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. | 1. INTRODUCTION

The US Army has had a continuing interest in the design of spinning
projectiles with 1iquid payloads. Many of these developmental shell have
shown dramatic instabilities in their pitching and yawing motion. Initially,
these instabilities have been identified by large range losses incurred dur-
é ing firing trials. In 1962 Karpov made direct angular motion measurements
SN of liquid-payload-induced instabilities in a 20mm projectile fired in BRL's

T A _ Aerodynamics Range!. In 1973 Mark and Mermagen? used instrumented solar
I'f sensors and telemetry units to observe liquid-payload-induced instabilities
B3 in 155mm shell. Since that time all developmental shell with liquid payloads
i 3 have teen tested with sunsonde instrumentation and a variety of strange be-
3 haviors has been observed. A complete listing of ail yawsonde data reports
i is given in the Bibliography at the end of this report.

i In 1959 Stewartson published a theoret.cal paper on the stability of a

3 spinning liquid-filled top3. This paper assumed a right circular container
3 partially or fully filled with an inviscid fluid. The liquid was assumed to
be fully spun up and in steady state motion. This motion was assumed to be
a circular or spiral motion at a frequency set by the top's static moment
and spin rate. The Stewartson theory predicted liquid eigenfrequencies that
were to be avoided in order to have stable angular motion of the top. Ac-
cording to the theory, liquid moments would become infinite for coning motion
at any of the eigenfrequencies.

In 1965 Karpov® made additional Z0mn firings. A1l shell in this series
had the same fast frequencizss but the payload eigenfrequencies were varied
by use of different cavity fineness ratios. A resonance undamping rate was
observed but was of a much smaller amplitude and at a slightly lesser fre-
quency than that predicted by Stewartson.

At about that time Wedemeyer® introduced a boundary layer modification
to the Stewartson theory and computed complex liquid eigenvalues. Since the
Aerodynamics Range flights were too short to allow the liquid to be fully
spun up and in steady state coming metion, Karpov developed the use of a
free liquid-filled gyroscope to measure yaw growth rates near resonance. He
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found an exceptionally good agreeme.nt with Wedemeyer values at a Reynolds
number of 520,000 and fair agreement at a Reynolds number of 5200°.

The success of Karpov's gyroscope experiments led to an extensive use
of this technique. A complete listing of gyroscope data reports is also
included in the Bibliography. This excellent experimental work had the un-
fortunate effect of biasing most of the later theoretical and experimental
work toward understanding 1iquid-filled gyroscopes and the application
to projectiles was treated as a side effect.

A second difficulty with the later gyroscope-oriented work was a tunnel
vision concentration on liquid eigenfrequencies. This was caused by the
great success of Wedemeyer's modification of Stewartson's inviscid eigen-
frequencies. The basic aim of any liquid payload theory should be the calcu-
lation of the complete moment the liqu’d payload exerts on the pitching and
yawing projectile in flight. Wedemeyer's complex eigenfrequencies identify
frequency and damping rate pairs for which the liguid pressure is infinite.
For coning motion near any of these pairs the liquid moment is primarily due
to the pressure at the edge of the Foundary layer and is dominated by a sim-
ple pole function. This pole is an excellent approximation at high Reynolds
number, but at lower Reynolds number it becomes quite poor even though the
boundary layer assumptions are still valid. The pressure at the edge of the
boundary layer has to be computed without the pole approximation. In addi-
tion an increment in pressure through the rotating boundary layer on the
lateral wall must be computed, as well as the shear on both the lateral and
end walls.

It is the aim, then, of this report to give the general formulation of
the effect of liquid payload motion on projectile stability and to compute
the liquid moments, pressures and wall shears for small-amplitude liquid mo-
tion with boundary layers but without the unnecessary mathematical approxima-
tions of the Stewartson-Kedemeyer theory. The results of this improved
Stewartson-wedemeyer theory will be compared with 311 available published
gyroscope data for Reynglds numbers down to as low as 24Q0. Moreover, the
theory will be extended to the special case of a fully-filled cylinder with
a central rod’”?. Finally, a survey of extensions of the theory to partially
spun-up liquids and other special cases will be given.
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2. PRCJECTILE DYNAMICS

Two coordinate systems, both of which have X-axes along the projectile’s
axis of symmetry, are commonly used: the missile-fixed XYZ system and the

aeroballistic XYZ non-roelling system with the Z-axis initially downward. Ir
we introduce earth-fixed axes XeYeZe with the Xe-axis initially along the

velocity vector and Ze dounward, a unit vector along the positive X-axis has
earth-fixed components ("XE’ fygs nZE)' The angle of attack o in the non-

rotating system i; the angle in the XZ plane from the X-axis to the velocity
vector, and the angle of sideslip 8 is the angle in the XY plane from the
X-axis to the velocity vector. Thus for a straight trajectory and small
angies, these angles are the negatives of the direction cosines e and "y
respectively.

The primary lateral force on the projectile is the normal force, whici
can be eisily expressed in terms of complex variables!?:

-

F; + 1 Fi = - (1/2) pV2sS CN3 £ (2.1}
where
E=5+ia (2.2)

and where the other symbols are defined in the List of Symbols.

For an approximately straight trajectory, the usual linear aerodynamic
moment can be expressed as the sum of three terms:

M? + i Hi = (1/2) oVisi {[(;;/V) CHP - ‘CH‘ ] ;i

a

ro
.
)

—

. \
SRR CIVR Y am}
q i

The first term is the very important Magnus moment, which is a3 viscous side
moment caused by the spin and the angle of attack. The second term is the
static moment which for most projectiles causes an increased angle in the
plane of the total angle of attack. The last term is the damping moment,
which usually resists the angular velocity. For simplicity we will reglect
the effect of drag on the angular motion and assume V to be constant in
Equations (2.1) and (2.3).
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For small angles the usual dynamics®® yield the following differential
equation for ¢ in terms of an arbitrary force and moment:
(Iyd/dt - iIX¢)(F9 + iF;)

Iyg - ol g = i(M} + iM;) + = (2.4)

For the force and moment of Eqs. (2.1) and (2.3) this reduces to

£+ (R - i00)E - M+ igeT)E = (2.5) ‘
where
- i .2
H = (oS2/2m) 1Cy - Kk~ (Cy + )](V/z)
o Y q &
v = 3 2
M= (pSt /21)/)r Cy a(V/g)z
T= (pse/am) [o, + k7€, ](V/z)
o pa
o=1/1

Xy
The solution to Equation (2.5) is an epicycle which generates the angular

motion as the sum of two rotating and damping or undamping two-dimensional
vectors:

i¢ 16,

E=Ke '+ Kpe (2.6)
where
¢J = ¢JO + Tj¢t
Ty = (0/2) [ ‘}1 (/s {] 5 = g2 &2/4ﬁ
c. . TJH - OT *
J
(2Tj

Note that for coning motion in the direction of spin, T >0 while £ >0 for in-
creasing K and eJ<0 for decreasing KJ For coning mot1on in the dlrect1on
opposite to the spin, the inequalities are reversed.

12
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In analyzing the effect of a moving internal componen® on the angilar
motion of a spinning projectilel!, we found it convenient to consider only
that part of the moment exerted by the internai comporent at ore of the two
frequencies of the projectile's angular motion. Tor .teadv-state linear
liquid motion, this part will be the total liquid moment. Four nonsteady or
nonlinear liquid motion, this part will consist of twy average components of
the actual 1iquid moment. If we now non-dimensionalize this liquid moment

by the liguid mass m s the spin rate ¢ and the maximum liquid container di-
. ameter 2a, the following expression for the liguid mowert can be obtained:

i¢
Mo+ iMs = mLa?¢2 [TchMle e

i¢
1 2
LY % + TRCLMZ Kz e J (2.7)

For linear fluid motion, CLM1 should depend on T e time, Reynolds

number, fill ratio, the shape of the cavity, and the direction of the spin. A

similar remark applies tc CLM . The rj‘s appear explicitly in definition
2

(2.7) since the moment should vayish for " 0.

It should be noted that the C are complex quantities whose imaginary

LM,
J
parts represent in-plane moments causing rotation in the plane of exp(i¢j)

and whose real parts represent side moments causing rotations out of the
plane of ex~ i¢ ). We, therefore, introduce the following definition for the

real and imaginéry parts of CLM and explicitly express the effect of the
J
direction of spin??:

C (2.8)

= y( + iC
LM:j LSMj LIMj

where CLSM and CLIM are real and represent the liquid side moment and
‘j ) - L4
liquid in-plane moment contributions, respectively, and where y = &/[él.

The special values of these coefficients for infinitely viscous or
frozen liquid can be obtained from Equation (2.4) with the external moments
. neglected.

