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improved Cloud Detection Utilizing Defense 
Meteorological Satellite Program 

Near infrared Measurements 

1. INTRODUCTION 

A near IR sensor a t  1.6 pm was flown on DMSP vehicle F-4 and provided ex- 

perimental data from June to December, 1979. The sensor is identified a s  Special 

Sensor C (SSC) o r  a s  the snow -cloud discriminator. The primary objective of the r 
experiment was to discriminate snow cover from cloud cover and, in so doing, to 

improve the analysis of clouds on a world-wide b a s i q  T h i s  objective had been 

suggested by earl ier  s tudies la2  that found that snow covers were very poor reflec- 

tors  of sunlight a t  1. 6 pm while clouds were relatiVeIy good reflectors. An evalu- 
3 ation of snow-cloud discrimination using SSC data has been made by the Air Force 

Global Weather Central (AFGW C). 
c-----i" A secondary objective of the experiment was to distinguish water clouds from 

L 
ice clouds since earl ier  studies also found that water clouds were good reflectors 

of sunlight a t  1.6 pm and appeared distinctly brighter than ice clouds Detecting _ J  
water clouds would be a new and highly useful addition to satellite cloud analysis 

(Received for publication 19 January 1982) 

1. Valovcin, F. R. (1976) Snow/Cloud Discrimination, AFGL-TR -76-0174, 
ADA 032385. 

2. Valovcin, F. R. (1978) 
Infrared S ~ e c t r a l  Region, AP'GL-TH-78-02 89, ADA 06376 1. - 

3. Woronicz, R. C. (1981) Results of AFGWC Snow Cloud Discrimination Study, 
AFGWC Technical Note 8 1-003. 



since water clouds a r e  the most  opaque clouds for optical and infrared sensors on 

aircraft,  weapons, and spacecraft. The water clouds tend to occur a t  low altitudes 

where they interfere with important Air Force operations such a s  the delivery of 

Precision Guided Munitions (PGM1s). Finally, some liquid clouds a r e  supercooled 

and may deposit ice on aircraft  o r  cruise missi les passing through them. 

Studies by valovcinl' and others have clearly demonstrated the potential for  

a satellite channel a t  1.6 pm to discriminate clouds from snow and water clouds 

from ice clouds. Data from the SSC allow a realistic evaluation of the potential 

improvements to cloud analysis at  AFGWC. The SSC data were colocated with 

broadband visible (0.4 to 1.0 pm) and thermal IR (10.2 to 12.8 pm) from the Opera- 

tional Linescan System (OLS) on the DMSP. Therefore, the extra cloud informa- 

tion offered by the SSC can be compared to the information already available from 

the OLS channels. Moreover, the polar-orbiting DMSP satellite carried the SSC 

over a variety of cloud types and backgrounds not observed in previous studies so  

that cloud decision parameters can be tested over global extremes to determine the 

best algorithm for future applications. 

Studies to distinguish water clouds, ice clouds, and clear a reas  using SSC and 

OLS data a r e  described in this report. The physical basis for discriminating water 

clouds and ice clouds in the near IR is discussed in Section 2 along with a summary 

of related reports. In Section 3, DMSP sensors a r e  described along with examples 

of visible, near IR, and IR data. In Sections 4 and 5, algorithms for distinguishing 

cloud phase and cloud types a r e  described and the results of classifications a r e  

given in Section 6. Options for improved analysis and suggestions for incorporating 

the decisions into the AFGWC Automated Cloud Analysis (3DNEPH) a r e  given in 

Sections 7 and 8. 

2. NEAR IR PROPERTIES OF CLOUDS 

The ability of SSC measurements to distinguish water clouds from ice clouds 

is a result  of the differing optical properties of water vapor, water droplets, and 

ice particles. The differing optical properties have a straightforward explanation 

in t e rms  of molecular physics. According to a review by Hunt e t  a l ,4  water mole- 

cules have active fundamental vibrational modes and overtones of modes, some of 

which absorb energy in the near IR. These vibrational modes exist for al l  phases 

of water but their peak absorption shifts to longer wavelengths a s  water vapor con- 

denses to the liquid phase and also a s  liquid freezes to ice. The shift in wavelength 

4. Hunt, G. R., Salisbury, J. W., and Bunting, J. T. (1974) Distinction Between 
Snow and Cloud in DMSP Satellite Imagery, Report to the Fourth AFCRL/ 
AWS Satellite Working Group, 15 pp. 



of the vibrational absorption bands is due to significant increases in intermolecular 

forces a s  the water molecules become more highly organized in the liquid and solid 

states. The near IR absorption properties of vapor, water, and ice summarized 
5 6 by Blau e t  a1 and by Irvine and Pollack indicate one peak in absorption centered 

near 1.38 pm for water vapor, which shifts to about 1.45 pm for liquid water, and 

1.52 pm for ice in laboratory measurements of pure water and ice. 

The SSC channel is sensitive to energy a t  1.51 to 1.63 fim. This spectral 

region is sufficiently removed from the water vapor absorption band a t  1.38 pm to 

be an atmospheric window with minimal attenuation from sea level to the satellite. 
7 Figure 1 from Selby and McClatchey has atmospheric transmittance from sea  

level to space with the bandwidth superimposed. The transmittance for the SSC 

channel is higher than the OLS visible and higher for most atmospheres than the 

OLS IR channel. At longer wavelengths, the SSC atmospheric window is bounded 

by another vibrational absorption band of water vapor which is centered at  1.87pm. 

Within the spectral region from 1.50 to 1.75 pm ice absorption exceeds liquid 

water absorption significantly according to Table 1 derived from Irvine and 

Pollack. If I. is the intensity of radiation incident on a cell containing ice o r  

water, I is the intensity transmitted through thickness X, and R the fraction of the 

incident light that is reflected, then the absorption coefficient k in Table 1 can be 

determined from 

I = (1 -R)  I. exp (-kX) (1) 

The increased absorption by ice is due in part  to the shift of the absorption band to 

higher wavelengths from liquid to solid states and also in part  to the fact that the 

absorption band for ice is generally stronger than the band for water. 

A similar  se t  of displacements in absorption bands exists for wavelengths 

greater than 1.87 pm, the center of another absorption band for water vapor. 

These result in another window near 2.1 pm in which water clouds a r e  observed 

to differ from ice clouds. This window has been studied4* 8' but does not appear 

5. Blau, H. H. , Jr. , Espinola, R. P. , and Reifenstein, E. C. , I11 (1966) Near 
infrared scattering by sunlit terrestr ial  clouds, Applied Optics 5(No. 4 1: 
555-564. .,.. 

6. Irvine, W. M. , and Pollack, J. B. (1968) Infrared optical properties of water 
and ice spheres, Icarus 8:324-360. - 

7. Selby, J. E. A. , and McClatchey, R. A. (1975) Atmospheric Transmittance 
From 0.25 to 28.5 pm: Computer Code Lowtran 3, AFCHL-TR-75-0255, 
ADA 017734. 

8. Blau, H. H. , Jr. , and Hovis, W. A. (197 1) Cloud characteristics from infrared 
measurements, Space Research XI, Akademie-Verlog, Berlin, pp. 73 1-739. 

9. Alishouse, J.C., Jacobowitz, H. , and Wark, D. Q. (1976) A Cloud Physics 
Investigation Utilizing Skylab Data, Final Report to Johnson Space Center, 
-- - 
Houston, Texas. 
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Figure 1. Atmospheric Transmittance for a Vertical Path to Space From Sea 
Level for Six Model Atmospheres. The bandwidths of 50  percent response a r e  
indicated for the SSC and OLS visible and IR channel 

Table 1. Absorption Coefficient for Ice and Water v s  Wavelength 

1 

Wavelength Wavenumber k (cm-l)  k (cm-l)  
b m )  (cm- Ice Water 

1. 50 6667 46. 8 17.3 

1.55 6452 47.4 9. 6 

1. 60  6250 29. 9 6.2 

1. 65 6061  23. 1 5 .1  

1.70 5882 14.2 5.2 

1.75 57 14 10.2 6.4 



to be a s  sensitive a s  the 1. 6 pm window for discriminating water clouds from 

ice clouds. 

Spectral measurements of water and ice clouds a r e  highly consistent with the 

laboratory measurements of water and ice. An example of recent measurements 

by aircraft  is given in Figure 2 taken from Valovcin. These measurements were 

taken by an interferometer onboard the AFGL KC- 135 aircraft.  The interferometer 

provided spectral signatures of cumulus and cirrus clouds and also of snow cover. 

These spectra represent solar energy backscattered from clouds o r  snow so that 

they a r e  inversely related to the absorption properties of the clouds o r  snow. Low 

numbers in Figure 2 represent weak scattering, which implies strong absorption. 

Cumulus clouds were observed to be good reflectors, c i r rus  clouds were weak 

reflectors, and snow covers were poor reflectors. These observations agree with 

studies using aircraft8' lo and Skylab satellite9' l1 observations, which also sup- 

por't satellite discrimination of water clouds from ice clouds and clouds from snow 

using measurements a t  1.6 pm. 

The reflectivities of clouds can also be calculated using radiative transfer 

models. These models assume that the complex index of refraction is known for 

the wavelength of radiation and phase of water considered and that clouds can be 

adequately represented by a size distribution of particles having some simple 

shape, such a s  a sphere o r  cylinder. Some other necessary assumptions a r e  the 

shape of the cloud, which is usually an infinite slab but sometimes a cube o r  a 

cylinder, and i ts  thickness. 

For  water clouds, the calculations a r e  generally considered to be in agreement 

with observed reflectivities despite the fact that i t  is difficult if not impossible to 

measure accurately all of the cloud parameters mentioned within the field of view 

of a satellite. An aircraft  can sample only parts  of a cloud and particle sizes a r e  

often observed to vary within the clouds. However, both calculations and observa- 

tions show that water clouds a r e  good reflectors near 1.6 prn8' lo and tend to 

appear much a s  they do in broadband visible channels. 

For  ice clouds, reflectivities a re  calculated with much less  confidence. With- 

in the strongly-illuminated upper region of one ice cloud, an aircraft  may encounter 

particles classified a s  prisms, plates, dendrites, and smaller  fragments with 

10. Kyle, H.L., Curran, R.J. ,  Barnes, W.L., and Escoe, D. (1978) A Cloud 
Physics Radiometer, Proceedings of the 3rd Conf. on Atmospheric Radiation, 
Davis, California, p. 107. 

11. Barnes, J. C., Smallwood, M. D., and Cogan, J. L. (1975) Study to Develop 
Improved Spacecraft Snow Survey Methods Using s ~ ~ ~ ~ ~ / E R E P  Data, ERT 
Document No. 04 12 -F, Final Report, Contract No. NAS9 - 13305, Environ- 
mental Research & Technology Inc., Concord, Massachusetts, 92 pp. 



Figure 2 .  Average Spectral Radiance for 36 Cases of Cumulus, 32 Cases of Cirrus,  
and 56 Cases of Snow from Valovcin. The plots a r e  normalized such that the 
maximum radiance of 55.04 X W cm-2 sr-l (cm-l) - l  has a value of 1.0 

dimensions varying from 10 to over 1000 pm. l2 The classifications a r e  often diffi- 

cult to make since most ice particles a r e  irregular in shape. Optical effects that 

a r e  not modeled in calculations using spheres to approximate the ice particles, 

such a s  specular reflections from flat particles, have been observed. 12 

An example of calculations for both water and ice clouds is given in Figure 3, 

which is reproduced from Blau and ~ o v i s . ~  Relative reflectance between water and 

12. Bunting, J. T. (1980) Sensing Ice Clouds From Satellites, Light Scattering by 
Irregularly Shaped Particles, (D. W. Schuerman, ed. Plenum Press ,  New 
York, p. 25. 
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ice clouds is presented a s  a function of optical thickness and single-scatter albedo, 

w Water clouds had single-scatter albedoes from 1.0 to 0. 995 based on Mie 
0' 

calculations for spheres of radius between 2 and 30 pm. Ice clouds had single- 

scatter  albedoes from 0.98 to 0.6 for spheres of radius between 25 and several 

hundred micrometers. A relative reflectance of 0.5 was used a t  zero optical 

thickness to represent a bare land background, which is expected to be more r e -  

flective a t  1.7 pm than a t  visible wavelengths. 

Where the optical thickness is large in Figure 3, there is a good separation of 

water clouds and ice clouds by reflectivity. For  a given optical thickness, the 

relative reflectivities decrease a s  the single-scatter albedo decreases. The single- 

scatter  albedo, wo, can be defined a s  the ratio of energy scattered to the sum of 

energy scattered and absorbed per  particle. For  a given particle size, wo decreases 

a s  the absorption coefficient of the particle material increases such a s  from water 

to ice a t  1.7 pm. For  a given material, wo tends to decrease a s  the particle size 

increases, since scattering is less  efficient. Therefore, ice clouds have signifi- 

cantly lower single-scatter albedos a t  this waveiength since ice absorbs more than 
water and since the ice particles a r e  much larger than water droplets. Cloud r e -  

flectivity decreases a s  the single-scatter albedo decreases since sensors receive 

l e s s  energy from single and multiple scatterings. 

More recent and extensive calculations by Tworney and seton13 have supported 

the conclusion that the reflectivity of water clouds decreases a s  the droplet size 

increases. They also show how the cloud optical thickness, single-scatter albedo, 

13. Twomey, S., and Seton, K. J. (1980) Inferences of clouds from spectral 
reflectance measurements, J. Atrnos. Sci. 37: 1065 -1069. - 



and asymmetry factor can be scaled and interrelated for improved inference of the 

gross microphysical properties of clouds from near IR reflectance measurements. 

The concept of decreasing reflectivity with increasing particle size can be 

extrapolated. In the absence of specular reflection o r  foamy conditions, open 

water surfaces such a s  oceans appear to be very poor reflectors a t  visible and 

near IR frequencies a s  examples in the next sections will demonstrate. The ex- 

planation is that viewing the ocean is equivalent to looking a t  a water drop with a 

radius of the earth. The fact that the oceans do not extend to the center of the 

earth does not make a difference to the scattering o r  reflection properties since 

the oceans a r e  deep enough to absorb al l  sunlight which is not reflected a t  the sur-  

face o r  by particles suspended in the water. The oceans a r e  observed to be the 

poorest reflectors in comparison to the much smaller  particles of water clouds, 

ice clouds, o r  snow cover. This line of reasoning is only valid for viewing angles 

and wavelengths of radiation for which a water surface is a poor reflector and 

would not work for the viewing geometry of specular reflection, grazing incidence, 

o r  a t  microwave frequencies where oceans a r e  good reflectors. 

