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I. INTRODUCTION

Eddy-current testing was first systematically studied in Germany
during World War II, but did not receive wide recognition until Forster
and his colleagues pub.ished the results of their extensive theoretical,
experimental and industrial investigations between 1952 and 1954 [1].
These papers did not include a quantitative theory for flaw detection,
however, and it was not until 1964 that Burrows constructed such a
theory in his dissertation [2]. His idea, which was based on electro-
magnetic theory, is to replace the flaw by an equivalent dipole, and is
reasonable if the flaw is small compared with the skin depth (sometimes
called the diffusion length) of the eddy-currents.

The work of Dodd, et al. [3-5] brought eddy-current nondestructive
evaluation (NDE) "of age" by showing how one could get useful anmalytical
results based on a rigorous application of electromagnetic theory.
Their theory of flaw detection contains Burrows' and is subject to the
same limitations of dipole representation. Equally significant with
their use of rigorous electromagnetic theory, in our opinion, is their
development »f computer programs to compute the integral representations
of the electromagnetic fields [6-7]. Now the modern era of eddy-current
inspection is upon us, based on the union of numerical methods in
mathematics and rigorous electromagnetic theory.

As further evidence of this, we cite the extensive research sup-
ported by the Electric Power Research Institute (EPRI) [8], in par-
ticular the work of W. Lord, of Colorado State University, B. A. Auld,
of Stanford University, and A. N. Mucciardi, of Adaptronics, Inc.

Lord is developing a finite element model for eddy-current nondestruc-
tive testing phenomena, whereas Auld is using the reciprocity theorem
of electromagnetics to quantitatively model flaw responses in =24dy-
current testing. Finally, Mucciardi is developing a system for flaw
detection and classification by using an adaptive learning network for
eddy-current signal analysis.

In this report we describe an approach to the reconstruction of

flaws, not merely their detection. This will give us the ability to
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obtain much more information about the nature of the flaw, unimpeded by
the size restriction of the dipolar approximati-n that was mentioned
above. By "flaw" we meau virtually any departure of the medium from a
standard condition, which is kmown a priori, such as may be produced not ‘é
only by a crack but also by conductivity inhomogeneities produced by :
stresses, magnetite build-up, etc. Our approach is very much in the
spirit of contemporary work in invetse methods in electromagnetics [9-
11] and electromagnetic-geophysical prospecting {12-19].

At this point we introduce some systems-related ideas that should

make clearer cthe way our concept of inversion is to be used for non-

destructive evaluation. Refer to Figure 1, which shows a "system,"

together with its input and output. In part (a) of the figure the input

is known and so is the system, and the output is to be determined. This §

is the "forward" or "direct" problem. For example, the input could be a

current or voltage source, and the system, a coil coupled to the work-

piece. The output, the magnetic vector potential or induced eddy- 14

current within the workpiece, can be directly computed in a straight-

forward manner by electromagnetic theory. %
In part (b) the system and output are known, ani the input is to

be determined. This is a problem of communication theory, or signal

detection. One assumes a catalog of possible input signals to be avail-

able, whose structure and characteristics are known a priori; from the
known output one estimates the input signal on the basis of the maximum

a posteriori pvobability of its occurrence. This is the basis of Adap-

™,

tronics' flaw cetection system. Their inprt data base (the catalog of
possible input sigrals) consists of 506 defect waveforms under tube
suppoxrts and 261 isolated defect waveforms, all of which are at 400 kHz.

This is an example of another "forward" method, and appears to be

-

sufficient for many applications. It is, however, limited by both the

large volume of signal waveforms that must be catalogued for a suitable
: gereralized interpretation and by fhe subjective comparisons made by the
interpreter. The method also gives little indication of the semsitivity

™

of the solution to possible errors in the data and the degree of non-

uniqueness associated with the chosen mode.
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In Figure 1(c) both the input and output are known and the system
is unknown. The input could be a known "probing" signal, and the out-
put, the measured response to the probe. The object is to determine the
nature of the system. This is an example of "system identification" or

' where "parameter" refers to certain parameters

"parameter estimation,'
of the unkowa system. In the sense that problems (a) and (b) are
"direct," problem (c) is the "indirect" or "inverse" problem, and is the
problem discussed in this report. What one seeks in this problem is a
model-system that, when operating on the input, produces a "mode.-
output" that is, in some sense, an optimum estimation of the known output.

There are two common ways of obtaining a sufficient amount of inde-
pendent data to estimate parameters in eddy-~current testing: (a) through
the use of multiple coils, and (b) through the use of multiple fre-
quencies, including pulses or transient signals [20]. Of course a com~
bination of the two mas be used. 1Imn this report we consider only the
multiple coil method.

In Figure 2 we show a system of coaxial coils within a tube that is
to be inspected. Within the wall of the tube is located an anomalous
region (the "flaw') that we wish to reconstruct. A mathemetical mesh
is defined that surrounds the anomaly, as shown. The properties of the
mesh, such as its location, sizz, and fineness, are known to us. Wnat
we don't know are the values of the electrical conductivity to assign to

each rectangle of the mesh. The "system,"

then, consists of the coils,
the tube, and the mesh that encloses the anomalous region. 2 unknown
parameter. that are to be estimated in order that the system be "iden~
tified," in the sense of Figure 1(¢) and its discussion, are the conduc-
tivities that are to be assigned to each rectangle of the mesh. The
known input is the current to the exciting coil, znd the known outputs
are the voltages induced into the sensing coils. Clearly, if we can
determine the conductivity map that is defined on the mesh, we will have
reconstructed the anomalous region.

The method of solving this problem is based on minimizing the
square of the error between the actual measured data and that produced

by the model-system, the model-output (this error is often called the
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: residual). The parameters that are varied to produce the optimum model,
in the least-squares sense, are, of course, the conductivities that are
assigned to each cell in the mesh of Figure 2,

Thue, matheratically, we wish to determine a set of unknown para-

meters 0., j=l, . . . , M, where M is the number of cells in the mesh,

i

from a set of data, ei’ i=l, . . . , N, where ei are the voltages induced

into the Nsensing coils. The e, are functionally related to the Oj in

Hl e

e
4 a known way; that is
e = fl(ol, e ey O_M) (1)
e, = fz(ol, e ey OM)

&y = fN(cl, e e e O'M)

Hence, given the oj w2 can calculate the e, by treating this as a
"forward" problem, in the sense of Figure 1(a). The equations (1) that
define the forward problem are determined by using electromagnetic theory.

But it is the voltages, ei, that are the given data, so we mustc

invert che system, (1), to determine the cj. We do this by minimizing

H the error function

N 2

F(Ol, v vy 0)=1{2Z (ei -£f£)

1/2
] (2)
M g1 i

Iterative methods are commenly used to carry out the minimization

[ LWL T NS T e

& of (2). The iterative methcd successively improves a current model,
i.e., a current estimate of the Oy until the error measure, (2), is
. small and the parameters are stable with respect to reasonable changes
§ in the model.
§ | 2 The success of this method of inversion depends largely on the

availability of suitable numerical algorithms for carrving out the
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least-squares solution of (1). Any algorithm chosen m: st contend with

the fact that the problem as posed in (1) and (2) is generally quite

ill-conditioned, which means that small variations in input data can
produce Guite large vaciations in the solution. The commercially avail-
able FORTRAN packages, LINPACK {21] and MINPACK [22], contain well-
written codes for least-squares alogrithms, and these codes served as

the basis of the numerical experiments to be described in this report.