-
~

(1. + ILy)E - ié(lx +1 )e=0 (2.9)

y

11. C. H. Muphy, "influence of Moving Inmternal Faris ov Angular Motion of
Spinning Projectiles, " Jowmal of Guidance and Control, Vol. 1, March-
April 1978, pp. 1172-122. (Jee alse BRI Memorandum Report 2731 dated
February 1977, AD 037338.)
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where ILy and ILx are transverse and axial moments of inertia for the frozan

ﬁ;:%-{g, liquid. Comparing Equations (2.4) and (2.9) we see that 1if the terms invol
L g ing the frozen liquid moments of inertia are taken to the right side, they

' %L,;é_§: can be identified as i times the liquid moment.
ﬁ;t"fﬁf Mg+ iM5 = -1(ILyg - 1ol &) (2.10)

The epicylic sclution of Eguation (2.6) with lej|<<1 can now be used to pro-

vide frozen 1iquid values of the liquid side moment and 1{iquid in-plane ?
moment coefficients.

I, -l
Lx L .
C = - (2.11)
LIMJ- mLu
e (I, - 27.1,.)
_ Lx JLy’,

Fer a circular cylinder of length 2¢c and center located a aistance h forward
of the projectile's center of mass

C o L + G2+ 3h?
LIM 2 I _“’Y" (2.13)

, 2 2
CLSMj : “3/2}[1 - 500+ i‘.ic_gg_;_h_l)] (2.14)

A simple interpretation for ¢ follows from the observation that for
moderate damping 2w¢ is approximately the fracticnal chance in Kj in one

cycle. If we restrict this change to be less than 20%, e should be less
than .03, and the frozen CLSM would be less than .015.

3 In general, howaver, the liquid moment of Eq. (2.7) should be combined
E - 4 with the aerodynamic force and woment ¢f Egs. (2.1) and (2.3) to give a some-

what more complicated daifferential equation for &:

. ; E + (Q - io@)z - (ﬁ + ioéi)g

. i o
= 142 2 1 2
ié (mLa /Iy)[;ICLHIKle + TQCLMnge ] (2.15)
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If the epicycle solution of Eq. (2.6) is substituted in Eq. (2.15), new re-
lations for frequency and damping can be obtained.

t; = (0/2) [fj - (1)) FE - (1/597] (2.16)
where
fj =1 + (mLaZ/Ix)CLIMj
and A
Tj (H + HLj) - oT
ej - . ’ (2.17) -
(Z'tj-U)Tj Id’l
where

W = -b523/21y) CLMq‘(V/z)
j j
CLMg. = 4 Cusu
j i
2m a?|s]
LT oSE T

2s can be seen from Eq. {£.17), the 1iquid side moment has the same effect on
the damping of the angular mution as the aerodynamic damping moment. The
coefficient CLMq 15 introduced so tha’ the relative size of the aerodynamig

damping moment and the liguic side moment can be directly evaluated. The
direct impact of the liquid side momgnt on the damping nev cycle can be seen
from Eq. (2.17) for H =T = 2,

€ = (m a2/1)(2t /o - 1) e ..18)

(=
LSMJ

For the fast mode the coerficient of CLSM1 is positive and a positive side

momeny causes &n undamping of this motion Mwmilarly a negative C will

LSH,
nndamp the slow mode. As we shall see, tkz linear lic'ia motion theory

15
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usually yields a positive side moment, and thus only the fast mode motion
is adversely affected by the liquid side moment.

Table 1. Parameter Values for Five Army Projectiles

: s Diameter m a2 l
Payload i Projectile ( c/a o L o
mm L
: ) T !
|
White M416 105 2.67 a7 .36 350
Phosphorus
M328 107 2.82 A1 41 230
Re = 4-40 x 10°
XM825 i 155 4.60 .08 A2 150
?
Binary M687 : 155 4.52 .08 .07 80
Chemical ‘
Re = 1-7 x 10¢ XM736 | 203 3.98 .12 .09 90

In Table 1 the parameters c/a, o, mLaQ/Ix and o_ are given for five

Amy projectiles. The first three are smoke projectiles containing white
phosphorus, which is liquid for temperatures above 110°F, and the remaining
two have special liquid payloads. Since T Ties between ¢/2 and o, we see

that the T, range of interest is .04 to .17. mLa2/Ix and o are much
larger for the smoke shell due to WP's greater density.

Equation (2.18) can be used to determine a lower bound on the side
moment coefficient corresponding to a significant yaw growth rate of 13%
per cycle, i.e., ¢ = .02. For t/o = 3/4 and mkazll = .08, this lower bound
on CLSM is .125. Fer mLa?/Ix = .40, which is pproﬁriate to the older WP

shell, this lower bound is .025. Thus our theoretical prediction of this
liquid side moment coefficient should at least attempt to achieve an accura-
cy better than half the lower value, i.e., errors less than .01.

3. EQUATIONS OF LIQUID MOTION

We will consider a projectile with a cylindrical payload cuvity with
radius, a, and height, 2c. The axis of the cylinder is collinear with the
projectile's axis, and its center is located a distance, h, from the pro-
Jjectile's center of mass. If the cavity is partially filled, the liquid is
fully spun up, and the centrifugal force is large compared to the aerodynamic
forces, the liquid will fill the space between the outer cylindrical wall ard

16
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an inner cylindrical free surface with radius, b. The ratio of the volume
of this inner cylinder to the volume of the complete payload cavity is

b2/a2, The fill ratio for the payload cavity is, therefore, 1-b2/a2 and will
be denoted by f. However, m will always be the liquid mass in a fully-
filled cavity.

The objective of the Tlinear theory is to predict the liquid moment re-

sponse to coning or spiral motion of the form
- 1¢.
£ = Ky J i=lor2 (3.1)
e

where

©-
"
6 .
o+

>
122

i

The vector between the center of mass of the projectile and any other
points on the projectile can be described in the aeroballistic cylindrical

coordinates of this vector by (;, ;, 5). Cartesian coordinates of this
vector in the earth-fixed coordinates would then be (xe. Yer Ze}' For

simplicity we will omit the subscript "e" for these earth-fixed coordinates
throughout this report, Relations between the earth-fixed Cartesian coordi-
nates and the aeroballistic cylindrical coordinates take on quite simple
forms for small K..

J°
=~+:K. .-~ ‘X
x = x + vk cos (93 8) (3.2)
y = rcos 8 - Kj; cos ¢5 {3.3)
z=rsing - Kj; sin 4 (3.4)
17
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If cylindrical coordinates with respect to the earth-fixed axes are

denoted by (x, r, 8), the following simple relations between the two sets of
polar coordinates follow from Eqs. (3.3 - 3.4) for small Kj' ‘

r=r- Kjx oS (¢j - 8) (3.5)

sin (8 - 9)= (iKJ./F) sin (4. - @) (3.6)

J

The cylindrical components of the velocity of any point on the projectile in
aeroballistic coordinates are X = ¥ = 0, 8 = ¥¢. In earth-fixed coordinates

they can be obtained by differentiating* Eqs. (3.2, 3.5 - 3.6). >
vV, = R {é{s - §)rK &5¢ 7 18 } (3.7
V.= -R{$(s - i)xK e8¢ " 19 } (3.8)
Vg = ar + R {1$(s - {)xK ¢3¢ - 10 } (3.9)

where

dt-[tre0) s

is the veal part of a complex quantity.

We will now make the very restrictive asswuption that the liquid is in
steady-state response to the coning and spinning motion of the projectile.
Theoretical studies *2* '3 have been made and are in progress to determine
the effect of partialiy spun-up liguid, and an experimental study of the
transient response to coning motion has been madel*. These studies show
that spin-up and cone-up effects are large and important to a complete under-
standing of the liguid payload stabitity problem.

Nevertheless, we will assume that the iiquid velocity components and
tiquid pressyre have the same dependency on time and 8 as the velocity com-
ponents of points on the projectile and introduce four small dimensionless

functions of r and x: Ugs Voo W and P

*5ge Appendix & for dstatls.

12, Y. M. Lynn, "Free Ogetllatioms of aliquid During Spin-Up, " BRL Report
1663, August 1973. A& 7689710,

15, . W, Kitehens, Jr., & Gerbsr, and K. Sednoy, "Cacillations of @ 7 s

in g Rotating Cylinder: Past I, Solid-Bodu Rotatiom," BRI Techmic '

Repors ARRRL-TR-0Z081, Jwne 1378, AD A8s7753,

.
.
o

-,

14. . P. D'Amico, W. G. Beimg, and T. H. Rogers, 'Pressure Mecasurements of
a Rotating Liguid for Impulsive Coning Motion, " RRL Memoraudwm Report
in publication. (Ses also AIAA Paper §2-0242, Jan i¥82.)
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v =R {use | (2é) (3.10)

V=R {vse ¢ - ‘9}(a$) (3.11)

Ve = rd + R {wse5¢ - 1 }(aé) (3.12; ;

p = l”igim{ 5¢“""}( 242 3.13 |
=9 pse DLa 62) (3.13) |

Eqs. {3.10 - 3.,13) can now be placed in th- linearized unsteady Navier-
Stokes equations and the continuity equatiow *» yield

2 3
atv, R 2a 1ws
re re

ap -2
- - —3 = 2y -
(s 1)vS 20, +a—2 =yRe {;b Ve } (3.14)

fap, - adw,  2ativg
(s - i)wg +2v, - —=="Re Vg'Wg = 7 - =2 (3.15)

aps - -1 2 &)
(s - i)uS + a— = yRe Vg U (3.16)
a(rvs) Bug
- 1 —— 1
- W, +r T 0 {3.17)

where

2 32 1
EPPE ) I G
Vg =2 [ T rr T T

4. BOUNDARY LAYER SOLUTIUN

Wedemeyer® made the assumption that the velocity components and pressure
could each be expressed as the sum of inviscid and viscous terms. The invis-
cid terms satisfy Eqs. (3.14 - 3.17) for Re™® = 0 over the entire cylinder

except for a small ooundary layer region near the cylinder walls, while the
viscous terms satisfy the boundary layer versions of £qs. (3.14 - 3.17).