Figure 3 shows that the total reflectance of an ice cloud over a land background 

varies from 0.5 to 0 a s  the optical thickness increases and w decreases. A broad 
0 

range of optical thicknesses a r e  observed for ice clouds a s  is evident from the 

cloud mass  and snow cover mass  estimates in Table 2. 14' l5 The thinnest clouds, 

sometimes called "invisible cirrus", would appear nearly the same a s  cloud-free 

backgrounds while thicker ice clouds could be confused with darker scenes. Water 

clouds, on the other hand, a r e  l e s s  likely to be optically thin due to higher cloud 

mass  and smaller  particle size so they a r e  expected to be better reflectors than 

most backgrounds. 

Since their scattering properties a r e  similar, ice clouds could be confused 

with snow covers. However, observations by valovcin2 and Barnes e t  a l l1  show 

that snow cover tends to appear darker than ice clouds a t  1.6 pm. The coldest ice 

cloud particles12 a r e  smaller  than snow particles and a r e  expected to scatter  more  

light a t  1.6 pm. Table 2 indicates that snow covers will tend to have a greater  total 

mass  of ice to absorb sunlight a t  1.6 pm. The highest total mass  of ice cloud ob- 
2 served by AFGL cloud physics aircraft  and radars16 is 0.42 g/cm observed over 

Kwajalein Atoll. Ice particles existed from cloud tops a t  15. 5 km down to the bot- 

tom of the melting layer a t  4.3 Irm. Dividing the total mass  by 0.917 g/cm3, an 

14. Wiscombe, W. J . ,  and Warren, S. G. (1981) A model for the spectral albedo 
of snow, J. Atrnos. Sci. 37:2712-2733. 

..".A 

15. Conover, J. H. , and Bunting, J. T. (1977) Estimates From Satellites of 
Weather Erosion Parameters  for Reentry Systems, AFGL-TR -77 -02 60, 
ADA 053654. 

16. Plank, V. G. (1978) Weather Documentation for ANT-11, Launched 4 July 197 8, 
AFGL 60 Day Report. 



Table 2. Properties of Water Clouds, Ice Clouds, and Snow Cover 

The particle sizes for water and ice clouds a r e  for the spheres used by Blau and 
~ o v i s 8  in their calculations. The particle sizes for snow cover a r e  for spheres 
used by Wiscombe and Warren. 14 The mass  estimates for water and ice clouds 
were based on a measurement program described by Conover and Bunting. l5 The 
mass  estimates for snow cover correspond to snow depths from 1 cm to 10 m 

average density for ice from ~ o b b s , ' ~  gives an equivalent depth of 0.46 cm of solid 

ice. Using a 10 to 1 ratio of snow depth to water content, this figure is equivalent 

to a snow cover of only 4. 6 cm. The highest observation of total ice over temper- 
2 ate latitudes was 0. 31 g/cm which is equivalent to 3.4 cm of snowfall. These 

Water Cloud 

Ice Cloud 

Snow Cover 

depths of 4.6 o r  3.4 cm would be thin snow covers. Higher snowfalls a r e  common 

since the snowfall takes place over considerable time and the amount of snow ac- 

cumulation in one hour is on the order of the total vertical ice content a t  a particular 

time. This approximation can be derived from fallspeeds of snowflakes17 and char- 

acteristic depths of snow clouds. 

Mass of Water o r  Ice (g/m2) 

Although the difference in total absorbing mass  between snow cover and ice 

clouds may be sufficient to explain why snow appears darker than ice clouds a t  

Particle Radius (pm) 

Min 

lo1 

10- 

1 o3 

1.6 pm, i t  is also true that snow crystals w i l l  change size and shape with time and 

these changes may decrease the reflectivity of snow cover. ~ o b b s ' ~  describes 

Min 

2 

2 5 

5 0 

Max 

1 o4 

1 o4 

lo6 

how dry snowflakes may become increasingly rounded in shape and eventually 

break up into smaller grains which a r e  fairly uniform in size. O'Brien and Munis 18 

have noted that melting and refreezing of snow cover tends to decrease reflectance 

a t  1.2 to 1.9 pm. In summary, the density of both dry and wet snow covers tends 

to increase with time but the reflectivity a t  1.6 pm remains rather low. 

Max 

3 0 

300 

2 00 

Many land scenes a r e  moderately reflective and could be confused with clouds 

a t  1.6 pm. According to Goetz and  owa an,'^ the region around 1.6 pm exhibits 

17. Hobbs, P.V. (1974) Ice Physics, Clarendon Press ,  Oxford. 

18. O'Brien, H. W., and Munis, R. H. (1975) Red and Near Infrared Spectral Re- 
flectance of Snow, ERP No. 332, U. S. Army Cold Regions and Engineering 
Laboratory, Hanover, New Hampshire. 

19. Goetz, A. F. H. , and Rowan, L. C. (198 1) Geologic remote sensing, Science 
2 11(No. 4484):781-791. - 



the highest reflectance for most rocks because i t  is nearly midway between the 

ultraviolet-visible iron absorption bands and a strong fundamental OH- vibration 

a t  2.74 pm. Field-acquired reflectance spectra often exceed 50 percent for rocks 

free of vegetation. Altered rocks containing clay may exhibit reflectance greater 

than 70 percent.2o Vegetation often has a lower reflectance than rocks and Goetz 

and   ow an" show reflectances less  than 20 percent for Ponderosa pine. However, 

certain moist leaves have been found by laboratory measurements2 to have a r e -  

flectance over 50 percent. Reflectances in the range of 50 to 70 percent a re  ex- 

pected to be higher than those observed for ice clouds and a s  high a s  some water 

clouds. In fact, aircraft measurementsa2 a t  1.6 Ctm over farmland and deserts 

were found to be a s  bright a s  some water clouds although most water clouds were 

brighter. 

In general, there has been interest in the near IR windows from a variety of 

disciplines and the literature on applications is growing rapidly. Cloudfree land 

is expected to have 1.6 Ctm reflectivity varying with changes in vegetation, exposed 

rocks, and soil. Ice clouds have reflectivities reasonably close to and sometimes 

lower than cloudfree land so that detecting ice clouds over land requires extra in- 

formation such a s  the OLS channels in different spectral regions. 

3. DMSP IMAGERY DATA 

3.1 Special Sensor C 

According to descriptionsa3 by the manufacturer, Westinghouse Electric 

Corporation (WEC), the SSC sensor is a staring radiometer with an a r ray  of 48 

detector elements in the image plane. Image data a r e  generated by a "push-broom" 

type of scan. The total view of the 48 detector elements can be likened to a 401 nmi 

wide broom across the track of the 5D spacecraft that is pushed along the track by 

the spacecraft orbital velocity. The sensor was mounted 20° off the nadir angle so 

that an edge of i ts  field of view (FOV) is a t  nadir while the other edge intersects 

the earth a t  a distance of 401 nmi from the nadir. An example of data coverage for 

20. Rowan, L. C. , Goetz, A, F. H., and Ashley, R. P. (1977) Geophysics 42:522. - 
2 1. Anderson, A. G. (1976) Resource and Environmental Surveys From Space 

With The Thematic Mapper in the 19801s, Report of the National Research 
Council Committee on Remote Sensing Programs. 

22. Nelgner, H. D. , and Thompson, J. R.  (1962) Airborne Spectral Radiance 
Measurements of Terrain and Clouds, Emerson Klectric of Saint Louis, 
Report No. 1323 (RPA 6-62). 

2 3. Kimball, A. W. (1980) Technical Operating Report, SSC Data Evaluation, 
Westinghouse Electric Corporation, Defense and Electronic Systems center,  
~ a l t i m o r e  , Maryland. 



orbit 2680 (12 December 1979) between latitudes 8 0 ' ~  and 2 0 ' ~  is shown in Fig- 

ure 4. The width of SSC data scans is indicated a s  a narrow-shaded swath while 

the edges of scans by the OLS visible and IR imager a r e  shown a s  lines parallel to 

the spacecraft subtrack and over 800 nmi from it. DMSP vehicle F4 is descending 

over the eastern coast of North America a t  about local noon. The SSC data l ies to 

the east  of the spacecraft subtrack. 

The SSC lens arrangement is a 5-element unit with distortions controlled such 

that al l  of the 48 detector channels have an Instantaneous FOV (IFOV) of 14.6 mrad 

along track and 9.1 mrad cross track. The spacing of channels is 14.6 mrad across 

track so that scan spots a r e  not contiguous along the direction of scan. The major 

system parameters of the SSC a r e  summarized in Table 3.  

Table 3. SSC Major System Parameters 

Item Value Units 

Number of Channels 48 - - 
Spectral Band 1. 51 to 1.63 ~m 

Output Data Quantization 6 Bits 

Data Frame Time 2 sec 

Output Data Burst Rate 1 kHz 

Each Channel Time Constant 0. 68 sec  

Multiplex Time per Channel 10 msec 

Chopper Modulating Frequency 7 7 Hz 

IFOV Each Channel 14.6 X 9.1 mrad 

Figure 5 has approximate footprints of SSC and OLS on the earth's surface for 

selected SSC channels from 1 to 48. The SSC footprints a r e  IFOV's projected on 

the earth. The actual measurements a re  very slightly smeared in the along-track 

direction since sampling a channel takes 0.01 sec  and the spacecraft is moving. 

The alignment of SSC scan spots is not exactly perpendicular to the spacecraft 

track since the spacecraft advances about 1.7 nmi during the 0.48 sec total sampling 

time for one line of 48 spots. 

The SSC provided 6-bit data quantization, which allows images with 64 grey- 

shades. A ser ies  of gain settings were used while operating the SSC to minimize 

the great variation of solar illumination a s  the spacecraft enters daylight a t  the 



Figure 4. The Horizontal Extent of Data Provided by OLS and SSC Sen- 
s o r s  in a Part ial  Orbit 
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Figure 5. Approximate Ground Resolution of SSC and OLS Data. SSC channel 
numbers a r e  given inside each box. Channel 1 is on the subtrack 

terminator and descends to maximum illumination near the equator. Table 4 has 
the available gain states along with the latitude switching points for the Northern 

Hemisphere during December 1979. During the f i rs t  few months of operation of 
3 the SSC, the AFGWC and WEC experimented with gain settings and decided to use 

relatively low gain settings so that the sensor would saturate a s  little a s  possible. 

The SSC was calibrated using the Visible Uniform Light Source a t  the WEC. 

Channel 24 was used for calibration adjustments. For the bandwidth of the SSC, 

the solar energy from a perfectly diffuse reflector was estimated to be 
2 

9. 92 X W/cm /sr. During calibration. full-scale output a t  gain state zero 
2 

was found to be 5.06 X ~ / c m  /sr, which implies SSC saturation a t  51 percent 

of the incident solar radiation a t  the top of the atmosphere when the sun is overhead. 



Table 4. SSC Gain States and Latitude Switching Points for December 1979, 
Descending Passes  in the Northern Hemisphere 

State Word dB Gain Ratio Switching Latitude 

15 1 1 1 1  36.0 63.10 Not used 

14 1 1 1 0  33.6 47.86 Not used 

13 1 1 0 1  31.2 36.31 Used above 69.63 N 

12 1 1 0 0  28.8 27.54 69.63 N 

11 1 0 1 1  26.4 20.89 69.11 N 

10 1 0 1 0  24.0 15.85 68.41 N 

9 1 0 0 1  21.6 12.02 67.49 N 

8 1 0 0 0  19.2 9.12 66.26 N 

7 0 1 1 1  16.8 6. 92 64.62 N 

6 0 1 1 0  14.4 5.25 62.44 N 

5 0 1 0 1  12.0 3. 98 59.51 N 

4 0 1 0 0  9.6 3.02 55. 56 N 

3 0 0 1 1  7.2 2.29 50.19 N 

2 0 0 1 0  4.8 1.74 42.69 N 

1 0 0 0 1 2.4 1. 32 31.74 N 

0 0 0 0 0  0.0 1.00 13.17 N 
i 

Switching occurs when the satellite subtrack crosses the switching latitude. 
dB = 2 0  log (gain ratio). 

Later calculations that used the actual operating temperature of the SSC in the 

spacecraft suggested that saturation would occur a t  53 percent. 

When the sun is not overhead, higher reflectivities can be observed by using 

appropriate gain settings. In fact, most of the gain settings given in Table 4 cause 

the sensor to saturate over scenes of about 60  percent reflectivity. Some of the 

most reflective scenes for the SSC spectral band, which were generally water 

clouds, would still  saturate the sensor a t  60  percent reflectivity. 



3.2 OLS IR and Visible 

The OLS is  the primary sensor on DMSP spacecraft. The OLS is a dual chan- 

nel scanning radiometer that senses reflected light and emitted infrared energy in 

the 0.4 to 1.0 pm and 10.2 to 12.8 pm spectral bands, respectively. The r e -  

flected light is called L o r  visible data while the infrared energy is called T o r  

IR data. Both visible and IR energy a r e  captured by a scanning telescope system 

with optics driven across the spacecraft subtrack in a sinusoidal motion by counter- 

reacting coiled springs. The incoming beam of energy is split into two separate 

paths and then focused onto separate visible and IR detector elements. The sinu- 

soidal scanning moves the IFOV of these elements across  the subtrack with maxi- 

mum scanning velocity when looking straight down (nadir) and reversals  of velocity 

a t  the edges of scan. The change of scan velocity with scanning angle allows the 

spacing of measurements on the earth's surface to be nearly constant going from 

the subtrack toward the edge of scan. The detector sizes a r e  reduced a t  high scan 

angles so that projected IFOV maintains near constant resolution on the earth's 

surface. The more advanced design of the OLS enables the earth sampling to 

change much less  a s  scanning proceeds from nadir to higher scan angles. The 

improvement can be noted by comparing the left side of Figure 5 (nadir o r  sub- 

track) to the right side (401 nrni from nadir). The OLS data described in this r e -  

port were smoothed twice: f irst ,  on the satellite from 0.3 nrni to 1.5 nrni, and 

then a t  GWC from 1.5 nmi to 3 mi. In Figure 5, small  rectangles represent the 

approximate sizes and locations of 3 nrni OLS data. These a r e  not sensor foot- 

prints since each 3 mi data value is in fact an average over 10 scan lines of OLS 

fine mode (0.3 nmi) visible o r  IR data. The along-track length is arbitrarily 

shown a s  3.0 nrni even though i t  i s  slightly l e s s  near the subtrack. The cross-  

track spacing of these data values varies from 1.66 nrni a t  the subtrack (sample 

number 367) to 2.36 nrni a t  401 nrni from subtrack (sample number 574). 

These distances a r e  computed by constructing a triangle with vertices a t  the 

satellite, the earth's center, and the satellite viewing point, and then applying 

simple trigonometric equations to compute the a r c  distances on the earth sub- 

tended by appropriate satellite viewing angles. The following equation relates 

sensor scan angle 4 to OLS sample number (left side of scan is negative): 

4 = 4, COS [v + B] , 

where = 1.009673 radians is the peak scan angle, i is the OLS sample number, 
P 

N = 732.2 18 is the nominal number of OLS samples, m = 2.6687426 radians, and 

B = 0.2368551 for visible data, 0.2359074 for IR data. (4 is measured from satel- 

lite nadir. 



