MEMORANDUM REPORT ARBRL-MR-03194
(Supersedes IMR No. 742)

ANGULAR MOTION OF A SPINNING PROJECTILE
WITH A VISCOSOUS LIQUID PAYLOAD

Charles H. Murphy

August 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.
Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.
Angular Motion of a Spinning Projectile with a Viscous Liquid Payload

Supersedes BRL IMR 742 dated April 1982.

Liquid-filled gyroscope
Liquid payload
Spinning projectile
Stability analysis
Stewartson-Wedemeyer theory
Eigenfrequency

Liquid payload motion can have a significant effect on the stability of a spinning projectile. A general definition of the liquid moment is developed and expressions are obtained for the frequencies and damping rates of the projectile's angular motion. An expression for the liquid pressure moment is derived without unnecessary mathematical approximations of the Stewartson-Wedemeyer theory, and wall shear effects are added to this improved SW pressure moment to obtain the total liquid moment. This moment expression applies to cavities that are fully filled, partially filled or fully filled with a central rod.
20. ABSTRACT (Cont'd)

theory shows that as the Reynolds number decreases, (a) the eigenfrequency-related side moment peaks decrease steadily in size but that (b) the average side moment level first increases and then decreases. This latter predicted behavior is in good qualitative agreement with the D'Amico-Miller conjecture that relates the liquid spin-down moment to the liquid side moment. Good agreement is also obtained between the theory and all available published data from liquid-filled gyroscope experiments.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>5</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>2. PROJECTILE DYNAMICS</td>
<td>11</td>
</tr>
<tr>
<td>Table 1. Parameter Values for Five Army Projectiles</td>
<td>16</td>
</tr>
<tr>
<td>3. EQUATIONS OF LIQUID MOTION</td>
<td>16</td>
</tr>
<tr>
<td>4. BOUNDARY LAYER SOLUTION</td>
<td>19</td>
</tr>
<tr>
<td>5. INVISCID SOLUTION</td>
<td>22</td>
</tr>
<tr>
<td>6. PRESSURE MOMENT</td>
<td>27</td>
</tr>
<tr>
<td>Table 2. Coefficients in Eqs. (6.6, 6.7)</td>
<td>29</td>
</tr>
<tr>
<td>Table 3. f^* and R for 100% Filled Cylinder ($f = 1$)</td>
<td>31</td>
</tr>
<tr>
<td>7. WALL SHEAR MOMENT</td>
<td>33</td>
</tr>
<tr>
<td>8. EXPERIMENTAL RESULTS</td>
<td>36</td>
</tr>
<tr>
<td>9. CENTRAL ROD</td>
<td>37</td>
</tr>
<tr>
<td>Table 4. f^* and R for Cylinder with Rod ($f_d = .98$)</td>
<td>39</td>
</tr>
<tr>
<td>Table 5. f^* and R for 98% Filled Cylinder ($f = .98$)</td>
<td>39</td>
</tr>
<tr>
<td>10. OTHER THEORETICAL EXTENSIONS</td>
<td>41</td>
</tr>
<tr>
<td>11. SUMMARY</td>
<td>43</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>43</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>83</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>86</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>DERIVATION OF Eqs (3.7-3.9)</td>
<td>89</td>
</tr>
<tr>
<td>B.</td>
<td>SOLUTION OF BOUNDARY LAYER EQUATIONS</td>
<td>91</td>
</tr>
<tr>
<td>C.</td>
<td>SOLUTION OF INVISCID EQUATIONS</td>
<td>97</td>
</tr>
<tr>
<td>D.</td>
<td>LEAST SQUARES COEFFICIENTS OF SERIES (5.15)</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>DISTRIBUTION LIST</td>
<td>111</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>The pressure component of C_{LSM} vs τ for $f = 1$, $\varepsilon = 0$ and .02.</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>The pressure component of C_{CLM} vs τ for $Re = 500,000$, $c/a = 3.24$, $f = 1$, $\varepsilon = 0$ and .02.</td>
<td>50</td>
</tr>
<tr>
<td>8 - 9</td>
<td>The ratio of the lateral pressure component of C_{LSM} to the end wall pressure component vs τ for $f = 1$, $\varepsilon = 0$, $c/a = 1.08, 3.24, 5.40$.</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>The wall shear component of C_{LSM} vs τ for $Re = 15,000$, $f = 1$, $\varepsilon = 0$, $c/a = 1.08, 3.24, 5.40$.</td>
<td>53</td>
</tr>
<tr>
<td>11 - 13</td>
<td>C_{LSM} and its pressure component vs τ for $Re = 1,000$, $f = 1$, $\varepsilon = 0$.</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>D'Amico-Miller spin fixture data (Ref. 19, Fig. 1): the ratio of despin moment at a given Re to the despin moment at $Re = 10^6$, for $c/a = 4.291$, $f = 1$.</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>C_{LSM} vs τ for $\varepsilon = 0$ and the D'Amico-Miller parameters: $c/a = 4.291$, $f = 1$.</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>63</td>
</tr>
<tr>
<td>17</td>
<td>64</td>
</tr>
<tr>
<td>17</td>
<td>65</td>
</tr>
<tr>
<td>18</td>
<td>66</td>
</tr>
<tr>
<td>18</td>
<td>67</td>
</tr>
<tr>
<td>19</td>
<td>68</td>
</tr>
<tr>
<td>20</td>
<td>69</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>21</td>
<td>71</td>
</tr>
<tr>
<td>21</td>
<td>72</td>
</tr>
<tr>
<td>21</td>
<td>73</td>
</tr>
<tr>
<td>21</td>
<td>74</td>
</tr>
<tr>
<td>22-23</td>
<td>75</td>
</tr>
<tr>
<td>22-23</td>
<td>76</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>24</td>
<td>ϵ vs fill ratio f, predicted values and Karpov data (circles) (see Ref. 6, Figs. 3-4), $c/a = 3.077$.</td>
</tr>
<tr>
<td></td>
<td>Figure 24a. $Re = 520,000$</td>
</tr>
<tr>
<td></td>
<td>Figure 24b. $Re = 5,200$</td>
</tr>
<tr>
<td>25</td>
<td>ϵ vs τ for a rodded cavity ($f_d = .977$), predicted curve and Frasier data (see Ref. 6, Figs. 9-10), $c/a = 2.866$.</td>
</tr>
<tr>
<td></td>
<td>Figure 25a. $Re = 520,000$, $m_L a^2/I_x = .0240$</td>
</tr>
<tr>
<td></td>
<td>Figure 25b. $Re = 173,000$, $m_L a^2/I_x = .0265$</td>
</tr>
<tr>
<td></td>
<td>Figure 25c. $Re = 40,000$, $m_L a^2/I_x = .0276$</td>
</tr>
<tr>
<td>26</td>
<td>C_{LSM} vs τ for a rodded ($f_d = .977$) and for a partially filled ($f = .977$) cavity, $Re = 40,000$, $c/a = 2.866$, $\epsilon = 0$.</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The US Army has had a continuing interest in the design of spinning projectiles with liquid payloads. Many of these developmental shell have shown dramatic instabilities in their pitching and yawing motion. Initially, these instabilities have been identified by large range losses incurred during firing trials. In 1962 Karpov made direct angular motion measurements of liquid-payload-induced instabilities in a 20mm projectile fired in BRL's Aerodynamics Range. In 1973 Mark and Marmagen used instrumented solar sensors and telemetry units to observe liquid-payload-induced instabilities in 155mm shell. Since that time all developmental shell with liquid payloads have been tested with sunsonde instrumentation and a variety of strange behaviors has been observed. A complete listing of all yawsonde data reports is given in the Bibliography at the end of this report.

In 1959 Stewartson published a theoretical paper on the stability of a spinning liquid-filled top. This paper assumed a right circular container partially or fully filled with an inviscid fluid. The liquid was assumed to be fully spun up and in steady state motion. This motion was assumed to be a circular or spiral motion at a frequency set by the top's static moment and spin rate. The Stewartson theory predicted liquid eigenfrequencies that were to be avoided in order to have stable angular motion of the top. According to the theory, liquid moments would become infinite for coning motion at any of the eigenfrequencies.

In 1965 Karpov made additional 20mm firings. All shell in this series had the same fast frequencies but the payload eigenfrequencies were varied by use of different cavity fineness ratios. A resonance undamping rate was observed but was of a much smaller amplitude and at a slightly lesser frequency than that predicted by Stewartson.

At about that time Wedemeyer introduced a boundary layer modification to the Stewartson theory and computed complex liquid eigenvalues. Since the Aerodynamics Range flights were too short to allow the liquid to be fully spun up and in steady state coning motion, Karpov developed the use of a free liquid-filled gyroscope to measure yaw growth rates near resonance. He

found an exceptionally good agreement with Wedemeyer values at a Reynolds number of 520,000 and fair agreement at a Reynolds number of 5200.

The success of Karpov's gyroscope experiments led to an extensive use of this technique. A complete listing of gyroscope data reports is also included in the Bibliography. This excellent experimental work had the unfortunate effect of biasing most of the later theoretical and experimental work toward understanding liquid-filled gyroscopes and the application to projectiles was treated as a side effect.

A second difficulty with the later gyroscope-oriented work was a tunnel vision concentration on liquid eigenfrequencies. This was caused by the great success of Wedemeyer's modification of Stewartson's inviscid eigenfrequencies. The basic aim of any liquid payload theory should be the calculation of the complete moment the liquid payload exerts on the pitching and yawing projectile in flight. Wedemeyer's complex eigenfrequencies identify frequency and damping rate pairs for which the liquid pressure is infinite. For coning motion near any of these pairs the liquid moment is primarily due to the pressure at the edge of the boundary layer and is dominated by a simple pole function. This pole is an excellent approximation at high Reynolds number, but at lower Reynolds number it becomes quite poor even though the boundary layer assumptions are still valid. The pressure at the edge of the boundary layer has to be computed without the pole approximation. In addition an increment in pressure through the rotating boundary layer on the lateral wall must be computed, as well as the shear on both the lateral and end walls.

It is the aim, then, of this report to give the general formulation of the effect of liquid payload motion on projectile stability and to compute the liquid moments, pressures and wall shears for small-amplitude liquid motion with boundary layers but without the unnecessary mathematical approximations of the Stewartson-Wedemeyer theory. The results of this improved Stewartson-Wedemeyer theory will be compared with all available published gyroscope data for Reynolds numbers down to as low as 2400. Moreover, the theory will be extended to the special case of a fully-filled cylinder with a central rod. Finally, a survey of extensions of the theory to partially spun-up liquids and other special cases will be given.

2. PROJECTILE DYNAMICS

Two coordinate systems, both of which have X-axes along the projectile's axis of symmetry, are commonly used: the missile-fixed XYZ system and the aeroballistic XYZ non-rolling system with the Z-axis initially downward. If we introduce earth-fixed axes X_e Y_e Z_e with the X_e-axis initially along the velocity vector and Z_e downward, a unit vector along the positive X-axis has earth-fixed components (n_{XE}, n_{YE}, n_{ZE}). The angle of attack \(\alpha \) in the non-rotating system \(\psi \) is the angle in the XZ plane from the X-axis to the velocity vector, and the angle of sideslip \(\beta \) is the angle in the XY plane from the X-axis to the velocity vector. Thus for a straight trajectory and small angles, these angles are the negatives of the direction cosines \(n_{ZE} \) and \(n_{YE} \), respectively.

The primary lateral force on the projectile is the normal force, which can be easily expressed in terms of complex variables\(^1\):

\[
F_Y + i F_Z = - (1/2) \rho V^2 S C_N \xi
\]

where

\[
\xi = \beta + i \alpha
\]

and where the other symbols are defined in the List of Symbols.