19
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Although Wedemeyer considers the effect of these boundary layer terms on1.y
on the 1iquid eigenvalues, this report will consider all their contributions
to the liquid moment. Since the effect of negative spin can easily be found

from Eq. (2.8), we will only consider positive spin (y = 1) for the remainder

of this report.

Ug = Ugy + Usv (4.1)

V.SV, +V (4.2)

W = W.+W (4.3)

P =p.+p (4.4)

On the lateral wall r = a, then, the usual boundary layer approximations*
reduce Eqs. (3.14 - 3.17) to:

3p
SV _
= ZWSV (4.5)
a%w
) _ 1 sV
(s - 1)wsv = aRe 2 (4.6)
32u
. _ -1 SV
(s - l)usv = a®Re 3r% (4.7)
alrv_ ) 3u
SV. . . SV
I W, - T (4.8)

Far from the lateral wall, Ugs Voo W P must vanish. At the wall the

velocities must be those required by £gqs. (3.7 - 3.9). The viscous tan-
gential velocities can be determined and a condition for the inviscid normal
velocity obtained.*

x
]

o [(1 + is)(x/a)ﬁ - wsi:}e (r-a)/a&a (4.9)

[}]

, ” )/a8
Usy -[(] - s)k usi]e(ria *a (4.10)

* Sce Appendixz B for details.
20
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For r = a,

Z)\IS,i ) " (
vS‘i - aaa r = (1 - s)(x/a)K ..l.”)
where
5, = 1+ Re™ 172
\]211 +1s)
At the end walls, x =% ; h +,
. 1 azvsv
(S - I)VSV - ZwSV = g2Re” T (4.12)
(s - i)wsv tovg = a2Re? axgv (4.13)
ap
a—a—il =0 (4.18)
u a(rv_ )
SV _ . SV
v = W ¢ (4.15)

Once again the solution for the tangential viscous velocities and a relation
for the normal inviscid velocity can be obtained.

"

x)

+1

. . -a{]
W, tivg, = - (wSi + 1v5i)e ( (4.16)
: . . scy o | -8 = x
W, - v, s - [wsi - v - 2(1 + 15)(5—-;-—9-) K ] e 8(1 2 x) (4.17)
For ; = 1,
. g .
Yy ¥ 8, —= = (i - s){r/a)k (4.18)
3x
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where

(c/a) 6,” N3+ )T ¥ 75)

[=]
]

1

i(c/a) Ga' \/ (1 - 9s)/(17 + 1s)

w
"

5, = {a/e)é, 1 - s . 3+ is
2q1+75 43+is qT-is

It {s interesting to note that according to Eq. (4.14) the usual
boundary condition of no pressure change through the boundary layer {s pres-
ent. Eq. (4.5) shows that this is not the case on the lateral wall. The
pressure & the wall differs from that at the edge of the boundary layer by
psv(a). This pressure difference can be computed by inserting We, 3S given

by Eq. (4.9) in Eq. (4.5) and integrating.

i

P (2:%) = 28, [(1 ¢ is)(c/a)(x + h/c) K - w s (a,;)] (4.19)

5. INVISCID SOLUTION

The inviscid terms are solutions of Equations (3.14 - 3.17) for Re‘1 = Q,

These four equations can be easily manipulated to yield a partial differential
equation for pSi and three equations for the three velocity components in

terms of Psie

CRJ R 1 I ap_.
- i)2 1 ST ST ol (g2 - 23 - 5l
(s - 1) { oar? ¥ rar r*] (52 - 215 + 3) ax? (5.13
.
X .. si
{s - ‘)usi e Barvay (5.2)

e e
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Py 21apsi

2 o D e - 1
(s 2is + 3)Vsi (s - 1) a -t (5.3)
ap_. ai(s - i)p
: _ S si .
(s2 - 2is + 3)wsi = 2a i - (5.4)

On the outer walls of the container the boundary conditions are given by
Equations (4.18) and (4.11). These equations can be rewritten by use of
Equations (5.2) and (5.3).

For X = t] \
P, . 3P o
— 36— ao - )2 (c/a) (r/a) R (5.5)
ax ax?
For r = a

3P ;
2i (1 + éa)p51 - [g -i(1 -2 da)] a —1 4

ar
(5-6)
32‘)51
2§ (g - 3 -
a®0als - 1) 57 o - (52 +1)(s - 3i)(x/a) K
On the inner free boundary, r s b, the pressure must be a constant.
dp_3®,, P p U (5.7)
1) A1 4 ¥ Vx x * Vr i Va rae 0
or
(s - 1) Pyt (r/a) Vi © 0 (5.8)

Note that for a fully filled projectile, Equation {5.8) requires Pes to be

%ero)for r=> = 0. Equation (5.8) can now be simplified by use of Equation
5.3).

For r = b
. . . ey
[(52 + 1)(s-31) + 21]Dsi -{s-1i)r = =0 (5.9)
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An obvious solution to Eq. (5.1) which satisfies Eq. (5.5) is

Pgi = - (s - 1)2(xr/a?) K (5.10)

We, therefore, assume the general solution to be

Pei = -(c/a>[(s - 1)2(x/c)(r/a) +2Rk(r)xk<£)] K (5.)
Substitution of Eq. (5.11) in Eq. (5.1) shows that Xk is a linear

combination of a sine and a cosine. Eq. (5.5) can be used to completely
specify this combination* for small 8-

Xk = €oS (kA;), k even (5.12)
= sin (kax), k odd (5.13)
=1, k=0 (5.14)
where,
x = ()1 + 8]

Corvesponding to these Xk's, Eq. (5.1) gives the general form of the Rk’s.
£gs. (5.6) and {5.9) can then be used to completely specify the Rk's. In

order to do this, x in Eqs. (5.6) and (5.11) must be replaced by a series in

the Xk's. This is easy when the Xk's are orthogonal. Unfortunately, for

§. not equal to zero the Xk's of Eqs. (5.12 - 5.13) are not orthogonal. MWe

can, however, approximate x by 3 least squares fit to a truncated series in

Xk.

Led " a0 (5.15)

iSca Appevdiz C for detat

s H
ig avavr st Ty oA }’ Q ey PP Ry ¢ g § - 'y Falli) s
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In gereral, inbomegercous bowidary conditions are not sc frierdly, ond muck
- : . S
fore aigebrate labor is reqared.
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where

h/c

[=1]
1]

0 for k even,

o
==
H

and 3 is computed in Appendix D for k odd. A first approximation for
small 8. is the usual orthogonal relatioa

3 = bk/bkk (5.16)
where
lA -~ ~
bk=j x X (x) dx
-1
i -~
by = l(- X, Y o
1
p_. now assumes the slightly simpler form

s
N

og; = ~(e/a) K D X () [Rlr s - )2 (rvale] (5.07)
k=0

Equation (5.1) ran now be used to get the general form* of the Rk's.

R, = (he) [Erre s Fair] (5.18)
For k odd
Rk =3, [EkJ: (kyrjc) Fkv; (k{r/c)] (5.19)

(a4
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where

G L

E.» F 2re coefficients to be determined by boundary conditions,
Jn is a Bessel functior of the first kind of order n,
Yn is a Bessel function of the second kind of order n.

The radial functions Rk(r) must satisfy boundary conditions (5.6) and (5.9).

Direct substitution of Eq (5.17) in these equations yields the follewing
conditions:

20 (1+3) R (a) - [s -4 Q- zaa)] a R, (a) (5.20)

+ (s - 1)6aa2 R' (a) =2as (s - ij(s - 3i)

BSZ +1)(s - 3i) + Zi] Rk(b) -{s-1i)b R'k(b) (5.21)
= -3 (b/a) s2 (s - i)2 (s - 3i)
tquations (5.20 - 5.21; can be used to find E and F for specific values of

. 0 0
{(c/a), (b/a), and s. For non-zero Kk, Rk(r) is a sum of Bessel functions with
derivatives given by the following equations®:

rR', = (Kir/cla, [Ekao(kir/c) +FY (kir/c)]- R, (5.22)

r2R"k = Ry [1 - (er/c)z] - rR‘k (5.23)

With these relations the boundary conditions (5.20 - 5.21) yield pairs of
linear equations for Ek and Fk which can be quickly solved.