[ —
1

LINPACK comsists of linear equation-solviag algorithms, and MINPACK
contains nonlinear least-squares algorithms. A description of these

algorithms will be given jn a later section of this report.

sgon el e GO A

These experiments indicate that the inversion method works quite
well on simulated flaws, even when the data is corrupted by as much as
20%; this is quite important in applications. Another nice feature is
that once the nonlinear inversion 2 gorithm has converged, it is possible,
using the techniques of linear inverse theory, to assess the errors and

resolution in the estimate of the final model. The objective is to

determine which features of the modei are well-resolved and important

144t 0 it e DYt B ot B

to the interpretatiou of the data and which features are irrelevant,

in the sense that the data neither support nor reject their inclusion in

T b

the model. This is also quite useful in eddy-current NDE.

Loty

du i Ay

II. DERIVATION OF THE MODEL SYSTEM

(a) Integral Equations

The detection of flaws, or andbalies, by means of eddy-currents de-~
pends upon the fact that flaws are not electrically conducting and that
the eddy-current flow is inteérrupted at the boundary of the flaw. The
flaw, therefore, can be considered to be an inhomogeneity, which comsists
of a conductivity, Of, that is imbedded in a region whose conductivity,

00, is known a priori. The dielectric constant and magnetic permeability

of each region are those of free space, EO and uo. Hence, Maxwell's

2quations for the two regions are:
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VxE = —jwuoﬁo (Known Region) (3)(a)
Vx 8y = (0, + juepE,
Vv x EF = -quoﬁf (Flawed Region) (3) (b)
V x af = (cf + JmeO)Ef

Upon subtracting (3)(b) from (3)(a), we get

7 x (EO - Ef) = \jwuo(Ho - Hf)

v i -1 . E -E i E. - - E, .
x (Hy - H) - 0, (E, E;) + Jmeo(Eo Ef) + (9, OQ)E, (4)
43¢~ se have added -nd subtracted Goﬁf to get the final form.
Thus, the perturbation of the electromagnetic field, EO - Ef,
ﬁo - ﬁf, satisfies the s=me equation as the original electromagnetic

field within the known region, except for the presence of the term
(00 - Of)ﬁf. This term, which is equivalent to a current source, 33,

iepresents the presence of the anomalous region, or flaw. It is impor-

tant to note that 33 vanisnes off of _ne flaw, because there of = 00‘
in the usual way we can derive a vector wave equation for EO - Ef
from (4):

VxVx (E0 - nf) = ~jmu0V X (H0 -~ H)

£

2 . .= = =
= (w Hoo quoco)\Eo -E.) - jmuo(oO - G_.)E

£ £7F ()

By treating the last term in (5) as a source, we can immediately

write down a formal solution fcv the perturbed field EO - ﬁf:

&y - E)(® = jung ”JEG!?W P B (op - o N - (6)
Flaw

ntt Ao
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where E(;IE’) is the dyadic Green's fuaction for the kmown region {23],
and the volume of integration is the flawed region, for which 00 - Uf
# 0. This equation is the basis for our inversion technique. Before
going further with it, we make the following observations which will

allow us to reduce the problem to a scalar system.

In eddy~current NDE work, we don't measure perturbed fields di-
rectly; rather, ine perturbcd EMF that is induced in a probe coil is
measured. Such an EMF is given by the line integral of (6) aioug the
probe coil windings. In the system thaiL we are investig.ting, as
shown in Figure 2, the EMF is the line integral of the azimuthal elec-
tric field, E¢ (in the usual cylindrical coordinate system, wherein the
z~axis coincides with the axis of the tube). Hence, all we need to
consider is that single component of che E vector. In addition, we can
ignore any ¢-variations of E¢, because the line integral is taken over
2w radians/turn of the probe coil. Therefore, if we expand E¢ in a
Fourier series, {ccs n¢}, then only the n=0 term will contribute a non-
zero value to the EMF integral. But if E¢ is independent of ¢, then the
E vector field (which, by assumption, consists of only the ¢-component)
is divergenceless. This is equivalent to saying that the Green's function
of (6) is the electric field that is produced by a circular filament of
current, of radius r', located at the plane z=2'. In addition, we can
also take the "anomalous current," ja’ to be wholly in the ¢-direction,
and divergenceless.

Thus, we can reduce (6) to the scalar equation

(By = E)(x,2) = —juy, ” G(r,Z;r',Z')Ef(r',Z')
Flaw

(UO - Of)(r',z')r'dr'dz' , N

where EO, Ef, and G are the ¢~components of their respective fields. The
gist of the preceding argument is that, by using coils, as shown in
Figure 2, we are unable to determine the azimuthal location or extent of

the fiaw. In carrying out the integral over ¢ in (6), thereby transforming
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it into the two-dimensional integral, (7), we assume that the flaw is
Tuis means that the flaw has the functional

confined to the plane ¢=0.

i

dependence

i

il

(00 - of)(r,z,¢) = 6(¢>(oo - cf)(r,z) .

In order ts further develop the model, we must take into account

that the region of interest consists of three parts: the interior of
We call

T A4

the tube, the tube wall, and the region exterior to the tube.
these regions 1, 2, 3, respectively, and introduce the following nota-

tion for the Green's function:

Field produced at (r,z) in region i,

due to filamentary current loop at (r',z')

Gij(r,z,;r',z')

in region j

Gji(r"z';r’z)’ i:j = 1’2,3 .

The last equation, a reciprocity relation, follows because the mag-
netic permeability of all three regions is the same (this, and other
matters relating to Green's functions in stratified media, can be found

in [23]).
We introduce the following notation

gLt i g

Electric field in region 1 or 2, with flaw present

1}

El’z(r,z)

Eo(r,z) = Electric field with flaw absent, due to exciting coil.

o ¢ R il b o

Then (7) produces the following basic integral equation for computing

E in the flawed region, which is in region Z2:

S8, b ot ) W o

g
Ez(r,z) + jwuoco JI Gzz(r,z;r',z')Ez(r',z')Gag(r',z') - 1)r'dr'dz’
0
Flaw

Sk b oIR8y

s it

= Eo(r,Z) (8)

i A o o




In addition, we have the integral relation for computing the perturbed

electric field at the probe coil (which lies within region 1):

s f v L. ]
(EO - El)(r,z) = juuyo, J Glz(r,z,r 2 )Ez(r ,z")
Flaw

¢
. q;—(r',z') - Dr'dr'dz' . €))

)

When this equation is integrated over the probe coil we get the per-

turbed EMF. If we assume that the probe coil is uniformly and demnsely

wound with n, turns per unit area (irn the r-z plaue), we get for this
EMF:

[
EMF = -mec JJ (E
Probe Coil

o = Brdrdz . . (10)

gt

Finally, the electric field, EO’ that is produced by the exciting

st

coil is given by

v .
e

= 4 ! St ! oty 3t 3t
Eo(r,z) = Jmu02n {J GZl(r,z,r $Z )Jo(- ,z)r'dr'dz

Exciting i
Coil )

i}

—jmuOZHneIO II G21(r,z;r',z')r'dr'dz' s (11)

Exciting
Coil

where JO is the exciting coil current density, a, is the density of turns 5

in the exciting coil, and I, is the current carried by the exciting coil.