Also shown in Figure 5 is a line representing the distance 25  nmi, which is 

the spacing of the ~ D N E P H ~ ~  grid a t  60' latitude. An 8 X 8 a r ray  of gridded 3 nrni 

data a r e  analyzed for cloud cover in the 3DNEPH after the data a r e  mapped onto a 

polar stereographic projection. Applications of SSC and OLS data averaged to 

25 nmi resolution a r e  described in the next section. 

On the spacecraft, visible data a r e  digitized into one of 128 possible greyshade 
3 values (that is, 7 bits). At AFGWC, these greyshades a r e  truncated to 64 possi- 

ble values (6 bits). A sensitive procedure has been developed- for controlling the 

gain of OLS visible sensing on the spacecraft. The gain is automatically controlled 

by the value of SSE (Scene Solar Elevation o r  solar elevation a t  the viewed point on 

the earth) calculated by the spacecraft. The relation between gain and SSE is given 

in Table 5. Non-integer values a r e  interpolated and granularity is 0. 125 dB. The 

spacecraft knows 4, the scan angle of the OLS. The geocentric angle @ of the 

scene from the spacecraft subpoint is given by: 

Re+h 
@ = sin-'(- sin 4) - m , 

Re 

where Re is the earth radius and h is the spacecraft altitude. Given solar elevation 

E and azimuth A a t  the spacecraft, 

SSE = E + @  cosA (4 ) 

to a good approximation and SSE controls the gain. The gain changes a r e  smooth 

enough so that they were never noticed in the 3 nmi data. On the other hand, the 

SSC gain changes were quite noticeable a t  low solar elevations due to the much 

greater granularity of the SSC gain changes and the fact that when the gain changed 

all  48 SSC detectors would change and appear a s  a linear discontinuity in the data 

swath. 

The OLS visible channel was calibrated to a full-scale output a t  gain state 
2 zero of 2. 12 X W/cm /sr. Considering the inband solar energy, this value 

implies saturation a t  80 percent of the incident solar radiation a t  the top of the 

atmosphere when the sun is overhead. Therefore, the OLS can discriminate more 

reflective scenes than the SSC, which tended to saturate a t  60 percent reflectivity. 

In the course of this study, very few instances of saturated OLS visible measure- 

ments were observed and these were from cumulonimbus clouds a t  low latitudes. 

Like the visible data, OLS IR data a r e  digitized into one of 128 possible grey- 

shade values on the satellite and a r e  truncated to one of 64 possible values a t  

24. Fye, F. K. (1978) The AFGWC Automated Cloud Analysis Model, AFGWC 
Technical Memorandum 7 8-002. 



Table 5. Relationship Between SSE and Gain for OLS Visible Data 

1 

SSE, Degrees GAIN, dB SSE, Degrees GAIN, dB 

0 33.33 4 5 2.37 
1 27.35 46 2.26 
2 22.49 47 2. 15 
3 18.72 48 2.05 
4 15.94 4 9 1. 94 
5 14.00 5 0 1. 84 
6 12.70 5 1 1.74 
7 11.86 52 1. 64 
8 11.31 5 3 1.55 
9 10.90 54 1.46 

10 10.53 5 5 1. 37 
11 10. 16 5 6 1.28 
12 9.76 5 7 1.20 
13 9.35 5 8 1. 12 
14 8.93 5 9 1. 04 
15 8.53 6 0 0. 97 
16 8. 16 6 1 0. 9 1  
17 7.83 6 2 0. 85 
18 7.53 6 3 0.79 
19 7.24 6 4 0.73 
2 0 6. 97 65 0. 68 
2 1 6.70 66 0. 63 
2 2 6.43 67 0. 57 
2 3 6. 16 68 0. 52 
2 4 5. 90 6 9 0.48 
2 5 5.64 7 0 0.43 
2 6 5.40 7 1 0.39 
2 7 5. 17 72 0. 36 
2 8 4.96 7 3 0. 32 
2 9 4.76 74 0.29 
30 4.57 7 5 0.25 
3 1 4.39 7 6 0.22 
32 4.22 77 0. 19 
3 3 4.05 7 8 0. 15 
34 3.89 7 9 0. 12 
35 3.73 80 0.10 
36 3.58 8 1 0. 08 
3 7 3.43 82 0. 06 
3 8 3.28 83 0.05 
39 3. 14 84 0.04 
4 0 3.00 85 0. 03 
4 1 2.87 8 6 0.02 
42 2.74 8 7 0.02 
43 2 .61 88 0. 0 1  
44  2.49 89 0.00 

9 0 0. 00 

dB = 2 0  log (Gain Ratio). The Gain Ratio is the factor of increase relative to an 
overhead sun, for which SSE = 90 degrees 



AFGWC. The IR detectors are  designed to produce an output signal strength 

directly proportional to the equivalent blackbody temperature within the sensor 

FOV. The maximum temperature detectable is 310 '~  and the minimum is 2 1 0 ' ~  

(Table 6). The warmer scenes tend to have considerable atmospheric attenuation 

so that the equivalent blackbody temperatures are  less  than the true scene temper- 

ature. The AFGWC determines corrections to convert the apparent temperature 

to surface temperature for clear  condition^.^ The corrections vary from 15' at  

310 '~  down to lo at 2 10'~. Transmission models have also been used to calculate 

temperature corrections a s  a function of the amount of water vapor in the column 

of air  between the satellite and the surface.25 The results can be used to estimate 

cloud top temperatures. 

3.3 Earth Location, Colocation, and Normalization 

The ability to earth-locate, colocate, and normalize SSC and OLS data was 

required before the sensors could be compared and the extra information provided 

by the SSC could be determined. Earth-location, colocation, and normalization of 

SSC and OLS data were done using the AFGL Man-computer Interactive Data Access 

System (McIDAS) before image analysis and algorithm development were done. 

Earth-location is an automated procedure to determine the latitude and longi- 

tude of every data element given the time of a scan line and the scanning angle. 

Earth-location is particularly valuable for cloudy or  partly cloudy scenes when 

landmarks a re  not visible. It is particularly valuable to the image analyst since 

it allows non-satellite information on vegetation, exposed rocks and soils, snow 

cover, and surface weather data to be compared to the satellite data. 

Earth-location software was developed for the McIDAS for both SSC and OLS 

data. The software enabled the McIDAS operator to call for the geographical 

coordinates of any satellite data displayed on the TV screen. These coordinates 

would be calculated and displayed in less than one second. The equations we used 

to calculate the geographical coordinates of a DMSP datum (also known as  picture 

element or  ~ i x e l )  are  presented in detail in a technical report by Ruff and Gruber 
2 6 

and will not be repeated here. They assume a spherical earth, a circular satellite 

orbit, a scan-line perpendicular to the satellite subtrack, and the time and location 

of ascending nodes for individual orbits. None of the above assumptions a re  true, 

but the e r rors  in calculated locations were found to be minimal by checking clear 

landmarks such a s  islands and coastlines. Table 7 has the orbital parameters for 

2 5. Fett, R. W. , and Bohan, W. A. (1980) Navy Tactical Application Guide, 
Volume 3, NAVENVPREDRSCHFAC Technical Report 80-07 (pp. 1A20 to 1A22). 

26. Ruff, I. , and Gruber, A. (1975) Graphical Relations Between a Satellite and 
a Point Viewed Perpendicular to the Satellite Velocity Vector (Side Scan), 
NOAA Technical Memorandum NESS 6 5. 



Table 6. Conversion of OLS IR Greyshades to Equivalent Blackbody Temperatures* 

IR Temperature IR Temperature 

Gre yshade K(deg) C(deg) Greyshade K(deg) C(deg) 

0  3 1 0 . 0  3 7 . 0  32 2 5 9 . 2  - 1 3 . 8  

1  3 0 8 . 4  3 5 . 4  33 2 5 7 . 6  - 1 5 . 4  

*The conversion is linear. 



Table 7. DMSP F4 Orbital Parameters 

Universal 
Time of AN 

Orbit Date A. Node OW of (GMT) 
(Rev. No. MM. DD. YY Prime Meridian HH. MMSS 

2652 12. 10.79 261.3 15.2811 

2680 12. 12.79 256.4 15.0848 

2 893 12.27.79 259.6 15.2 148 

2 87 9 12.26.79 264.5 15.4115 

2765 12. 18.79 252.7 14.5358 

2751 12. 17.79 257.5 15. 1322 

2737 12. 16.79 262.4 15.3241 

2552 12.03.79 Not Available 

2 62 3 12.08.79 250.3 14.4427 

Inclination: 98.76' f 0. 12' 

Orbital Period: 6088 sec f 0.5 sec 

Altitude (near nominal): 833 k m  

DMSP vehicle F4, which had the SSC sensor onboard. The locations and times of 

ascending node for the orbits used in this study are  also listed in Table 7. This 

information is needed for earth-location. 

SSC data were colocated with OLS visible and IR data by AFGWC. Since the 

OLS data have a finer resolution than the SSC data, the OLS data were averaged to 

approximate the resolution of the SSC footprint. The OLS data had to be relocated 

a s  well since the OLS scans differently. The resulting set of visible, IR, and SSC 

imagery were extremely useful for both subjective analysis and the development of 

automated analysis. An example i s  shown in Figure 6, which is a McIDAS display 

of data over the Eastern U. S. A. The SSC data a re  in the middle of Figure 6, while 

the averaged and relocated OLS visible and IR are  on the left and right, respective- 

ly. More examples appear in the next section of this report. 
The AFGWC smoothed and relocated the 3 nrni OLS data using the times of the 

scan-lines and the angles of data elements along the lines. It was not necessary 

to earth-locate the data to colocate them. Although the spacecraft computer keeps 

time to a much higher accuracy, the SSC data from AFGWC had times to the nearest 



second for each scan-line. This timing was adequate since each line of SSC meas- 

urements took two seconds. 
Figure 5 shows that the SSC footprints a re  about 2 to 2.5 times a s  long a s  the 

OLS footprints in the along-track direction. Along the scan lines, the SSC foot- 

prints a re  about 2 times a s  wide a s  the OLS at element 1, on the subtrack, and 

about 3 times as  wide at element 48. Therefore, the footprint of element 1 con- 

tains 4 OLS footprints while the footprint of element 48 contains 6 to 9 OLS foot- 

prints. At AFGL, we experimented with averaging and relocating 3 nmi OLS data 
into SSC footprints but we found we could not significantly improve the AFGWC 

approach. 
We are  aware of several reasons why the averaged OLS footprints a re  not 

identical to the SSC footprints. First  of all, the SSC scan line times are  only known 

to the nearest second. Moreover, the 3 nrni OLS data is derived from finer data, 

and this smoothing process i s  not exactly represented by the arbitrarily drawn 

boxes with no holes that appear in Figure 5. Finally, since the satellite is moving 

during the time of scan, later footprints are  slightly advanced in the along-track 

direction. Due to differing sensor design, the SSC and OLS differ in their image 

motion during scanning. We speculate the combined effect of these uncertainties 

i s  on the order of 25 percent of the footprint size, that is, a colocated average 

visible o r  IR might have only 75 percent of its footprint over the corresponding 

SSC footprint. When data values were printed out near sharp cloud edges, cases 

could be found where one of the SSC o r  visible channels appeared filled with clouds 
while the other channel appeared only partly filled with clouds. This uncertainty 

contributes some noise to any analysis for automated classifications that is based 
on individual SSC and colocated OLS data. We have tried to reduce this noise by 

averaging 4 X 4 arrays of SSC data in most of our analyses. This noise could be 

removed if the SSC channel were incorporated into the design of the OLS. 

Our normalization of SSC and visible data is  an attempt to make the greyshades 
of both directly proportional to scene reflectivity when the sun is overhead. Both 
the SSC and visible data were adjusted on the spacecraft for varying solar illumi- 
nationbymeans of gain procedures discussed in Section 3.2. Our need to normalize 
arises in trying to use both channels for multi-spectral algorithms since the SSC 

and OLS gain procedures were not the same. 
SSC and visible data were normalized to the geometry of an overhead sun by 

removing the gain factors listed in Tables 4 and 5 and substituting the factor 

l/sin (SSE). In other words, the normalized brightness N is given by 



Figure 6. SSC Data (Center Strip) and Colocated Visible (Left) and IR (Right) a s  They 
Appear on the AFGL McIDAS a t  a Resolution of About 6 nmi. The Eastern U. S. A. coast- 
line is easy to see in the visible and SSC Images. Clear land is usually more reflective in 
the SSC than i t  is in the visible. Data were taken on 12 December 1979 



Figure 7. Visible (Left Strip) and IR (Right) a t  3 nmi Resolution a s  They Appeared 
on the McIDAS. Different enhancement curves were used so that the land-ocean con- 
t ras t  is more prominent than in Figure 6. The 3 nmi data appear stretched in the 
east-west direction. (Compare Florida to Figure 6.) This occurs since McIDAS pic- 
ture elements a r e  square while the OLS footprints (see Figure 5) a r e  shorter  in the 
east-west direction 



where B is the greyshade of either SSC or  visible data provided by AFGWC, G is 

the gain ratio, and SSE stands for scene solar elevation. 

When the sun is overhead, the visible sensor saturated for 80 percent of inci- 

dent in-band solar energy; the SSC saturated for 5 1  percent in laboratory calibration 

and 53 percent for a post-flight analysis of ins&ment operating temperatures. 

Consequently, to make compatible OLS and SSC images we multiplied all SSC data 

from Eq. (5) by the factor (.51/.80) equal to 0.6375. When we were informed of the 

post-flight analysis that changed the SSC saturation to 53 percent, we had already 

generated our data base and were well into our analysis. Rather than duplicate 

efforts, we decided to continue analysis with the existing data base. The difference 

was too small to interfere with subjective analysis of SSC images and has had no 

known impact on the automated analysis. Proper reflectivities corresponding to 

the SSC data values a re  given in Table 8. 

Table 8. Visible and SSC Greyshades and Corresponding Reflectivities Following 
Normalization by AFGL 

- - -  
i 

Visible (OLS) SSC Reflectivity SSC Reflectivity 
Greyshade Reflectivity Firs t  Calibration Re calibration 

0 0 0 0 

5 0.06 0. 06 0. 07 

10 0. 13 0. 13 0. 13 

15 0. 19 0. 19 0.20 

2 0 0.25 0.25 0.26 

2 5 0.32 0.32 0.33 

30 0.38 0. 38 0.40 

35 0.44 0.44 0.46 

40 0. 5 1  0. 5 1  0.53 

45 0.57 0. 57 0.59 

50 0.63 0.63 0. 66 

5 5 0.70 0.70 0.73 

6 0 0.76 0.76 0.79 

6 3 0. 80 0.80 0.83 



It is known that normalization using the factor l / s in  (SSE) will make images 

appear too bright for the smallest values of SSE. The explanation is that using the 

factor is equivalent to assuming that al l  radiation to the viewed point is direct sun- 

light and that none is scattered by atmospheric molecules o r  aerosols. In the 

extreme of twilight, al l  radiation is scattered, none is direct, and the factor 

l / s in  (SSE) is obviously not useful. Moreover, the extent of scattering for the 

OLS visible band is obviously greater than for the SSC band since Rayleigh scat- 

tering is inversely proportional to the 4th power of the wavelength. The decreased 

transmission a t  shorter  wavelengths of the OLS visible band (Figure 1) is caused 

by Rayleigh scattering. 

