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ON THE PROSPECTS FOR ARTIFICIALLY INDUCING EQUATORIAL SPREAD F

1. Introduction

The Brazil Ionospheric Modification Experiment [BIME) is a project

sponsored by the Air Force Geophysics Laboratory [Narcisi. 1982], the aim of

which is to produce a perturbation in the electron density of the equatorial

ionosphere of sufficient magnitude to trigger (i.e., provide a seed for) the

collisional Rayleigh-Taylor/ExB gradient drift instability, the instability

believed to be responsible (see the theory review article by Ossakow, 1981 and

references therein) for naturally occurring equatorial spread F (ESF). The

aim of this experiment is to make possible the observation of the evolution of

this instability under more controlled circumstances than those characterizing

naturally-occurring ESF. In this report we shall attempt to address each of

the factors which might bear on the success or failure of such an experiment, V1

and to suggest ways by which the prob;bflity of experiment success might be

maximized.

In Figure 1 we show the geometry of the physical problem of interest (see

also Zalesak et al., 1982). The BIME experiment involves a rocket-launched

chemical release in the equatorial F region ionosphere, the design of which is

to deplete or enhance the electron density around the release point. Remote

sensing and other rocket probes would then monitor the progress of the

(hopefully) induced instability.

2. Theory

For the analysis in this section, and for the numerical simulations to be

presented later, we make the assumption that the physical state depicted in

Figure 1 can be accurately modeled by straightening the magnetic field lines
! and by representing the distribution of plasma along magnetic field lines as

an array of three distinct thin layers of plasma connected by magnetic field

lines, as depicted in Figure 2. The center layer represents the equatorial

nighttime F region plasma, while the upper and lower layers represent the

remaining northern and southern hemisphere plasma respectively, including the

E region plasma. This model is described in detail in Zalesak et al.

[1982]. At this juncture it should be noted that our previous study on

artificially created equatorial spread F (Ossakow et al., 1978) considered

only the center layer. Thus, the effects of plasma at lower altitudes away

from the the equatorial plane, but on magnetic field lines threading the
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equatorial region, on the bubble dynamics was not considered (in reality that

model was valid only when the depletion and not the background ionospheric

integrated density and Pedersen conductivity dominate the dynamics). We now

list here the primary assumptions in the present model: 1) the electric

fields E of interest are electrostatic in nature and hence derivable from a

scalar potential: E- -V*; 2) the conductivity along magnetic field lines

is sufficiently high that we may treat the magnetic field lines as equipoten-

tials: *-*(x,y) (see Figure 2); 3) currents between layers are carried

solely by electrons, i.e., there is no ion tranport along magnetic field

lines; 4) layers 1 and 3 (see Figure 2) are initially uniform in both

electron density and Pedersen conductivity, and remain so during all times of

interest, enabling us to treat them as a passive electrically conducting load

on our system. For further details, the reader is referred to Zalesak et al. I.

[1982].

Within the context of the above model, the ExB gradient

drift/collisionally dominated Rayleigh-Taylor instability can be triggered

whenever a certain geometric relationship holds between the electron density

gradient in the equatorial ionosphere and the forces acting on the plasma. In

particular, an infinitesimal perturbation on the system will grow

exponentially, i.e., as eYt where t is time, with growth rate y given by

(Zalesak et al., 1982)

c ExB P2 Vn 2

B2  V in r +E +E n2
P1 P2 P3

where E and B are the electric and magnetic fields respectively, Un is the

neutral wind velocity, 1. is the gravitational acceleration, Epi is the

magnetic field line integrated Pedersen conductivity of layer i(i - 1,2,3), n2
is the electron density in layer 2, and V in is the ion-neutral collision

frequency in layer 2. R is a term due to recombination chemistry, which will

be discussed shortly. In Figure 2 it can be seen that Vn2 foc our unperturbed

ionosphere is in the y direction (vertical in the equatorial plane). Since

the vertical component of the neutral wind is in general quite small with

respect to the other terms in the growth rate, we may neglect this term in

Eq. (1).
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The presence or non-presence of the term R in Eq. (1) is a function of