0
Equations (8)-(11) constitute the model system. The algorithm for

e g

using the system consists of first computing the incident field, EO’ at
the flaw, by (11): this is the right-hand side of (8). For a given dis-
tribution of flaw conductivity, Of(r,z), (8) can be solved numerically.

e i

Its solution, the elactric field, E,, in the flawed region is the source

2
term for (9), which produces the perturbed electric field at the probe

bt oo o 08 el 3 o, 30 1




coil in region 1. The integral of the perturbed electric field produces
the perturbed EMF, (10), which is then compared with the measured EMF

to determine if the assumed flaw conductivity, Uf(r,z), is "close" to the
actual (though unknown) flaw conductivity. The problem is really non-
liuear because (8) involves the product of two unknowns, Gf(r,z) and
Ez(r,z). Thus, some form of iteration is required, in which one starts
with an assumed distribution for df(r,z), and then hopes to converge to
a final acceptable value.

The model that we have developed is quite general. Crucial its
application as a reconstruction technique is the ability to compute the
Green's function of the "known" region, i.e., the region that exists in
the absence of any flaws. When the known region consists of a cylindrical
tube, then the Green's function can be computed in a straightforward manner
by the use of Fourier transforms and algebra; we carry out these computa-
tions in Appendix A.

If, howaver, we wish to reconstruct flaws that exist in the presence
of tube supports, as in Figure 3, or tube flaring, as in Figure 4, or

any other known irregularities, then we cannot hope to compute the

Green's function in a purely analvtical manner. In this case tte Green's
function satisfies an integral equation, which must be solved numerically.
We hardly consider this to be a very serious drawback, however, because
so much of our modeling effort involves the numerical solution of integral
equations.

The integral equation that is satisfied by the Green's function is
identical to (8), with the following changes: G22 is the Green's functicn
of the cylindrical tube, as if there were no irregularities (the sub-

scripts may be different, depending upon the location and type of known :
irregularity), of(r',z') becomes the conductivity of the known irregular- ;

R U S £18 i ot Yn s

»

ity, and the integration is over the volume occupied by the irregularity,
and the right-hand side is replaced oy G22. Of course, we are still :
interested in only the ¢-component of the Green's function, and that is %

i,
.

why we can use the scalar integral equation, (8). If, in (8), there is i
no irregularity, then Og = 0ps and the Green's function is identical to
that for the circular cylinder.
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An additional complication exists whea the region is more irregular

than a cylinder, and that is the need to approximate the region in order
to apply the method of moments (or any other numerical method). In
Figure 5 we show two methods of approximating a curved surface with
splines of zero-order and first-order. Higher-order approximating func-

tions could also be used, but the two shown in Figure 5 are the easiest

to work with.

(b) Discretization of the Model: The Method of Moments [24]
The discretization of the problem via the method of moments is based
on the use of a mesh, as shown in Figure 2. In order to reduce (8) to an

algebraic system, we expand Ez(r,z) and (Gfloo = 1) in pulse functions

s

that are defined with respect to this mesh:

N
c
E. {c,2) = L EP (r,2) (12)(a)
< =133
¢ Ne
G- (,2) - 1) = LopP.(r,2) , (b)
0 j=1 3 J
where Nc is equal to the number of cells in the mesh, and Pj(r,z) is the
jth pulse function, which is defined by
Pj(r,z) =1 , (r,2) in jth ceil
=0 , otherwise . (13)

The jth expansion coefficients, Ej’ G., are the constant values of

b

the fields over the jth cell.
Because E2 and (Gf/o’0 - 1) have identical expansions in non-overlapping
pulse functions, it follows that their product does also:

N
c

Ez(r,z)(df(r,z)lco -1) = jElEjoij(r,z) .

11
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Upon substituting (12) and (14) into (8), we get

N N
c c r
ilEij(r,z) + jprGO.Elchj JJ Gzz(r,z; r',z')Pj(r',z')r'dr'dz'
3 3 Flaw
= Eo(r,z) (15)

Next, we take moments of (15); i.e., we multiply (15) by weighting
functions, Qi(r,z), i=1, ..., Nc, and integrate over the flaw. If
the weighting functions are delta functions that are located at the center
of each cell, then the method is called point-matching; if they are the
same functions that were used in the expansions, (12), then the method is

called Galerkin's method. 1In any case, the result is the system of Nc

equations:
N
c
L E, Jj P, (r,2}Q.(r,z)rdrdz
a1 3 j( ) IQl( )
v Flaw
N
c {
. t t \ T \ 1 1
+ ElEjojjwuooo JJ rdrdz II Gzz(r,z, r',2 )Pj(r 52 )Qi(r,z)r dr'dz
3 Flaw _Flaw
= ff Eo(r,z)Qi(r,z)rdrdz , 1=1, « . «, Nc (16)
Flaw
The vector-matrix version of (16) is:
A+ jwuoooG)E =F an
where
Aij = IJ Qi(r,z)Pj(r,Z)rdrdz (18)(a)

Flaw




°f
Gij = Gj j[ Qi(r,z)rdrdz JJ Gzz(r,z;r'z')Pj(r',z')r'dr'dz' (b)
Flaw Flaw
Fi = j[ Eo(r,z)Qi(r,z)rdrdz s i, =21, ..., Nc (c)
Flaw

Our analysis has been based on the method ¢f point-matching, with
Qi(r,z) = §(r ~ ri)é(z - zi)/r, where (ri,zi) are the coordinates of the
midpoint of the fth cell. Point-matching generally takes better advartage
of the singularity in the Green's function to produce a better conditioned
matrix (i.e., one more diagonally dominant) for inversion. The disadvan-
tage of point-matching is that the infinite integrals that define the
various matrix elements in Gij and Fi (see Appendix B) do not couverge
as rapidly as with Galerkin's method, so one has to take more care in
their numerical evaluation. This has not turned out to be a problem,
however,

Thus, upon letting (z,, z ) be the lower and upper z-limits, re~

+
spectively, and (rj,rj\ ths 1ower and upper r-limits, respectively. of
the jth cell, we get

é(r-r )6(z-zi) :
Aij =J [ rdrdz = 61j . (19)(a)
z_
j
+
i %
¢ ;" ij J Gzz(ri,zi;r',z’)r'dr'dz' (b)
r. z,
3 3]
= = - Y 1 1] ] 1
Fi Eo(ri,zi) ngGZnneIO [[ GZl(ri’zi’r ,2')r'dr'dz (c)
Exciting
Coil

vwhere Gij =1, if i = j, and =0, if 1 ¥ j. Similarly, when (14) is
substituted into (9), we get:
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%ﬁ (EO - El)(r,z) jwuc 0 z O‘ E, j Glz(rsz;ti,z'jr'&r"cjz’ . (’20}
= ‘ i=1 .. .