For an approximately straight trajectory, the usual linear aerodynamic moment can be expressed as the sum of three terms:

\[
M_Y + i M_Z = (1/2) \rho V^2 S \left\{ \left[(\dot{\psi}/V) C_{M_p} - i C_{M_a} \right] \xi + i \left(C_{M_q} + C_{M_a} \right) (\xi V/\dot{\psi}) \right\}
\]

The first term is the very important Magnus moment, which is a viscous side moment caused by the spin and the angle of attack. The second term is the static moment which for most projectiles causes an increased angle in the plane of the total angle of attack. The last term is the damping moment, which usually resists the angular velocity. For simplicity we will neglect the effect of drag on the angular motion and assume \(V \) to be constant in Equations (2.1) and (2.3).

For small angles the usual dynamics10 yield the following differential equation for $\tilde{\xi}$ in terms of an arbitrary force and moment:

$$I_y \dddot{\xi} - i\dot{\phi} \dot{\xi} = i(M_y^- + iM_z^-) + \frac{(I_y \ddot{y} - iI_x \ddot{\phi}) (F_y^r + iF_z^r)}{mV}$$

(2.4)

For the force and moment of Eqs. (2.1) and (2.3) this reduces to

$$\dddot{\xi} + (\hat{H} - i\phi \dot{\xi}) - (\hat{M} + i\phi \dot{\phi} \hat{T}) \dddot{\xi} = 0$$

(2.5)

where

$$\hat{H} = (pS\xi/2m) \left[C_{M_{\alpha}} - K_\gamma^{-2} (C_{M_{\alpha}}^Q + C_{M_{\alpha}}^S) \right] (V/\xi)$$

$$\hat{M} = (pS\xi/2I_y) C_{M_{\alpha}} (V/\xi)^2$$

$$\hat{T} = (pS\xi/2m) \left[C_{M_{\alpha}} + k_x^{-2} C_{M_{\alpha} \alpha} \right] (V/\xi)$$

$$\sigma = I_x/I_y$$

The solution to Equation (2.5) is an epicycle which generates the angular motion as the sum of two rotating and damping or undamping two-dimensional vectors:

$$\dddot{\xi} = K_1 \xi e^{i\phi_1} + K_2 \xi e^{i\phi_2}$$

(2.6)

where

$$\ln \left(K_j/K_{j0} \right) = \epsilon_j \tau_j |\phi| \ t$$

$$\phi_j = \phi_{j0} + \tau_j \dot{\phi} \ t$$

$$\tau_j = (\sigma/2) \left[1 + \sqrt{1 - \left(2\tau_j - \sigma \hat{T} \right)^2/4\hat{M}} \right]$$

$$s_g = \sigma^2 \dot{\phi}^2/4\hat{M}$$

Note that for coning motion in the direction of spin, $\tau_j > 0$ while $\epsilon_j > 0$ for increasing K_j and $\epsilon_j < 0$ for decreasing K_j. For coning motion in the direction opposite to the spin, the inequalities are reversed.
In analyzing the effect of a moving internal component on the angular motion of a spinning projectile, we found it convenient to consider only that part of the moment exerted by the internal component at one of the two frequencies of the projectile's angular motion. For steady-state linear liquid motion, this part will be the total liquid moment. For nonsteady or nonlinear liquid motion, this part will consist of two average components of the actual liquid moment. If we now non-dimensionalize this liquid moment by the liquid mass m_L, the spin rate \(\dot{\phi} \) and the maximum liquid container diameter 2a, the following expression for the liquid moment can be obtained:

\[
M_L \ddot{\psi} + iM_L \ddot{\varphi} = m_L a^2 \dot{\phi}^2 \left[\tau_1 C_{LM_1} K_1 e^{i\phi} + \tau_2 C_{LM_2} K_2 e^{2i\phi} \right]
\]

For linear fluid motion, \(C_{LM} \) should depend on \(\tau, \epsilon, \), time, Reynolds number, fill ratio, the shape of the cavity, and the direction of the spin. A similar remark applies to \(C_{LM_2} \). The \(\tau_j \)'s appear explicitly in definition (2.7) since the moment should vanish for \(\tau_j = 0 \).

It should be noted that the \(C_{LM_j} \) are complex quantities whose imaginary parts represent in-plane moments causing rotation in the plane of \(\exp(i\phi_j) \) and whose real parts represent side moments causing rotations out of the plane of \(\exp(i\phi_j) \). We, therefore, introduce the following definition for the real and imaginary parts of \(C_{LM_j} \) and explicitly express the effect of the direction of spin:

\[
C_{LM_j} = \gamma C_{LSM_j} + i C_{LIM_j}
\]

where \(C_{LSM_j} \) and \(C_{LIM_j} \) are real and represent the liquid side moment and liquid in-plane moment contributions, respectively, and where \(\gamma = \dot{\phi}/|\dot{\phi}| \).

The special values of these coefficients for infinitely viscous or frozen liquid can be obtained from Equation (2.4) with the external moments neglected.

\[
(I_y + iI_L)\ddot{\psi} - i\dot{\phi}(I_x + iI_L)\ddot{\varphi} = 0
\]

where I_{Ly} and I_{Lx} are transverse and axial moments of inertia for the frozen liquid. Comparing Equations (2.4) and (2.9) we see that if the terms involving the frozen liquid moments of inertia are taken to the right side, they can be identified as i times the liquid moment.

$$M_{LY} + iM_{LZ} = -i(I_{LY} \ddot{z} - i\dot{I}_{LX} \dot{z})$$ \hspace{1cm} (2.10)

The epicyclic solution of Equation (2.6) with $|\epsilon_j|<1$ can now be used to provide frozen liquid values of the liquid side moment and liquid in-plane moment coefficients.

$$C_{LIM_j} = \frac{I_{LX} - \tau_{j} I_{LY}}{m a^2}$$ \hspace{1cm} (2.11)

$$C_{LSM_j} = \frac{\epsilon_j (I_{LX} - 2\tau_{j} I_{LY})}{m a^2}$$ \hspace{1cm} (2.12)

For a circular cylinder of length $2c$ and center located a distance h forward of the projectile's center of mass

$$C_{LIM_j} = \frac{1}{2} - \tau_{j} \left[\frac{1}{4} + \frac{c^2 + 3h^2}{3a^2} \right]$$ \hspace{1cm} (2.13)

$$C_{LSM_j} = (\epsilon_{j}/2) \left[1 - \tau_{j} (1 + \frac{4(c^2 + 3h^2)}{3a^2}) \right]$$ \hspace{1cm} (2.14)

A simple interpretation for ϵ follows from the observation that for moderate damping $2\pi \epsilon$ is approximately the fractional change in K_j in one cycle. If we restrict this change to be less than 20%, ϵ should be less than .03, and the frozen C_{LSM} would be less than .015.

In general, however, the liquid moment of Eq. (2.7) should be combined with the aerodynamic force and moment of Eqs. (2.1) and (2.3) to give a somewhat more complicated differential equation for ξ:

$$\dddot{\xi} + (\ddot{H} - i\omega \dot{\phi}) \ddot{\xi} - (\dot{H} + i\omega \dot{\phi}) \dot{\xi}$$

$$= i\phi^2 (m a^2 / I_y) \left[\tau_{1} C_{LM1} K_1 e^{i\phi} + \tau_{2} C_{LM2} K_2 e^{i\phi} \right]$$ \hspace{1cm} (2.15)
If the epicycle solution of Eq. (2.6) is substituted in Eq. (2.15), new relations for frequency and damping can be obtained.

\[\tau_j = \left(\sigma/2\right) \left[f_j - (-1)^j \sqrt{f_j^2 - (1/s_j)}\right] \quad (2.16) \]

where

\[f_j = 1 + (m_L a^2 / I_x) C_{LIM_j} \]

and

\[\varepsilon_j = -\frac{\tau_j (\hat{H} + \hat{H}_{Lj}) - \sigma \hat{T}}{(2\tau_j - \sigma)\tau_j |\phi|} \quad (2.17) \]

where

\[\hat{H}_{Lj} = -\frac{\rho S a^3 / 2I_y}{C_{LMq_j}} \left(V / \delta \right) \]

As can be seen from Eq. (2.17), the liquid side moment has the same effect on the damping of the angular motion as the aerodynamic damping moment. The coefficient \(C_{LMq} \) is introduced so that the relative size of the aerodynamic damping moment and the liquid side moment can be directly evaluated. The direct impact of the liquid side moment on the damping per cycle can be seen from Eq. (2.17) for \(\hat{H} = \hat{T} = 0 \).

\[\varepsilon_j = (m_L a^2 / I_x) (2\tau_j / \sigma - 1)^{-1} C_{LSM_j} \quad (2.18) \]

For the fast mode the coefficient of \(C_{LSM_1} \) is positive and a positive side moment causes an undamping of this motion. Similarly a negative \(C_{LSM_2} \) will undamp the slow mode. As we shall see, the linear liquid motion theory
usually yields a positive side moment, and thus only the fast mode motion is adversely affected by the liquid side moment.

Table 1. Parameter Values for Five Army Projectiles

<table>
<thead>
<tr>
<th>Payload</th>
<th>Projectile</th>
<th>Diameter (mm)</th>
<th>c/a</th>
<th>σ</th>
<th>(\frac{m_L a^2}{I_x})</th>
<th>(\sigma_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Phosphorus</td>
<td>M416</td>
<td>105</td>
<td>2.67</td>
<td>.17</td>
<td>.36</td>
<td>350</td>
</tr>
<tr>
<td>Re = 4-40 x 10⁶</td>
<td>M328</td>
<td>107</td>
<td>2.82</td>
<td>.11</td>
<td>.41</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>XM825</td>
<td>155</td>
<td>4.60</td>
<td>.08</td>
<td>.12</td>
<td>150</td>
</tr>
<tr>
<td>Binary Chemical</td>
<td>M687</td>
<td>155</td>
<td>4.52</td>
<td>.08</td>
<td>.07</td>
<td>80</td>
</tr>
<tr>
<td>Re = 1-7 x 10⁶</td>
<td>XM736</td>
<td>203</td>
<td>3.98</td>
<td>.12</td>
<td>.09</td>
<td>90</td>
</tr>
</tbody>
</table>

In Table 1 the parameters c/a, σ, \(\frac{m_L a^2}{I_x}\), and \(\sigma_L\) are given for five Army projectiles. The first three are smoke projectiles containing white phosphorus, which is liquid for temperatures above 110°F, and the remaining two have special liquid payloads. Since \(\tau_1\) lies between \(\sigma/2\) and \(\sigma\), we see that the \(\tau_1\) range of interest is .04 to .17. \(\frac{m_L a^2}{I_x}\) and \(\sigma_L\) are much larger for the smoke shell due to WP's greater density.

Equation (2.18) can be used to determine a lower bound on the side moment coefficient corresponding to a significant yaw growth rate of 13% per cycle, i.e., \(\varepsilon = .02\). For \(\tau/\sigma = 3/4\) and \(\frac{m_L a^2}{I_x} = .08\), this lower bound on \(C_{LSM}\) is .125. For \(\frac{m_L a^2}{I_x} = .40\), which is appropriate to the older WP shell, this lower bound is .025. Thus our theoretical prediction of this liquid side moment coefficient should at least attempt to achieve an accuracy better than half the lower value, i.e., errors less than .01.

3. EQUATIONS OF LIQUID MOTION

We will consider a projectile with a cylindrical payload cavity with radius, \(a\), and height, \(2c\). The axis of the cylinder is collinear with the projectile's axis, and its center is located a distance, \(h\), from the projectile's center of mass. If the cavity is partially filled, the liquid is fully spun up, and the centrifugal force is large compared to the aerodynamic forces, the liquid will fill the space between the outer cylindrical wall and
an inner cylindrical free surface with radius, \(b \). The ratio of the volume of this inner cylinder to the volume of the complete payload cavity is \(b^2/a^2 \). The fill ratio for the payload cavity is, therefore, \(1-b^2/a^2 \) and will be denoted by \(f \). However, \(m_L \) will always be the liquid mass in a fully-filled cavity.