15. N. W. McLachlan, Bessel Functions.for Engineers, Oxford Univergity Press,
London, 1955.
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5. PRESSURE MOMENT

The major components of the 1iquid moment are due to the pressure on
the lateral and end walls of the container. Lesser components are due to
the viscous wall shear on the lateral and end walls. Thus the Tiquid momeni
coefficient can be given as a sum of four terms.

TCLM = mpz + mpe + m,, + Mo (6.1)

The sum of the first two terms is the pressure momeni coefficient, mp, and

will be computed in this section. The wall shear moment coefficient will be
computed in the next soation.

By use of Eq. (3.5), we can express the fluctuating part of the inviscid
pressure given by Eq. (3.13) as

(6.2)
= R 3C e P K e(s¢ - 16) z

Equation (5.17) can now be used to yive the following series for the pressure
coefficient:

i¢p N
ce P = -(c/a) —'0 Ko 0 R(e) + (s - 20)s (v/aa, |

M-

Py

(6.3)
= -(c/a) ) X (%) Cyi ()

The pressure moment coefficient on the 1atera1‘wa11 can be computed by
an integral of the real pressure over this wall, with the appropriate lever

ar.
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1 2T
- _ N . s¢ - i@ .
myg = i(c/a)(2n k)™ ™S f f (x + h/c)e'® R {Cp*e } 46 dx
4 o r =3

I § X 1
:l A ° -

g = i(c/2a) J/f X [C *] dx + (h/c)2 m (6.4)
‘ -1 Plr=a peh

ﬁ' 3 where

. S . it

$: .Ei mpzh = i(c2/2ah)j~ CDo (a) dx; Cp* = CpKe Py Pey

.‘ ‘\x -1

i, ; Since the complex pressure dependence on ; is a sum of sine functions, this
k. integral can be easily evaluated.

§§ E The end wall pressure moment coefficient is the difference of two simi-
5 g lar integrals on each end wall.

-:, [’_!j.l. ) X = ‘l
S . aram, ~ s¢+ (s - 6)

t .3 moo= i (a/c)(2xK)T a7t eS¢ [/ e'® R{C Ke P r2de dr

pe P

‘} '.- b 0 -~

X = ol
£ i ar x =1
;» A\ ‘* . s -3 ! ¢p :
E = -i(a/2¢) @ e Cp r2 dgr (6.5)
: X = -]

;: This.moment coefficient involves the integrals of Bessel functions but these
y particular integrals can be easily obtained in closed fora.!S

f; _; Stewartson?® incorrectly used a complex ap in his pressure

;f % integral and, therefore, his moment calculation lacks the (}) factors of

5 Eqs. (6.4 - 6.5). Later he made a similar error of a factor of tws in com-
- puting a complex direction cosine so that these cancelling errors give the

1 : correct yaw growth rates, €y These yaw growth rates when modified by Wede-
i" | ;; meyer> gave outstanding agreement with gyroscope measurements for large

E 3 Reynolds numbers.

28




e e 5
e

S P Ly T R T L0 o ¥ O T Y T P 2 R TR~ oo 2 4 253737

In order to compute the pressure moment coefficient, it is necessary to
determine the parameters Ek and Fk from the boundary condition equations

(5.20 - 5.21). For Stewartson's inviscid case (Ga = 0) and constant ampli-

tude coning motion (e = 0) the conditions for the coefficients of the Bessel
functions (k # 0) are*

+¢ F 2t (v=1)(x-3)

o Beten Rk

(b/a) <2 (z-1)2 (z-3)

O
m
+
(g
-n
o
H

where the €53 are given in Table 2 and are functions of the ratio of coning
frequency to spin (t), reduced fineness ratio (f* = c/ka), and fill ratio f.

Table 2. Coefficients in the Equations (6.6, 6.7)

6
That Determine Ek and Fk for Ga = ¢g=0

O
"

l(x - 1) i/f*]dl‘(i/f*)'— zdl(i/f*)

11 L

[ 9]
fl

[(T - 1) X/f*]Yl‘(k/f*) - ZYI(X/f*)

12

(9]
H

. (t-1)(%/F*)(b/a) 3" (Ab/f*a)

+ &TZ-l)(r—a)-z] J) (Ab/f*a)

(g
1]

(x=1)(Ab/f*a) v (Ab/f*a)

+ [(rz-l)(r-a)—z] Y (xb/fa)
1
22 . < n ) : [3 + 21 - q? }
2 1«2t + 12

*The k = 0 mode 18 only present for liquid payloed offset h # 0. This emall
moment term ig tncluded in the computer program. Since h 18 zero in all
aquatilable experimental data, the zero mode will not be considered further in

this report.
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For fixed reduced fineness ratio and fill ratio, the determinant of
Eqs. (6.6 - 6.7) is zero for certain values of ¢ which are the eigenvalues of
the system, Ten® In the vicinity of these eigenvalues, the parameters Ek and

Fk can be approximated as poles.

E, (1.,)
Ek - _K ‘kn (6.8)
T -~ Tkn
F ()
F = _l(—__k_'l_. (6.9)
k T- Tn

Spiral motions are represented by complex values of s while pure imagi-
nary values of s correspond to constant amplitude coning motion. Eqs. (6.8 -
6.9) can now be extended to approximate the response ta spiral motions in the
vicinity of the eigenfrequencies since the parameters are analytic functions.

i Ek (Tkn)
A (6.10)

TR ()

F = ——— (6.11)
k s -1 T

Stewartson assumed that near an eigenfrequency the pressure was dominated by
that mode and computed the total pressure moment from that assumption,

[F% R (F¥, F, 7, )]
p  2ukZ (s -1 Tkn) (6.12)

Stewartson3 and later authors*®®Y have constructed tables of Tn and R as
functions of f* and ¥.

A portion of one of these tables for a fully filled shell is given in
Table 3. As can be seen from the table, R decreases rapidly with increasing
n. Since the moment varies as R2, eigenvalues for n > 3 are of little impor-
tance for estimating the liquid moment. Eq. (6.12) also shows the decay of
the moment with increasing k values. For these reasons, our computer code
only considers the first ten k modes (k =1, 3, 5, ..., 19).

16. B. G. Karpov, "Dynamics of Liquid-Filled Shell. Aids for Designers:
(a) Milne's Graph; (b) Stewartson's Tables,' BRL Memorandum Report
1477, May 1963. AD 410484.

17. J. T. Frasier, "Dynamics of Liquid-Filled Shell: Aids for Designers,”
BRL Memorandwum Report 1882, December 1967. AD 665356.
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Table 3. f* and R for 100% Filled Cylinder {f = 1)
n=| n=2 n=3 n=4
t3 * *

Ten f R f R f R f* R

0 .9949 0 .4780 0 .3103 0 2291 0

01| 1.0064 | .0144 | .4842 .00172 | .3144 | .00048 | .2322 | .00019
.02 ] 1.0180 | .0290 | .4904 |.00349 | .3'86 |.00097 | .2353 | .00039
.03 | 1.0297 { .0440 | .4968 | .00532 | .3228 ! .00148 | .2384 | .00060
041 1.0417 | .0592 | .5032 {.00721 | .3271 ' ,0020% | .2416 | .00081
.05 1.0538 | .0747 | .5098 | .00915 | .3315 : .00256 | .2449 | .00104
06| 1.0661 | .0905 | .5165 |.011l& | .3360 | .00312 | .2482 | .00127
071 1.0786 | .1065 | .5233 |.01323 | .3405 .00370 | .2516 | .00150
08 1.0913 | .1229 | .5302 {.01536 | .3451 - .00431 | .2550 | .00175
09 1.1042 | 1395 | .5372 |.01755 { .3468 . .00493 | .2585 | .00200
L0 1.1173 | .1564 | .5443 |.01981 | .3546 ~ .00558 | .2621 | .00227
1| 1.1306 | 1736 | .5516 [ .02214 | .3595 .00624 | .2657 | .00254
Jd2 11,1442 ) 1911 | L5591 | .02453 | .3645  .00693 | .2695 | .00282
A3 1.1579 | .2088 | .5666 | .02700 | .3695 .00764 | .2732 | .00311
A4 11,1720 | .2269 | .5743 |.02%54 | .3747 .00837 | .2771 00341
5] 1.1862 | .2452 | .5822 | .03215 | .3800 .00913 | .2810 | .00372
Jd6 1 1.2008 | .2638 | .5902 | .03484 | .3854 .00992 | .2851 .00405
7 1 1.2156 | .2826 | .5983 | .03761 .3908 © .01073 | .2892 | .00438
JA8 | 1.2307 | .3018 | .6067 | .04046 ! .3965 .01156 | .2934 | .00472
19 | 1.2460 | L3213 | .6152 | .04339 | ,4022  .01242 | .2977 | .00508
.20 ) 1.2617 | .3410  .6239 | .04640 '@ .4080 .01332 | .3020 | .00545
21 1.2777 1 .3610 | .6327 | .04951 .4140 . .01424 | .3065 | .00583
.22 ] 1.2940 | .3813 | .6418 | .05270 | .4201 01519 | .31 .00623
.23} 1.3107 | .4019 | .6511 .05599 | .4264 .01617 | .3158 | .00664
24 | 1.3277 | 4227 | .6605 | .05937 | .4328 .01719 | .3206 } .00706
.25 ] 1.3450 | .4439 | .6702 | .06284 | .4394 .01824 | .3255 | .00750
.26 | 1.3628 | .4653 | .6801 .06642 | .4461 .01933 | .3305 | .00795
.27 1 1.3809 | .4871 6903 | .07010 | .4529 .02045 | .3357 | .00842
.28 ) 1.3995 | .5091 .7007 | .07389 | .4600 .02161 L3410 | 00891
29 | 1.4185 | 5314 | .75 | .07779 | .4672 i .02281 .3464 | .00941
.30 | 1.4379 | .5540 | .7222 | .08180 | .4746 I .02406 | .3520 | .00994