H

« Z
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Now we define the kth probe coil as one having an inmner radius, pl,
outer radius, Pas left~hand z~coordinate, z;k, right=-hand z-cootdinate,
r,:, and midpoint 2z-coordinate of ;k Then the EMF induced into the kth
probe coil is given by substituting (20) into (10):

A e T G e I s e o LN

2
+ Ry
¥, Py S j %
EMF(k) = -jwu 0 21rn E ¢.E [ rdrj dz J 2(:,2 itz )r'dridz’
€321 373 1
3 %
k=1, ...,K . (21

This, too, can be put into vector-matrix form:

L

ENF = T(0E) , (22).

where

Ay

+ ‘+
Py G T z
Tkj :-jwu{)UoZﬂnerrJ dz [ j 2(1‘, zir',z")r'dr'ds’ (23)

pl .z

b

is the transfer funcrion from the jth cell to the kth coil. WNote that

T A e )

the number of coils, K, is not necessarily equal to the number of éélls,;
Nc. Indeed, in applying the method c:f 1eas't;8quarés to this -model; We

= take K = 50, which produces 100 real and imaginary componeants of EMF;

and ? = 60. This yields an ovérdetermined system; which-is typical of o

T
Lo

least-squares problems. -

i kD vt [ g

elements that have just: been definei
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III. LEAST-SQUARES ALGORITHMS: LINPACK AND MINPACK

Now that we have a model system in hand, we shall say more about the
mathematical and numerical solutions of linear and nonlinear least-squares

problems. We rewrite (1) as the vector equation
e = £(0) (24)

We seek a least-squares solution, as defined below. Let

F©O) =f(©) -e . (25)

Upon introducing the usual squared-norm notation, we have

N
1E@ I, = [1E@ - 21, = ACORERPE R e 1ML 26
i=

Then the definition of a least-squares solution of {24) is: given
e = (el, c e ey eN), find ¢ = (Gl, o e ey GM) that minimizes llF[IZ;

i.e., solve

uin] @) - 3], . e
g

We first consider the case where f is linear. Then write (24),

(25), and (27), respectively, as

e=A0 (28)
Tr=e-Ag0 (29)
min|[e - 3], (30)
= J

- .
If ¢ is a solution of (30), then it is knmown that [25]

aT —% = - =ik
=3 (e-2)=0 |,

T T s




Lt

i

L

AR e

where the superscript, T, denotes the transpose of a matrix. Thus

= —* k- 10

ATAG = ile (32)
or

- -

o =itz , (33)

where i+ = (K:K)-liT is the pseudoinverse of A. While (33) characterizes
the mathematical solution of (30), we don't actually numerically compute
Kf; for numerical solutions other methods are used.

A standard method of solving (30) is to use the QR~factorization of
the matrix A. Given that A is N x M (where N > M), there exists an
orthogonal matrix 3 (of order N x N) such that

R (34)
0

where R is upper triangular. If we write 5 = {31,32], where 31 has M

columns, then

(35)

L]

= QlR *

Thus if rank (K) = M, the columns of 51 form an orthonormal basis

for the column space of A. Now if A = [zi,ihl, where Kl has k columns,
'

where ill is kxk, then

(36)

Hdence 3 and §11 give a QR~-factcrization of 21. This trurncated
decomposition is important for matrices whose rank is less than full,

i.e., for which rank (&) < min(M,N).
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This orthogonal triangularization is generated by Householder trans-
formations [21, 25]. Once we have this triangularization, then the solu-
tion to (30) follows:

3t = Qe - QA0 (37
=T~ a R g =T
QTr =177 - -E; g, where El = QTe (38)
© 0 2
o -
3% = L . (39)
2

Since Q is orthogonal, [!3T§|]2 = IIEIIZ. Thus llrllz is minimized

when

and when this is true

EH, = 115,]1, - D)

It is important to realize that when k = rank(A) = min(M,N), then
the two subroutines DQRDC and DQRSL from LINPACK [21] provide the method
for solving (30). DQRDC produces the QR decomposition of A with column
pivoting. This resulting matrix is passed to DQRSL for the solving
stage. DQRSL uses the k = rank (A) colums to produce the desired least-
squares fit.

1f, hkowever, A is rank deficient (or near rank deficient), then we
need a truncated least-squares fit. This can be achieved by using the
subroutine DQRST [21, page 9.11]. This subroutine allows for a user
supplied tolerance and calls DQRDC and DQRSL. Based on this tolerance,
some of the columns of the output of DQRDC are zeroed. DQRSL then pro-

duces the truncated least-squares fit.

17
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We apply the linearized theory that has just been described to (22),
with the electric field column vector, E, replaced by its zeroth order

approximation, EO’ so that the resulting equation becomes

EMF, = (TkjEu

" )oj . (42)

i

When we generated a singular-value decomposition of ?, we found that
the ratio of the largest to smallest singular values was on the order of
1012. This ratio is a measure of the condition of the matrix. Thus,
while we were working with a highly ill-conditioned matrix, our model
produced very accurate results for inversion, as we will show in the next
section.

We have pointed out before that cur model equations, (8)-i1l1l), or
their discretized versions, (17)-(23), are in reality nonlinear. Thus,
we must use a nonlinear least-squares scheme. The subroutines LMDER and
LMSTR in‘ﬁINPACK [22] fill this bill nicely. Both are based on the
Levenberg-Marquardt method, which we briefly describe below [26, 27].

Recall our problem: (25)-(27). 1If we linearize, we see that

[IF@ + 2], = [IF@ + F'@5ll, = v®, (43)

where F'(0) is the Jacobian matrix. A standard way of minimizing ¥(p)

is by using a Gauss-Newtown method:

given: o'(k),f(8<k)),3(6(k)) = F‘(a(k))

Lall

solve: in a least-squares sense

then let: 3(k+1) = a(k) + B(R)

This works well if 3(5) is full rank. In the rank deficient, o£
nearly rank deficient case, however, modifications are required. It
should be noted that in practice rank deficiency arises ;ftent

Since the linearization of (43) is not valid globally, we consider
a constrained linear least-squares problem:

18
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win{y(p):|[Dpl |, < 8} = min{||F + Jpl],:]1Bpl 1, < &} , (44)
P P ,

where D is diagonal. The Levenberg-Marquardt method is based on the
-k -% o

fact [26] that if p iz a solution to (44), then p = p(}A), for some

A > 0, where:

G%3 + WD) = -TF . (45)

The way to solve for p is to recognize that (45) are the normal

equations for the linear least-squares problem

(46)

NGl

21

The implementation of these facts is the basis of the nonlinear

least~squares subroutines in MINPACK.
In order to apply the nonlinear least-squares algorithm to our
discretized model, we must send to LMDER and LMSTR the nonlinear func--

tion to be minimized, as well as the Jacobian. The Jacobian is cbtained

from (22) as

which is the matrix that multiplies the column vector . Therefore,
the steps to be followed in solvirg the nonlinear least-squares problem

are:

* enter initial guess for O and solve (17) for E
* compute Jacobian from (47)
* compute EMFmodel from (22)
. BIT) = BME - THMR
form F(0) EMrmodel B easured

* call LMDER or LMSTR
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IV. EXAMPLES OF RECONSTRUCTION GF SIMULATED FLAWS

The theory of inversion involves two components, a theoretical model
that is based on a rigorous appiication cf electromagnetic theory, and
numerical algorithms that effectively implement least=-squares theory.
Each of these has been dealt with, and now we illustrate how the method
works for the reconstruction of computer simulated flaws.