ones choice of a zeroth order profile for the equatorial ionosphere. In the

original papers of Scannapieco and Ossakow [19761 and Ossakow et al. [19791,

the continuity equation for the electrons was of the form

an2/3t + V.(n 2v) - - vR(n2-n) (2)

where v' is the electron velocity. The recombination coefficient vR represents

the sum of the rate-limiting charge exchange reactions of 0+ with molecular

oxygen and nitrogen. In this equation nois the assumed equilibrium electron

density in the equatorial ionosphere, i.e., an /8t - 0. Since recombination
0

chemistry itself can only result in a loss of electrons at a rate -vRn2, we

note that Eq. (2) implicitly assumes the presecce of a source of ionization in

the equatorial ionosphere of value + vRno .  The presence of such a true

ionization source in the nighttime equatorial ionosphere is subject to some

question and subsequent work by Zalesak et al. [19821 dropped the assumption

of the existence of such a term, resulting in an electron density equation of

the form

an 2 /at + V'(_2v) - - Vrn2 (3)

Note that Eq. (3) does riot yield a time-invariant equilibrium for the

unperturbed electron de-,ity profile, but rather a profile which steadily

decays through the night.

A linear stability analysis of the full set of equations describing the

dynamics of the ExB gradient drift/collisionally dominated Rayleigh-Taylor

instability in the equatorial ionosphere [see Ossakow et al., 1979], shows

that

vR for Eq. (2)
R- { R(4)

0 for Eq. (3)

Thus the effect of recombination chemistry on the instability growth rate is

determined by ones choice of a model for zhe ambient ionosphere.
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Equation (1), together with a choice of the ambient ionospheric state, as

just discussed, provides us with a criterion for determining whether or not an

infinitesimal perturbation to the ionosphere will be amplified; but since the

experiment is not constrained to infinitesimal perturbations, one is led to

consider both of the following scenarios:

A) the ambient ionosphere is stable to infinitesimal perturbations

B) the ambient ionosphere is unstable to infinitesimal perturbations

Case A, that of a linearly stable ionosphere, implies that ones only hope

of producing artificial ESF is to perturb the ionosphece with sufficient

amplitude to drive the dynamics fully into the nonlinear regime immediately.

A series of numerical simulations could be used to analyze this case

thoroughly, but the results will undoubtedly depend strongly on both the

degree of stability and on the mechanism providing the stabilization, as well

as on how hard the ionosphere is driven by the chemical release.

Case B, that of a linearly unstable ionosphere, immediately leads one to

ask: why has ESF not already occurred? In fact, one is generally tempted to

treat the non-occurrence of ESF as an indication of the stability of the

ionosphere. In this case one is hoping to find an ionosphere which has only

been subject to extremely small amplitude perturbations, or one whose growth

rate is positive but relatively small, or both, in which instance he can be

reasonably sure of triggering the instability with the chemical release.

However, it may be difficult to prove a posteriori that ESF would not have

occurred even in the absence of the release.

In either case A or B above, one would be advised to monitor the

Ionosphere using ionosondes and other instrumentation for many nights prior to

the launch in order to get a "feel" for the statistics of natural ESF

occurrence.

It is our view that case A above represents an untenable approach to this

experiment. In addition to the problems already mentioned, the chances of

driving the dynamics fuly into the nonlinear regime via the chemical release

would appear to be quite slim with existing payloads (such as those in BIME,

considered by Narcisi, 1982). The physics of the instability depends on the

total magnetic field line integrated Pedersen conductivity as well as the

field line integrated electron density in level 2 (not simply the electron
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density exactly at the magnetic equator). Anderson and Bernhardt [1978] have

shown that even a 10 kg H2 release (a large release) at 350 km altitude will

yield only a maximum of 6% reduction in total field line integrated Pedersen

conductivity. The task of finding an unstable but as yet unstructured

ionosphere (case B above) would appear to be much easier. However (and we

cannot stress this point too strongly) one must be certain that he has not

misidentified a stable ionosphere.