The objective of the linear theory is to predict the liquid moment response to coning or spiral motion of the form

\[
\xi = K_j e^{i\phi_j} \quad j = 1 \text{ or } 2 \quad (3.1)
\]

\[
= K e^{i\phi} \quad (3.1)
\]

where

\[
s = (\gamma e_j + i) \tau_j
\]

\[
\phi = \phi t
\]

\[
\hat{K} = K_j e^{i\phi_j}
\]

The vector between the center of mass of the projectile and any other points on the projectile can be described in the aeroballistic cylindrical coordinates of this vector by \((\tilde{x}, \tilde{r}, \tilde{\theta})\). Cartesian coordinates of this vector in the earth-fixed coordinates would then be \((x_e, y_e, z_e)\). For simplicity we will omit the subscript "e" for these earth-fixed coordinates throughout this report. Relations between the earth-fixed Cartesian coordinates and the aeroballistic cylindrical coordinates take on quite simple forms for small \(K_j \).

\[
x = \tilde{x} + \tilde{r} K_j \cos (\phi_j - \tilde{\theta}) \quad (3.2)
\]

\[
y = \tilde{r} \cos \tilde{\theta} - K_j \tilde{x} \cos \phi_j \quad (3.3)
\]

\[
z = \tilde{r} \sin \tilde{\theta} - K_j \tilde{x} \sin \phi_j \quad (3.4)
\]
If cylindrical coordinates with respect to the earth-fixed axes are denoted by \((x, r, \theta)\), the following simple relations between the two sets of polar coordinates follow from Eqs. (3.3 - 3.4) for small \(K\).

\[
\begin{align*}
 r &= \tilde{r} - K\tilde{x} \cos (\phi - \tilde{\theta}) \quad (3.5) \\
 \sin (\tilde{\theta} - \theta) &= (\tilde{x}K/\tilde{r}) \sin (\phi - \tilde{\theta}) \quad (3.6)
\end{align*}
\]

The cylindrical components of the velocity of any point on the projectile in aeroballistic coordinates are \(\dot{x} = \dot{r} = 0, \ \dot{\theta} = \dot{\phi}\). In earth-fixed coordinates they can be obtained by differentiating* Eqs. (3.2, 3.5 - 3.6).

\[
\begin{align*}
 V_x &= R \left\{ \dot{\phi}(s - i)\dot{r} e^{s\phi - i\theta} \right\} \quad (3.7) \\
 V_r &= -R \left\{ \dot{\phi}(s - i)x e^{s\phi - i\theta} \right\} \quad (3.8) \\
 V_\theta &= \dot{r} + R \left\{ i\dot{\phi}(s - i)x e^{s\phi - i\theta} \right\} \quad (3.9)
\end{align*}
\]

where

\[
R\{ = \left[\left\{ \right\} + \left\{ \right\} \right]/2
\]

is the real part of a complex quantity.

We will now make the very restrictive assumption that the liquid is in steady-state response to the coning and spinning motion of the projectile. Theoretical studies\(^{12,13}\) have been made and are in progress to determine the effect of partially spun-up liquid, and an experimental study of the transient response to coning motion has been made\(^{14}\). These studies show that spin-up and cone-up effects are large and important to a complete understanding of the liquid payload stability problem.

Nevertheless, we will assume that the liquid velocity components and liquid pressure have the same dependency on time and \(\theta\) as the velocity components of points on the projectile and introduce four small dimensionless functions of \(r\) and \(x\): \(u_s, v_s, w_s\) and \(p_s\).

*See Appendix A for details.

\[V_x = R \left\{ u_re^{\phi} - i \right\} (a^\phi) \] (3.10)

\[V_r = R \left\{ v_se^{\phi} - i \theta \right\} (a^\phi) \] (3.11)

\[V_\theta = r \phi + R \left\{ w_se^{\phi} - i \phi \right\} (a^\phi) \] (3.12)

\[p = \rho_L \frac{R^2}{2} + R \left\{ \rho_s e^{\phi} - i \epsilon \right\} (a^2) \] (3.13)

Eqs. (3.10 - 3.13) can now be placed in the linearized unsteady Navier-Stokes equations and the continuity equation to yield

\[(s - i)v_s - 2w_s + \frac{\partial p_s}{\partial r} = \gamma Re^2 \left[v_\theta^2 v_s - \frac{a^2 v_s}{r^2} + \frac{2a^2 i w_s}{r^2} \right] \] (3.14)

\[(s - i)w_s + 2v_s - \frac{i a p_s}{r} = \gamma Re^2 \left[v_\theta^2 w_s - \frac{a^2 w_s}{r^2} - \frac{2a^2 i v_s}{r^2} \right] \] (3.15)

\[(s - i)u_s + a \frac{\partial p_s}{\partial x} = \gamma Re^1 v_\theta^2 u_s \] (3.16)

\[\frac{\partial (rv_s)}{\partial r} - iw_s + r \frac{\partial u_s}{\partial x} = 0 \] (3.17)

where

\[v_\theta^2 = a^2 \left[\frac{a^2}{r^2} + \frac{3}{r \partial r} + \frac{3}{a \partial x^2} - \frac{1}{r^2} \right] \]

4. BOUNDARY LAYER SOLUTION

Wedemeyer^5 made the assumption that the velocity components and pressure could each be expressed as the sum of inviscid and viscous terms. The inviscid terms satisfy Eqs. (3.14 - 3.17) for \(Re^{-1} = 0 \) over the entire cylinder except for a small boundary layer region near the cylinder walls, while the viscous terms satisfy the boundary layer versions of Eqs. (3.14 - 3.17).
Although Wedemeyer considers the effect of these boundary layer terms only on the liquid eigenvalues, this report will consider all their contributions to the liquid moment. Since the effect of negative spin can easily be found from Eq. (2.8), we will only consider positive spin \((\gamma = 1)\) for the remainder of this report.

\[
\begin{align*}
 u_s &= u_{si} + u_{sv} \\
 v_s &= v_{si} + v_{sv} \\
 w_s &= w_{si} + w_{sv} \\
 p_s &= p_{si} + p_{sv}
\end{align*}
\]

(4.1)
(4.2)
(4.3)
(4.4)

On the lateral wall \(r = a\), then, the usual boundary layer approximations* reduce Eqs. (3.14 - 3.17) to:

\[
\begin{align*}
 a \frac{\partial p_{sv}}{\partial r} &= 2w_s \\
 (s - i)w_{sv} &= a^2 \text{Re}^{-1} \frac{\partial^2 w_{sv}}{\partial r^2} \\
 (s - i)u_{sv} &= a^2 \text{Re}^{-1} \frac{\partial^2 u_{sv}}{\partial r^2} \\
 a(rv_{sv}) &= iw_{sv} - r \frac{\partial u_{sv}}{\partial x}
\end{align*}
\]

(4.5)
(4.6)
(4.7)
(4.8)

Far from the lateral wall, \(u_s, v_s, w_s, p_s\) must vanish. At the wall the velocities must be those required by Eqs. (3.7 - 3.9). The viscous tangential velocities can be determined and a condition for the inviscid normal velocity obtained.*

\[
\begin{align*}
 w_{sv} &= \left[(1 + is)(x/a)\hat{k} - w_{si} \right] e^{(r-a)/a\delta_a} \\
 u_{sv} &= -\left[(i - s)\hat{k} + u_{si} \right] e^{(r-a)/a\delta_a}
\end{align*}
\]

(4.9)
(4.10)

* See Appendix B for details.
For $r = a$,

$$v_{si} - a \frac{\partial v_{si}}{\partial r} = (i - s)(x/a)\hat{n} \quad (4.11)$$

where

$$\delta_a = \frac{1 + i}{\sqrt{2(1 + is)}} \text{Re}^{-1/2}$$

At the end walls, $x = \frac{x - h}{c} = \pm 1$,

$$(s - i)v_{sv} - 2w_{sv} = a^2 \text{Re}^{-1} \frac{\partial^2 v_{sv}}{\partial x^2} \quad (4.12)$$

$$(s - i)w_{sv} + 2v_{sv} = a^2 \text{Re}^{-1} \frac{\partial^2 w_{sv}}{\partial x^2} \quad (4.13)$$

$$-a \frac{\partial p_{sv}}{\partial x} = 0 \quad (4.14)$$

$$r \frac{\partial u_{sv}}{\partial x} = i w_{sv} - \frac{a(\text{Re}^{1/2} v_{sv})}{a} \quad (4.15)$$

Once again the solution for the tangential viscous velocities and a relation for the normal inviscid velocity can be obtained.

$$w_{sv} + iv_{sv} = -(w_{si} + iv_{si})e^{-\alpha(1 - x)} \quad (4.16)$$

$$w_{sv} - iv_{sv} = \left[w_{si} - iv_{si} - 2(1 + is)(\frac{h + c}{a})\hat{n}\right] e^{-\alpha(1 - x)} \quad (4.17)$$

For $x = \pm 1$,

$$u_{si} \hat{r} + \delta_c \frac{\partial u_{si}}{\partial x} = -(i - s)(r/a)\hat{k} \quad (4.18)$$
where
\[\alpha = (c/a) \delta_a \frac{1}{2} \sqrt{(3 + is)/(1 + is)} \]
\[\beta = i(c/a) \delta_a \frac{1}{2} \sqrt{(1 - is)/(1 + is)} \]
\[\delta_c = \frac{(a/c)\delta_a}{2} \left[\frac{1}{\sqrt{1 + is}} \left(\frac{1}{\sqrt{3 + is}} \right) + \frac{3 + is}{\sqrt{1 - is}} i \right] \]

It is interesting to note that according to Eq. (4.14) the usual boundary condition of no pressure change through the boundary layer is present. Eq. (4.5) shows that this is not the case on the lateral wall. The pressure at the wall differs from that at the edge of the boundary layer by \(p_{sv}(a) \). This pressure difference can be computed by inserting \(w_{sv} \) as given by Eq. (4.9) in Eq. (4.5) and integrating.

\[p_{sv}(a, \hat{x}) = 2\delta_a \left[(1 + is)(c/a)(\hat{x} + h/c) \hat{r} - w_{si}(a, \hat{x}) \right] \quad (4.19) \]

5. INVISCID SOLUTION

The inviscid terms are solutions of Equations (3.14 - 3.17) for \(Re^{-1} = 0 \). These four equations can be easily manipulated to yield a partial differential equation for \(p_{si} \) and three equations for the three velocity components in terms of \(p_{si} \).

\[(s - i)^2 \left[\frac{\partial^2 p_{si}}{\partial r^2} + \frac{\partial p_{si}}{r \partial r} - \frac{p_{si}}{r^2} \right] = -(s^2 - 2 is + 3) \frac{\partial^2 p_{si}}{\partial x^2} \quad (5.1) \]

\[(s - i)u_{si} = -a \frac{\partial p_{si}}{\partial x} \quad (5.2) \]
\[(s^2 - 2is + 3)v_{si} = -(s - i) a \frac{ap_{si}}{ar} + \frac{2iap_{si}}{r} \] (5.3)

\[(s^2 - 2is + 3)w_{si} = 2a \frac{ap_{si}}{ar} + \frac{ai(s - i)p_{si}}{r} \] (5.4)

On the outer walls of the container the boundary conditions are given by Equations (4.18) and (4.11). These equations can be rewritten by use of Equations (5.2) and (5.3).

For \(x = \pm 1 \)

\[\frac{ap_{si}}{ax} + \delta_c \frac{a^2 p_{si}}{3x^2} = -(s - i) (c/a) \frac{a}{r} \hat{K} \] (5.5)

For \(r = a \)

\[2i (1 + \delta_a) p_{si} - \left[s - i (1 - 2 \delta_a) \right] a \frac{ap_{si}}{ar} + \]

\[a^2 \delta_a (s - i) \frac{a^2 p_{si}}{ar^2} = -(s^2 + 1)(s - 3i)(x/a) \hat{K} \] (5.6)

On the inner free boundary, \(r = b \), the pressure must be a constant.

\[\frac{dp}{dt} = \frac{\partial p}{\partial t} + \nabla \cdot \left(\frac{\partial p}{\partial x} \right) + V_r \frac{\partial p}{\partial r} + V_\theta \frac{\partial p}{\partial \theta} = 0 \] (5.7)

or

\[(s - i) p_{si} + (r/a) v_{si} = 0 \] (5.8)

Note that for a fully filled projectile, Equation (5.8) requires \(p_{si} \) to be zero for \(r = b = 0 \). Equation (5.8) can now be simplified by use of Equation (5.3).