All numerical experiments were run in double precision on the PRIME
550-1I1 and IBM 360 machines. The double precision data word on the PRIME
occupies 64 bits, of which 47 are the mantissa and 16 the exponent. The
effective precision is about 14 digits. The IBM double precisiou word
has a 56 bit mantissa, which allows an effective precision of about 17
digits. Precisions such as these are required for meaningful computa-
tions, because the condition number of the Jacobian matrix is phenomenal--
on the order of 1012. Even with this large condition number, the compu~
tations produced excellent results; in the worst case the reconstructions
were exact to at least three places on the PRIME, and five places on the
IBM. This verifies that the algorithms in the LINPACK and LINPACK pack-

2 b o s

-’_

ages tend to work better in higher precision.
The physical system that was modeled is a variation of the mylti-~

coil system chat has been described earlier, and is shown in Figure 6.

It consists of a fixed exciting coil and a single probe coil that can

be moveqd axially. This system is typical of a common flaw detection
scheme. The mesh on which the discretization is defined is also shown.
It consists of six rows of ten cells, and spans the entire tube wall-
thickness. The starting position of the probe coil is at the left edge
of the mesh, and the final position is at the right edge. The probe
coil is stepped through fifty equal intervals between these limits,
thereby generating a total of 100 real and imaginary EMF values that are

used in the least-squares inversion,
The physical parameters of the model are typical of real systems.

The inner radius of the tube is 0.3510", and the outer radius, 0.375".
The length of the mesh is 0.50" in the z-direction, thereby giving a

cell resolution of 0.05" by 0.011". The probe coil's inner radius is
0.05", outer radius, 0.100", and its length is 0.50", the same as the

20
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mesh. The exciting coil is centered on the mesh in the z-~direction
(neither of these last two items is a requirement of the inversion
method). The density of turns of the exciting coil is 2x106 turns/m,
which is comparable to that of 20 gauge copper wire. The probe coil
has an inner radius of 0.100", outer radius of 0.26", and a length of
0.250". 1Its turns density is leO7 turns/m, which is comparable to 30
gauge copper wire. The tube conductivity is 3.5x107, which is equal
to the conductivity of alumninum, and the freugqency of operation is
1lkHz.

In Figure 7 we show a simulated flaw (the "original') at the top and
its reconstructed version at the bottom. The real (R) and imaginary (I)
parts of the perturbed EMF, as measur:d by the probe coil when it is
moved acorss the mesh, are shown in the middle of the figure. This EMF
curve is actually an interpolation based on the fifty probe coil positioms.
In this figure, and the next two, we simulate the flaw by letting Uf =.0
at the flaw locatiom, and Gf = Go off of the flaw. Thus, according to
(12X (v), Gj = -] if the jth cell lies on the flaw, and Gj = 0, otherwise.

Note, in Figure 7, that because the original flaw is placed sym—
metrically in the mesh, the EMF is symmetrical about the center of the
mesh, also. The reconstruction is clearly perfect (to at least three
significant digits), indicating that the least-squares inversion algo-
rithms work quite well in this model, We must be careful to note, how~
ever, that in this report we have considered only original f£laws that
are defined on the same mesh as that used for recons:iruction; i.e., each

part of the flaw i3 constant over a full cell of the reconstruction mesh.

We intend to consider the more general case, in which the flaw may be
defined on a different mesh than that used for reconstruction (say, one

with smaller cells, or cells that are displaced from the cells of the

reconstruction mesh). This will test the ability of the model to re-
solve, as well as invert, data. :é

To satisfy oursalves that the excellent results that were obtained %
in Figure 7 were not due to symmetry, we considered the asymmetrical %
flaws of Figures 8 and 9. Again, the reconstruction was perfect to at %
least three signficicant digits. It should be noted from these three =
examples that the more concentrated the flaw, the greater is the peak

of the EMF curve.
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A crucial test of inversion in highly ill-conditioned systems has
to do with corrupted data., The question is, does the reconstruction
"follow" the corrupted data, or does the result lose all significant
figures? In order to test our model's response to corrupted data, we
performed the following numerical experiment. We assigned to each cell
in the mesh a number between 0 and 1, chosen at random by using the
FORTRAN random number generator. Then the model EMF that is produced by
this "flaw" is computed by following the first three steps that are
listed below (47). This "true" data is then corrupted by adding to it
the same data multiplied by either 0.01, 0.10, or 0.20, and then using
this as the "measured" EMF (see the discussion following (47)). Figure
10 shows the results of this experiment. There we show the original
flaw, consisting of the sixty randomly chosen cell conductivities,
followed by the reconstructed flaw, simulated by the sixty values of
computed cell conductivities, for the case of 1%, 10%, and 20% corrupted
data.

Again, the results are excellent. We don't, of course, expect to
reconstruct the origival flaw by using corrupted EMF data. We are
happy, though, to see that the reconstructed flaw "tracks" the original
flaw, in the sense that it departs by almost exactly 1%, 10%Z, or 20%
from the original. Such stability in the face of a very ill-conditioned
system attests to the excellence of the LINPACK and MINPACK algorithms.

The same results that are shown in Figures 7-10, are obtained with
either the iinear or nonlinear algorithms that are described in Section
III. The reason for this is that in (17) the term involving the matrix
G is much smaller than the first term, A. Thus, the solution of the

equation is E ¥ E,, and when this is substituted into (22), or (47), we

o!
see that the Jacobian matrix is constant, so that the noalinear algu-

rithms may be replaced by the simpler linear ones.

V. COMMENTS AND CONCLUSIONS

In this report we have developed a model for eddy-currént inversion
that is based on the application of rigorous electromagnaetic theory and

numerical algorithms for least-squares. So far we have attewpted only
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to verify the inversion method for flaws that were defined on the same

grid as that used for reconstruction. The results have been excellent,

and suggest that the method can be used as the basis fur the development

of an engineering prototype system. Before such a system can be ef-

fected, however, we believe that the following additional studies should

be carried out:

* study resolution of flaws that are defined on a

different grid than that used for recomstruction

* carry out examples of reconstructicn in the presence

of known irregularities

* determine computer hardware requirements

* determine computer software requirements

* determine relative advantages of multicoil, multi-

frequency, and transient (time-domcin) systems

* optimize exciting coil and probe configurations and

design.