3. Numerical Simulations

Details of the numerical techniques used in this simulation and of the

general computational procedure may be found in Ossakow et al. [1979] and

Zalesak et al. [1982] and in the references therein. Briefly, the numerical

calculations to be presented were performed on a two-dimensional Cartesian

mesh using 40 points in the x (east-west) direction and 140 points in the y

(vertical at the equator) direction. The uniform grid spacing was 3 km in the

y direction and 5 km in the x direction. Periodic boundary conditions were
imposed on n, n2 and on the electrostatic potential * in the x direction. At

the top boundary in y we set an/ay f 3n2 /3y - a/y - 0, while at the bottom

boundary we set an/3y - 3n2/3y = - 0. Here n is the electron density

exactly at the magnetic equator, to be distinguished (see below) from n2 , the

average electron density in layer 2. In principle, each of the three layers

must be represented on a separate 2-D mesh, but this need not be done here

since one of our assumptions is that layers 1 and 3 are uniform and remain so

during the course of the calculation and since 0 is identical on each mesh.

Both the continuity equation (of the form of Eq. 3 rather than Eq. 2) and an

elliptic equation for the electrostatic potential 0 are solved on this grid

(see Zalesak et al., 1982). Realistic values for the ion-neutral collision

frequency vin and recombination coefficient yR in layer 2 were used, and are

given in Ossakow et al. [1979]. Layers 1 and 3 were each assigned an

integrated Pedersen conductivity equal to 6% of the maximum of that found in

layer 2 for our "unstable" case B (to be described shortly).

The form of the ionospheric hole caused by the chemical release was taken

to be

n(x,y)/n (Y) I - 0.95 exp[(r/37) -2 "35] (5)

5
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where n is the electron density exactly at the magnetic equator, no is the

ambient electron density at the equator in the absence of the chemical

release, and r is the distance in kilometers from the point of release. Note

that we distinguish between n, the electron density exactly at the equator,

and n2 , the average electron density in layer 2. In the absence of the

perturbation, we take n - n2 at t - 0. Hence no represents the ambient

profile for both n and n2. The form and coefficients of Eq. (5) were chosen

to approximate the Natal 1900 LT release in Fig. 5 of Mendillo [19811. The

form of no(y) is identical to that used in our previous work [Ossakow et al.,

1979]. Note that Eq. (5) gives a large (95%) depletion in electron density at

the center of the hole. However, this figure is expected to hold only exactly

at the release point (presumably the magnetic equator). Recalling that our

layer 2 is meant to comprise all of the plasma within several degrees of the

magnetic equator, it is appropriate to substantially reduce the effect of the

release in terms of its effect on the total magnetic field line integrated

electron density in layer 2. We therefore take

n2(x,y)/n 0 (y) - 1 - 0.05 exp[(r/37)- 2 "3 5] (6)

where n2 is the field-line averaged electron density in layer 2 and r is now

two-dimensional. The 5% maximum depletion given in Eq. (6) was chosen to be

in the general range of estimates of H2 releases larger than BIME given by

Anderson and Bernhardt [1978], and from Eq. (5) corresponds to layer 2 being

approximately 1000 km thick (along B).

In order to clarify the roles of n2 and n, and for the sake of

completeness, we enumerate here the equations which we solve numerically:

an2/at + V.(n2v) - - uRn 2  (7)

an/at + 79.(nv) - - vRn (8) 1

V j [(n + Cb -2- [(E- 3gEox - n 2  (9)

l _(E-V1  x B (10)
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Cb - 0.12 Max(v in n) (11)

E -E x (12)

Vl - 3/x x + 3/ay y (13)

g = + 980 cm/sec 2  (14)

Note that we have written Eq. (9) to show explicitly the lack of any

dependence on n.