The smallest values of SSE that we used for automated analysis were in the 

range of 10 to 15 degrees, and we believe that our normalization procedure is 

adequate for these values. Extending the analysis to smaller  values would most 

likely require a departure from the factor l / s in  (SSE) toward the gain settings 

given in Table 5.  

4. IMAGE ANALYSIS 

4.1 Interactive Capabilities 

The development of automated classifiers required a ser ies  of known cases 

that a r e  often referred to a s  "ground truth" o r  "cloud truth" cases. It was nec- 

essary  to find cases with water clouds, ice clouds, and no clouds so  that cloud 

phase discrimination can be added to automated classifiers. We had planned to 

have a few aircraft  flights under the satellite by the AFGL Cloud Physics C-130 

to verify the phase of the clouds and estimate the particle size distributions. Un- 

fortunately, due to power supply problems on the spacecraft, the SSC sensor was 

turned off on 29 December 1979, and the flights planned for early 1980 could have 

no corresponding satellite data. Consequently, all "truth" cases were found by 

subjective analysis of images displayed on the McIDAS along with weather station 

reports and topographic maps. The analysis used data which AFGWC had saved 

prior to 29 December 1979. 

The data saves provided by AFGWC (Table 7) were quarter orbits from near 

the North Pole down to the Equator passing over Eastern Canada, the U. S. A . ,  the 

Caribbean Sea, and Central America. In general, a good diversity of cases were 

available. There were clouds over both land and water backgrounds, tropical 

clouds a s  well a s  arct ic clouds, and clear land, ocean, and snow cover scenes. 

Snow cover over the Eastern U. S. A. was abnormally sparse. (This was the winter 

in which the Olympics were held on man-made snow a t  Lake Placid, N. Y. ). How- 

ever, Canada had adequate snow cover for our purposes and we knew that Woronicz 3 



had studied snow cover over Eurasia and Antarctica a s  well a s  North America to 

distinguish snow from clouds using the SSC. Theonly other abnormality of the 

data sample was that relatively few ci r rus  and cirrostratus clouds could be found 

over land. 

In the image analysis, SSC and colocated visible and IR data were displayed 

on the McIDAS a s  in Figure 6. These data a r e  blown up by a factor of 3 so that 

the images a r e  roughly the same scale a s  the 3 nmi visible and IR data which ap- 

pear in Figure 7. The 3 nmi data were loaded into the McIDAS so that the operator 

could switch back and forth from SSC to 3 nrni data. This procedure was found to 

improve the selection of cases by detecting small-scale cloud features o r  land- 

marks  that could not be seen a t  the resolution of the SSC data. 

After viewing al l  the satellite data on the McIDAS, the classification system 

listed in Table 9 was adopted. Instead of three simple categories such a s  clear, 

water cloud, o r  ice cloud, this system has fifteen. There a r e  three categories 

for clear scenes and six categories for cloudy scenes, which may be over either 

land o r  water backgrounds. There a r e  several  reasons for using this many cate- 

gories. F i r s t  of all, we attempted to get a diverse se t  of cases so that algorithms 

could be used globally, and this requires analysis for water, land, and snow cover. 

Second, we know that background brightness and temperature differ greatly from 

land to ocean backgrounds so that categories fo r  partly cloudy scenes a r e  also 

needed. Finally, having a detailed breakout of categories allows a better e r r o r  

analysis by pinpointing the types of clouds o r  backgrounds which a r e  poorly handled 

by an automated classifier. 

In the classification scheme (Table 91, clear categories include water, land, 

and snow-covered land. Clouds believed to be water clouds were arbitrari ly cate- 

gorized a s  stratus for unbroken clouds, stratocumulus for broken clouds, and 

cumulus for scattered o r  widely-scattered clouds. Clouds believed to be ice clouds 

were arbitrari ly categorized a s  cumulonimbus clouds for high thick clouds that 

were expected to have precipitation beneath; a s  cirrostratus for wide-spread clouds 

that appeared thin; and a s  c i r rus  for scattered clouds that appeared thin. The 

cumulonimbus clouds might have water a t  low altitudes, but the radiation sensed 

by the satellite comes almost entirely from the ice particles. 

Cases were assigned classifications based on al l  available data. We found 

that we could readily identify clear land, water, and snow cover data using the 

3 nmi OLS data and reference maps. Clear water was the easiest  since i t  was 

very  dark and uniform in the visible o r  SSC channels. For  clear land and snow 

cover, we used maps of topography, vegetation, and soil types found in standard 



Table 9. Clear and Cloudy Categories 

Type Background Number of Samples 

Clear Water (CLW) WATER 6 1 

Clear Land (CLL) LAND 85 

Clear Snow (CLS) LAND 3 6 

Stratus (ST) LAND 2 3 
WATER 2 3 

Stratocumulus (SC) LAND 9 
WATER 4 0 

Cumulus (CU) LAND 4 0 
WATER 4 1 

Cirrus (CI) LAND 8 
WATER 2 6 

Cirrostratus (CS) LAND 6 
WATER 16 

Cumulonimbus (CB) LAND 3 
WATER 16 

atlases. 2 7 ' 2 8 ~ 2 9  These allowed us to recognize such features a s  mountain ranges, 

forests ,  and frozen lakes that confirmed that no clouds were present. 

Cloud phase was assigned to a cloudy area  after a number of factors were con- 

sidered. The size, shape, and texture of the clouds, particularly in the 3 nmi 

visible data, was a factor. Water-phase clouds often appear to have sharper edges 

than ice clouds since small water drops evaporate more efficiently at  the side of a 

cloud. The source of the cloud can be important. Cold a i r  blowing over warm 

water is expected to produce water clouds while thin clouds downwind of a cumu- 

lonimbus complex a r e  expected to be ice clouds. The cloud motions were studied 

using GOES East  visible and IR images a t  30-minute intervals. IR temperatures 

have important, though limited, information on cloud phase. The IR temperature 

can be converted to an estimate of cloud top temperature by correcting for atmos- 

pheric attenuation. When the cloud top temperature is l e s s  than -40°C, i t  i s  

27. The Times Atlas of the World, Mid-Century Edition (1957) The Americas, 
Vol. 5, Houghton Mifflin Co., Boston. 

28. U. S. Department of the Interior (1970) The National Atlas of the U. S.A., 
Geological Survey, Washington, D. C. 

2 9. Department of Mines and Technical Surveys (1957) Atlas of Canada, 
Geographical Branch, Ottawa, Canada. 



assumed to be an ice cloud since supercooled water droplets a r e  almost never 

observed below - 4 0 ' ~  (Curran and wu30 describe exceptions). When the IR tem- 

perature is above O'C, the cloud can be assumed to be a water cloud unless it i s  

a thin ice cloud. Clouds between OOC and -40°c may have water o r  ice particles. 

Our subjective analysis of the SSC, IR, and visible images confirmed that the 

SSC was doing a good job of discriminating water clouds from ice clouds a s  theory 

has indicated and prior experiments have concluded. The image contrast between 

water clouds and ice clouds was much sharper in the SSC channel than in the visible 

o r  IR channels. We then concentrated on adding the cloud phase information to 

automated cloud decision algorithms. 

The following procedures were used to select and verify cases. Fi rs t ,  the 

3 nmi visible and IR images were examined to find potential cases. Next, these 

cases were located on the SSC images. McIDAS interactive graphics will display 

a cursor of arbitrary size on the TV screen. A square cursor of 12 X 12 picture 

elements, that is, 4 X 4 of the blown up SSC data, was used in the analysis since 

i t  encloses a ground area  of about 25 X 2 5 nmi, which is  the current unit of analysis 

for  the 3DNEPH. Identical squares were drawn on the smoothed and colocated 

visible and IR data, which appear on either side of the SSC str ips (Figure 6). The 

earth location of the cursor was then determined by the McIDAS and reference 

maps were consulted if the a rea  was over land o r  near a coastline. Next, a special 

command (SM) was executed to save and classify the three a r rays  of SSC, visible 

and IR data. The image analyst would key in the clear o r  cloud classification from 

Table 9 along with the type of background. The McIDAS command would transfer 

the digital data under the cursor squares to digital disk storage reserved for this 

project. Bookkeeping information such a s  the orbit number and line and element 

identification were automatically saved along with the 4 X 4 a r rays  of colocated 

SSC, visible, and IR data. All cases were checked by recalling the data a r rays  

from the disk and displaying the numbers on a separate McIDAS console. This 

procedure was found to be helpful to check for proper entry of classification and 

background codes, for bad scan-lines, questionable colocation of data, and to en- 

sure  that mixed-phase clouds o r  coastlines were not present. If the checks r e -  

vealed a questionable case, i t  was deleted from the disk file. Most of the cases 

were examined by both authors of this report. The automated analysis described 

la ter  used only the saved a r rays  of SSC and colocated visible and IR data. The 

3 nmi data were used only for image analysis. 

30. Curran, R. J., and Wu, M-L. (1981) Identification from space of water droplet 
clouds a t  temperatures below -40°c, J. Atmos. Sci. (in press) .  



4.2 Examples 

Many significant properties of the near-IR SSC channel were obvious in the 

image analysis. They a r e  briefly described here by means of examples and 

comments while the numerical analysis is given in subsequent sections of this 

report. 

Figure 8 has low-latitude coverage for the 8 December orbit. The eastern 

half of Cuba is a t  the top of the images and Columbia, South America, is in the 

clear on the lower right of the images. Cloud-free oceans a r e  dark in both visible 

and SSC images and the clear/cloud contrast is good. Clear land in Columbia, 

Jamaica, Haiti, and Cuba is generally more reflective in the SSC than in the visi- 

ble channel in this case and al l  others. A large complex of cumulonimbus clouds 

is in the lower left of the images. They a r e  very good reflectors in the visible 

and poor emitters (that i s ,  cold) in the IR. However, since the satellite is sens- 

ing the ice particles in the upper part  of the cumulonimbus clouds, they a r e  poor 

reflectors in the SSC channel and appear dark. The a rea  of cold IR temperatures 

is much larger than the bright a rea  in the visible. The difference represents 

cirrus clouds blown north from the centers of convective activity. The SSC r e -  

flectivity varies little over the cumulonimbus and c i r rus  blowoff even though the 

cloud thickness varies greatly; the grey appearance o r  weak reflectivity of these 

clouds is an excellent indicator of the ice phase. It is important, however, to 

utilize either the visible o r  IR data to make an unambiguous designation of ice 

clouds since the reflectivity of ice clouds is nearly the same a s  clear land. The 

SSC view of cumulonimbus and cirrus shows some vertical striping in an otherwise 

uniform scene. The stripes a r e  caused by small (about 2 out of 64 greyshades) 

variations between detectors in the SSC array of 48 detector elements. 

Figure 8 also has cumulus clouds over water in the middle-left of the images. 

They a r e  water-phase clouds and a r e  good reflectors in both visible and SSC chan- 

nels, but a r e  barely detectable in the IR channel due to their relatively warm 

temperatures. There a r e  also some cumulus clouds over Cuba and Jamaica. The 

cumulus clouds a r e  easier  to see in the 3 nmi data (Figure 9). 

A large a rea  of cirrus and cirrostratus clouds appears in the center of Fig- 

ure  10 (SSC data) and Figure 11 (3 nmi data). These clouds a r e  associated with a 

nearly-stationary front over the ocean. The bumpy texture of the visible picture 

indicates some lower clouds under the cirrostratus. The SSC image of the cirro- 

stratus is nearly uniform in appearance since these clouds, like the cumulonimbus, 

a r e  poor reflectors. The water-phase stratocumulus clouds lying to the north of 

the ice clouds a r e  highly reflective in both visible and SSC channels. Over the 

ocean, all high reflectivity scenes a r e  water clouds except for the particular view- 

ing geometry which produces sunglint. 









Figure 11. Visible (Left) and IR (Right) Data a t  3 nmi for the Locations Shown in Fig- 
ure 10 



F i g u r e  12. SSC Data (Center),  Colocated Visible  (Left), and IR (Right) f o r  17 December  
1979. Nicaragua appears  in  the  cen te r  of the  i m a g e s  
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Figure 14. SSC Data (Center), Colocated Visible (Left), and IR (Right) for 27 December 
1979. Cirrus clouds a r e  over south-central Florida. To the north, the land is clear. 
Considerable variation in the SSC reflectivity over land can be seen in northern Florida, 
Georgia, and the Carolinas 





Figure 16. SSC Data (Center), Colocated Visible (Left), and IR (Right) for 17 December 
1979. Forests  and lakes covered by snow a r e  in the upper-left of the images 



Figure 17. Visible (Left) and IR (Right) Data at 3 nmi for the Locations Shown in Fig- 
ure 16 





Figure 19. Visible (Left) and IR (Right) Data at 3 nmi for the Locations Shown in Fig- 
ure 18 



Cumulus clouds over land (Honduras and Nicaragua) appear in Figures 12 and 

13 near the center of the images. Despite the fact that the SSC resolution was 

coarse, cumulus clouds were generally easy to spot over land backgrounds. More- 

over, the higher reflectivities of land backgrounds in the SSC spectral region did 

not hinder cumulus detection. Unlike ice clouds, water clouds were detectable in 

the SSC images without the need to reference another channel such a s  the IR. 

Figures 14 and 15 show water clouds (stratocumulus) south of Florida and ice 

clouds (cirrus)  near and over central Florida. North of the c i r rus  clouds, the 

clear land of Florida, Georgia, and the Carolinas shows significant reflectivity 

variations in the SSC. In the visible data, the reflectivity of the clear land varies 

much less.  

The SSC data in Figure 14 show surface variations in reflectivity which have 

attracted interest for remote sensing of vegetation and soil types. (References 

a r e  given in Section 2 .  ) The National Atlas of the U. S. A. 28 shows that the Gulf- 

Atlantic Rolling Plain parallels the Carolinas, the Georgia Coast, and eventually 

extends downward into the western side of the Florida Peninsula. The location of 

the Gulf-Atlantic Rolling Plain agrees very well with the brighter land in the SSC 

image. The darker shades of land a r e  the Gulf-Atlantic Coastal Flats. Other 

maps in the National Atlas show that the bright land in Florida has  relatively more 

sandy soil and relatively less  open water o r  marsh than the darker land to the east. 