For \(r = b \)

\[\left[(s^2 + 1)(s - 3i) + 2i \right] p_{si} - (s - i) r \frac{ap_{si}}{ar} = 0 \] (5.9)
An obvious solution to Eq. (5.1) which satisfies Eq. (5.5) is

\[p_{si} = -(s - i)^2(xr/a^2) \hat{K} \quad (5.10) \]

We, therefore, assume the general solution to be

\[p_{si} = -(c/a) \left[(s - i)^2(x/c)(r/a) + \sum R_k(r)X_k(x) \right] \hat{K} \quad (5.11) \]

Substitution of Eq. (5.11) in Eq. (5.1) shows that \(X_k \) is a linear combination of a sine and a cosine. Eq. (5.5) can be used to completely specify this combination* for small \(\delta_c \).

\[
X_k = \begin{cases}
\cos (k\lambda x), & k \text{ even} \\
\sin (k\lambda x), & k \text{ odd} \\
1, & k = 0
\end{cases} \quad (5.12) \]

where.

\[\lambda = (\pi/2)[1 + \delta_c] \]

Corresponding to these \(X_k \)'s, Eq. (5.1) gives the general form of the \(R_k \)'s. Eqs. (5.6) and (5.9) can then be used to completely specify the \(R_k \)'s. In order to do this, \(x \) in Eqs. (5.6) and (5.11) must be replaced by a series in the \(X_k \)'s. This is easy when the \(X_k \)'s are orthogonal. Unfortunately, for \(\delta_c \) not equal to zero the \(X_k \)'s of Eqs. (5.12 - 5.13) are not orthogonal. We can, however, approximate \(x \) by a least squares fit to a truncated series in \(X_k \):

\[x = \sum_{k=0}^{N} a_k X_k(x) \quad (5.15) \]

*See Appendix C for details. As can be seen there, our "obvious" solution is a special form of \(X_R \) that satisfies the inhomogeneous form of Eq. (5.5).

In general, inhomogeneous boundary conditions are not as friendly, and much more algebraic labor is required.
where

\[a_0 = h/c \]

\[a_k = 0 \text{ for } k \text{ even}, \]

and \(a_k \) is computed in Appendix D for \(k \) odd. A first approximation for small \(\delta_c \) is the usual orthogonal relation

\[a_k = b_k/b_{kk} \quad (5.16) \]

where

\[b_k = \int_{-1}^{1} \hat{x} \overline{X}_k (\hat{x}) \, d\hat{x} \]

\[b_{kk} = \int_{-1}^{1} \overline{X}_k \overline{X}_k \, d\hat{x} \]

\(\psi \) now assumes the slightly simpler form

\[\psi_{s1} = -(c/a) \sum_{k=0}^{N} \overline{X}_k (\hat{x}) \left[R_k (r') + (s - 1)^2 (r/a) a_k \right] \quad (5.17) \]

Equation (5.1) can now be used to get the general form* of the \(R_k \)'s.

\[R_z = (h/c) \left[E_z \frac{r/a + F_z}{a/r} \right] \quad (5.18) \]

For \(k \) odd

\[R_k = a_k \left[\psi \right] \left[E_k J_{k/2} (kIr/c) + F_k Y_{k/2} (kIr/c) \right] \quad (5.19) \]

* See Appendix C for details.
where
\[\lambda^2 = -\left[\frac{s^2 - 2is + 3}{(s - 1)^2} \right] \lambda^2 \]

\(E_k, F_k \) are coefficients to be determined by boundary conditions,
\(J_n \) is a Bessel function of the first kind of order \(n \),
\(Y_n \) is a Bessel function of the second kind of order \(n \).

The radial functions \(R_k(r) \) must satisfy boundary conditions (5.6) and (5.9).
Direct substitution of Eq (5.17) in these equations yields the following conditions:

\[2i (1 + \frac{3}{a}) R_k(a) - \left[s - i (1 - 2\delta_a) \right] a R'_k(a) \]
\[+ (s - 1)\delta_a a^2 R''_k(a) = 2a_k s (s - i)(s - 3i) \]
\[\left[(s^2 + 1)(s - 3i) + 2i \right] R_k(b) - (s - i) b R'_k(b) \]
\[= - a_k (b/a)^2 (s - i)^2 (s - 3i) \]

Equations (5.20 - 5.21) can be used to find \(E \) and \(F \) for specific values of \(\frac{c}{a}, \frac{b}{a}, \) and \(s \). For non-zero \(k \), \(R_k(r) \) is a sum of Bessel functions with derivatives given by the following equations:\footnote{15. N. W. McLachlan, \textit{Bessel Functions for Engineers}, Oxford University Press, London, 1955.}

\[r R'_k = (k\lambda r/c) a_k \ \left[E_k J_0 (k\lambda r/c) + F_k Y_0 (k\lambda r/c) \right] - R_k \]
\[r^2 R''_k = R_k \left[1 - (k\lambda r/c)^2 \right] - r R'_k \]

With these relations the boundary conditions (5.20 - 5.21) yield pairs of linear equations for \(E_k \) and \(F_k \) which can be quickly solved.
5. PRESSURE MOMENT

The major components of the liquid moment are due to the pressure on the lateral and end walls of the container. Lesser components are due to the viscous wall shear on the lateral and end walls. Thus the liquid moment coefficient can be given as a sum of four terms.

\[\tau_{CLM} = m_p + m_{pe} + m_{ve} + m_{ve} \] \hspace{1cm} (6.1)

The sum of the first two terms is the pressure moment coefficient, \(m_p \), and will be computed in this section. The wall shear moment coefficient will be computed in the next section.

By use of Eq. (3.5), we can express the fluctuating part of the inviscid pressure given by Eq. (3.13) as

\[\frac{\Delta p}{\rho a^2 \phi^2} = R \left\{ \hat{p}_x - (r x/a^2) \hat{k} \right\} e^{s \phi} - i \phi \] \hspace{1cm} (6.2)

Equation (5.17) can now be used to give the following series for the pressure coefficient:

\[C_p e^{i \phi} = -(c/a) \sum_{k=0}^{N} x_k(\hat{x}) \left[R_k(r) + (s - 2i) \bar{a} (r/a) a_k \right] \] \hspace{1cm} (6.3)

The pressure moment coefficient on the lateral wall can be computed by an integral of the real pressure over this wall, with the appropriate lever arm.
\[m_{pz} = \frac{i(c/a)(2\pi k)}{2} e^{-S\phi} \int_{\phi}^{\phi} \int_{0}^{2\pi} (\hat{\chi} + \frac{h}{c}) e^{i\theta} R \{ C_p e^{i\phi} - i\phi \} \, r = a \, d\phi \, d\chi \]

\[= \frac{i(c/2a)}{2} \int_{-1}^{1} \left[C_p^* \right] \, d\hat{x} + (h/c)^2 \, m_{ph} \quad (6.4) \]

where

\[m_{ph} = \frac{i(c^2/2ah)}{2} \int_{-1}^{1} C_p (a) \, d\hat{x}; \quad C_p^* = C_p e^{-i\phi} + p_{sv} \]

Since the complex pressure dependence on \(\hat{x} \) is a sum of sine functions, this integral can be easily evaluated.

The end wall pressure moment coefficient is the difference of two similar integrals on each end wall.

\[m_{pe} = -i \frac{(a/c)(2\pi k)}{2} \frac{a^{-3}}{2} e^{-S\phi} \left[\int_{b}^{a} \left[e^{i\theta} R \{ C_p e^{i\phi} + i(z - \theta) \} \right] r^2 \, d\theta \, dr \right] \]

\[\quad \left[\hat{x} = 1\right] \left[\hat{x} = -1\right] \]

\[= -i \frac{(a/2c)}{2} \frac{a^{-3}}{2} \int_{b}^{a} \left[e^{i\phi} C_p \right] \quad r^2 \, dr \quad (6.5) \]

This moment coefficient involves the integrals of Bessel functions but these particular integrals can be easily obtained in closed form.\(^{15}\)

Stewartson\(^3\) incorrectly used a complex \(\Delta p \) in his pressure integral and, therefore, his moment calculation lacks the \(i \) factors of Eqs. (6.4 - 6.5). Later he made a similar error of a factor of two in computing a complex direction cosine so that these cancelling errors give the correct yaw growth rates, \(\varepsilon_j \). These yaw growth rates when modified by Wedemeyer\(^5\) gave outstanding agreement with gyroscope measurements for large Reynolds numbers.
In order to compute the pressure moment coefficient, it is necessary to determine the parameters \(E_k \) and \(F_k \) from the boundary condition equations (5.20 - 5.21). For Stewartson’s inviscid case \((\delta_a = 0) \) and constant amplitude coning motion \((\varepsilon = 0) \) the conditions for the coefficients of the Bessel functions \((k \neq 0) \) are:

\[
\begin{align*}
 c_{11} E_k + c_{12} F_k &= 2\tau (\tau-1)(\tau-3) \\
 c_{21} E_k + c_{22} F_k &= (b/a) \tau^2 (\tau-1)^2 (\tau-3)
\end{align*}
\]

where the \(c_{ij} \) are given in Table 2 and are functions of the ratio of coning frequency to spin \((\tau) \), reduced fineness ratio \((f^* = c/ka) \), and fill ratio \(f \).

Table 2. Coefficients in the Equations (6.6, 6.7) That Determine \(E_k \) and \(F_k \) for \(\delta_a = \varepsilon = 0 \)

\[
\begin{align*}
 c_{11} &= \left[(\tau - 1) \hat{\lambda}/f^* \right] J'_1 (\hat{\lambda}/f^*) - 2J_1 (\hat{\lambda}/f^*) \\
 c_{12} &= \left[(\tau - 1) \hat{\lambda}/f^* \right] Y'_1 (\hat{\lambda}/f^*) - 2Y_1 (\hat{\lambda}/f^*) \\
 c_{21} &= (\tau-1)(\hat{\lambda}/f^*)(b/a) J'_1 (\hat{\lambda}b/f^*a) \\
 &\quad + \left[(\tau^2-1)(\tau-3)-2 \right] J_1 (\hat{\lambda}b/f^*a) \\
 c_{22} &= (\tau-1)(\hat{\lambda}b/f^*a) Y'_1 (\hat{\lambda}b/f^*a) \\
 &\quad + \left[(\tau^2-1)(\tau-3)-2 \right] Y_1 (\hat{\lambda}b/f^*a) \\
 \hat{\lambda}^2 &= \left(\frac{\pi}{2} \right)^2 \left[\frac{3 + 2\tau \tau - \tau^2}{1 - 2\tau + \tau^2} \right]
\end{align*}
\]

*The \(k = 0 \) mode is only present for liquid payload offset \(h \neq 0 \). This small moment term is included in the computer program. Since \(h \) is zero in all available experimental data, the zero mode will not be considered further in this report.
For fixed reduced fineness ratio and fill ratio, the determinant of Eqs. (6.6 - 6.7) is zero for certain values of τ which are the eigenvalues of the system, τ_{kn}. In the vicinity of these eigenvalues, the parameters E_k and F_k can be approximated as poles.

$$E_k = \frac{\hat{E}_k(\tau_{kn})}{\tau - \tau_{kn}}$$ \hspace{1cm} (6.8)

$$F_k = \frac{\hat{F}_k(\tau_{kn})}{\tau - \tau_{kn}}$$ \hspace{1cm} (6.9)

Spiral motions are represented by complex values of s while pure imaginary values of s correspond to constant amplitude coning motion. Eqs. (6.8 - 6.9) can now be extended to approximate the response to spiral motions in the vicinity of the eigenfrequencies since the parameters are analytic functions.

$$E_k = \frac{i \hat{E}_k(\tau_{kn})}{s - i \tau_{kn}}$$ \hspace{1cm} (6.10)

$$F_k = \frac{i \hat{F}_k(\tau_{kn})}{s - i \tau_{kn}}$$ \hspace{1cm} (6.11)

Stewartson assumed that near an eigenfrequency the pressure was dominated by that mode and computed the total pressure moment from that assumption.

$$m_p = \frac{[f^* R (f^*, f, \tau_{kn})]^2}{2\pi k^2 (s - i \tau_{kn})}$$ \hspace{1cm} (6.12)

Stewartson and later authors have constructed tables of τ_{kn} and R as functions of f^* and f.