The major difficulty with the inviscid Stewartson eigenfrequency theory
s that it predicts much too large liquid moments near the eigenfrequencies.
Wedemeyer introduced a viscous boundary layer theory and sought to predict the
resulting liquid moment by a simple manipulation of Stewartson's tablesS. By
a very clever approach, he showed that viscous eigenvalues, Sen? could be

computed from Stewartson's table of inviscid ei

relations
Skn © (Ckn + 1) Tkn

= +
Yn = Tkno ¥ 2%kn
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whre

+ it = aTk” (f*s -k'la) 2 Tkn (e 1)
®kn “kn Tkn aFF a 5F (- 1)y

He then replaced iTkn in the denominator of E£q. (6.12) wi.h the Syn of tq.
(6.13) to obtain an excellent approximation of the pressu.. moment for large
Reynolds numbers.

The maximum value of the pressure sid2 moment occurs for 1 near the
Stewartson eigenfrequency and is approximately

c - “*R 2 (6.15)
( Lsﬁ)max 2ke T [ n " ]

0 and constant f* the maximum SW side moment coefficient varigs
Its denendence on k is

The

For ¢ =
inversely with kzck and, hence, 1t varies as Re™2.

somewhat more complicated since k™ 6 varies as k=% for constant f*,
maximum side moment coefficient shou]d vary with k by a factor between k~ 2
and unity.

Equations (6.3 - 6.5) have been coded for N = 19 by Bradley’® and a num-
ber of computations made for a variety of values of c/a, f, and Re. To il-
lustrate his results, a series of calculations have been made for T hear
.07, ¢ = 0, .02, and Re = 500,000 and 15,000. Table 3 shows that a suitable
value of f* to obtain Ty near .07 15 1.08. For the first three k-modes, the
corresponding fineness ratios, c/a, are 1.08, 3.24 and 5.40.

Figures 1 and 2 show the side moment for fineness ratio 1.08 at two
Reynolds numbers. The ratio of the square roots of the two Reynolds numbers
is 5.8 while the ratio of peak CLSM'S for ¢ = 0 at the two Reynolds numbers

is 5.6, Notice the strong sensitivity of the side moment to damping per
cycle for the higher Reynolds number. This sensitivity is considerably re-
duced for Re of 15,000.

Figures 3-4 show similar curves for a fineness ratio of 3.24. The max-
jmum side moment for the higher Reynolds number is reduced by a factor of §
from that of Figure 1. Since k is 3, the predicted range of this factor is
1 to 9. The sensitivity to damping per cycle is quite similar to that shown
by Figures 1-2.

18, J. W. Bradley, "Calowlations of Liquid Paulead Moment " 5RL Memorardien
Report in preparation.
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Finally, Figures 5-6 show the side moment for a fineness ratio of 5.40. ;
Here the reduction of peak side moment in Figure 5 relative to Figure 1 is by *
a factor of 12, which also lies in the predicted range of 1 to 25. The de-
pendence on damping per cycle and Reynolds number is quite similar to that of
the preceding figures.

Since the in-plane moment only affects frequency, it is of much less
interest than the side moment. It is, of course, available from Egs. (6.3 -
6.5). Figure 7 is an example of the in-plane moment coefficient for a Rey-
nolds number of 500,000 and fineness ratio of 3.24. For zero t, it is quite
near the frozen value of %, undergoes a disturbance near the eigenfrequercy, |
and asymptotically approaches zero.

The side moment has contributions from the two flat endwalls as well as
from the cylindrical lateral wall. The ratio of the two contributions is
shown in Figures 8-9 for the two Reynolds numbers of 500,000 and 15,000. We
see that these contributions are opposing and roughly equal. Indeed for a
fineness ratio of 1.08 (k = 1) the lateral contribution is onrly 20% larger in
magnitude than the endwall contribution! Thus the side moment is the dif-
ference of two nearly equal quantities, and a small change on one wall could
have a large effect on the side moment.

7. WALL SHEAR MOMENT

In addition to the pitch and yaw moment due to pressure on the walls of
the liquid container, moments due to viscous wall shear are present. These
can be computed from the derivatives of the viscous velocity components of
Section 4. The liquid moment coefficient due to shear on the cylindrical lat-
eral wall is

1 . 2m
- ~ -1 -3¢ 18 » ~
m,, = (2K Re) ™ e /1 /0 e'® mt, do dx (7.1)
where
3u . aw .
* = SV . S¢ -8 . __ 8V .S¢ ~ 18
m Vi ak 3 = e i ix R ) 5y e i

Equation (7.1) simplifies to

. Y oW .
Myi = (2K Re)‘i}r [ia —331 + Cx -75?1] dx + (h/c)zm,,,  (7.2)
r=a
-1

where

:
LI (2K Re) (c?/h)[ [7-» dx

r=a

N Yy I A P U
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The velocity derivatives in Eq. (7.2) can be computed from Eqs. (4.9 - 4.10)
and the resulting equation has been coded by Bradley.!®

The wall shear moment coefficient on the forward flat end wall is

2w
_ - -1 -s¢ -1 i
m,e; = (27K Re)™ €™ (ac) anJ/' e Fm* qr de dr (7.3)
0

where

W s v ;
. sv s - ie( _ . s¢ - i@
m* ey = (h +c) [R ; X © % 1R 3 '3% € z];

=1
A similar expression applies for the rearward endwall. The sum of these
moment coefficients has the simple form: .
a x =1
- v -1 3 i
Mye = (2aK Re) / [ax (wsv st)]. 1rdr + (h/c)? M, ah (7.4)
x T -

b

where

a-
_ ~ -1 9 3 R
mVeh = (2K Re) (C/ah)'{ L“"ax (wsv 1\"'«_W))( =]

P - v

X Wy svix = ~1] rdr

The velocity derivatives in Equation {7.4) can be found by use of Equation
(4.17) and the resuits have also been coded by Bradley.!®

Since all the velocity derivatives are proportional to Ga'l and sa is
proportional to Re'§, the viscous liquid moment coefficient itself varies as

Re“* and is important for low Reynolds number. In Figure 10 the wall shear
side moment coefficient is given for Re = 15,000 and our three sample fine-
ness vatios. Comparing this component with the pressure-induced liquid side
moment coefficients of Figures 2, 4, and 6, we see that the maximum wall
shear component is from 10% to 35% of the wall pressure component.

In Figures 11-13, the total side moment coefficients for Re = 1,000 and
e = 0 are compared with their pressure components for c/a = 1.08, 3.24, and
5.40. The differences between these curves are the wall shear components and
wa see that these components are quite important and must be computed for low

Reynolds flows.
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D'Amico and Miller show a very interesting effect of very low Reynolds
numbers®, In a special gyroscope experiment?®, Miller forced a spinning
cylinder filled with 1iquid to precess at an angle of 20° and measured the
despin moment. The fineness ratio was 4.29, t varied between .12 and .25,
and 1iquids with kinematic viscosities varying between 1 and 10° centistokes
were tested. As can be seen from Figure 14, the despin moment varied from a
small value for water (v = 1 ¢s) to a value thirty times bigger for corn
syrup (v = 2 x 10° cs). The Reynolds number of this peak was about 10.

D'Amico and Miller conjectured that this large despin moment would be
associated with a large side moment which would produce flight instabilities.
Flight tests were made and this otherwise unexpected instability was observed.
We now can use the theory of this report to estimate the liquid side moment
for Miller's cylinder and Reynolds number as low as 100, which is probably
the extreme lower bound of validity of a boundary layer theory.

In Figure 15a, CLSM is plotted versus t for Miller's cylinder with

Re = 10°. The four local maxima on these curves are caused by four eigen-
frequencies, Tk By use of Table 3 these eigenfrequencies can be idantified.

In order of increasing t their (k, n) mode numbers are (15, 4), (11, 3),
(7, 2) and (13, 4). As we would expect, the largest maximum has n = 2 while
the two quite small maxima have n = 4.

In Figures 15b--15e, C gy is computed for Re = 10°, 10%, 103, 102, The

first effect of decreasing Reynolds number is to decrease the size of the
maxima associated with the eigenfrequencies. Next we see that the average
level of the side moment coefficient curves increases with decreasing Rey-
nolds number. In Figure 16, CLSH is plotted versus Re for v = .10, .15, .20,

.25. To facilitate comparison of these curves, we normalized each side
moment coefficient by its values at Re = 1G%. We see that the side moments
increase to maximum values 18 - 33 times their values for water and these
maxima occur around Re = 300. This striking qualitative agreement with the
DfAmjco~Mil]er conjecture is very exciting, and theoretical work on pre-
dicting the despin moment at low Reynolds number is being given a much
greater emphasis as a result.