Figures 16 and 17 have a good variety of clear and cloudy scenes. The upper- 

left par ts  of the images have clear skies and snow cover is visible from Lake 

Ontario and the St. Lawrence Valley northward. There is also some snow south 

of Lake Ontario. In the SSC image, the cloud/snow contrast is excellent for the 

water clouds southeast of Lake Ontario, over the mountains of Vermont and New 

Hampshire, and for the stratus clouds over Maine. The cloud/snow contrast is 
good for some thin c i r rus  clouds in the upper right of the images. The snow- 

covered land is darker than the snow-free land such a s  Massachusetts, Delaware, 

and the states to the south. By comparing the visible and SSC images alone, the 

cloud/snow discrimination is much better than in the better-resolution 3 nmi visi- 

ble and IR images which show more landmarks. 

Figures 16 and 17 also show some wave clouds over the Appalachian Mountains 

that a r e  probably a mixture of ice and water clouds since the SSC reflectivity is 

highly variable. There a r e  also water-phase stratus and stratocumulus clouds off 

the East  Coast. 

Figures 18 and 19 show another orbit with snow and clouds. Low water clouds 

cover par ts  of Indiana and Ohio. They a r e  easy to detect in the SSC image. A 

thin snow cover due to lake-effect snowfall can be seen just southeast of Lake Erie.  

I t  is darker than the surrounding snow-free land and easy to detect when the SSC 

and visible images a r e  compared. 



When only visible and IR data a r e  available, snow/cloud discrimination is often 

difficult in subjective image analysis and is even more difficult in automated analy- 

sis. Figure 17 has locations where subjective snow/cloud discrimination cannot 

be done without also looking a t  the SSC image in Figure 16. Figure 19 is easier  to 

discriminate subjectively. The low clouds over Indiana and Ohio do not have the 

shape of a snow swath laid down by a storm since they terminate abruptly on the 

northeast side. On the other hand, lake-effect snow cover is expected on the 

southeast side of Lake Erie, and the clear shoreline confirms that clouds a r e  

absent. These lines of reasoning a r e  not, however, available to the AFGWC 

automated cloud analysis, and the snow would be confused with clouds. Conse- 

quently, visible data a r e  not used for automated cloud detection where snow cover 

may be present. Therefore, the SSC channel is expected to improve automated 

analysis since the snow /cloud contrast is great. 

5. AUTOMATED CLOUD CLASSIFICATION 

Previous studies have suggested decision rules for discriminating water clouds 

from ice clouds and for discriminating clouds from snow cover. Four of these 

rules a r e  briefly described in this section and a r e  tested against the 433 cases 

that were classified by image analysis. Results appear in the next section. Sev- 

e ra l  forms of a minimum distance classifier a r e  also described and tested. The 

following discussion of decision rules proceeds chronologically from the earl iest  

to the most recent. 

Several studies have suggested using the ratio of an SSC channel to a visible 

channel a s  a useful parameter for cloud phase and cloud/snow -cover discrimi- 

nation. If the SSC channel measurement is put in the numerator so that SSC/visible 

is defined a s  the ratio, then the lowest values a r e  expected for snow cover, the 

highest values a re  expected for water clouds, and ice clouds would have interme- 

diate values. The ratio is useful since i t  is expected to be insensitive to variations 

in solar illumination and scattering geometry. Clouds vary in reflectivity due to 

variations in depth a s  well a s  width and the use of a reflectance may also be insen- 

sitive to these cloud size variations if the two channels see the same field of view. 

Finally, the ratio is simple enough to be a candidate for data processing on the 

satellite which could ease the burden of storing and transmitting complete data 

records from a new channel. NASA scientists lo have suggested that the ratios 

should only be used if the clouds exceed a certain optical thickness for visible 

measurements; above a given optical thickness, cloud phase discrimination is more 

accurate and fewer clear a reas  a r e  mistakenly identified a s  clouds. We arbitrarily 

used a visible greyshade of 9, corresponding to a reflectivity of about 11 percent, 

a s  a lower bound when ratios were calculated. 



A decision tree for discriminating snow cover, ice clouds, water clouds, and 
4 other cloud-free surfaces was suggested by Hunt e t  a1 based on a review of l i ter-  

ature available to 1974. The decision tree is shown in Figure 20. The decision 

t ree  s tar ts  like the visible processor of the 3DNEPH with a critical visible grey- 

shade to distinguish the darklclear scenes from all  others. In the ~ D N E P H , ~ ~  the 
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Figure 20. Decision Tree Suggested by Hunt e t  a1 for 
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Other Cloud-Free Surfaces 

HIGH 

v 
SNOW ICE CLOUD 

WATER 
CLOUD 

I I 



visible greyshade for clearfcloud decisions varies with earth-location, that is, 

land backgrounds a r e  brighter than ocean backgrounds, and also the land back- 

grounds change during the course of the year. The 3DNEPH background fields 

could be applied to the f i r s t  decision of this tree. . The SSC channel would next be 

used to discriminate snow cover, ice clouds, and water clouds. Based on the 

limited spectroscopic measurements available, the authors suspected that some 

ice clouds would be confused with snow cover. A thermal IR measurement was 

added to double check the discrimination of ice clouds and snow. The exact logic 

to combine the IR and SSC information was not specified in the report. This de- 

cision t ree  uses no ratios so i t  assumes that the reflected sunlight channels (visi- 

ble and SSC) have been normalized to some standard level of illumination. It also 

assumes that critical thresholds can be found for al l  three channels. This decision 

t ree  was intended to provide improved snow/cloud discrimination, since earl ier  

studies were primarily concerned with cloud phase. 
2 3 Kimball proposed an algorithm based on his analysis of the SSC instrument 

and some data samples. His decision t ree  is shown in Figure 2 1. The objective 

was an algorithm suitable for onboard processing, to discriminate cloudy scenes 

from cloud-free scenes including snow cover. The resulting cloud/no cloud deci- 

sion would compress the SSC data from six bits down to one bit, which could be 

readily stored and transmitted by the spacecraft. Some information a s  to the ground 

temperature would have to be uplinked to the spacecraft. Critical thresholds of the 

ratio SSC/visible (RS/LS in Figure 2 1) would have to be provided to the spacecraft 

processor. 

~ i m b a l l ~ ~  described his algorithm a s  preliminary and in need of global-testing. 

We modified his ratio by inverting i t  from visible/SSC to SSC/visible since zero 

values of SSC were occasionally observed over clear oceans. Since we were con- 

cerned that this algorithm might not work over clear water backgrounds, we tested 

on land cases only a s  well a s  al l  land and water cases together. 
3 Woronicz developed a decision matrix using SSC and visible measurements 

to distinguish clear, snow cover, and cloudy scenes. His decision matrix is shown 

a s  the dashed lines in Figure 22. These lines were determined by examining many 

cases of SSC data compared to 3 nmi visible and IR data. Any amount of cloud 

within the SSC FOV, even a single 3 nmi pixel, was considered a cloudy case. 

Similarly, any amount of snow within a clear FOV was considered a snow cover 

case. Mixed cloud and snow scenes were treated a s  cloudy cases. 

The hypothesis tested in the woronicz3 study was discriminating snow cover 

from cloud cover using a combination of SSC and OLS data. Discriminating snow 

cover can improve not only the ~ D N E P H , ~ ~  but also the separate snow cover model 
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Figure 2 1. Decision Tree Suggested by ~ i m b a 1 1 ~ ~  for Discrimi- 
nating Cloudy frem Cloud-Free Surfaces Including Snow Cover 

3 (SNODEP~') maintained by AFGWC. The Woronicz study used a wider range of 

cases than were used in the present study. In particular, SSC data were examined 

over bright ar id  terrain features and snow cover over Eurasia and Antarctica. 

The decision matrix was tested over large a reas  of four different orbits. The 

a rea  covered in this test is about seven times a s  great a s  the area  covered by our 

433 cases. The verification ra tes  a r e  reproduced in Table 10. They a r e  very 

good, with a 90. 1 percent correct classification for cloud/no cloud decisions and 

88.7 percent for three-way classification into clear, snow cover, and cloudy 

categories. 

31. Luces, S.A., Hall, S., and Martens, J. (1975) The AFGWC Snow Cover 
Analysis Model, AFGW C Technical Memorandum 7 5 - 1. 
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Table 10. AFGWC Test of Decision Matrix Given in Figure 22 
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Reliability of cloud/no cloud decisions = 90. 1 percent 

Reliability of clear/snow/ cloud decisions = 88.7 percent 
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3 We tested the Woronicz decision matrix against our own cases and also 

divided the cloud category into ice clouds and water clouds. Since we had normal- 

ized and, in doing so, generally reduced the values of our SSC greyshades we 

adapted his decision matrix boundaries (dashed lines) to be comparable to our SSC 

greyshades. The revised boundaries a r e  the solid lines in Figure 22. 

The decision rules that have been presented.are all based on physical argu- 

ments or  experimental data; however, they a re  all fairly simple to understand and 

to program on a computer. With a large and accurate data base, it is possible to 

test more complicated algorithms that may yield more accurate decisions. A 

number of studies have been made applying such algorithms to cloud type classi- 

fication using visible, IR, or both forms of satellite data. They are  summarized 

in an earlier reports2 and the statistical concepts a re  explained in a textbook by 

Duda and Hart. 33 

From the many possible approaches, we have chosen several forms of a mini- 

mum distance classifier. The forms generally discriminate categories by attempt- 

ing to carve a visible-IR-SSC space into mutually exclusive three-dimensional 

cloud category regions. Three minimum distance classifiers were tested on our 

data base: unnormalized, normalized, and unnormalized with standard deviations. 

The unnormalized minimum distance classifier uses the following discriminant 

function: 

X 

where x is a 3-component column vector x consisting of an observed sample's 
1x21 
L 

visible (x 1, IR (x2 1, and SSC (x3) means; pi is the mean of all x, category i; 1 
i = 1,2,3,. . . , 9 refers to the clear and cloud categories in Table 9. The notation 

t I 1 I I denotes the Euclidean distance from x to pi, and is defined as  (x-p.) (x-p.) 
1 1 

(t denotes transpose). Rewriting Eq. (6). 

32. Bunting, J. T. , and Fournier, R. F. (1980) Tests of Spectral Cloud Classifi- 
cation Using DMSP Fine Mode Satellite Data, AFGL-TR-80-0181, 
ADA 094119. 

33. Duda, R.O., and Hart, P.E. (1973) Pattern Classification and Scene Analysis, 
John Wiley & Sons, New York. 



where ph is the mean of al l  xn, class i (from pi). The pi a r e  calculated from the 

cloud truth se t  prior to using Eq. (7). An mi is calculated for al l  i and cloud 

type k is chosen such that mk < mi for al l  i + k. 

In three dimensions with visible brightness counts on the x-axis, IR on the 

y-axis, and SSC on the z-axis (see Figure 231, mi(x) is a measure of the linear 
i i distance between the ordered triples (xl, x2, x3) and (ulJ p2. p;). Equation (7) 

chooses the i for which mi is smallest. Thus, Eq. (7) is for this reason called 

a minimum distance classifier. Cloud category k is chosen by Eq. (7) if 
k k k  (xl, x2 , x3) is closest spatially to (p  , p2 , p3 ). If the pi a r e  al l  thought of a s  

"ideal" mean vectors of category i, then Eq. (7) picks the cloud category whose 

mean vector p. most closely resembles x in a least-squared sense. 
1 

The normalized minimum distance classifier is defined a s  

where x, x n ' pd, i, and n a r e  a s  previously defined; oh is the overall average 

standard deviation for cloud category i, imagery type n. Equation (8) is an equiv- 

alent form of a Bayes decision rule which is derived from the multivariant normal 

density. Hence di is a measure of the probability of a sample's being category i 

given the sample's mean column vector x. A di is calculated for al l  i, and cloud 

type k is chosen such that dk < di for all i # k. Derivation of discriminant functions 
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Figure 23.  Plots of Category Means in Three Dimensions (SSC, Visible, 
Infrared). The clear categories are in the upper plot, the water cloud 
categories are in the middle plot, and the ice cloud categories are in 
the lower plot 



similar  to Eq. (8) a r e  discussed in an earl ier  report34 and will not be repeated 

here. Note the similarity between Eq. (8) and Eq. (7). 

Finally, the unnormalized classifier with standard deviations is defined by the 

following: 

.,-,nere i,  x, P,, and I I I / a r e  a s  previously defined, s is a 3-component column 

vector s2 whose components a r e  the case visible (sl), IR (s2), and SSC (s3) 6;) 
standard deviations; Ei is the mean of al l  s. category i with components 0;. 

Rewriting Eq. (9) a s  was Eq. (6), we get 

A gi is calculated for al l  i and category k is chosen such that gk < gi for al l  i * k. 

' (  i')" Equation (10) differs from Eq. (7) by the factor E sn-an . This classifier 
n= 1 

was tested to see how well i t  helps discriminate among cloud categories when x ie 

"close" to more than one characteristic vector pi. For  example, when x is equally 

(or nearly equally) close to two mean vectors pi and pkJ the choice made by Eq. (10) 

will favor the cloud category whose standard deviations most closely resemble the 

visible, IR, and SSC standard deviations of the case. This is potentially helpful 

for successful discrimination of clear land from cumulus with a water background, 

clear water from cirrus with a water background, o r  cumulus with a water back- 

ground from cirrus with a land background, since the mean of any of these cloud 

categories can be very similar to one of the others. However, their standard devi- 

ations a r e  dissimilar. Such decisions a r e  critically important since cloud/no 

cloud and phase identification e r r o r s  result when misclassifications by Eq. (7) 

0 ccur. 

In order to provide a yardstick to measure the improvements offered by adding 

the SSC channel, the decision rule in Figure 24 was prepared. Only IR and visible 

means a r e  used. The boundaries between clear, ice cloud, and water cloud were 

drawn after inspecting scattergrams of cases in the IR/visible plane. No region 

was drawn for snow o r  ice cover since to do so would have caused more misclassi- 

fications of clouds a s  snow than correct classifications of snow a s  snow. 

34. dlEntremont, R. P.  (1980) Performance of the Discrete Fourier Transform 
Satellite Imagery Classification Technique, AFGL-TR -80-017 5, 
ADA 095364. 
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Figure 24. Decision Matrix for Visible and IR Data. 
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the dashed lines a r e  extensions for water backgrounds 

- k' 
I 
I 
I 

The algorithms for automated cloud classification that have been introduced 

in this section can all be described and compared in the formal terminology of 

pattern classification and scene analysis. Duda and   art^^ describe the common 

WATER 
CLOUD 

elements of pattern classification systems a s  a transducer, which views the scene 

and provides raw data; a feature extractor, which derives significant parameters 

for pattern discrimination; and a classifier, which yields a decision a s  to what 

categories a r e  in the scene. In our study, the transducer consists of the SSC and 

- I 
I 

- l l l l l l l l l l l l l i  

OLS sensors;  the feature extractor consists of the software for colocation, nor- 

malization, and computation of means and standard deviations; and the classifiers 

a r e  the various algorithms to make clear/cloud and ice cloud/water cloud decisions. 