A portion of one of these tables for a fully filled shell is given in Table 3. As can be seen from the table, R decreases rapidly with increasing n. Since the moment varies as R^2, eigenvalues for $n > 3$ are of little importance for estimating the liquid moment. Eq. (6.12) also shows the decay of the moment with increasing k values. For these reasons, our computer code only considers the first ten k modes ($k = 1, 3, 5, \ldots, 19$).

Table 3. \(f^* \) and \(R \) for 100% Filled Cylinder (\(f = 1 \))

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f^*)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9949</td>
<td>0</td>
<td>0.4780</td>
<td>0</td>
<td>0.3103</td>
<td>0</td>
<td>0.2291</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>1.0064</td>
<td>0.0144</td>
<td>0.4842</td>
<td>0.0017</td>
<td>0.3144</td>
<td>0.0004</td>
<td>0.2322</td>
<td>0.0019</td>
</tr>
<tr>
<td>0.02</td>
<td>1.0180</td>
<td>0.0290</td>
<td>0.4904</td>
<td>0.0034</td>
<td>0.3186</td>
<td>0.0007</td>
<td>0.2353</td>
<td>0.0039</td>
</tr>
<tr>
<td>0.03</td>
<td>1.0297</td>
<td>0.0440</td>
<td>0.4968</td>
<td>0.0053</td>
<td>0.3228</td>
<td>0.0014</td>
<td>0.2384</td>
<td>0.0060</td>
</tr>
<tr>
<td>0.04</td>
<td>1.0417</td>
<td>0.0592</td>
<td>0.5032</td>
<td>0.0072</td>
<td>0.3271</td>
<td>0.0020</td>
<td>0.2416</td>
<td>0.0081</td>
</tr>
<tr>
<td>0.05</td>
<td>1.0538</td>
<td>0.0747</td>
<td>0.5098</td>
<td>0.0091</td>
<td>0.3315</td>
<td>0.0026</td>
<td>0.2449</td>
<td>0.0104</td>
</tr>
<tr>
<td>0.06</td>
<td>1.0661</td>
<td>0.0905</td>
<td>0.5165</td>
<td>0.0111</td>
<td>0.3360</td>
<td>0.0032</td>
<td>0.2482</td>
<td>0.0127</td>
</tr>
<tr>
<td>0.07</td>
<td>1.0786</td>
<td>0.1065</td>
<td>0.5233</td>
<td>0.0132</td>
<td>0.3405</td>
<td>0.0037</td>
<td>0.2516</td>
<td>0.0150</td>
</tr>
<tr>
<td>0.08</td>
<td>1.0913</td>
<td>0.1229</td>
<td>0.5302</td>
<td>0.0153</td>
<td>0.3451</td>
<td>0.0043</td>
<td>0.2550</td>
<td>0.0175</td>
</tr>
<tr>
<td>0.09</td>
<td>1.1042</td>
<td>0.1395</td>
<td>0.5372</td>
<td>0.0175</td>
<td>0.3498</td>
<td>0.0049</td>
<td>0.2585</td>
<td>0.0200</td>
</tr>
<tr>
<td>0.1</td>
<td>1.1173</td>
<td>0.1564</td>
<td>0.5443</td>
<td>0.0198</td>
<td>0.3546</td>
<td>0.0055</td>
<td>0.2621</td>
<td>0.0227</td>
</tr>
<tr>
<td>0.11</td>
<td>1.1306</td>
<td>0.1736</td>
<td>0.5516</td>
<td>0.0221</td>
<td>0.3595</td>
<td>0.0062</td>
<td>0.2657</td>
<td>0.0254</td>
</tr>
<tr>
<td>0.12</td>
<td>1.1442</td>
<td>0.1911</td>
<td>0.5591</td>
<td>0.0245</td>
<td>0.3645</td>
<td>0.0069</td>
<td>0.2695</td>
<td>0.0282</td>
</tr>
<tr>
<td>0.13</td>
<td>1.1579</td>
<td>0.2088</td>
<td>0.5666</td>
<td>0.0270</td>
<td>0.3695</td>
<td>0.0076</td>
<td>0.2732</td>
<td>0.0311</td>
</tr>
<tr>
<td>0.14</td>
<td>1.1720</td>
<td>0.2269</td>
<td>0.5743</td>
<td>0.0295</td>
<td>0.3747</td>
<td>0.0083</td>
<td>0.2771</td>
<td>0.0341</td>
</tr>
<tr>
<td>0.15</td>
<td>1.1862</td>
<td>0.2452</td>
<td>0.5822</td>
<td>0.0321</td>
<td>0.3798</td>
<td>0.0091</td>
<td>0.2810</td>
<td>0.0372</td>
</tr>
<tr>
<td>0.16</td>
<td>1.2008</td>
<td>0.2638</td>
<td>0.5902</td>
<td>0.0348</td>
<td>0.3854</td>
<td>0.0099</td>
<td>0.2851</td>
<td>0.0405</td>
</tr>
<tr>
<td>0.17</td>
<td>1.2156</td>
<td>0.2826</td>
<td>0.5983</td>
<td>0.0376</td>
<td>0.3908</td>
<td>0.0107</td>
<td>0.2892</td>
<td>0.0438</td>
</tr>
<tr>
<td>0.18</td>
<td>1.2307</td>
<td>0.3018</td>
<td>0.6067</td>
<td>0.0404</td>
<td>0.3965</td>
<td>0.0115</td>
<td>0.2934</td>
<td>0.0472</td>
</tr>
<tr>
<td>0.19</td>
<td>1.2460</td>
<td>0.3213</td>
<td>0.6152</td>
<td>0.0433</td>
<td>0.4022</td>
<td>0.0124</td>
<td>0.2977</td>
<td>0.0508</td>
</tr>
<tr>
<td>0.2</td>
<td>1.2617</td>
<td>0.3410</td>
<td>0.6239</td>
<td>0.0464</td>
<td>0.4080</td>
<td>0.0133</td>
<td>0.3020</td>
<td>0.0545</td>
</tr>
<tr>
<td>0.21</td>
<td>1.2777</td>
<td>0.3610</td>
<td>0.6327</td>
<td>0.0495</td>
<td>0.4140</td>
<td>0.0142</td>
<td>0.3065</td>
<td>0.0583</td>
</tr>
<tr>
<td>0.22</td>
<td>1.2940</td>
<td>0.3813</td>
<td>0.6418</td>
<td>0.0527</td>
<td>0.4201</td>
<td>0.0151</td>
<td>0.3111</td>
<td>0.0623</td>
</tr>
<tr>
<td>0.23</td>
<td>1.3107</td>
<td>0.4019</td>
<td>0.6511</td>
<td>0.0559</td>
<td>0.4264</td>
<td>0.0161</td>
<td>0.3158</td>
<td>0.0664</td>
</tr>
<tr>
<td>0.24</td>
<td>1.3277</td>
<td>0.4227</td>
<td>0.6605</td>
<td>0.0593</td>
<td>0.4328</td>
<td>0.0171</td>
<td>0.3206</td>
<td>0.0706</td>
</tr>
<tr>
<td>0.25</td>
<td>1.3450</td>
<td>0.4439</td>
<td>0.6702</td>
<td>0.0628</td>
<td>0.4394</td>
<td>0.0182</td>
<td>0.3255</td>
<td>0.0750</td>
</tr>
<tr>
<td>0.26</td>
<td>1.3628</td>
<td>0.4653</td>
<td>0.6801</td>
<td>0.0664</td>
<td>0.4461</td>
<td>0.0193</td>
<td>0.3305</td>
<td>0.0795</td>
</tr>
<tr>
<td>0.27</td>
<td>1.3809</td>
<td>0.4871</td>
<td>0.6903</td>
<td>0.0701</td>
<td>0.4529</td>
<td>0.0204</td>
<td>0.3357</td>
<td>0.0842</td>
</tr>
<tr>
<td>0.28</td>
<td>1.3995</td>
<td>0.5091</td>
<td>0.7007</td>
<td>0.0739</td>
<td>0.4600</td>
<td>0.0216</td>
<td>0.3410</td>
<td>0.0891</td>
</tr>
<tr>
<td>0.29</td>
<td>1.4185</td>
<td>0.5314</td>
<td>0.7115</td>
<td>0.0777</td>
<td>0.4672</td>
<td>0.0228</td>
<td>0.3464</td>
<td>0.0941</td>
</tr>
<tr>
<td>0.3</td>
<td>1.4379</td>
<td>0.5540</td>
<td>0.7222</td>
<td>0.0818</td>
<td>0.4746</td>
<td>0.0240</td>
<td>0.3520</td>
<td>0.0994</td>
</tr>
</tbody>
</table>

The major difficulty with the inviscid Stewartson eigenfrequency theory is that it predicts much too large liquid moments near the eigenfrequencies. Wedemeyer introduced a viscous boundary layer theory and sought to predict the resulting liquid moment by a simple manipulation of Stewartson's tables. By a very clever approach, he showed that viscous eigenvalues, \(s_{kn} \), could be computed from Stewartson's table of inviscid eigenfrequencies, \(\tau_{kno} \), by the relations

\[
s_{kn} = (\epsilon_{kn} + i) \tau_{kn} \quad (6.13)
\]

\[
\tau_{kn} = \tau_{kno} + \Delta \tau_{kn} \quad (6.14)
\]
where

$$w_{kn} \tau_{kn} + i\Delta \tau_{kn} = i \left[\frac{\partial \tau_{kn}}{\partial \tau_{kn}} \left(f^* \delta_a - k^{-1} \delta_c \right) + 2 \frac{\partial \tau_{kn}}{\partial (f - 1)} \delta_a \right]$$

He then replaced \(\tau_{kn} \) in the denominator of Eq. (6.12) with the \(\tau_{kn} \) of Eq. (6.13) to obtain an excellent approximation of the pressure moment for large Reynolds numbers.

The maximum value of the pressure side moment occurs for \(\tau \) near the Stewartson eigenfrequency and is approximately

$$\left(C_{LSM} \right)_{\text{max}} = \frac{2 \pi R}{\tau_{kn}^2} \frac{-(f^R)^2}{\tau_{kn}^2 \left[\tau_{kn} - \varepsilon \right]}$$

(6.15)

For \(\varepsilon = 0 \) and constant \(f^* \) the maximum SW side moment coefficient varies inversely with \(k^2 \tau_{kn} \) and, hence, it varies as \(\text{Re}^{-\frac{1}{2}} \). Its dependence on \(k \) is somewhat more complicated since \(k^{-1} \delta_c \) varies as \(k^{-2} \) for constant \(f^* \). The maximum side moment coefficient should vary with \(k \) by a factor between \(k^{-2} \) and unity.

Equations (6.3 - 6.5) have been coded for \(N = 19 \) by Bradley18 and a number of computations made for a variety of values of \(c/a, f, \) and \(\text{Re} \). To illustrate his results, a series of calculations have been made for \(\tau_{kl} \) near .07, \(\varepsilon = 0, .02, \) and \(\text{Re} = 500,000 \) and 15,000. Table 3 shows that a suitable value of \(f^* \) to obtain \(\tau_{kl} \) near .07 is 1.08. For the first three \(k \)-modes, the corresponding fineness ratios, \(c/a \), are 1.08, 3.24 and 5.40.