19, W, P, DlAmiec and M. O, Meller, "Flight Ingtabil<{ty Produced by ¢

Rapidly Spimning, Highly Viscoue Liguid," Jowrmal of Spaceoraft amd
Rockets, Vol. 18, January-February 1973, pp. 62-64.

20. M. C. Miller, "Flight Instabiiities of Spimniwng Projectiles Having Nown-
rigid Pauloads,” Journal of Guidance, Control, and Dunamics, Vol. &,
pp. 151-157, March-April 1982,
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8. EXPERIMENTAL RESULTS

In 1980 the first wall pressure measurements in a precessing and spin-
ning liquid-filled cylinder were made by Whiting2?!. For the 100% filled cyl-
inder, he compared his measurements with theoretical calculations by Gerber
et al?®. Gerber's theory was developed for fully-filled cylinders only and
was used to compute the viscous influence of the lateral wall exactly without
the use of a bcundary layer approximation. Its results for fully-filled cyl-
inders should, therefore, be better than that of this report when they differ.
For the Reynolds numbers of the Whiting tests, they did not differ signifi-
cantly; and thus, the good experimental agreement Whiting got for Gerber's
calculations also applies to our theory. In two cases, however, Whiting
measured the pressure on the flat end wall of a partially-filled cylinder
(f = .92). Comparisons of thase measurements with the theoretical prediction
of Equation (6.3) is given in Figures 17a-17b. The agreement with theory is

quite satisfactory.

In most gyroscope experiments®’?3 the yaw growth rates and coning rates
are measured for a variety of test conditions. In all experiments the center
cf mass is located at the pivot point so that the gyroscopic stability factor
is infinitely large and Equations (2.16, 2.18) for frequency and damping be-

come:
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We first consider D'Amico and Rogers'?® measurements for a cylinder with
fineness ratio of 1.042 for which T .040. The frequency was changed by

1
varying I and measurements were made for Reynolds numbers of 12,400 and 2,400.

Comparisons of theory with these data are shown in Figures 18a-18b. Agreement
is fair, but there appears to be a systematic bias. Theoretical curves for
different fineness ratios in steps of .00l were computed and the best fits are
shown as dashed curves for c/a = 1.047 and 1.048 in the respective figures.

An effective fineness ratio .5% greater than the measured value is not unrea-
sonable and gives excellent experimental agreement. Figure 19 compares the
complete side moment coefficient with pressure side moment coefficient and its
Stewartson-Wedemeyer approximation for ¢/a = 1.048 and Re = 2400, and we see

- e o pe " & T T S8y . : S B TS
1. R, D, Whiting, "An Experimentql Jtadu of Feread Asymmatric Qacillattone
: g it AP et Ny ltnder M ORRE Caokms agl R
th @ Rotating Liquid-Filied Sulinder, ' 5RL Jeosmicail Heport ARBRI-TR-

{ ¢ : » 5
a6 : 13 4
GI3r8, Octoker 1381, AD AIQTIIS,

28. N, Cerber, R. Sedney, i . ¥, artcs, "Uivsawrd Moment om oz Liguid-
F{lled Prejectiie: Solid Bods Rotation,"” BRI Technical Report in preesa.

23. . P. Pldmico wui 7. H. Rrgers, "Ya» ingtaiiiities Mroduced bu Kapidly
Rotating, iighly Viscous Liquids," AIAA Paper Xo. 81-0384, Famary 1381,
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that the complete moment coefficient which gave such excellent experimental
agreement is quite different from the other more approximate curves.

The remaining three sets of experiments are summarized by Whiting and
Gerber®, and all involve very similar fineness ratios; i.e., ¢/a = 3.149,
3.013, 3.077. The Stewartson eigenfrequency for the first set, which was the

only one that had 100% filled cylinders, is 1 7 .047. The appropriate

eigenfrequency for the other two is Tqp0 but the proper values cannot be ob-
tained from Table 3.

In the first two sets of experimental data presented by Whiting and
Gerber, the frequency was changed by varying Ix and Iy. For this procedure,

Equation (8.2) gives ¢ as a function of 1 and Ix and thus a simple theoretical

curve cannot be plotted. What was done was to compute theoretical values for
each experimental pair of values (r, IX), plot these values as points in

Figures 20a-b and 2la-d and connect the points with straight 1ines. An exam-
ination of these figures shows fair to good agreement between theory and
experiment. It is interesting to note that agreement with experiment for

Re = 520,000 (Fig. 20a) can be considerably improved by a 0.1% change in fine-
ness ratio. The side moment coefficients for the lowest Reynolds number of
each set (namely, 9000 and 5200) are given in Figures 22-23.

In the final experiment to be considered, the fill ratio, f, was varied
and the frequencies and yaw damping rates were measured. Here, too, the
theoretical yaw damping rate is a function of two variables - fill ratio and
frequency - and must be represented by individually computed points connected
by line segments. Although the agreement for Re = 520,000 given in Figure
24a is quite good, the situation for Re = 5,200 in Figure 24b is poor.

9. CENTRAL ROD

In 1969 Frasier’’® extended the SW theory to the fully-filled cylinder
with a central rod. This had the effect of replacing the free surface bound-
ary condition of Eq. {5.8) with an inner lateral surface condition of the
same form as the outer lateral surface (Eqs. (4.9 - 11))}. For a rod with
radius d, these conditions are

. -(r - d)/aéa
Wy = [kl + is)(x/a) X - Wy ] e (9.1)
. -(r - d)/ag,
Ugy ® - [(i - s)(d/a) K + usi] e (9.2)
For r = d,
Y, -
Vi *as, ;§1 = (i - s){x/a) X (9.3)
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Equation (9.3) can be used to derive an inner boundary condition to substi-
tute for Eq. (5.21).

21 (1 - as,/d) R (d) - [s -1 (1+ Zasa/d)] d R', (d)
- (s -1) 8, adR'*(d) = 2(d/a) I (s - i)(s - 31) (9.4)

Using boundary conditions (5.20) and {9.4) for 8, = 0, Frasier and Scott’
calculated tables of inviscid eigenfrequencies, Tnk’

These frequencies are functions of the reduced fineness ratio and rod-
ded f{11 ratio fd‘

Tkn = Tkn (P Fo) (9.5)

where
fd = 1 - d2/a?

The revised Wedemeyer relation for the viscous eigenvalue is simply
Skn = (e * 1) Ty

where

At
- 5 = 1 * - -1 - _kn.. \ : R
€n Tkn * 10T, = [—3;; (f 8, k éc) 2 3fd (d/a}(1 + d/e) Oé]
Table 4 is a sample table of <, , f*, and R for f, = .98 (d/a = .14). A
similar table of Ten® f*, and R for fill ratio (f) of .98 is given as Table 5
f-r comparison purposes.

Two more moment coefficient terms must be added to £Eg. {6.1). These
are due to the pressure on the vrod, mpr. and the wall shkear on the rod, LY




Table 4. f* and R for Cylinder With Rod (fd = ,98)

= 1 n=2 = 3 n=4 |

Tkn f* R f R fx R i R

.00 .9028 .0000 .4102 .00000 .2615  .00000 | .1921 .00000
.01 .9141 .0127 .4160 .00092 .2652  .00039 | .1948 .00008
.02 .9256 .0257 .4219 ,00189 .2690  .00080 | .1975 .00017
.03 .9373 .0389 L4279 .00290 2728 .00122 | .2003 .00027
.04 .9491 ,0525 .4339 .00395 .2766  .00165 .2031 ,00036
.05 .9611 ,0664 .4401 .00505 .2806  .00210 .2059 .00046
.06 .9733 .0806 4464 ,00620 .2846  .00257 .2089 .00057
.07 .9856 .0951 .4528 .00740 .2887  .00305 | .2118 .00068
.08 .9981 .1100 .4593 .00865 .2929  .00355 L2149 .00079
.09 1.0109 .1201 L4659 .00995 .2971  .00407 | .2180 .00091
.10 1.0238 .1405 L4726 .01130 .3015  .00461 | .2211 .00103
11 1.0369 .1562 .4795 .01271 .3059  .00516 | .2244 .00116
.12 1.0503 .1723 .4865 .01418 3106 .00574 | .2276 .00130
.13 1.0638 .1886 L4936 .01571 .3150  .00633 | .2310 .00144
.14 1.0776 .2053 .5009 .01729 .3197  .00654 | .2344 .00159
.15 1.0916 .2223 .5083 .01894 .3245  .00758 | .2379 .Q0174
.16 1.1059 .2395 .5159  .02066 .3294  .00824 | .2815 .0019%

