(1 < •- < kt 1

r

Since t1 < 0 and Af < 0, then I t • should be small but positive.
r

That is:

Af(1 -( I < kt 1
2 r1

Theni

kt -
6 r *

Adf <
r 20 + 6f
I~~ f-'

and
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Af88 <1 (76)

Thus, for 6f < df_40C

A A

F (Af) > FB (A)

In a similar manner, the range of Af may be determined for Af >> kt 4 ,

such that:

F D(Af) > FC (Af)

by setting

V V>

2w2 Af2 8w2 6 (kt - At) 2

f 4

Then:

S±j�Aff < kt 4 -AfA i
Since Af "> kt 4 > 0, the left side of the inequality cannot be negative, as

that would bound the magnitude of Af from above. Thus, - (kt 4 - 4f) > 0 and:

,11

2AV f <-Oct 4 -tf) - -kt 4 + Af
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or I-
kt 4 < A•(1 -

kt4 f 1
I -- r T- +

2~ +•f)

and

Af > A•4 fr (77)40+ 6r U _ _6r

Thus, for Af > 4f 4 0 '

F D(Af) > F C(At)

Thus, when 8> -•6-

F (Af) is the bound on the spectrum for kt > Af > &f-40 (72)

FC(Af) is the bound on the spectrum for kt < af < Af (73)
D 4 40

F (Af) is the bound on the spectrum for Af > 4f (74)
D 40

FD(Atf) is the bound on the spectrum for tAf < A&t 4 0 (74)
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These bounds are depicted in Figure G-1.

The intersection of curves determined by Equations 51 and 74 is denoted

as the critical frequency, 4f 3 , and is given by:

4f 1 (&)'-/4 ý1)/2 (75)
STb

Likewise, the critical frequencies Af- 4 0 and Af+40 dre given by Equations 76

and 77, respectively, and are depicted in Figure G-1.
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APPENDIX H

CHOOSING A LOCATION FOR THE ORIGIN ON THE TIME SCALE

(Equations in this appendix that have already appeared in the body of the

report will be identified by their original numbers.)

Equation 74 is used as an approximation of Equation 71 when IAfj is

large, compared to ktI or kt 4 . The error in the approximation depends upon

the location of the origin.

When the pulse shape is symmetrica& ( 6 r = 6f), the approximation is best

when the origin is located midway between ti and t 4. When the pulse shape is

asymmetrical, 6 r << 6f !or example, the terms containing 6 r in Equation 71

have more influence on F(Af) than the terms containing 6fi for this case the

approximation given in Equation 74 is better when the origin is located closer

to tI than to t4- On the other hand when 6 r >> 6f, the approximation is

better when the origin is located closer to t 4. Thus, the origin should be

located closer to the steeper edge of the pulse.

Although an optimum method for locating the origin on the time scale was

not found, the approximation given by Eqiation 74 appears to be best when the

origin is located such that:

ti r b (19)

r f

r

6 fb

tf (22)
4 r

r

==
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tI + t2 -6r-b 6r
r - 2 + -- +(23)S 2 6 +6f 2

3 4 f b ftf - 2 6r 6 2 (24)

These relations are obtained from Figure H-i by noting thdt:

VI V Vs V
j rt 4  Ff

-t V t4V
V' 1 4 t6 - -1S

6r f If 4r

t 1 6r + t16 - tl r- t 6

t1(6Sr + 6) - -(t 4  - 1 M)r - - Tb 5 r

+ 6
r f

t - t + 6 (20)
2 1 r

a3 t -6 (21)4 f

64t f5 Tb~f (22)
.6t4 t f b1 •r"6 f (22)

tI T- t2 ý aIr
r r f

t 1 2 t +4  (23)

t 3 + t4
tf2 -4 4  (24)

2 2.
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Vs

/ / 4,,- E--.XTENSION OF TRAPEZOID

/

"-'-q- TR APF.ZOIDAL PULSE

I-- - - -- ENVELOPEV

I I

I t r t2 0 t3 tf t4

-Sr -4f

TIME (SCCONDS)

Figure H-I. Geometry associated with locatioti of the origin.
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APPENbIX I

DISPLACEMENT BETWEEN f AND fc

As shown in Figure 12, fo is the instantaneous frequency at t - 0, and fc

is the instantaneous frequency at the center of the pulse. The bounds on the

skirts of the spectrum are symmetrical about fop whereas the peak of the

spectrum tends to be centered about fc (see Figure 4). As explained in

Section 3, fo and fc are displaced when the pulse shape is asymmetrical.

Using the relationships shown In Figure 12 the displacement is determined to

be;

fc -f (I-i)

Using Equation 19 to express tI, we can rewrite Equation I-I as:

f T b rTb_(-2

b rbfd

f -f rf (1-3)o c 6 r + 6f

From this we get Equations 88 and 89.
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NATIONAL TELECC)NUNICATIONS & INFORMATION ADMINISTRATION 35
ATTN: MR. ROBERT MAYHER
179 ADMIRAL COCKRME DRIVE
ANNAPOLIS, Ni 21401
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