Figures 1 and 2 show the side moment for fineness ratio 1.08 at two Reynolds numbers. The ratio of the square roots of the two Reynolds numbers is 5.8 while the ratio of peak \(C_{LSM} \)'s for \(\varepsilon = 0 \) at the two Reynolds numbers is 5.6. Notice the strong sensitivity of the side moment to damping per cycle for the higher Reynolds number. This sensitivity is considerably reduced for \(\text{Re} \) of 15,000.

Figures 3-4 show similar curves for a fineness ratio of 3.24. The maximum side moment for the higher Reynolds number is reduced by a factor of 5 from that of Figure 1. Since \(k \) is 3, the predicted range of this factor is 1 to 9. The sensitivity to damping per cycle is quite similar to that shown by Figures 1-2.

Finally, Figures 5-6 show the side moment for a fineness ratio of 5.40. Here the reduction of peak side moment in Figure 5 relative to Figure 1 is by a factor of 12, which also lies in the predicted range of 1 to 25. The dependence on damping per cycle and Reynolds number is quite similar to that of the preceding figures.

Since the in-plane moment only affects frequency, it is of much less interest than the side moment. It is, of course, available from Eqs. (6.3 - 6.5). Figure 7 is an example of the in-plane moment coefficient for a Reynolds number of 500,000 and fineness ratio of 3.24. For zero τ, it is quite near the frozen value of $\frac{1}{4}$, undergoes a disturbance near the eigenfrequency, and asymptotically approaches zero.

The side moment has contributions from the two flat endwalls as well as from the cylindrical lateral wall. The ratio of the two contributions is shown in Figures 8-9 for the two Reynolds numbers of 500,000 and 15,000. We see that these contributions are opposing and roughly equal. Indeed for a fineness ratio of 1.08 ($k = 1$) the lateral contribution is only 20% larger in magnitude than the endwall contribution! Thus the side moment is the difference of two nearly equal quantities, and a small change on one wall could have a large effect on the side moment.

7. WALL SHEAR MOMENT

In addition to the pitch and yaw moment due to pressure on the walls of the liquid container, moments due to viscous wall shear are present. These can be computed from the derivatives of the viscous velocity components of Section 4. The liquid moment coefficient due to shear on the cylindrical lateral wall is

\[
m_{vL} = (2\pi K Re)^{-1} e^{-s\phi} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{0}^{2\pi} e^{i\theta} m_{vL} \, d\theta \, dx
\] (7.1)

where

\[
m_{vL} = aR \left\{ \frac{\partial u_s}{\partial r} e^{s\phi} - i\theta \right\} - i\pi R \left\{ \frac{\partial w_s}{\partial r} e^{s\phi} - i\theta \right\}
\]

Equation (7.1) simplifies to

\[
m_{vL} = (2K Re)^{-1} \left[i a \frac{\partial u_s}{\partial r} + c x \frac{\partial w_s}{\partial r} \right]_{r = a} \, dx + (h/c)^2 m_{vzh} \] (7.2)

where

\[
m_{vzh} = (2K Re)^{-1} (c^2/h) \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\partial w_s}{\partial r} \, dx
\]
The velocity derivatives in Eq. (7.2) can be computed from Eqs. (4.9 - 4.10) and the resulting equation has been coded by Bradley.18

The wall shear moment coefficient on the forward flat end wall is

\[m_{vel} = (2\pi K Re)^{-1} e^{-s\phi} (ac)^{-1} \int_{b}^{a} \int_{0}^{2\pi} e^{i\theta} m_{vel}^* r \, d\theta \, dr \quad (7.3) \]

where

\[m_{vel}^* = (h + c) \left[R \left\{ \frac{\partial w_{sv}}{\partial x} e^{s\phi} - i\theta \right\} - iR \left\{ \frac{\partial v_{sv}}{\partial x} e^{s\phi} - i\theta \right\} \right] \hat{x} = 1 \]

A similar expression applies for the rearward endwall. The sum of these moment coefficients has the simple form:

\[m_{ve} = (2a K Re)^{-1} \int_{b}^{a} \left[\frac{\partial}{\partial x} (w_{sv} - i v_{sv}) \right] \hat{x} = 1 \, rdr + (h/c)^2 m_{veh} \quad (7.4) \]

where

\[m_{veh} = (2K Re)^{-2} (c/ah) \int_{b}^{a} \left[\frac{\partial}{\partial x} (w_{sv} - i v_{sv}) \right]^{\hat{x} = 1} \, rdr \]

\[+ \frac{1}{ah} \left[(w_{sv} - i v_{sv})^{\hat{x} = -1} \right] \, rdr \]

The velocity derivatives in Equation (7.4) can be found by use of Equation (4.17) and the results have also been coded by Bradley.18

Since all the velocity derivatives are proportional to \(\delta_{a}^{-1} \) and \(\delta_{a} \) is proportional to \(Re^{-1} \), the viscous liquid moment coefficient itself varies as \(Re^{-1} \) and is important for low Reynolds number. In Figure 10 the wall shear side moment coefficient is given for \(Re = 15,000 \) and our three sample fineness ratios. Comparing this component with the pressure-induced liquid side moment coefficients of Figures 2, 4, and 6, we see that the maximum wall shear component is from 10% to 35% of the wall pressure component.

In Figures 11-13, the total side moment coefficients for \(Re = 1,000 \) and \(\epsilon = 0 \) are compared with their pressure components for \(c/a = 1.08, 3.24, \) and 5.40. The differences between these curves are the wall shear components and we see that these components are quite important and must be computed for low Reynolds flows.
D'Amico and Miller show a very interesting effect of very low Reynolds numbers. In a special gyroscope experiment, Miller forced a spinning cylinder filled with liquid to precess at an angle of 20° and measured the despin moment. The fineness ratio was 4.29, \(\tau \) varied between .12 and .25, and liquids with kinematic viscosities varying between 1 and 10⁶ centistokes were tested. As can be seen from Figure 14, the despin moment varied from a small value for water (\(\nu = 1 \text{ cs} \)) to a value thirty times bigger for corn syrup (\(\nu = 2 \times 10^6 \text{ cs} \)). The Reynolds number of this peak was about 10.

D'Amico and Miller conjectured that this large despin moment would be associated with a large side moment which would produce flight instabilities. Flight tests were made and this otherwise unexpected instability was observed. We now can use the theory of this report to estimate the liquid side moment for Miller's cylinder and Reynolds number as low as 100, which is probably the extreme lower bound of validity of a boundary layer theory.

In Figure 15a, \(C_{\text{LSM}} \) is plotted versus \(\tau \) for Miller's cylinder with \(\text{Re} = 10^6 \). The four local maxima on these curves are caused by four eigenfrequencies, \(\tau_{nk} \). By use of Table 3 these eigenfrequencies can be identified. In order of increasing \(\tau \) their \((k, n)\) mode numbers are \((15, 4), (11, 3), (7, 2) \) and \((13, 4)\). As we would expect, the largest maximum has \(n = 2 \) while the two quite small maxima have \(n = 4 \).

In Figures 15b--15e, \(C_{\text{LSM}} \) is computed for \(\text{Re} = 10^5, 10^4, 10^3, 10^2 \). The first effect of decreasing Reynolds number is to decrease the size of the maxima associated with the eigenfrequencies. Next we see that the average level of the side moment coefficient curves increases with decreasing Reynolds number. In Figure 16, \(C_{\text{LSM}} \) is plotted versus \(\text{Re} \) for \(\tau = .10, .15, .20, .25 \). To facilitate comparison of these curves, we normalized each side moment coefficient by its values at \(\text{Re} = 10^6 \). We see that the side moments increase to maximum values 18 - 33 times their values for water and these maxima occur around \(\text{Re} = 300 \). This striking qualitative agreement with the D'Amico-Miller conjecture is very exciting, and theoretical work on predicting the despin moment at low Reynolds number is being given a much greater emphasis as a result.

8. EXPERIMENTAL RESULTS

In 1980 the first wall pressure measurements in a precessing and spinning liquid-filled cylinder were made by Whiting\(^{21}\). For the 100% filled cylinder, he compared his measurements with theoretical calculations by Gerber et al\(^{22}\). Gerber's theory was developed for fully-filled cylinders only and was used to compute the viscous influence of the lateral wall exactly without the use of a boundary layer approximation. Its results for fully-filled cylinders should, therefore, be better than that of this report when they differ. For the Reynolds numbers of the Whiting tests, they did not differ significantly; and thus, the good experimental agreement Whiting got for Gerber's calculations also applies to our theory. In two cases, however, Whiting measured the pressure on the flat end wall of a partially-filled cylinder \((f = .92)\). Comparisons of these measurements with the theoretical prediction of Equation (6.3) is given in Figures 17a-17b. The agreement with theory is quite satisfactory.

In most gyroscope experiments\(^6\)\(^{23}\) the yaw growth rates and coning rates are measured for a variety of test conditions. In all experiments the center of mass is located at the pivot point so that the gyroscopic stability factor is infinitely large and Equations (2.16, 2.18) for frequency and damping become:

\[
\tau = \sigma \left[1 + \left(\frac{m_L a^2}{I_x} \right) C_{LIM} \right]^{\frac{1}{2}} \sigma \\
\epsilon = \left(\frac{m_L a^2}{I_x} \right) \left(\frac{2\tau}{\sigma - 1} \right)^{-1} C_{LSM} (\tau, \epsilon)
\] (8.1) (8.2)

We first consider D'Amico and Rogers\(^{21}\) measurements for a cylinder with fineness ratio of 1.042 for which \(\tau_{11} = .040\). The frequency was changed by varying \(I_y\) and measurements were made for Reynolds numbers of 12,400 and 2,400. Comparisons of theory with these data are shown in Figures 18a-18b. Agreement is fair, but there appears to be a systematic bias. Theoretical curves for different fineness ratios in steps of .001 were computed and the best fits are shown as dashed curves for \(c/a = 1.047\) and 1.048 in the respective figures. An effective fineness ratio .5% greater than the measured value is not unreasonable and gives excellent experimental agreement. Figure 19 compares the complete side moment coefficient with pressure side moment coefficient and its Stewartson-Wedemeyer approximation for \(c/a = 1.048\) and Re = 2400, and we see

that the complete moment coefficient which gave such excellent experimental agreement is quite different from the other more approximate curves.

The remaining three sets of experiments are summarized by Whiting and Gerber\(^6\), and all involve very similar fineness ratios; i.e., \(c/a = 3.149, 3.013, 3.077\). The Stewartson eigenfrequency for the first set, which was the only one that had 100% filled cylinders, is \(\tau_{31} = 0.047\). The appropriate eigenfrequency for the other two is \(\tau_{31}\), but the proper values cannot be obtained from Table 3.

In the first two sets of experimental data presented by Whiting and Gerber, the frequency was changed by varying \(I_x\) and \(I_y\). For this procedure, Equation (8.2) gives \(\epsilon\) as a function of \(\tau\) and \(I_x\), and thus a simple theoretical curve cannot be plotted. What was done was to compute theoretical values for each experimental pair of values \((\tau, I_x)\), plot these values as points in Figures 20a-b and 21a-d and connect the points with straight lines. An examination of these figures shows fair to good agreement between theory and experiment. It is interesting to note that agreement with experiment for \(Re = 520,000\) (Fig. 20a) can be considerably improved by a 0.1% change in fineness ratio. The side moment coefficients for the lowest Reynolds number of each set (namely, 9000 and 5200) are given in Figures 22-23.

In the final experiment to be considered, the fill ratio, \(f\), was varied and the frequencies and yaw damping rates were measured. Here, too, the theoretical yaw damping rate is a function of two variables - fill ratio and frequency - and must be represented by individually computed points connected by line segments. Although the agreement for \(Re = 520,000\) given in Figure 24a is quite good, the situation for \(Re = 5,200\) in Figure 24b is poor.