Table 5. f* and R for 98% Filled Cylinder (f = .98)
= 1 n=2 1 n=3 n =4y i

Tkn f* R £x R o R fe R

.00 .9942 0000 L4753 .00000 .3053  .00000 | .2224 .00000
.01 1.0057 .0144 L4814 .o01M .3094  .00047 | .2254 .00018
.02 1.0173 .0290 L4877 .00346 J3135 00095 | .2284 .00037
.03 1.0291 .0439 L4930 .00527 3176 00145 | .2315 .000S7
.04 1.0410 .0591 .5005 .0C713 3219 .00197 | .2336 .00077
.05 1.0532 .0746 .5070 .00904 .3262  .00250 | .2378 .00098
.06 1.0656 .0904 .5137  .01100 3307 .00306 | .2410 .00119
.07 1.0781 .1064 .5205  .01302 3352 .00363 | .2443 .00141
.08 1.0809 .1227 5275 .01510 .3398  .00423 | .2477 .00164
.09 1.1029 1393 8345 01728 L3845 0odes 1 L2511 .GG1sE
.10 1.1171  ,1562 L5318 .01934 .3432 L0048 | .2547  .00212
1 1.1306 .1733 .5492 02170 .35§1 00614 | .2583 .00237
12 1.1483 .1907 .5567 .02402 .3591  .00682 | .2619 .00263
13 1.1583 .2084 5644 02641 3642  .00752 | .2657 .00290
.14 1.1725 .2264 .5722 .02887 .3694  .00825 | .2695 .00318
.15 1.1871 .2447 .5802 .03139 3747 .00201 2736 .00347
.16 1.2019 .2632 .5884 .03399 3802 .00979 | .2774  .00376

39

s




E
[}

ll\ .i¢ ~
-i(cd/ZaZ{)f X [e pC ] dx + (h/c)¢m (9.7)
pr " p r=d prh

3
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. rosu W) .
- (2K Re)'l(d/a)_/ [m SV o4 o dx
-1

vr
+ (h/c)2 m.p (9.8)

where
1

i¢ -
—1(dc2/2a2h)fe pCpo(d) dx

-1

" -1 ll:awsv ] >
moh = " (2K Re) “(dc?/ah) = oy dx

-1 r
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Frasier ran gyroscopic experiments for a rodded cylinder with c/a =
2.864, fd = ,977 (d/a = .15) and three Reynolds numbers. Figures 25a - 25c

show his data and the improved SW theoretical prediction. The agreemeni is
rather good although the peak CLSM is not predicted very well. In Figure 26

the side moment coefficient for fd = ,977 is compared with that for f = ,977.

The side moment for rodded cavity shows an eigenfrequency* at .059 while that
for partially-filled cavity shows no eigenfrequencies and is a small negative
value. Thus, we s ~ that the presence of an inner cylindrical wall can have
a very strong effect on the side moment. The insertion of a cylindrical
partition to improve the stability of liquid-filled shell has been proposed
by Frasier and D'Amico®, and D'Amico®"* has experimentally studied the side
moment during transition from a free surface to a fully-wetted central rod.

24, W. P. D'Amico, "Dynamics of Liquid Filled Shell: [Liquid-Central Burster
+ Interference,’ BRL Memorandum Report 1985, June 1969. AD 855134.

* According to Table 41, is .045 for fy =.980 and we would identify this

peak at .059 in Fig. 26 to be caused by tg;.
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10. OTHER THEORETICAL EXTENSIONS

The extended SW theory of this report has a number of restrictions.
Some of these restrictions have been relaxed by the work of a number of re-
searchers. These restrictions include those requiring: (1) a single liquid
filler; (2) a centrally located circular cylinder container; (3) small
amplitude motion; (4) steady-state motion; and (5) fully spun-up liquid.
In this section we will survey the work in these five areas.

10.1 Single Liquid Filler

In 1972 Scott?® considered the eigenfrequencies for an inviscid two-
component liquid. He included the possibility of partial fill, computed
eigenfrequencies, and got fair experimental agreement.

10.2 Centrally Located Circular Cylinder Container

Scott2% also considered the inviscid eigenfrequencies and moments for
eccentrically located fully filled circular cylinders and showed that these
frequencies and moments are the same as those for a centrally located cylinder.
In an earlier work Wedemeyer?’ derived an approximate relation for inviscid
eigenfrequencies of a slightiy noncylindrical cavity. He showed that the
Stewartson eigenfrequency tables could be used through the use of an average
fineness ratio.

1

(c/a)y, = ¢ ~—‘(1’f) (10.1)
aix
1

Karpov?® made a number of gyroscope experiments that showed good results for
this Wedemeyer concept.

25. W. E. Scott, "The Inertizl Wave Frequency Spectrum in a Cylindrieally
Confined, Inviseid, Incompressible, Two Component Liguid," BRL Report
1609, September 1972. AD 752439.

26. W E. Scott, "The Dynamical Effect of Imertial Waviwon the Free Flight
Motion of a Body Containing Several Ycceentrically Located, Ligqidd-
Filled Cylinders,” BRL Report 15581, September 1371. AD ?233365.

87, E. H. Wedemeyer, "Dynamics of iiquid Filled Shell: Non-Cylindrical
Cavity," BRL Report 1326, August 1966, AD 4838399.

28. B. G. Karpov, "Dyn.wics of Liquid-Filled Shell: Regorance in Modijied
Cylindrical Cavities," BRI Report 1332, August 1966. AD 804825,
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10,3 Small Amplitude Moticn

Gyroscope experiments by Scott and D'Amico?® have shown that the yaw
growth rate changes from the Tinear SW values at coning angles as Tow as 1°.
Indeed, pressure coefficient measurements by Whiting?® have shown nonlineari-
ties for coning angles as 'ow as .05°!! The Scott-D'Amico data also showed
a shift in eigenfrequency for coning angles in excess of 1°, Scott3® later
derived a modified fineness ratio that was fairly good in predicting this
frequency shift.

10.4 Steady-State Motion

D'Amico et al'* made 1iquid pressure coefficient measurements on the
endwall of a spinning cylinder whose coning motion was impuisively started
and found that cone-up time for the pressure coefficient to reach the steady-
state SW value could be as large as five seconds. He made an estimate of
this time from the real part of the appropriate Sen and found good agreement.

Since these cone-up times are a significant part of a projectile's flight
time, work in this important area is continuing.

10.5 Fully Spun-Up Liquid

This area has recgived much more attention than that given to the
prec eding four areas. Wedemeyer®! developed a ver giqgle model of the
spin-up process which was extended by Kitchens et a 323, Spin-up times
greater than the cone-up times have been predicted and measured. Xarpov?®
made use of Wedemeyer's suggestion to obtain an estimate of the effect of
spin-up on the liquid side moment. This very approximate result is ncw being

29. W. E, Seott and W. P, D'dmice, "Amplitude-Dependent Beravior of a Liguid-
Filled Gyrcscope,” Journal of Fluid Mechanics, Vol, 69, Part 4, :973,
pp. 751-758.

30, W. E. Seott, "The Large Amplitude Motion of a Ligquid-Filled Cyrcscepe ond
the Non-Interaction of Inertial o Rossbhy Wausca,” Joewrnal of Flutd
Mechanics, Vol. 72, Part 4, 1975, pp. 649-860.

31. E. H. Wedemeyer, "The Unsteady Flow kithin a Spinning Cylinder," Jowrmal
of Fluid Meohuntes, Yol. 20, Part 3, 1964, pp. 383-399. (Ses also BEL
Raport 1225, October 1963, AD 431946.! :

32. C. W. Kitchens, Jr., "Fhman Compatibility Conditions in Wedemayer Spin-Up
Model," Phystcs of FIiide, Vol. 23, Part §, Maw 1969, pp. 10682-106<.

33, C. W, Kitchens, Jr., ¥. Gerbar, and R. Sedney, "Spin Decay of Iquid-
Filled Projectiles,” Jownal of Spacecraft wud Fooketa, Vol, 18§,
Nover:ber-Dgcamber 1978, pp. 348-354. (See also BRL Report 1288, July

19727, A AR43E7S and BRL Report 2086, October 1977, AD A050311.)

34. L. G. Kerpov, "Dynamics of Liquid-Fiiled Sheil: Imgtghbility During Spin-
Up, ™ #88i; Memorandwn Report 1689, Junucru 1985. AD <$833826.
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replaced by the current efforts of Sedney et al'®’%?% to develop a very re-
fined perturbation analysis for computing the Tiquid side moment during
spin-uyp. The only direct pressure measurements during spin-up have been made
by Aldridge®®*3®, and these were for the simple case of axisymmetric oscilla-
tions and not the three-dimensional oscillation induced by coning motion.

11. SUMMARY

1. A general definition of the liquid nioment has been developed, and the
expression for frequencies and damping of projectile angular motion has been
obtained.

2. An exact pressure moment has been computed for the Stewartson-Wedemeyer
theory.

3. Wall shear effects have been added to the improved SW pressure moment.

4. The improved theory shows a decrease in the size of eigenfrequency-
associated peaks in the side moment with decreasing Reynolds number.

5. The average level of the side moment, however, grows with decreasing
Reynolds number to a peak, in good qualitative agreement with the D'Amico-
Miller conjecture.