REFERENCES

[1] F. Furster and H. Breitfeld, "Theoretische und Experimentelle

Grundlagen der zerstorungsfreien Werkstoffprufungz mit

Wirbelstromverfahren," Parts 1 and TI. Z. Metallkunde, Vol. 43,

Ne. 5, 1952, pp. 163-180;

F. Forster, H. Breitfeld and K. Stambke, "Theoretische und Experi-
mentelle Grundlagen der zerstorungsfreien Werkstoffprufung mit
Wirbelstromverfahren," Parts III-VII, Z. Metallkunde, Vol. 43,

No. 5, 1954, pp. 166-199 and 221-22€.

M. L. Burrows, "A Theory of Eddy-Current Flaw Detection," thesis,

University of Michigan, 1964; available from University Microfilms,

Inc., Am Arbor, MI.

23

O R e

ey

il

O Bt o

bt

i




= [3] C. V. Dodd and W, E. Deeds, "Analytical Solutions to Eddy-Current
e Probe Coil Problems," J. Appl. Phys., 39, 2829-2838.

[4] J. W. Luquire, W. E. Deeds and C. V. Dodd, "Alternating Current

Distribution Between Planar Conductors,'" J. Appl. Phys., 41, 3983~
- 3991,

[5] C. C. Cheng, C. V. Dodd and W. E. Deeds, "General Analysis of Probe
Coils Near Stratified Covductors," Int. J. Nondestructive Testing,
3, 109-130 (1971).

[6] C. W. Nestor, Jr., C. V. Dodd and W. E. Deeds, "Analysis and
Computer Programs for Eddy Current Coils Concentric with Multiple
Cylindrical Conductors," Report No. ORNL-5220, Oak Ridge National
Laboratory, Oak Ridge, TN 37830, July 1979.

[7] W. E. Deeds, C. V. Dodd and G. W. Scott, "Computer-Aided Design

[P
[

of Multifrequency Eddy-Current Tests for Layered Conductors with

: Multiple Property Variations,” Report No. ORNL/TM~6858, Oak Ridge

é National Laboratory, Oak Ridge, TN 37830, October 1979.

: [8] Nondestructive Evaluation Program: Progress in 1979, EPRI NP-1234-
SR, Electric Power Research Institute, Palo Alto, CA 94304, December
1979.

[9] Special T¥sgue on Inverse Methods in Electromagnetics, IEEE Trans-
actions on Antennas and Propagation, Vol. AP-29, No. 2, March 1981.
[10] P. C. Sabatier, ed., Applied Inverse Problems, Vol. 85, Lecture

Notes in Physics, Springer-Verlag, Berlin, 1978.
{11] H. P. Baltes, ed., Inverse Scattering Problems in Optics, Vol. 20,

: Topics in Current Physics, Springer-Verlag, Berlin, 1980.

{12] W. E. Glenn, J. Ryu, S. H. Ward, W. J. Peeples and R. J., Phillips,
"The Inversion of Vertical Magnetic Dipols Sounding Data,” Geo-

: physics, 38, No. 6 (Dec. 1973), pp. 1109-1129.

: {131 J. R. Inman, Jr., J. Ryu and S. H. Ward, "Resistivity Inversiom,”
Geophysics, 38, No. 6 (Dec. 1973), pp. 1088-1108. :

[14] D. D. Jackson, "Interpretation of Inaccurate, Insufficient and :
Inconsistent Data,” Geophys. J. R. Astr. Soc. (1972) 28, pp. 97-109.

{15] D. L. B. Jupp and K. Vozoff, "Stable Iterative Methods for the
Inversion of Geophysical Data,"” Geophys. J. R. Astr. Soc. (1975)
42, pp. 957-976.

-y

Www

M s,

24




IV b g 0 o o 0

[16] M. L. Oristaglio and M. H. Worthington, "Inversion of Surface and
Borehole Electromagnetic Data for Two-~Dimensional Electrical
Conductivity Models," Geophysical Prospecting, 1980, 28, 633-657.

[17] S. H. Ward, W. J. Peeples and J. Rvu, "Analysis of Geoelectromagnetic
Data," in Methods in Computational Physics, Geophysics, 13, 163-236.

{18] P. Weidelt, "Inversion of Two-Dimensional Conductivity Structures,"”
Physics of the Earth and Plantetary Interiors, 10 (1975), 282-291.

[19] Special Issue on Applications of Electromagnetic Theory to Geo~
physical Exploratiom, Proc. IEEE, Vol. 67, No. 7, July 1979.

[20] H. Libby, Introduction to Electromagnetic Nondestructive Test
Methods, Chapters 7 and 8, Wiley-Interscience, New York, 1971,

[21] J. J. Dongarra, J. R. Bunch, C. B. Mcler and G. W, Stewart,

LINPACK Users' Guide, Society for Industrial and Applied Mathematics,
Philadelphia, 1979.

[22] Jorge J. Moré, Burton S. Garbow and Kenneth E. Hillstrom, "User
Guide for MINPACK~-1," Report No. ANL-80-74, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, August 1980.

{23] C. T. Tai, Dyadic Green's Functions in Electromagnetic Theory,

International Textbook Company, Scranton, 1971.
[24] Roger F. Harrington, Field Computation by Moment Methods, The

Macmillan Company, New York, 1968.

[25] G. W. Stewart, Introduction to Matrix Computations, Academic Press,
New York, 1973.

[26] J. J. Moré, The Levenberg-Marquardt Algorithm: Implementation and

Theory, Lecture Notes in Mathematics, Vol. 630, Springer-Verlag,
Berlin, 1977.
{27] J. E. Dennis, Jr., "Non-Linear Least Squares and Equations," in

Conference on the State of the Art in Numerical Analysis, D. A.

Jacobs, ed., Academic Press, Mew York, 1976.

4

R
i —

b Al




N Bl G M o
LT fi _MJ?[“‘M,:HL[IQWM

gt
i

INPUT =3
(KNOWN!

SYSTEM
(KNOWN!

3z QUTPUT
{TO BE
COMPUTEDI

i NN I P O AT b
G s

(a]

INPUT =

{TO BE
COMPUTED]

SYSTEM
IKNOWN]

- QUTPUT
{KNOWNI

| T I A
R L B e

(bl

INPUT
[KNOWN]

SYSTEM
{TO BE
COMPUTED]

p——ree—3> OUTPUT
(KNOWN]

R A x},ihi f:‘,‘xIll“ﬂ.‘;.-ui‘x}'h‘h,!, i LR g

m

o

-

i l.r:) Mq} i ﬂ” “l,,‘:"yliv‘-v‘ i f ‘;W;mﬂrq il

= :
=N &
2 £
3

= i o
E €
= H
= c
=N £
2
g

lel

26

Figure 1. Illustrating three systems problems: (a) the "direct"
problem, (b) the "signal-detection" problem, and
(c) the "inverse" systemidentification problem.
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ORIGINAL FLAW

A POSITION OF
EMF PROBE COIL

-
—

-0.4-

-0.64

kia

RECONSTRUCTED FLAW

Figure 7. 1Illustrating a symmetrically placed flaw (top}, tha real (R)
and imaginary (1) parts of the EMF induced into the probe
coil (center), and the reconstructed flaw (bottom). The flaw

? consists of the darkened cells. The reconstruction is exact

to the least three significant digits.
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ORIGINAL FLAW

A1l

POSITION OF
EMF 1 PROBE COIL

L.
—

-0.6-

i

L

pild

RECONSTRUCTED FLAW

Figure 8. Illustrating the reconstruction of an asymmetrically
placed flaw. The interpretation of the figure is the

same as of Figure 7.
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RECONSTRUCTED FLAW

Figure 9. TIllustrating the reconstruction of another asymmetrically
placed flaw.
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Figure 10.