The problem of classification is basically one of partitioning the feature space 

into regions, one region for  each category, with a minimum of wrong decisions. 

In our case the feature space is generally the 3-dimensional (3D) space with coordi- 

nates of SSC, visible, and IR greyshades (Figure 23 ) .  In the case of the minimum 

distance classifier with standard deviations, a 6-dimensional space (6D) is implied, 

although two 3D spaces a re  actually defined. A critical threshold of one spectral 

channel, for example SSC = 10, defines a plane which i s  the boundary of two regions 

in the space. The use of thresholds for two o r  three channels generates regions like 



rectangles o r  blocks, respectively. A critical ratio such as  SSC/visible = 0.7 is a 

slanted plane which extends from, but does not include, the IR axis. The use of two 

o r  more ratios generates wedge-shaped regions. A person, guided by the data, can 
3 

arbitrarily draw the boundaries of regions. Woronicz has done this, and we have 

done i t  for IR and visible data only. Finally, the boundaries of regions may be cal- 

culated using discriminant functions such a s  the distance of points to class means. 

These boundaries a r e  expected to be non-linear and to reflect the positions of the 

class means. 

6. RESULTS 

The cases selected and identified by image analysis were used to find ratios, 

thresholds, and statistics needed by the automated classifiers. For  each of the 

433 cases, the mean visible brightness count was computed: 

where the ai a r e  the members of the 16-element visible case array. Similarly 

xIR and xSSC were also computed a s  follows: 

where bi and ci a r e  elements of the IR and SCC case arrays,  respectively. Note 

that xVis. XIR' and xSSC a r e  the same a s  xl, x2, and x3 respectively in Eq. (6). 

The case variances were also computed: 



and 

Note that sVisB sIR, and sssc are the same a s  sl, s2,  and s3, respectively in 

Eq. (9). The ratio 

Xssc r = -  
X Vis 

was also computed. 

These results were sorted by category and background type. Then the follow - 
ing overall statistics were computed: 

Overall Category Mean: 

k k k 
for all case means xVisB iJ XIRB xSSCJ that are  of category k, and Nk is the 

k k number of cases of category k [note that pVis, pIRJ and ptSC are  the same as  
i i plB p i ,  and p3 respectively in Eq. (611 ; 

Variance of the Means: 



Category Average Variance: 

k 2 k 2  k where (sVis, i) , (sIR, , (sSSC, i2 a r e  all  variances of category k, a s  previously 
k k i i defined in Eqs. (14)- (16). Note aVis , aIR, and aSSC a r e  the same as a 02, and 

i u3, respectively in Eq. (8). 
k k k 2 

For  the cloud categories, pn , VOMn , and (an ) were calculated separately 

for  cases with land backgrounds and for cases with water backgrounds, a s  well a s  

for  land and water backgrounds together (henceforth called combined cases). The 

results a r e  in Table 11. 

Overall means from Table 11 a r e  plotted in Figures 25 to 30 for the visible- 

SSC, IR-SSC, and visible-IR planes. Figure 25 has the overall visible and SSC 
k k means pVis (Eq. (18)) and psSC (Eq. (20)) for combined cases of each cloud cate- 

gory, in addition to the clear categories. The abbreviation for each category is 

plotted where the overall category means lie on the plane. The bars  extending 

from the abbreviations a r e  equal in length to a: (Eq. (24)-(26)), category k's 

overall average standard deviation. In other words, these bars show the average 

range of scatter from its  mean for a 4 X 4 case of that category. If this range of 

scatter is smaller than the letters, no bars  a r e  drawn. The partly cloudy 



Table 11. Average Statistics 

1 

SSC 
Variance 
of Mean 

Mean P VOM Variance o 2 

1. 08 0. 50 0. 15 

13.25 9.28 2 .50 

5 .91 4.04 1.46 

42.27 36.84 5. 59 
38.53 45.10 9. 69 
40.40 44.46 7.64 

31.21 74.44 21.01 
27.54 27.55 34.77 
28.21 38.19 32.24 

18.96 18.84 10.61 
12.10 17.81 32.46 
15.49 30.07 2 1.67 

14.77 13.00 6. 00 
7 .11 11.67 7.82 
8. 9 1  22.55 7.39 

17.90 5.79 2.86 
12.87 17.02 3. 67 
14.24 18.97 3.45 

17. 14 1. 12 2.50 
16.96 14. 54 2.64 
16.99 12.43 2.62 

INFRARED 
Variance 
of Mean 

Mean p VOM Variance 2 
14.30 11.28 0.20 

18.44 37.64 0. 50 

37.62 15.98 0.39 

27.59 39.11 0.54 
25.68 46.01 1.46 
26.63 43.47 1. 00 

26.88 24.81 3.35 
23.10 2 1.80 3.77 
23.79 24.50 3.69 

16.67 7.30 1.57 
16.52 4.69 3.36 
16.59 5.98 2.48 

28.59 39.52 30.06 
25.70 30.43 44.57 
26.38 34.07 41. 16 

45.05 63.67 9.67 
37.57 98.75 13.03 
39.61 100.27 12.11 

56.88 31.95 9.33 
57.07 33.20 8. 95 
57.04 33.01 9.01 

I- 

No. of 
Category Bkgnd Cases 

CLW Water 6 1 

CLL Land 85 

CLS Snow 36 

ST Land 23 
Water 23 
Both 46 

SC Land 9 
Water 4 0 
Both 4 9 

CU Land 4 0 
Water 
Both 41 8 1  

CI Land 8 
Water 26 
Both 34 

CS Land 6 
Water 16 
Both 2 2 

CB Land 3 
Water 16 
Both 19 

VISIBLE 
Variance 
of Mean 

Mean fl VOM Variance o2 

2.56 0.33 0. 06 

7.90 0.82 0. 50 

19.30 23.55 11.76 

39.40 22.87 5.41 
35.79 25.81 14.11 
37.59 27.60 9.76 

26.13 31.54 30.28 
25.82 16.58 50.34 
25.88 19.34 46.65 

16.72 16.34 13.62 
12.34 12.64 41.72 
14.50 19.26 27.84 

14.23 17.43 11.31 
10.89 17.96 22.47 
11.68 19.84 19.84 

27.01 76.64 13.03 
20.46 112.99 10.10 
22.25 111.58 10.90 

53.76 3 1.48 2 1.46 
50.40 80.30 21.46 
50.93 74.10 2 1.46 
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Figure 30. Overall Means of Infrared and Visible 
for Cases Over Water (Dark Circles) and for Cases 
Over Land (Open Circles) 
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categories CI, CU, and SC have the largest bars, a s  expected, since each 4 X 4 

case array has a mixture of clear and cloudy pixels by our image analysis rules. 

Simple inspection of Figure 25 suggests that, if only SSC and visible data a re  

available, these three categories (CI, CU, and SC) would be hardest to classify 

since their overall means a re  closest and vary the most. The overall average 

standard deviations of each category are  different enough to suggest their use a s  

classification features since they discriminate CU from CLL and CI from C U .  

Figure 2 6  has overall means for cases over water (dark circles) and for cases 

over land (open circles). The cases over land generally appear brighter, especially 

for the partly cloudy categories CU and CI. The shifts for both CU and CI make 

sense since they are  similar to the shifts between CLW and CLL. In other words, 

the land background increases average brightness of the partly cloudy categories. 

The cloud cases over land (open circles in Figure 26) are  more distant from the 

overall means for clear land and snow than are  the cloud cases over water. More 

distance implies less overlap or  higher classification accuracies so i t  makes 

sense to use different classifiers for land and water backgrounds. Consequently. 

we have chosen separate thresholds and statistics for land and water backgrounds 

in our tests of classifiers. The present 3DNEPH earth-locates all satellite data 

and labels i t  by background type at eighth-mesh resolution (about 25 nmi at 60 '~)  

to improve cloud/no cloud decisions. 

Figures 27 and 28 are  like Figures 25 and 2 6  except that IR replaces visible. 
k In the IR, CLL, CU, SC, ST, and CI have overall means pIR fairly close together. 

k The category average standard deviations, aIR, are'large for the ice clouds CI, CS, 

and CB and this feature can be used to distinguish CI and CS from CLL and CLS. 

Figure 28, like Figure 26, shows that the partly cloudy categories have a substan- 

tial shift in overall category means as  the backgrounds change from water to land. 

Figures 2 9 and 30 a re  plots in the IR -visible plane. CLS is easily confused with 

CI and CS in this plane since its overall mean is close to the others. CLL is much 

closer to CLW than in the SSC-visible or  SSC-IR planes. CB clouds a re  well- 

discriminated from all other categories. 

Table 11 shows that the variance of the means (VOM in Eqs. (2 1)-(23)) is often 

greater than the category average variance (Eqs. (24)-(26)). In other words, the 

variation from case to case is often greater than the variation of the 16 elements 

within a case. For the SSC and visible channels, some of the case -to -case vari- 

ation is due to cloud reflectivity, some to the fraction of cloud cover, and some to 

changes in background. For IR data, the variance of the means tends to be high. 

The cloud cases are  expected to vary in temperature, even in the same category, 

due to differences in cloud altitude or  thickness from case to case. The clear 

cases vary in temperature due to varying background (or clear column) tempera- 

tures from Tropics to the Arctic. 



Anything that can be done to reduce the variance of the means within a category 

tends to reduce the overlapping subregions of categories and thereby improve classi- 

fication accuracy. When independent estimates of clear column temperature a r e  

available, a s  in the 3DNEPH, the IR variance of the means can be reduced for the 

clear categories and improved clear/cloud decisions a r e  expected. We did not, 

however, have clear column temperatures in our data base, and al l  IR values a r e  

unadjusted greyshades. 

The individual means for each case were al l  entered on large plots with the 

same coordinates a s  Figures 25 to 30. These plots a r e  not reproduced here since 
2 they had to be large (about 1 m ) and use different colors for al l  the categories. 

They were, however, more useful than the computed statistics, like variances of 

the means, in demonstrating how categories would overlap and for selecting crit- 

ical ratios and boundaries for the automated classifiers. 

The yardstick for measuring the extra information provided by the SSC channel 

is classification rate with only visible and IR data. The decision matrices (one for 

land, one for water) using visible and IR data were given in Figure 24. These 

matrices were applied to the 433 cases that were found by image analysis and the 

resulting verification matrix is given in Table 12. The percentage of hits for 3 -way 

classification was 82.2 percent. The percentage of hits is the percentage of cases 

correctly classified a s  either clear (no cloud), ice clouds, o r  water clouds. The 

correct  cases a r e  found in the diagonal of the matrix from upper left to lower right. 

The rows in Table 12 give the percentage of observed cases of a particular type 

a s  they a r e  classified by the automated classifier. Therefore, the row percentages 

sum to 100 percent. The numbers in brackets a r e  total numbers of cases for rows 

and columns. The grand total (433) is also given. This classifier could not be 

made to work over snow. All the cases of snow were incorrectly identified a s  ice 

clouds. If we had cases of pure snow cover without forests, etc.,  mixed in the 

scenes, we expect those snow cases would be incorrectly identified a s  water clouds. 

The visible-IR decision matrices did a remarkable job of detecting water 

clouds (86.4 percent) and ice clouds (82.7 percent) considering that either channel, 

used by itself, did a poor job of discriminating cloud phase. Ice clouds, for ex- 

ample, were found to have a very broad range of OLS visible reflectivities from 

5 to 76 percent. This range is in fact broader than the range of reflectivities for 

water clouds, which was 7 to 6 0  percent. Ice clouds were also observed over a 

broad range of IR temperatures, from 2 88OK to 2 1 0 ' ~ .  (The warmer temperatures 

were for optically thin c i r rus  over warm backgrounds. ) The visible-IR decision 

matrices appear to provide useful information a s  to cloud phase, if the clear/cloud 

decision is correct and if the decision matrices a r e  not used over areas  that may 

have snow cover o r  sea  ice. 



Table 12. Results of Classifier Using Only Visible and IR Data 

Clear 
a 

Water 
Cloud al 

rn 

8 Ice 
Cloud 

Automated 

Water Ice 
Clear Cloud Cloud 

(164) (156) (113) (433) 

(Overall Accuracy 82.2%) 

Two different decision matrices a r e  used: one for  land and one 
for water. 

Table 13 summarizes the ratios r of SSC over visible data which were com- 

puted to test ratios for decisions of cloud phase and cloud/snow. Table 13 has 

values of r, the average of r [Eq. (17)] over al l  cases in each category. Clear 

land had the highest value (1.662) of r. Despite our review of available literature, 

we were unaware of this important feature to identify clear land until we had seen 

the results  of the SSC experiment. As expected, clear snow has the lowest value 

(0. 312) of r, water clouds have values close to 1. 0, and ice clouds have intermedi- 

ate values. Cumulonimbus clouds have significantly lower than the other ice 

clouds. Figure 25 shows that CB has about the same SSC mean but a much higher 

visible mean, hence the ratio is lower. Clear water had a low r and a discontinu- 

ous distribution of r values between 0 and 1. 0. For  clear water, the SSC had grey- 

shades from 0 to 2 while the visible had greyshades from 1 to 4, which limits the 

possible combinations to generate r. The lowest values of r for al l  cases and a l l  

categories occurred when the SSC greyshade was zero over clear water. 

Following suggestions by scientists a t  NASA, lo we limited ratios to those 

cases with a substantial optical thickness in the visible, which we chose a s  visible 

greyshade 9, reflectivity about 11 percent. We recomputed r for these cases, but 

there was not much change from the r for a l l  cases. We also computed an average 

r for each case based on 16 ratios, one for each element of the 4 X 4 ar rays .  We 

were concerned that partly cloudy cases might give misleading values of ;but we 

found only small  differences in ratios (Table 13). 

By triak and e r ro r ,  we found that r = 0.70 gave the most accurate decisions 

for water cloud/ice cloud discrimination. We were not able to find a good r to 



Table 13. Rat ios  of SSC/Visible f o r  C l e a r  and Cloudy Categories  

r r  

Average - 
r ci la i  - 

Type r %is > g / N ~  Vis  > 9 Vis  > 9 

C l e a r  Wate r  (CLW) 0.436 0161 0 0 

C l e a r  Land (CLL) 1.662 4/85 1.345 1.562 

C l e a r  Snow (CLS) 0. 312 36/36 0.331 0.3 17 

S t ra tus  (ST) Land 1.088 23/23 1.088 1.092 
Water  1. 088 23/23 1.088 1.098 

Stratocumulus (SC) Land 1.206 9/ 9 1.2 14 1.259 
Water  1. 067 40140 1.067 1.099 

Cumulus (CU) Land 1.156 40140 1.153 1. 173 
Water  0. 983 32/41 0.989 0. 946 

C i r r u s  (CI) Land 1.049 718 1.057 1.034 
Water  0. 664 16/26 0.663 0.633 

C i r r o s t r a t u s  (CS) Land 0.719 616 0.725 0.729 
Water  0.720 141 16 0.689 0. 692 

Cumulonimbus (CB) Land 0.326 313 0.328 0. 324 
Water  0.349 161 16 0.353 0.350 

s e p a r a t e  i ce  clouds f r o m  c l e a r  snow s ince  r f o r  CB (0.326 to  0.349) was  c lose  to 

tha t  of CLS (0.312). 