In light of the above discussion, plots of both n and n2 will be shown,

with the understanding that while it is n which is likely to be measured with

rocket probes or other sensors at the equator, it is n2 which drives the

physics. In terms of the numerical calculations to be shown, n can be thought

of as a tracer fluid which merely describes what is happening exactly at the

equator (neglecting parallel to B diffusion effects), but whose effect on the

dynamics can only be felt by integrating along B, an effect which is already

folded into the computation of n2. Two kinds of plots will be presented:

contours of constant n2(x,y,t); and contours of constant n(x,y,t).

Superimposed on each contour plot is a dashed line depicting no(y) for

reference purposes. Our no(y) profile is such that the minimum electron

density scale length L - no(ano/ay)- I is 10 km, and varies in the runs to be

presented only in terms of the altitude of the F2 peak, as can be seen in the

plots to be shown.

We chose to perform two calculations which represent the two possible

scenarios previously discussed: the stable ionosphere (case A) and the

unstable ionosphere (case B). Since we have chosen Eq. (3) as our continuity

equation, we have implicitly assumed that recombination chemistry cannot

affect the growth rate (see Eq. 4), so the only truly stabilizing mechanism we

have at our disposal is westward ambient electric field _E .  We can also

mitigate the effect of the positive j/Vin term in (1) by lowering the

ionosphere (which increases vin) Accordingly, our simulations were run with

the following parameters

7



Case A Case B

F2 peak altitude 375 km 430 km

chemical release altitude 320 km 375 km

Eo x B velocity 70 m/sec downward 0

Case A is such that the entire ionosphere is linearly stable. Case B is

such that large regions of the bottomside F region are linearly unstable, and

in fact this run is identical to calculation 2LE in Zalesak et al. [1982]

except for the form of the perturbation. Figures 3-6 show the results of the

simulations at selected times. Plots of both n and n2 are shown. Note in

case A that although the ionosphere is changing (due to the downward E x B

velocity and recoabination chemistry) the perturbation is in fact de ned. Also

note that the perturbation in n will never totally damp even though at in n2

(the one driving the dynamics) will. In case B we see that we indeed

initiated artificial ESF with the chemical release. The importa? iing to

note is that linear stability theory is an accurate predict the

experimental success or failure, especially when the chemical release cannot

reach the nonlinear regime immediately.

4. Finding an Unstable Ionosphere

The primary finding of the results of the numerical simulations presented

in Section 3 is that they bear out the validity of a linear stability analysis

in terms of analyzing the BIME experiment. Accordingly, we conclude that the

most viable approach to take in the BIME experiment is to find an unstable,

but as yet unstructured ionosphere. As mentioned before, the drawback to this

approach is the possibility of having misidentified a stable ionosphere.

Therefore let us appeal to Eq. (1) and to other known stabilizing influences

in the equatorial ionosphere and draw up a list of possible stabilization

mechanisms of which we must beware:

1) recombination chemistry, if we believe there to be a true source of

ionization present (Eq. (2)) such as to keep no(y,t) - no(y,t-0);

2) a westward ambient electric field;

3) shear stabilization, caused by a vertical shear in the horizontal

plasma motion of the ambient ionosphere [Perkins and Doles, 19751;and

8
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4) inordinately small positive growth terms in Eq. (1), such as large

V in' small gradients in n2, or a large background conductivity

Zpl + 
Ep3 "

Optimization of BIME success probability can be reduced to minimizing the

impact of each of the above mechanisms. If we believe recombination chemistry

to be a problem, then since we know that vR decreases with altitude, we

conclude that we should only launch into ionospheres which are reasonably high

in altitude. A westward electric field can be avoided by noting that such a

field would produce downward plasma velocities. An ionosonde with doppler

capabilities could detect such an occurrence and generate a "no-go" signal.

The shear stabilization mechanism is not well understood, but it should be

noted that large plasma shears are an indication of large background

conductivities [Zalesak et al., 1982], and hence should be avoided on both

counts. Large values of v in can be avoided by the same mechanism as that of

avoiding recombination chemistry, i.e., launching only into reasonably high

ionospheres, since vin' like vR' decreases with altitude. lonosondes can be

used to measure gradients in n, which presumably reflect gradients in n2 for

the undisturbed ionosphere. As was already mentioned, although background

conductivities cannot be measured directly, the degree of plasma shear can be

used to give an indication of their size. Better yet would be a measure of

the difference between the plasma and neutral gas zonal velocity (see Eq. 38

in Zalesak et al. [1982]).