Illustrating the reconstruction of random flaws with
perturbed EMF data: (1) 1% perturbation, (b) 10%
perturbation, (c¢) 23% perturbation,
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APPENDIX A. CALCULATION OF THE GREEN'S FUNCTION

The interest of the cylinder is labeled region 1, the tube wall,
region 2, and the exterior to the cylinder, region 3. In each region
0 0 The

electrical conductivity of regions 1 and 3 is zero, whereas that for

the magnetic permeability is H. and the dielectric constant, €

region 2 is U. We use the notion
Gij(r,z;r',z') = field produced at (r,z) in regiomn i.
due to a filamentary current loop at

(r',2') in region j, where i,j = 1,2,3.

Using this notation, the Green's function satisfies

- 22 _ §(r-r')é(z-2') -

VxVzx Gll - lell e 3, (A-1) (a)
VxVxd, -k&G, =0 (b)
21 2721
VxVx6, -k, =0 (c)
31 3731
- 2= -
VxVx G5 leIZ 0 (a-2) (a)
= 2= _ 6(x-r")8(z-2") -
VxVYx Gyy = K56,y = T 3, (b)
VxVxG,, - kzé = Q (c) :
32 3732 H
o
VxVx G13 - k1Gl3 =0 (A~3) (a) §
VxVx8G,~kG.,=0 (b)
23 2723 S
= 2 8(r-r")8(z-z') -
VxVx Ggq ~ k3Gqq Ty 3, (c) :

2 2 2 2 2
where k1,3 ko W UNE s k2 WY jwuo .
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if we write G,, = G, .a , where the scalar C-ij is independent of ¢,

13~ "13%

because the vector Gij is divergenceless, then the vector differential

operator on the left-hand side of these eqdations is replaced by the

scalar differential operator

2 2
%G 9%, , oG G
5 RPN % R 1 aij-—éi+k26
r

>

32 or? - iy’

where k stands for either ko or k2.

The only parts of the Green's function that are required in the

model equations, (8)-(11), are GlZ’ 622, and G21; but GZl(r',z';r,z) =
Glz(r,z;r',z') because I = Y. in each of the three regions (see [23] of

0

the main text). Hence, all we need be concerned with is (A-~2), which

we rewrite using (A~4):

2 2
96, 3G, 186, Gy oo,
5 T3 YT or 5 tkG, =0
oz or T
2 2
762, ¥y 1% S, 2o o - SG=r)8(z=z")
- - 8G-r")8(amel)
azz 3r2 r or r2 2722 27t
2 2
%3 % 1% Sp 2
2 2 TT o - 2 TGyt
92 or r

We use Fourier transforms to solve (A-5). Thus,
o0

Giz(rgz;r',z') = J §iz(r,h;r

=00
so that (A-5) becomes
® dzaiz 195, 8h o o in(e-zh)
+ = - -
( = b + @l - 8HE e dh

(a-4)

(a-5)(a)

(b)

(c)

(a-6)

(a-7)
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where we have used the completeness relation

S -2 =k [ TG

-0

and 6ij =1, if 1 = 2, and = 0, otherwise.
Since (A-7) holds for all, z, z', we can equate integrands to get

the differential equation that is satisfied by the transformed variable:

2+ o o 3

d°G dG,. G o 3
R hhE,, = - 2 84 (A-3)

ér T * (27)°r!

lTet T, be the inner radius of the cylinder and Tys the outer, Then
the boundary conditions that are to be satisfied by the G12 are:

an(rn) = Gm_l’z(rn) ’ n=1,2 (A-10) (a)

dGnZ(rn) GnZ(rn) _ d§n+iuz(rn) §n+1,2<rn) _ é

+ = + » n=1,2 (b)

dr T dr r 2

-~ _ X ' :E

Gpplxl) =G, (x)) (e) i

a8, (') & (D) dE.. (") & ()
2274 227+ 22770 TppttL) (@

dr T dr T Anzr'

o bt S

al g}

Equations (A-10)(a),(b) imply the ccntinuity of tangential electric

and magnetic fieid, respectively, across a surface that does not carry

VUi By oy o i

magnetic or electric curront singularities. Equation (A-10)(d), on the
other hand, implies that the tangential component of magnetic field
intensity suffers a discontinuity of amount -1/4wr' in crossing the

S it

surface r = r', on which the filamentary current source resides. Alter-
natively, (A~10){b),(d) can be obtained by integrating (A~9) an infini-
tesimal distance across :the surfaces r = rl, r=r orr=rx', and then

2
invoking the continuity of electric field, as expressed ian (A-10)(a), (¢),

Wbtk hak

across tnese same surfaces.
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Because the source point, r = r', is in region 2, we have the follow-

ing solucions of (A-9):

N 2 . 2.1/2 (A-11) (a)
612 = (kg = 07)

= ( <
AJl(aor), r < rl s ao

gy, = Bail)(alr) + cu£2) (o), r <r<r, q = (k§ ENY. )
é22 = DH](-]-) (all'> + EH._EZ) (o’lr)’ ' < < rz (@
o w2

G32 = Fﬂl (Ctor), r 2. r2 , (d)

where A-F are arbitrary constants that are chosen to satisfy the boundary
conditions (A-10).
We use the Bessel function J, in region 1, because that region in-

1
cludes the z-axis, r = 0, and Jl is regular there. The Hankel function,

(2) (2)
5 1
is regular there (that is H
at infinity).