The r e s u l t s  of a c lass i f i e r  f o r  no clouds, wa te r  clouds, o r  i ce  clouds using 

vis ible  >9 to detect clouds and a n  SSC/visible r a t i o  of 0.7 to s e p a r a t e  the cloud 

phase  is given by  Table  14. The overa l l  accuracy  of classification is 80. 1 percent .  

The c r i t i ca l  r a t i o  w a s  v a r i e d  in  o r d e r  to maximize the  classification accuracy. 

Most  of the  mis takes  in  classification a r e  due to c l e a r  snow c a s e s  that w e r e  c lass i -  

f ied a s  i ce  clouds due to low ra t ios ,  clouds o v e r  wate r  that had vis ible  greyshades  

low enough to b e  c lass i f ied a s  c lea r ,  and i c e  clouds with r a t i o s  above 0.7 that w e r e  

c lass i f ied a s  wate r  clouds. 

Th is  t e s t  of the  ra t io  c lass i f i e r  is not en t i re ly  f a i r  to invest igators  who have 

advocated the u s e  of SSC/visible r a t i o s  s ince  we have included a n  a r b i t r a r y  c l e a r /  

cloud decision in  the scor ing  p r o c e s s  while the r a t i o s  w e r e  mainly advocated f o r  

detecting cloud phase. Nevertheless ,  the t e s t  is a reasonable  simulation of what 

a sate l l i te  data p r o c e s s o r  m u s t  do s ince a c lear /c loud decision m u s t  be  made  be-  

f o r e  a cloud phase decision can be made. 



Table 14. Results of Classifier Using Ratios of SSC/Visible Data 

Clear 
a 
0 * Water 
k 
a, Cloud 
rn 

8 Ice 
Cloud 

Automated 

Water Ice 
Clear Cloud Cloud 

(Overall Accuracy 80.1%) 

The same decision rule is used for land and water backgrounds. 

The classification accuracy could be improved in several  ways. Fi rs t ,  the 

use of 0.25 a s  a critical ratio to discriminate snow from ice clouds could improve 

the accuracy by a s  much a s  5 percent, if many snow cases were classified. (If no 

snow cases were classified, this procedure would decrease the accuracy since 

some CB would be classified a s  CLS. ) Also, a category "cloud, phase unknowntt 

could be added and separate classifiers used over land and water backgrounds. 

Finally, we should note that the ratio approach is expected to work even if SSC and 

visible data a r e  not normalized for solar angle o r  anisotropic scattering. Our data 

sample does not reflect these benefits since both SSC and visible data were nor- 

malized for scene solar elevations. 

The decision matrices that used only visible and IR data (Figure 24) gave a 

slightly better classification (82.2 percent) than the ratios classifiers (80.1 per-  

cent) that used SSC and visible data. Consequently, more sophisticated decision 

rules a r e  needed to show how the SSC channel can add information to the OLS visi- 

ble and IR channels and these rules a re  shown in the remainder of this section. 

The SSC data base enabled us  to specify critical thresholds for the classifier 

proposed by Hunt e t  ala4 Also, the use of the thermal channel was changed in 

order  to improve cloud phase discrimination. The revised flowchart is shown in 

Figure 3 1. The change in the original flow chart (Figure 2 0) consists of using a 

medium range of SSC greyshades to include ice clouds and the water clouds which 

were not detected by the high SSC threshold. These water clouds were mainly CU. 

We found high SSC thresholds above which al l  clouds were water clouds. The 

thresholds (23 for land and 24 for water cases)  correspond to an SSC in-band 
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Figure 3 1. Critical Thresholds and Modification of Hunt Deci- 
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reflectivity of about 30 percent. We also found a low SSC threshold (greyshade 10, 

reflectivity 13 percent) below which al l  cases over land were snow cover. The IR 

data was used only to separate the remaining water clouds (mostly CU) from the 

ice clouds. Over water backgrounds, the low range of SSC greyshades is used to 

capture the thinnest cases of cirrus clouds over water. 
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The results  of this classifier a r e  impressive (Table 15). The accuracy of 

classification is 96. 1 percent for the four way classification clear, snow, water 

cloud, o r  ice cloud. The results a r e  significantly better than the accuracy of the 

visible-IR classifier that (1) attempted only three categories; (2) had an accuracy 

of only 82.2 percent (Table 12); and (3) did not work over snow covered land. The 

results  also confirm the predictions of ear l ier  studies that the addition of an SSC 

channel to the OLS visible and IR can improve cloud detection, discriminate cloud 

phase, and provide a totally new capability to detect snow cover. 

Table 15. Results of Classifier Using SSC, Visible, and IR Data and Adapted 
From Hunt e t  a14 

Automated 

Water Ice 
Clear Snow Cloud Cloud 

Clear 

a Snow 
a, z 
aJ Water 
rn Cloud 
8 

Ice 
Cloud 

(148) ( 36) (168) ( 81) (433) 

(Overall Accuracy 96. 1%) 

Two different decision rules a r e  used: one for land and one for water back- 
grounds. 

The classifier suggested by ~ i m b a 1 1 ~  (Figure 2 1) was also tested with the SSC 

data base. After examining the data base and ratios (Table 131, we chose KR = 0.7 0 

for decision box (1) to separate clear land and water clouds from other categories 

and KM = 1. 35 for  decision box (2) to separate the clear land and water cloud cases. 

(The value KR = 0.70 was previously used in the ratios approach to discriminate 

water clouds from ice clouds. ) We could not duplicate what Kimball intended for 

decision box (3) since we did not have TG, the clear column IR temperatures. 

The best we could do was to arbitrari ly use IR greyshade 45 (about 240 '~)  to help 

discriminate ice clouds such a s  CB from snow o r  clear water. 

Due to the nature of the algorithm and the fact that i t  was intended for onboard 

processing (which might preclude separate processors for land and water back- 

grounds), we tested only one decision rule for the Kimball approach. The results  



a r e  given in Table 16. The overall accuracy for clear/cloud decisions was 

82.9 percent. This classification accuracy was essentially the same a s  the accu- 

racy for the decision matrices that used only visible and IR data, so the misclassi- 

fied cases were examined to see why the SSC channel was not improving accuracy 

in this algorithm. For  clear cases, all the misclassifications were due to overlaps 

in the ratio distributions for clear water, water clouds, and clear land categories. 

Some of the clear water cases had SSC/visible ratios high enough to be called 

water clouds while some of the clear land cases had ratios low enough to be called 

water clouds. These misclassifications (12.6 percent, Table 16) could not be 

improved by choosing different critical ratios KR and KM. For  cloudy cases, two- 

thirds of the misclassified cases (20. 3 percent, Table 16) were the partly cloudy 

categories CI and CU. On the other hand, the Kimball classifier successfully put 

al l  snow cases into the clear category. For  land backgrounds only, the accuracy 

improves to 86.2%. 

Table 16. Results of Classifier Using SSC, Visible, 
and IR Data and Adapted From ~ i m b a l l ~  

Automated 

Clear Cloud 
'-0 
a, 
s Clear 
b 
rn Cloud (251) 

oP 
(2 10) (223) (433) 

(Overall Accuracy 82.9%) 
(Land cases only, 86.2%) 

The same decision rule is used for land and water 
backgrounds. 

3 The Woronicz decision matrix (Figure 22) was modified into separate decision 

matrices for land and water backgrounds. Moreover, the cloudy region was divided 

into regions for water clouds and ice clouds. The modified decision matrices ap- 

pear in Figures 32 (land backgrounds) and 33 (water backgrounds). The prime dif- 

ferences in Figures 32 and 33 a r e  the larger size of the clear region for land 

backgrounds and the ice cloud region for water backgrounds. The ice cloud/water 

cloud boundary is nearly identical for both decision matrices. This boundary has 

two segments, a sloping line for the relatively dark clouds and a horizontal line 

for the brighter clouds. These lines were drawn by hand based on scatter diagrams 

that positioned al l  cases. It is important to note that the sloping lines a r e  very 
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Figure 32. Woronicz Matrix Modified for Land Back- 
grounds Only with the Cloudy Region Divided into 
Separate Regions for Water Clouds and Ice Clouds 
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Figure 33. Woronicz Matrix Modified for Water Back- 
grounds Only with the Cloudy Region Divided into Separ- 
ate Regions for  Water Clouds and Ice Clouds. A region 
for sea  ice is included 



close to the line defined by the ratio SSC/visible = 0.7. However, for the brighter 

clouds, a constant value of SSC reflectivity (about 30 percent) works best to dis- 

criminate cloud phase. This same value of SSC reflectivity was used a s  a critical 

threshold in the modified Hunt algorithm. Therefore, the utility of the ratio ap- 

proach to our data sample is only for discriminating the partly-cloudy water phase 

categories (CU o r  SC) from the partly cloudy o r  semitransparent ice phase cate- 

gories. The overcast cases a r e  best discriminated by phase using the SSC channel 

alone. 

The results of the modified classifiers a r e  given in Table 17. The results a r e  

very  good, with an overall class'ification accuracy of 89.6 percent for four way 

classification. The majority of the misclassifications a r e  improper phase decisions 

fo r  the (partly cloudy) categories of CI and CU. These categories a r e  separated 

by the sloping boundaries in Figures 32 and 33 but there is still some scatter of 

both CI and CU cases across these sloping boundaries. The cloud phase discrim- 

ination in this subregion of the SSC-visible plane could be improved either by using 

unaveraged rather than 4 X 4 averages of SSC data to better detect the smaller 

clouds o r  else by using IR data to distinguish the colder CI clouds from the warmer 

CU, which was done in the Hunt algorithm. The Woronicz decision matrix in Fig- 

u re  22, which does not assume prior knowledge of the type of background, was 

also tested on all the cases (see Table 18). 

Table 17. Results of Classifier Using the Woronicz Decision Matrix Modified 
to Separate Matrices for Land and Water Backgrounds 

Automated 

Snow/ Water Ice 
Clear Sea Ice Cloud Cloud 

Clear 

-0 
Snow / 

E Sea Ice 

a 
rn Water 
8 Cloud 

Ice 
Cloud 

(148) ( 37) (165) ( 83) (433) 

(Overall Accuracy 89.6%) 



Table 18. comparison of Classification Accuracies for Woronicz Style SSC-Visible 
Decision Matrices 

The classification accuracies a r e  summarized in Table 18. The classification 

accuracies improve when a classifier is used for fewer categories. The improve- 

ment is. expected since the results  of a larger  table (for example, Table 17) a r e  

combined into a smaller  table and some misclassifications become correct  classi- 

fications. The results  of the Woronicz decision matrix on our cases a r e  almost 

identical to the results  on his cases with a l l  accuracies between 88.2 to 90. 1 per-  

cent. When separate decision matrices a r e  used for land and water backgrounds, 

the accuracy increases to over 98 percent for two o r  three categories. When cloud 

phase discrimination is added, the classification accuracy is still  good (89. 6 per-  

cent) and could easily be improved by a judicious use of the IR temperatures. 

The three forms of minimum distance classifiers, which have decision rules 

defined by Eqs. (7)-(9). were also tested. Separate classifiers were generated for 

land and water backgrounds. The classification results  appear in Tables 19, 20, 

and 21. The classification accuracies a r e  almost the same for the three forms of 

classifiers, ranging from 91.5 to 92.6 percent. These results  a r e  higher in accu- 

racy than a l l  the other classifiers with the exception of the Hunt decision rules 

when the classifiers a r e  used for clear/snow/water cloud/ice cloud categories. 

The minimum distance classifiers have some advantages over the other classi- 

f iers.  All three forms of the minimum distance classifiers were excellent for dis- 

criminating water clouds from ice clouds. Of al l  the classifiers tested, the best 

cloud phase discrimination was done by the minimum distance classifier using 

normalized means [Eq. (8) and Table 201. Water clouds were detected a t  the rate 

of 94.9 percent while ice clouds were detected a t  the rate of 97.4 percent. The 

minimum distance classifiers a r e  also relatively easy to work with when the fea- 

ture space has  more than two dimensions. Using two-dimensional scattergrams, 

r: 
0 
.g a 
d .2 
.2 
2 % "3 
ei 

Accuracy 

Woronicz Matrix Woronicz Matrix ~ a n d / ~ a t e r  Matrices 
on Woronicz Data on Our Data on Our Data 

Clear Clear Clear Clear Clear Clear Clear 

Cloud Snow Cloud Snow Cloud Snow Snow 

Cloud Cloud Water 
'loud Cloud 

Ice 
Cloud 

90.1% 88.7% 88.5% 88.270 98.4% 98.2% 89.6% 



Table 19. Results of Minimum Distance Classifier Using Unnormalized 
Means of SSC, Visible, and IR Data [Eq. (711 

Automated 

Water Ice 
Clear Snow Cloud Cloud 

Clear 

a Snow 
al 

2 al Water 
m Cloud 
8 

Ice 
Cloud 

(Overall Accuracy 91.9%) 

Two different decision ru les  a r e  used: one for  land and one for  water back- 
grounds. 

Table 20. Results of Minimum Distance Classifier Using Normalized Means 
of SSC, Visible, and IR Data [Eq. (8)] 

Automated 

Water Ice 
Clear Snow Cloud Cloud 

Clear 

a Snow 

g Water 
Q) 
m Cloud 
8 Ice 

Cloud 

(125) ( 33) (17 0) (105) (433) 

(Overall Accuracy 91.5%) 

Two different decision rules a r e  used: one for  land and one for  water back- 
grounds. 



Table 2 1. Results of Minimum Distance Classifier Using Unnormalized 
Means and Standard Deviations of SSC, Visible, and IR Data [Eq. (911 

Automated 

Water Ice 
Clear Snow Cloud Cloud 

Clear 

P 
a, 

Snow 

Water 
P) 
rn Cloud 
6 

Ice 
Cloud 

(Overall Accuracy 92.6%) 

Two different decision rules a r e  used, one for land and one for water back- 
grounds. 

category subregions like the Woronicz subregions a r e  easily drawn by hand and 

converted to replacement tables fo r  the computer, but this approach is not con- 

venient for more than two dimensions. 

Six dimensions a r e  used for the feature space for the minimum distance classi- 

f ier  using unnormalized means and standard deviations. The standard deviations 

of the 4 X 4 a r rays  for each case were added a s  features to help discriminate the 

partly cloudy cases from cloud-free cases. We noted that the standard deviations 

of cumulus cases over land were much higher than for clear land in both SSC and 

visible channels while the mean brightnesses of both types of cases were often very 

close. In the IR channel, the standard deviations of c i r rus  cases a r e  much higher 

than for clear snow cases. Table 22 has results  when the minimum distance classi- 

f ier  using both means and standard deviations classifies a l l  nine categories used in 

this study. The overall accuracy for  nine categories is 85.2 percent, almost a s  

good a s  the 92.6 percent (Table 21) accuracy for only four categories. 