5. Conclusions and Recommendations

It is our conclusion that the success of the BIME experiment (and any

other that cannot reach the nonlinear regime immediately) depends crucially on

one's ability to find an unstable but as yet unstructured ionosphere. This is

not a trivial task. The only means of truly ensuring that this is the case

involves in-situ measurements of several physical quantities all along

magnetic field lines and throughout the equatoridl ionosphere. Realistically,

the best one can do is to try to minimize the risk by avoiding those specific

situations which would indicate ionospheric stability. Specifically, we

recommend the following:

1) Try to launch into a high ionosphere, in order to maximize the

term g/vin in the linear growth rate, and to minimize the stabilizing

effects, if any, of recombination chemistry.

9



2) Try to launch into an ionosphere that is rising, or at the very least

one whi i is not falling, in order to minimize the chance of

encountering a stabilizing ambient westward electric field. An

ionosonde with doppler capabilities would be very useful for this

purpose.

3) Try to avoid launching into regions of large horizontal shear in

plasma motion.

4) Try to have available in the field the ability to measure logarithmic

electron density gradients, compute the approximate altitude of

maximum growth from Eq. (1), and perform the chemical release of that

altitude.

5) Monitor the ionosphere using ionosondes for many nights prior to

launch to get a "feel" for the statistics of natural equatorial

spread F occurrence.

10
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EQUATORIAL
SPREAD F MODEL DASHED LINE DEPICTS

I E REGION PLASMA

COMPUTATIONAL PLANE
(EQUATORIAL F REGION
PLASMA)

4000
km E

ALTITUDE

1. 1125 km

Fig. 1 - Diagram of the equatorial ionosphere and of the neighboring
regions which have physical relevance to equatorial spread F (ESF)
processes, including the E region plasma at higher and lower latitudes.
These regions are electrically coupled to the equatorial F region iono-
sphere by the high conductivity along magnetic field lines. Plasma is
actually distributed all along these field lines, but in this study we
shall make the assumption that this system can be modeled accurately
by three planes of plasma connected by straight field lines, as shown
in Fig. 2. One of these three layers (layer 2 in Fig. 2) is shown here
as the "computational plane."
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LAER 3
REMAINING NORTHERN
HEMISPHERE PLASMA
(LAYER 1) Z

BI --

COMPUTATIONAL PLANE I I
(EQUATORIAL F REGION ALTITUDE (y) I---
PLASMAI LAYER 2

(LAYER 2)

"II I I

REMAINING SOUTHERN IHEMISPHERE PLASMA I I I I

(LAYER 31

A

No y

Fig. 2 - The "three layer" model of the physical system depicted in Fig. 1.
All plama in the vicinity of the equatorial plane has been compressed into
layer 2, while the remaining northern and southern hemisphere plasma has
been compressed into layers 1 and 3 respectively. Further, the magnetic field
lines have been straightened so we can deal in cartesian coordinates x, y, and
z as shown in the figure. The plasma in layers 1 and 3 is assumed to be uni-
form and free of any external driving force. The equatorial layer 2 is assigned
a realistic initial distribution of electron density No(y), and ion-neutral colli-
sion frequency. In addition, gravity points in the negative y direction.
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Fig. 3 - Contours of constant n for case A (stable ionosphere) at various times in
the calculation. At time 0 seconds the contours are labeled in units of electrons/cm 3 in E format notation (1.0 El - 1 x 101, etc.). The unperturbed ionosphere
was initially laminar (independent of x, the east-west direction) and is exhibited by
the dashed curve showing no(y). This curve is labeled at the top of the figure. The
perturbation shown at 0 seconds is described by Eq. (5). Two full periods of the
calculation are shown to emphasize the periodic boundary conditions used in the
i-direction. The observer is looking southward so that B is out of the figure.
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