6. Good agreement with all available published experimental data has been
shown.
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APPENDIX A
DERIVATIONS OF EQUATIONS (3.7-3.9)
For single mode coning motion, the earth-fixed components of unit vectors

along the non-rotating aeroballistic axes have the following simple form
accurate to the first order in K;.

J
'E; = (1, Ky cos ¢5, -K; sin ¢5) (A1)
E; = (Kj cos ¢, 1, 0) (A2)
E; = (Ky sin ¢5, 0, 1) (A3)

The vector from the projectile's center of mass to any point on the

projectile can be given by aeroballistic cylindrical coordinates (x, ;, 8) and

can then be related to earth-fixed coordinates (xe, Ya» ze) by the following
equation:

(Xe» Yer Z¢) = X E; br <cos 8 ;; + sin 6 e2 ) (A4)

If we now introduce earth-fixed cylindrical coordinates (xe, Fas ee), the
three component equations of vector Equation (Ad) are:

~ ~ ~

Xe = X +r Kj cos (¢j - 8) (A5)
Fg €OS 8 = r €OS 8 = X Kj COS ¢; (A6)
re sin 8o = rosin 6 - x Ky sin ¢ (A7)

Since the earth-fixed cylindrical coordinates will be used throughout this
report, and missile-fixed cylindrical coordinates are never used, we can omit
the subscript "e" without any ambiquity problem and will do so as a con-

venience. Equation (A6) can be multiplied by sin 8, Equation (A7) by cos 6,
and the results subtracted to yield:

sin (6 - 8) = -(x KJ-/;) sin (45 - 6) (A8)
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or
6=8+ R {i(x/r) E eS¢ - 18 (A9)

Next we square Equaﬁions (A6 ~ A7) and add the results.

~

P22 12 -2 X r Ky COS (¢4 - 8) + Ky2%2 (A10)
J J J

un

or

-~
e

F -R {x K eS¢ - 19} (A11)

Eina]]y, Equation (A9) can be used to obtain a revised version of Equation
A5).

x =x +R {r K eS¢ - 19} (A12)

For any fixed point on the projectile, X =7 =0, 8 = ¢,  Its velocity
in earth-fixed cytindrical coordinates can be computed by differentiating
Equations (A9, All, Al2).

v, = X =R { } (s - i)rk eS¢ - 18 } (A13)
Vo= = -R {%(s-i)xx eW""e} (Al14)
Vg = rd=r+R {is (s - i)xK eS¢ - "9} (A15)
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APPENDIX B
SOLUTION OF BOUNDARY LAYER EQUATIONS

For an incompressible fluid with constan: viscosity, the Navier-Stokes
and continuity equations in cylindrical coordinates are:

2
at ar r 38 r X
(B1)
v 3V
..lap 2y L _2 _i]
pLar+" [vcvr (xR
f’_v_g+vrf’_‘{§_+ia_ave+vrve+vx Vg
; 3 at ar r 38 r 3x
| ; (82)
v aV
- Y _ ‘_22 2 8 2 __r‘]
. “or ae*“[vcve'?*ﬁa
5 3 av NV av 3V
X Ve x e x Vo x 13 2
A 2 st © "ar v s T O*ax P 3X v VeV (83)
i3 ar r r 3§ ED
. where
E 4 S LN B S LI N 1
| o= o S S vy S
: . TR T T SIS TS
g ) tquations {3.10 - 3.13) can be substituted in Equations (B! - B4), and prod-
% v ucts of oo Voo Wo neglected to yield
| .
5 , I, 1[ , atve 2w
: (s - ihvg - 2ug s a g = Rt od v - % 4 — 2 (85)
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i
ap,

- 2 23
- - —= 1| g2 a‘w_ _ da‘iv \
(s 1)us + 2vS - yRe [V W, rYS - s] (B6
3ap
i S - upa-ly2 (87)
(s 1)uS ta 5 = yRet1VE
alrv ) du
S dw +r_° =0 (88)
r ax

where

32 3 32 1
v = 32 $ — + - —
o @ [a? rar | axZ g2 ]

Next we assume that the velocity components and pressure can be written as the
sum of inviscid and viscous terms. The inviscid terms satisfy Equations (BS -
B8) for Re-! = 0 and the viscous terms satisfy Equations (B5 - B8) but are zero
except for small regions near the walls extending a distance § from the walls.

We will make the usual boundary layer assumptions that é~Re-!/2 and derivatives

normal to the wall vary as 6~! while deviaticns along the wall are of order
unity. Positive spin will be assumed (y=1) since the effect of negat ve spin
follows from Eq. (2.8).

oe Ug T UG F Uy (89)
Vs T Vi Y Vsy (810)
Wo T Mg vy (811)
Ps * Pgi ¥ Pyy (812)
where U =v =w =p =0 far fron wall,

SV SV SV sy

u_, v_, w_must satisfy Egs. {3.7 - 3.9) at the wa'l.

st st s
ee U, ® (s - 1) (rfa) K - gy (813)
Ve, * (s - 1) (x7a) K - Ve (814}
W, = (s - 1) (x/a) K - W (815)
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Near the cylindrical lateral wall, r = a, Egs. (B5 - B7) become

3pSV 2 1 azvSV
a T3 = waV - (s - 1)VSV + a‘Re —SFT— (816)
2 -
(s - i)w,, = a?Re-! 3Wey - v, 1aPgy (817)
sV 372 sv
r r
. _y 3% 3p
(s - i)ug, = a2Re-! Sy - a 'SV
sV v YR (818)

The continuity Equation (B8) shows that avsv/ar is of order w_, and,
therefore, v, is of order SW ., and can be neglected in Equations (B16) and
(817). (B16) now shows that p, is of order &w., and can be neglected in

Eq. (B18).

- @ Py = Zwsv (819)
ar
3w
(s - g, = afRet 3 (620)
92USV
-1 T PO S—
(s \)usv a“Re Y (821)

The solutions to Eas. (820 - 821) that satisfy Eqs. (B13, B15) are:

x
[}

SV

[(1 + is) (x/a) X - wsi]e (r-a)/as, (822)

(=4
i

N ook - e (r-al/as, (823)

where &

1+ 4
a [Jznns)] Re"t/?

cubstituting Eqs. (822 - 823) in £q. {B8) and integrating, we CaR obtain v_,

near the lateral wall r = 2.

. W, R
Vey = &, E(i - ) {x/3) K - Vi~ 2 —»3-?_—-‘-]9 (t-a)/aéa (824)
L
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Eq. (B24) can then be inserted in boundary condition (B14) to give a boundary
condition on the inviscid radial velocity at r = a.

3V51

~as. =L = ({ -s) (x/a) K (825)

Vsi a or

Turning now to the endwalls, X = {x~h)/c = #1, similar boundary layer size
arguments give the following equations:

. 3%y
(s - v, - 2w, = a?Re"! —3;§¥- (B26)
azwsv
(s - 1)wsv tv, = alRe-! TV (827)
ap

Next Eq. (B26) is multiplied by 7 ana doth added and subtracted from Eq. (B27)
to give two simpler differential equations.

"2
s - 31) A = a2Re-l &
{ ) aZRe =7 (B29)
X 2pu-1 32
{s+1i)B = a2Re % (B30)
where
A= Yoo TV
B = we, - v,
The solution to Eqs. (B29 - B30) which satisfies Eqs. (B4 - B15) is
\ . - . . ‘(lzi)q
we, v v, (wsi + i vsi) e (831)
Wt T - i - 20iets) (PR TR (g3
1Y X { si si * ('3“ N
where
a = {c/a) &7 J{3TSJ/T+s]
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g = i(c/a) 651« (1-15)/(1+is)

g: ifi Substituting Eqs. (B31 - B32) in Eq. (B8) and integrating, we can obtain Ugy,
E o\ near the end walls x = + 1.
o

. e ;‘ . U-is} (1;" \
. s -1/2 -{1%)a (B33
T Usy * (a/2c) % (1+1s5)-1/ ;\/3+is ¢

% i£3+15> (];;) u

- [ si

: *Vias ¢ % 2%

(B33) can naw be imserted in boundary condftion (B13) to give boundary condi-
tions on the {nviscid axial velocity at x = + 1.

Jram APt et

< § U 6 — s L(4-s)(r/a) K (834)
: si %
i ax
T where
T ) -(a/c)s, 1-1s 3tis
: § = —— N i | —
: ¢ 2VT+is [ V3s T T\
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APPENDIX C
SOLUTION OF INVISCID EQUATIONS

If the assumed solution for pg; as given by Eq. (5.11) is placed in the
partial differential equation for pg; (Eq. (5.1)), a pair of ordinary differ-
ential equations involving a parameter X, can be obtained.

X' () + A2 X (x) = 0 (c1)
r2 R; (r) +r R& (ry - [ 1- (r/C)Zié] Ry (r) =0 (c2)

where M= -(s?-2is+3) (s -i)"2 8

If the assumed pgi solution is used in the endwall boundary conditions, Eq.
{5.5), two conditions that