The six constants, A-F, are determined by applying (4-10) to (A-1l),

, 1s used in region 3, because that region extends to r = @, and H

§2) represents an outgoing cylindrical wave

with the resul:t:

(2)

a3 (agr) = B @) + oa? (o r) (A-12) (a)
WENCRRE alBHél)(alrl) + a, i (@ x ) (b)
B @ ) + alP ) = DH{l)(alr') + 28D (@) (c)
alnaél>(a1r') + alCHéz)(alr') « alDHél)(alr') + ulEHéz)(ulr') + an;r' d
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(2)

miil) (@,r,) + Eﬁiz) (o,7,) = FH

(aorz)

- (2)
o rz) aOFH (aorz) . £)

v, . (2)
alDHO (al-z) + o EH 0

1770 ( 1

In arriving at the final form of these equations, we used the Bessel

function identity dBlldz + Bllz = BO’ where B stands for J, H(l), H(Z). é
These equations can be solved in a straightforward manmer, and th %
constants then substituted back into (A-11). The results are: E
. vluil) @,r') + VZH§.2)(°‘1’:') i
Glz(r,h;r') = 5 Jl(aor) (A-13)(a) I
' -y i
(2m rl(V1V4 .2V3)
(1) ' (2) ' (1) (2)
Gzz(r,h;r') = [VlH1 (alr )+V2Hl (alr )][V3Hl (ulr)+V4Hl (alr)]
3 . »
JlGW(VlV4 V2V3)

[vsnil) CRP ,31{2) (0,211 [vlnil) (alr)+VZH§2) @,1)]

G, (zr,h;r") = ’
22 ~3/6m(V V=V, V)

#

(1)
e

2 .
) rz(V1V4-V2V3)

1 (2) ]
(ulr )+v43l (alr )

By (eshi") af‘” @D (@)

where

(2) (2) (2) (2}
v, = a 8y (aOrZ)H0 (alrz) ~ gy (uOrz)Hl ’(alrz) (A=14) (a)
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- (2, (1) (2) 1
V2 —allil (Jorz)}lo (alrz) +H0 (ozor?_)ﬁl (alrz) (b)
} (2) (2)
V3 ulJl(aOrl)Ho (oalrl) - quo(aorl)Hl (alrl) (c)
VA = -alJl(-:'.Orl)Hél) (alrl) + aOJO(uorl)Hil) (alrl) . (d)

Throughout the calculations, liberal use is made of the Wronskian

relation

B0 8D () - 8P @82 () = -j4/72

The final integral expressions for the Green's function are obtained

upon substituting (A-13) into (A-6):

® vlﬁil) (alr')+V2H(2) (o,r" —ih(z-z")
Glz(r,z;r'.Z') = ! 5 1 Jl(uor‘je h(z dh (A-15)(a)
S N R ALY
G22(r,z;r‘,z') =
. 1 2 ' 1
i‘ i © [vlui )(alr')+V2H§ )(ulr )][V3H§ )(alr)+V4E§_2) (alr)j .
H T ) (V1V4‘V2V3)
m p
. e‘jh(z—z')dh’ rl .S r<rz! (b)

il




o v i

.

WAL PRI L
RN .
o

o

£ BREPMAA D PITYIPE I PRI 10, e g b A e,

Gzz(r,z;r',z') =

gt [V3H](.l) (o, 2"+ 4}1?) CRYY {vlagl) (ulr)+vza§2) (@,1)]
' = -

16T i (V,V,-V,V,)

o _,_'J'h(z-z')dh , ' < r < rz (c)
6h] 2)
o vV HM (o' )4V HI (o re') .
G32(r:2:riz')= I - 2l LI H;Z)(aor)e-Jh(z.z')dh (@)
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APPENDIX B. CALCULATION OF MATRIX ELEMENTS

In this appendix, we derive expressions fo: the forcing-function

vector, (19)(c), and the matrices, (19)(b), and (23).
In order to compute (33)(c), we start with the reciprocity relation

G21(r,z;r‘,z') = Glz(r',z‘;r,z) y (8-1)

where the last equality follows from (A-15)(a). We assume then that the
(e)

excitiag coil occupies the region p](_e) <r X pge), C§e’ Lz < Cz .
Then, when we substitute (B~1l) into (19)(c), and interchange the order of

integration, we get
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_ _(e)
e jh(zi E )sin(hLe/Z)I(pge)ao,pie)ao)

2
hOto (VlV 4—V2V3)

. {vlail) (or,) + VZH](_?')(alri)}dh , (8-2)

where Le is the length and C(e) the midpoint cof the exciting codil, and

o)

f 3, (Dgdr . (8-3)

z

I(zz,zl)

1

Before computing (19)(b), we introduce the vector notation

.

e @ 5 Lz oL (2)
v H V.0 + V. H v Hl V3111 +v4H1

12 1 11 271 > T34

In addition, we let T, be the larger of (ri,r'), where L is the
radial midpoint of the ith cell, and T, the smaller. Using this notation
allows us to write (19)(b) concisely as

+

b 3
- ep? 1Yy ldptds?
Gij dj j J Gzz(ri,zi,r ,2')r'dr'dz
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w, , 3 3@ 8 (e, NF,,H (e 1))
iz g 12 7115734 T30
z (V1V4-V2V3)

J
Z T

3 3

+ -

-jh(z,~2.) -jh(z,-z,)

®je i "{'-e i 7]
=oj—1—f 3

b
J e .‘ e .-
j L L DAV i s UL W (B-4)
- (V1V,~Y,Y5)

r

3

In order to evaluate the inmer incegral we must consider three
3, (i) r, = r,» and (111) r, > r; . In (1), clearly
r, = T, r, = r', and in (iii) r, = r'yr, = r,-
inner integral above can be immediately computed for these two cases:

cases: (i) ri <r

Hence, the

+
r

j v .- g .-
f (VypHy (@) ")) (Vg °H,) (2 7))
RAZ=AN

r'dr'
T,
J

- 4 - - -
v, R(alrj,alri))(vsa'ﬂl(ulri))

(1)

2
al(vlv4-vzv3)

J (V)8 (7)) (Vy, o) (0, T") rdrt =
TAZSAN

- - . - + -
. (V98 (@) (Vg * Hloyr,,01.))
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The vector H is defined by

)

(1) (1)
H (32,21) = J Hl (9]4:14

51

Zy
H(z)(zz,zl) = J aéz)(«;)mc

%

For case (ii) we have for the inner integral

T
i, .= s =,
(V) B 0z )) (Vg B, (@) x'))

I‘_ CAZSAN

r

3

| Oy E g ) Ty Reeyry e + (V) Fie

+

X,

s s s
(V,,°8, (@, ")) (Vy, "B, (%,7,)) .

(B-5) (a)

(b)

+
1550% %y

NE

(vlva-v2v3)

348 (%74))

2
al(vlv

Hence, when these results are substituted into (B3-4), we get

Gij = ] 8T

-l

'3811’

=00
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*3gn

-0

g, (%
9 I e.jh(zi-zj) gi_rx_%axﬂz_l (1)dh
o] ® s

; J e ih(z2y) sln®liD) (45,4,

9 I e ihzg2)) In@/D) (445) 4,

45
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where (i), (ii), (iii) are the corresponding functions presented above
for the results of the radial integration, and A is the width of a cell
in the z-direction. We point out that the mesh with which we are working
is regular, in the sense that its cells are of constant width in the

r- and z~directions.

The expression for Tkj is also easily derived by substituting
(A-15)(a) into (23) and interchanging the orders of integration, with

the result

s
-

-jmuoﬁonc J@ V12° H(alri,alri) I(pzaa,oluo)

T =
ki e 22 _
o ov.1~ (vlv 4 V2V3)

7% 0

Eos[h(C;:zj)] - cos[h(;;.z';)] - cos[h(l;;-z:_.'L)] + cos[h(’;:-z.;-){l & -
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