All of the minimum distance classifiers were handicapped by the fact that IR 

greyshades were used without reference to clear-column temperatures, which vary  

significantly from the Equator to high latitudes. The unadjusted greyshades appear 

scattered along the direction of the IR axis for clear land, snow, and water cate- 

gories, and also for the partly cloudy categories. The extra scatter  generates 

some misclassifications a s  clouds for the colder clear and snow cover cases. The 

reason why the Hunt classifier has better results (96. 1 percent) for four category 



Table 22. The Same Classifier Used for Table 2 1 [Minimum Distance Using Un- 
normalized Means and Standard Deviations, Eq. (911 Except that Results a r e  Given 
for al l  Nine Categories of Clear Surfaces and Clouds 

Automated 

CLW CLL CLS S T  SC CU CI CS CB 

CLW 100.0% 0 0 0 0 0 0 0 0 ( 61) 

CLL 0 83. 5% 1.2% 0 0 1.2% 14.1% 0 0 ( 85) 

C r S  0 0 91.7% 0 0 0 5.6% 2.7% 0 ( 36) 

a S T  o o o 87.0% 13.0% 0 0 0 0 ( 46) 

SC 0 0 0 16.3% 77.6% '0.1% 2.0% 0 0 ( 49) 

,P cu 1.2% 4.9% 0 0 4.9% 87. 8% 1.2% 0 0 ( 81) 

CI 14.7% 2.9% 0 0 0 0 70.6% 11.8% 0 ( 34) 

CS 9.1% 0 0 0 0 0 13.6% 59.1% 18.2% ( 22) 

CB 0 0 0 0 0 0 0 5. 3% 94.7% ( 19) 

( 69) ( 76) ( 34) ( 48) ( 48) ( 74) ( 43) ( 19) ( 22) (433) 

(Overall Accuracy 85.2%) 

classification than the minimum distance classifiers (91. 5 to 92 .6  percent) is the 

fact that the Hunt classifier uses IR selectively for relatively few cases where the 

SSC and visible data have trouble discriminating cloud phase. 

An alternate procedure to improve the cloud phase discrimination for the 

partly-cloudy categories of cumulus and cirrus is to refer  to the cases in the 

visible-IR plane. After looking at  individual cases, we noted that the classifier 

using only visible and IR data did better than the Woronicz classifier in discrimi- 

nating cumulus and cirrus cases. We believe that these small-scale clouds were 

better discriminated by the visible-IR processor since the visible and IR data a r e  

precisely colocated by the OLS instrument while the SSC and visible data a r e  only 

approximately colocated. If the SSC channel were added to the OLS as  a third 

channel, we expect that the SSC-visible classifiers modified from Woronicz would 

have improved cloud phase discrimination. We also noted that the visible-IR proc- 

essors  made mistakes in phase discrimination that the processors using the SSC 

channel did not make. Supercooled stratus clouds, for example, were called ice 

clouds by the visible-IR processors but were called water clouds when the SSC 

channel was used. These mistakes limit the accuracy of the visible-IR processors 

for cloud-phase discrimination so that they do not work a s  well a s  classifiers using 

the SSC channel. 



The accuracies of al l  types of classifiers were compared in Table 2 3  to help 

summarize the results of automated cloud classification and cloud phase discrimi- 

nation. The visible-IR classifier, which was the best approach without the SSC 

channel, showed skill for cloud phase but did not work over snow cover. The 

ratios and Kimball classifiers, which both relied on SSC/visible ratios, did no 

better than the visible-IR approach. Aside from the fact that the Kimball classi- 

f ier  worked well over snow cover, we do not advocate their use without further 

modification and testing. The remaining three classifiers (Hunt, Woronicz, mini- 

mum distance) were substantially more accurate than the visible-IR classifier and 

also demonstrated how the SSC channel can detect snow cover, cloud phase, and 

improve the discrimination of clear land. 

7. OPTIONS FOR IMPROVED 3DNEPH 

If the SSC channel were added to the DMSP OLS sensor, then the added informa- 

tion of cloud/snow and cloud phase discrimination could be found in several ways. 

A prime consideration, which was known before the design of the SSC experiment, 

is the impact of an extra channel on the spacecraft burden of storing the extra data 

and downlinking it to command readout stations. The data ra te  would be high since 

the FOV would be about the same (1.5 nrni) a s  smoothed visible and IR. Conse- 

quently, there has been a concern to learn if the SSC data could be processed by 

the spacecraft and a compressed message (such a s  1 bit: 0 = no cloud, 1 = cloud) 

stored and transmitted to the readout stations. Of the algorithms we tested, the 

Hunt classifier and the modified Woronicz classifiers a r e  the most likely candidates 

for onboard processing due to their simplicity, a s  well a s  their accuracy. They 
could be used for a data compression of 6 bits (SSC greyshades) to 1 bit (clear/ 

cloud) o r  2 bits (clear/snow/water cloud/ice cloud). These classifiers both work 

better if the type of background, land o r  water, is known independently. In theory, 

the independent knowledge of backgrounds could be calculated on the ground for 

coastline crossings a s  a function of subtrack and scan angle and be uplinked to the 

satellite. In practice, i t  would be easier to substitute classifiers which do not 

assume prior knowledge of the background a t  the cost of some classification accu- 

racy. The Hunt classifier, for example, dropped from 96.1 to 86.6 percent for 

clear/snow/ice cloud/water cloud categories when the background was unknown. 

If the data from an SSC channel could be transmitted to the AFGWC, more 

options a r e  available. I t  would be available for subjective analysis a s  well a s  

automated analysis. Our experience with image analysis using SSC displays has 

led us  to believe that i t  often has more contrast than the visible o r  IR images for 

separating cloud layers, where one layer is water and the other is ice cloud, o r  



Table 2 3.  Comparison of Classification Accuracies 

C l a s s i f i e r s  

Hunt Kimball  Modified Minimum Distance C l a s s i f i e r s  
Visible, IR Ratios  Decision Rules  Decision Rule Woronicz Using Means  and Standard 

Only ~ ~ ~ / ~ i s i b l e  SSC, Visible ,  IR S ~ ~ f ~ i s i b l e ,  IR M a t r i c e s  Deviations of SSC, Vis ib le ,  IR 

Clear  Clear  C l e a r  C l e a r  C l e a r  C l e a r  C l e a r  
Water  

Water  Water  Snow Cloud Snow Snow C l e a r  
Cloud Cloud Land 

Ice Ice Water  Water  W a t e r  Snow 
c Cloud Cloud Cloud Cloud Cloud .s! m 2 .: I c e  Ice  I c e  S T  
'+ 0 3 bLl 

Cloud Cloud Cloud 
(Il aJ 
(Il c' 
d SC 
GU cu 

CI 

CS 

CB 

A c c u r a c y  82.2% 80. 1% 96. 1% 82.9% 89.6% 92.6% 85.2% 



for locating coastlines and other landmarks even though the SSC resolution was 

coarse. Clouds over snow cover were easy to recognize using the SSC image 

alone. 

Any automated processing of an extra channel such a s  the SSC would definitely 

increase computer storage and calculating requirements compared with processing 

just IR and visible data. We a r e  not able to estimate these requirements since our 

calculations were made on a different computer system with no current capability 

to run 3DNEPH codes. We believe, however, that the benefits of adding the SSC 

channel to the 3DNEPH would be considerable. Along with ~ o r o n i c z , ~  we have 

noted that clouds can be detected over snow cover. The 3DNEPH does not process 

visible data over a reas  believed to have snow cover, and cloud detection suffers 

since the thermal contrast between low cloud tops and snow cover is often too weak 

to detect these clouds. Cloud phase is important new information that could be 

added to the 3DNEPH. Aside from detecting a cloud and estimating i ts  altitude, 

the phase of the cloud is the most useful thing to know for support to many AF 

operations. Detecting water clouds is particularly important since they tend to 

occur a t  low altitudes, they tend to have the worst transmission for electro-optical 

systems, and they a r e  often supercooled causing icing conditions. The SSC channel 

detects water clouds very well when i t  is used with the visible channel. 

The 3DNEPH program generates intermediate products of background bright- 

ness fields and clear-column temperatures. They a r e  needed to account for global 

variations in visible reflectivity and IR temperature of clear surfaces so that bright 

deserts  in the visible processor and cold Arctic regions in the IR processor a r e  

not mistaken for clouds. These brightness and temperature reference fields can 

improve classifications using the SSC channel in a multispectral classifier since 

they reduce the overlap of the clear cases and the cloudy cases. 

One very important advantage of the classifiers using the SSC channel was the 

fact that they achieved high classification accuracies over a great  range of latitudes 

and backgrounds without any location-dependent values of background brightness. 

It was helpful for the SSC channels to have independent knowledge of the type of 

background, land o r  water, but they did not have to be given a numerical value of 

background brightness for each earth location. In order to use visible satellite 

data in the 3DNEPH, the AFGWC has had to develop considerable software to main- 

tain a background brightness data base. These procedures a r e  described by Fye. 24 

This global data base is eighth-mesh and corresponds directly to the 3DNEPH grid 

system. The data base is updated daily so that sudden changes in snow fall o r  

snow melting can be followed a s  well a s  seasonal changes in vegetation. 

The AFGWC maintains a background brightness data base and processes visi- 

ble data only for sensors on spacecraft with a near-noon (local time) orbit. 

Visible data a r e  not processed for morning orbits since changes in scene illumination 



make i t  difficult to establish background brightness fields. During the wintertime, 

for example, the day-to-day variation in the morning pass time will cause locations 

to be sunlit on some mornings, but dark on others when the satellite passes a t  an 

earl ier  local time. A good background brightness field, which needs daily checks, 

cannot be established for these conditions. On the other hand, the use of an SSC 

channel in conjunction with the visible is expected to work in the sunlit parts  of a 

morning orbit since the multichannel classifiers perform well without a background 

field. However, we cannot say how much of the morning orbit could be processed 

since we did not use cases close to the terminator (SSE = 0'). We did use cases 

with SSE = 15' without difficulty and expect that appropriate gain settings would 

allow automated processing for lower SSE. 

The SNODEP~' model is used to tell the background brightness data base when 

snow o r  ice backgrounds a r e  present. The visible data a r e  not used to detect snow 

o r  else persisting cloud cover could be identified a s  snow cover. The use of an 

SSC channel along with the visible channel would allow snow cover to be detected 

a s  well a s  cloud cover so that the SNODEP data base could be improved for regions 

where snow cover. reports a r e  sparse. 

The combination of processing some visible data from morning orbits, a s  well 

a s  over snow cover on both morning and noon orbits, could substantially increase 

the automated processing of visible data. Therefore, an important feature of the 

SSC channel is that i t  allows much more data from the visible channel to be used in 

the 3DNEPH. 

8. CONCLUSIONS 

Before the data from the near-IR SSC channel were available, there were a 

number of questions to be answered despite the available literature. Not all back- 
grounds and cloud types had been observed in previous studies; however, the polar- 

orbiting DMSP satellite carried the SSC over a variety of backgrounds and cloud 

types not previously observed. Earl ier  measurements showed that cloud-free land 

had a higher reflectivity than the broadband OLS visible channel, and these bright 

backgrounds might be difficult for cloud detection. On the other hand, both our 

study and the woronicz3 study found minimum problems in cloud detection a s  long 

a s  the visible channel was included and a multispectral approach was used. The 

clear land cases were in a unique region of the SSC-visible plane and were charac- 

terized by the highest values of the ratio SSC/visible of all the cases. This impor- 

tant finding was not predicted in the literature available to us, but i t  is very useful 

since clear land, clouds, and snow cover cases a r e  well separated in the SSC- 

visible plane. 



Calculations of cloud reflectivity were useful for predicting the SSC response 

to clouds. However, the applications of calculations a r e  limited by the great 

irregularities of shape and size of ice particles so  that experimental evidence is 

desirable. We found that the ice cloud cases had a relatively narrow range of 

reflectivity about an average of 22 percent when the ice clouds were thick. They 

never appeared a s  dark a s  a snow cover (8 percent). Moreover, the presence of 

a thin ice cloud over a very dark background such a s  an ocean o r  snow cover would 

make the scene brighter, but not so bright a s  a thick ice cloud. We interpret 

these observations in t e rms  of the differing scattering properties of ice clouds and 

snow cover. Aircraft observations12 of ice clouds show that the uppermost parts  

of a l l  ice clouds have smaller  ice particles than a r e  found in a snow cover. There- 

fore, the upper parts  of ice clouds a r e  more efficient in scattering than a snow 

cover. The snow cover, in addition to having larger particles, also tends to have 

a much larger  absorbing mass  than the ice clouds. These scattering properties 

help the classifiers to discriminate ice clouds from snow cover. 

The variety of cloud types and backgrounds observed in the SSC, visible and 

IR channels allowed us to test previously suggested classifiers for cloud detection 

and cloud phase a s  well a s  some minimum distance classifiers over global extremes. 

We found that classifiers relying on the SSC/visible ratio,were not significantly 

better in overall accuracy than the best classifiers using visible and IR data. We 

found that the SSC data helped three types of classifiers Woronicz/AFGWC; Hunt 

e t  al ;  minimum distance classifiers) to achieve accuracies over 90 percent, which 

were 10 to 16 percentage points better than the best reference classifiers using 

only visible and IR data. In other words, these three classifiers made only one- 

half to one-third a s  many mistakes a s  the visible-IR classifiers due to improve- 

ments in cloud phase detection a s  well a s  snow cover detection. 

The classifiers had some difficulties with the partly cloudy categories of 

cumulus and cirrus.  We believe that these difficulties would be reduced if the OLS 

channel had the same FOV a s  the visible and IR channels. It would be helpful to 

reference a finer scale (1. 5 o r  0.3 nmi) of visible and IR for these clouds, but 

such data were not available for this study. 

For  four categories (clear, snow, water cloud, and ice cloud) there is no need 

for more complex algorithms since some classifiers already work well. An in- 

crease in complexity leads to an  increase in computer time, but may not yield a 

worthwhile increase in accuracy. We do, however, advocate the use of the IR 

clear-column temperature fields maintained by AFGWC to increase the utility of 

IR in the multispectral processors. We also advocate tests of the algorithms on 

finer scales of future SSC data to improve estimates of fractional cloud cover. 

We agree with the conclusions presented by ~ o r o n i c z , ~  and we encourage 

readers  who a r e  interested in this subject matter to read his report. In particular, 



we agree that the SSC channel should be used a s  par t  of a multispectral algorithm, 

which can be used to discriminate clear, cloudy, and snow cover scenes with 

accuracy. We found that his decision rule for clouds could be easily modified to 

separate water clouds from ice clouds, and that classification accuracies improve 

when the data a r e  earth-located so that the type of background, land o r  water, is 

known. 
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