9. CENTRAL ROD

In 1969 Frasier\(^7,8\) extended the SW theory to the fully-filled cylinder with a central rod. This had the effect of replacing the free surface boundary condition of Eq. (5.8) with an inner lateral surface condition of the same form as the outer lateral surface (Eqs. (4.9 - 11)). For a rod with radius \(d\), these conditions are

\[
w_{sv} = \left[(1 + is)(x/a) \hat{K} - w_{si} \right] e^{-(r - d)/a\alpha} \tag{9.1}
\]

\[
u_{sv} = -\left[(i - s)(d/a) \hat{K} + u_{si} \right] e^{-(r - d)/a\alpha} \tag{9.2}
\]

For \(r = d\),

\[
v_{si} + a\alpha \frac{\partial w_{si}}{\partial r} = (i - s)(x/a) \hat{K} \tag{9.3}
\]
Equation (9.3) can be used to derive an inner boundary condition to substitute for Eq. (5.21).

\[2i \left(1 - a \delta_a/d \right) R_k(d) - \left[s - i \left(1 + 2a \delta_a/d \right) \right] d R'_k(d) \]

\[- (s - 1) \delta_a a d R''(d) = 2(d/a) \alpha_k s (s - i)(s - 3i) \] (9.4)

Using boundary conditions (5.20) and (9.4) for \(\delta_a = 0 \), Frasier and Scott\(^7\) calculated tables of inviscid eigenfrequencies, \(\tau_{nk} \).

These frequencies are functions of the reduced fineness ratio and rod-ded fill ratio \(f_d \).

\[\tau_{kn} = \tau_{kn} (f^*, f_d) \] (9.5)

where

\[f_d = 1 - d^2/a^2 \]

The revised Wedemeyer relation for the viscous eigenvalue is simply

\[S_{kn} = (c_{kn} + i) \tau_{kn} \] (9.6)

where

\[c_{kn} \tau_{kn} + i \delta_{kn} = \left[\frac{3\tau_{kn}}{a f^*} (f^* \delta_a - k^{-1} \delta_c) - 2 \frac{3\tau_{kn}}{a f_d} (d/a)(1 + d/\varepsilon) \delta_a \right] \]

Table 4 is a sample table of \(\tau_{kn} \), \(f^* \), and \(R \) for \(f_d = 0.98 \) (\(d/a = 0.14 \)). A similar table of \(\tau_{kn} \), \(f^* \), and \(R \) for fill ratio (\(f \)) of 0.98 is given as Table 5 for \(f^* \) comparison purposes.

Two more moment coefficient terms must be added to Eq. (6.1). These are due to the pressure on the rod, \(m_{pr} \), and the wall shear on the rod, \(m_{wr} \).
Table 4. \(f^* \) and \(R \) for Cylinder With Rod (\(f_d = .98 \))

<table>
<thead>
<tr>
<th>(T_{kn})</th>
<th>(n = 1)</th>
<th>(f^*)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>.9028</td>
<td>.0000</td>
<td>.4102</td>
<td>.0000</td>
<td>.2615</td>
<td>.0000</td>
<td>.9211</td>
<td>.0000</td>
<td></td>
</tr>
<tr>
<td>.01</td>
<td>.9141</td>
<td>.0127</td>
<td>.4160</td>
<td>.0092</td>
<td>.2652</td>
<td>.0039</td>
<td>.9484</td>
<td>.0008</td>
<td></td>
</tr>
<tr>
<td>.02</td>
<td>.9256</td>
<td>.0257</td>
<td>.4219</td>
<td>.0189</td>
<td>.2690</td>
<td>.0080</td>
<td>.9755</td>
<td>.0017</td>
<td></td>
</tr>
<tr>
<td>.03</td>
<td>.9373</td>
<td>.0389</td>
<td>.4279</td>
<td>.0290</td>
<td>.2728</td>
<td>.0122</td>
<td>.2003</td>
<td>.0027</td>
<td></td>
</tr>
<tr>
<td>.04</td>
<td>.9491</td>
<td>.0525</td>
<td>.4339</td>
<td>.0395</td>
<td>.2766</td>
<td>.0165</td>
<td>.2031</td>
<td>.0036</td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>.9611</td>
<td>.0664</td>
<td>.4401</td>
<td>.0505</td>
<td>.2806</td>
<td>.0210</td>
<td>.2059</td>
<td>.0046</td>
<td></td>
</tr>
<tr>
<td>.06</td>
<td>.9733</td>
<td>.0806</td>
<td>.4464</td>
<td>.0620</td>
<td>.2846</td>
<td>.0257</td>
<td>.2089</td>
<td>.0057</td>
<td></td>
</tr>
<tr>
<td>.07</td>
<td>.9856</td>
<td>.0951</td>
<td>.4528</td>
<td>.0740</td>
<td>.2887</td>
<td>.0305</td>
<td>.2118</td>
<td>.0068</td>
<td></td>
</tr>
<tr>
<td>.08</td>
<td>.9981</td>
<td>.1100</td>
<td>.4593</td>
<td>.0865</td>
<td>.2929</td>
<td>.0355</td>
<td>.2149</td>
<td>.0079</td>
<td></td>
</tr>
<tr>
<td>.09</td>
<td>1.0109</td>
<td>.1251</td>
<td>.4659</td>
<td>.0995</td>
<td>.2971</td>
<td>.0407</td>
<td>.2180</td>
<td>.0091</td>
<td></td>
</tr>
<tr>
<td>.10</td>
<td>1.0238</td>
<td>.1405</td>
<td>.4726</td>
<td>.1130</td>
<td>.3015</td>
<td>.0461</td>
<td>.2211</td>
<td>.0103</td>
<td></td>
</tr>
<tr>
<td>.11</td>
<td>1.0369</td>
<td>.1562</td>
<td>.4795</td>
<td>.1271</td>
<td>.3059</td>
<td>.0516</td>
<td>.2244</td>
<td>.0116</td>
<td></td>
</tr>
<tr>
<td>.12</td>
<td>1.0503</td>
<td>.1723</td>
<td>.4865</td>
<td>.1418</td>
<td>.3104</td>
<td>.0574</td>
<td>.2276</td>
<td>.0130</td>
<td></td>
</tr>
<tr>
<td>.13</td>
<td>1.0638</td>
<td>.1886</td>
<td>.4936</td>
<td>.1571</td>
<td>.3150</td>
<td>.0633</td>
<td>.2310</td>
<td>.0144</td>
<td></td>
</tr>
<tr>
<td>.14</td>
<td>1.0776</td>
<td>.2053</td>
<td>.5009</td>
<td>.1729</td>
<td>.3197</td>
<td>.0694</td>
<td>.2344</td>
<td>.0159</td>
<td></td>
</tr>
<tr>
<td>.15</td>
<td>1.0916</td>
<td>.2223</td>
<td>.5083</td>
<td>.1894</td>
<td>.3245</td>
<td>.0758</td>
<td>.2379</td>
<td>.0174</td>
<td></td>
</tr>
<tr>
<td>.16</td>
<td>1.1059</td>
<td>.2395</td>
<td>.5159</td>
<td>.2066</td>
<td>.3294</td>
<td>.0824</td>
<td>.2415</td>
<td>.0190</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. \(f^* \) and \(R \) for 98% Filled Cylinder (\(f = .98 \))

<table>
<thead>
<tr>
<th>(T_{kn})</th>
<th>(n = 1)</th>
<th>(f^*)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>.9942</td>
<td>.0000</td>
<td>.4753</td>
<td>.0000</td>
<td>.3053</td>
<td>.0000</td>
<td>.2224</td>
<td>.0000</td>
<td></td>
</tr>
<tr>
<td>.01</td>
<td>1.0057</td>
<td>.0144</td>
<td>.4814</td>
<td>.0017</td>
<td>.3094</td>
<td>.0047</td>
<td>.2254</td>
<td>.0018</td>
<td></td>
</tr>
<tr>
<td>.02</td>
<td>1.0173</td>
<td>.0290</td>
<td>.4877</td>
<td>.0034</td>
<td>.3135</td>
<td>.0095</td>
<td>.2284</td>
<td>.0037</td>
<td></td>
</tr>
<tr>
<td>.03</td>
<td>1.0291</td>
<td>.0439</td>
<td>.4940</td>
<td>.0052</td>
<td>.3176</td>
<td>.0145</td>
<td>.2315</td>
<td>.0057</td>
<td></td>
</tr>
<tr>
<td>.04</td>
<td>1.0410</td>
<td>.0591</td>
<td>.5005</td>
<td>.0071</td>
<td>.3219</td>
<td>.0197</td>
<td>.2346</td>
<td>.0077</td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>1.0532</td>
<td>.0746</td>
<td>.5070</td>
<td>.0090</td>
<td>.3262</td>
<td>.0250</td>
<td>.2378</td>
<td>.0098</td>
<td></td>
</tr>
<tr>
<td>.06</td>
<td>1.0656</td>
<td>.0904</td>
<td>.5137</td>
<td>.0110</td>
<td>.3307</td>
<td>.0306</td>
<td>.2410</td>
<td>.0119</td>
<td></td>
</tr>
<tr>
<td>.07</td>
<td>1.0781</td>
<td>.1064</td>
<td>.5205</td>
<td>.0130</td>
<td>.3352</td>
<td>.0363</td>
<td>.2443</td>
<td>.0141</td>
<td></td>
</tr>
<tr>
<td>.08</td>
<td>1.0909</td>
<td>.1227</td>
<td>.5275</td>
<td>.0151</td>
<td>.3398</td>
<td>.0423</td>
<td>.2477</td>
<td>.0164</td>
<td></td>
</tr>
<tr>
<td>.09</td>
<td>1.1039</td>
<td>.1393</td>
<td>.5346</td>
<td>.0172</td>
<td>.3444</td>
<td>.0484</td>
<td>.2511</td>
<td>.0186</td>
<td></td>
</tr>
<tr>
<td>.10</td>
<td>1.1171</td>
<td>.1562</td>
<td>.5418</td>
<td>.0194</td>
<td>.3492</td>
<td>.0548</td>
<td>.2547</td>
<td>.0212</td>
<td></td>
</tr>
<tr>
<td>.11</td>
<td>1.1306</td>
<td>.1733</td>
<td>.5492</td>
<td>.0217</td>
<td>.3541</td>
<td>.0614</td>
<td>.2583</td>
<td>.0237</td>
<td></td>
</tr>
<tr>
<td>.12</td>
<td>1.1443</td>
<td>.1907</td>
<td>.5567</td>
<td>.0240</td>
<td>.3591</td>
<td>.0682</td>
<td>.2619</td>
<td>.0263</td>
<td></td>
</tr>
<tr>
<td>.13</td>
<td>1.1583</td>
<td>.2084</td>
<td>.5644</td>
<td>.0264</td>
<td>.3642</td>
<td>.0752</td>
<td>.2657</td>
<td>.0290</td>
<td></td>
</tr>
<tr>
<td>.14</td>
<td>1.1725</td>
<td>.2264</td>
<td>.5722</td>
<td>.0288</td>
<td>.3694</td>
<td>.0825</td>
<td>.2695</td>
<td>.0318</td>
<td></td>
</tr>
<tr>
<td>.15</td>
<td>1.1871</td>
<td>.2447</td>
<td>.5802</td>
<td>.0313</td>
<td>.3747</td>
<td>.0901</td>
<td>.2734</td>
<td>.0347</td>
<td></td>
</tr>
<tr>
<td>.16</td>
<td>1.2019</td>
<td>.2632</td>
<td>.5884</td>
<td>.0339</td>
<td>.3802</td>
<td>.0979</td>
<td>.2774</td>
<td>.0376</td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\mathbf{m}_{pr} &= -i \left(\frac{cd}{2a^2} \right) \int_{-\beta}^{\beta} \frac{dx}{\psi} \left[\int dx \right] + \left(\frac{h}{c} \right)^2 \mathbf{m}_{prh} \\
\mathbf{m}_{vr} &= - \left(2\hat{K} \text{ Re} \right)^{-1} \left(d/a \right) \int_{-\beta}^{\beta} \left[\frac{\partial u_1}{\partial r} + c_1 \frac{\partial w_1}{\partial r} \right] \frac{d \hat{x}}{d} \\
&+ \left(\frac{h}{c} \right)^2 \mathbf{m}_{vzh}
\end{align*}
\]

where
\[
\begin{align*}
\mathbf{m}_{prh} &= -i \left(\frac{cd}{2a^2 h} \right) \int_{-\beta}^{\beta} e^{\frac{i \phi}{\rho po}} \frac{dx}{\psi} \\
\mathbf{m}_{vzh} &= - \left(2\hat{K} \text{ Re} \right)^{-1} \left(\frac{d^2}{ah} \right) \int_{-\beta}^{\beta} \left[\frac{\partial w_1}{\partial r} \right] \frac{d \hat{x}}{d}
\end{align*}
\]

Frasier ran gyroscopic experiments for a rodded cylinder with \(c/a = 2.864\), \(f_d = .977\) (\(d/a = .15\)) and three Reynolds numbers. Figures 25a - 25c show his data and the improved SW theoretical prediction. The agreement is rather good although the peak \(C_{LSM}\) is not predicted very well. In Figure 26 the side moment coefficient for \(f_d = .977\) is compared with that for \(f = .977\). The side moment for rodded cavity shows an eigenfrequency* at .059 while that for partially-filled cavity shows no eigenfrequencies and is a small negative value. Thus, we see that the presence of an inner cylindrical wall can have a very strong effect on the side moment. The insertion of a cylindrical partition to improve the stability of liquid-filled shell has been proposed by Frasier and D'Amico**, and D'Amico*** has experimentally studied the side moment during transition from a free surface to a fully-wetted central rod.

* According to Table 4, \(\tau_{31}\) is .045 for \(f_d = .980\) and we would identify this peak at .059 in Fig. 26 to be caused by \(\tau_{31}\).
10. OTHER THEORETICAL EXTENSIONS

The extended SW theory of this report has a number of restrictions. Some of these restrictions have been relaxed by the work of a number of researchers. These restrictions include those requiring: (1) a single liquid filler; (2) a centrally located circular cylinder container; (3) small amplitude motion; (4) steady-state motion; and (5) fully spun-up liquid. In this section we will survey the work in these five areas.

10.1 Single Liquid Filler

In 1972 Scott25 considered the eigenfrequencies for an inviscid two-component liquid. He included the possibility of partial fill, computed eigenfrequencies, and got fair experimental agreement.

10.2 Centrally Located Circular Cylinder Container

Scott26 also considered the inviscid eigenfrequencies and moments for eccentrically located fully filled circular cylinders and showed that these frequencies and moments are the same as those for a centrally located cylinder. In an earlier work Wedemeyer27 derived an approximate relation for inviscid eigenfrequencies of a slightly noncylindrical cavity. He showed that the Stewartson eigenfrequency tables could be used through the use of an average fineness ratio.

\begin{equation}
(c/a)_{av} = c \int_{-1}^{1} \frac{dx}{a(x)}
\end{equation}

Karpov28 made a number of gyroscope experiments that showed good results for this Wedemeyer concept.

26 W. E. Scott, "The Dynamic Effect of Inertial Waves on the Free Flight Motion of a Body Containing Several Eccentrically Located, Liquid-Filled Cylinders," BRL Report 1551, September 1971. AD 733385.

28 B. G. Karpov, "Dynamics of Liquid-Filled Shell: Resonance in Modified Cylindrical Cavities," BRL Report 1332, August 1966. AD 804825.
10.3 Small Amplitude Motion

Gyroscope experiments by Scott and D'Amico29 have shown that the yaw growth rate changes from the linear SW values at coning angles as low as 1°. Indeed, pressure coefficient measurements by Whiting21 have shown nonlinearities for coning angles as low as 0.05°. The Scott-D'Amico data also showed a shift in eigenfrequency for coning angles in excess of 1°. Scott30 later derived a modified fineness ratio that was fairly good in predicting this frequency shift.

10.4 Steady-State Motion

D'Amico et al14 made liquid pressure coefficient measurements on the endwall of a spinning cylinder whose coning motion was impulsively started and found that cone-up time for the pressure coefficient to reach the steady-state SW value could be as large as five seconds. He made an estimate of this time from the real part of the appropriate skh and found good agreement. Since these cone-up times are a significant part of a projectile's flight time, work in this important area is continuing.

10.5 Fully Spun-Up Liquid

This area has received much more attention than that given to the preceding four areas. Wedemeyer31 developed a very simple model of the spin-up process which was extended by Kitchens et al32,33. Spin-up times greater than the cone-up times have been predicted and measured. Karpov34 made use of Wedemeyer's suggestion to obtain an estimate of the effect of spin-up on the liquid side moment. This very approximate result is now being

replaced by the current efforts of Sedney et al.13,12 to develop a very refined perturbation analysis for computing the liquid side moment during spin-up. The only direct pressure measurements during spin-up have been made by Aldridge35,36, and these were for the simple case of axisymmetric oscillations and not the three-dimensional oscillation induced by coning motion.

11. SUMMARY

1. A general definition of the liquid moment has been developed, and the expression for frequencies and damping of projectile angular motion has been obtained.

2. An exact pressure moment has been computed for the Stewartson-Wedemeyer theory.

3. Wall shear effects have been added to the improved SW pressure moment.

4. The improved theory shows a decrease in the size of eigenfrequency-associated peaks in the side moment with decreasing Reynolds number.

5. The average level of the side moment, however, grows with decreasing Reynolds number to a peak, in good qualitative agreement with the D'Amico-Miller conjecture.

6. Good agreement with all available published experimental data has been shown.

ACKNOWLEDGEMENT

All of the figures of this report and their associated computer coding have been prepared by the very capable and mathematically sophisticated J. W. Bradley. The author is very much indebted to Mr. Bradley for this unique effort as well as for the characteristic wit and intellectual insight he provided during many discussions of the material of this report.

Figure 1. The Pressure Component of C_{LSM} vs τ for $Re = 500,000$, $c/a = 1.08$, $f = 1$, $\epsilon = 0$ and 0.02.
Figure 2. The Pressure Component of C_{LSM} vs τ for $Re = 15,000$, $c/a = 1.08$, $f = 1$, $\epsilon = 0$ and .02
Figure 3. The Pressure Component of C_{LSM} vs. τ for $Re = 500,000$, $c/a = 3.24$, $f = 1$, $\epsilon = 0$ and 0.02.
Figure 4. The Pressure Component of \(C_{LSM} \) vs \(\tau \) for \(Re = 15,000 \), \(c/a = 3.24 \), \(f = 1 \), \(e = 0 \) and 0.02.
Figure 5. The Pressure Component of C_{LSM} vs τ for $Re = 500,000$, $c/a = 5.40$, $f = 1$, $c = 0$ and .02.
Figure 6. The Pressure Component of C_{LSM} vs τ for $Re = 15,000$, $c/a = 5.40$, $f = 1$, $\epsilon = 0$ and .02
Figure 7. The Pressure Component of C_{LIM} vs τ for $Re = 500,000$, $c/a = 3.24$, $f = 1$, $\epsilon = 0$ and 0.02.
Figure 8. The Ratio of the Lateral Pressure Component of C_{LSM} to the Endwall Pressure Component vs τ for $Re = 500,000$, $f = 1$, $\epsilon = 0$, $c/a = 1.08$, 3.24, 5.40
Figure 9. The Ratio of the Lateral Pressure Component of C_{LSM} to the Endwall Pressure Component vs τ for $Re = 15,000$, $f = 1$, $\epsilon = 0$, $c/a = 1.08$, $3.24, 5.40$.
Figure 10. The Wall Shear Component of $C_{L_{SM}}$ vs τ for $Re = 15,000$, $f = 1$, $c = 0$, $c/a = 1.08$, 3.24, 5.40
Figure 12. C_{LSM} and Its Pressure Component vs τ for $Re = 1,000$, $f = 1$, $\epsilon = 0$, $c/a = 3.24$
Figure 13. C_{LM} and Its Pressure Component vs t for $Re = 1,000, \alpha = 1, \varepsilon = 0,$ $c/a = 5.40$.
Figure 14. D'Amico-Miller Spin Fixture Data (see Ref 19, Fig 1): The Ratio of Despin Moment at a Given Re to the Despin Moment at Re = 10^6, for c/a = 4.291, f = 1
Figure 15a. C_{LSM} vs τ for $Re = 10^6$, $c = 0$ and the D'Amico-Miller Parameters: $c/a = 4.291$, $f = 1$
Figure 15b. C_{LSM} vs τ for $Re = 10^5$, $\epsilon = 0$, and the D'Amico-Miller Parameters: $c/a = 4.291$, $f = 1$
Figure 15c. C_{LM} vs τ for $Re = 10^6$, $\varepsilon = 0$, and the D'Amico-Miller Parameters:
$c/a = 4.291$, $f = 1$
Figure 15d. C_{LSM} vs τ for $Re = 10^3$, $\varepsilon = 0$, and the D'Amico-Miller Parameters:
$c/a = 4.291$, $f = 1$
Figure 15e. \(C_{LSM} \) vs. \(\tau \) for \(Re = 10^2, \ c = 0, \) and the D'Amico-Miller Parameters:

\[c/a = 4.291, \ f = 1 \]
Figure 16. Ratio of $C_{LSM}(\tau, \Re)$ to $C_{LSM}(\tau, 10^6)$ vs \Re for $\varepsilon = 0$, $\tau = .10, .15, .20, .25$, and the D'Amico-Miller Parameters: $c/a = 4.23$, $f = 1$
Figure 17a. C_p vs τ for a Partially-Filled Cavity ($f = .920$), Predicted Curve and Whiting Data (see Ref 21, Fig 10f), $Re = 400,000$, $c/a = 3.148$, Transducer at $r/a = .668$.
Figure 17b. \(C_p \ vs \ \tau \) for a Partially-Filled Cavity (\(f = .920 \)), Predicted Curve and Whiting Data (see Ref 21, Fig 10g), \(Re = 80,000, \ c/a = 3.148, \) Transducer at \(r/a = .668 \)
Figure 18a. ε vs τ for a Fully-Filled Cavity, Predicted Curve and D'Amico Data (see Ref 23, Fig 5), $Re = 12,400$, $c/a = 1.042$ (Nominal) and 1.047 (Fitted), $m_{\text{L}}a^2/I_x = .0833$
Figure 18b. c vs τ for a Fully-Filled Cavity, Predicted Curve and D'Amico Data (see Ref 23, Fig 6), $Re = 2400$, $c/a = 1.042$ (Nominal) and 1.048 (Fitted), $m_{e^2}/I_x = .0632$
Figure 19. The Total, the Pressure Component and the Stewartson-Wedemeyer Values of C_{LSM} vs τ for $Re = 2400$, $c/a = 1.048$, $f = 1$, $\epsilon = 0$.
Figure 20a. ε vs τ for a Fully-Filled Cavity, Predicted Values and D'Amico-Kitchens Data (Circles) (see Ref 6, Fig 8a), Re = 520,000, $c/a = 3.148$ (Nominal) and 3.151 (Fitted), $m_L a^2/I_X$ Variable
Figure 20b. ϵ vs τ for a Fully-Filled Cavity, Predicted Values and D'Amico-Kitchens Data (Circles) (see Ref 6, Fig 8b), Re = 9000, $c/a = 3.148$, $m_L a^2/I_x$ Variable
Figure 21a. ϵ vs τ for a Partially-Filled Cavity ($f = .790$), Predicted Values and D'Amico Data (Circles) (see Ref 6, Fig 6a), $Re = 520,000$, $c/a = 3.013$, m_La^2/I_x Variable
Figure 21b. ε vs τ for a Partially-Filled Cavity ($f = .790$), Predicted Values and D'Amico Data (Circles) (see Ref 6, Fig 6b), Re = 40,000, $c/a = 3.013$, $m_L a^2/I_x$ Variable
Figure 21c. ϵ vs τ for a Partially-Filled Cavity ($f = .790$), Predicted Values and D'Amico Data (Circles) (see Ref 6, Fig 7a), Re = 11,000, $c/a = 3.013$, $m L a^2/1x$ Variable
Figure 21d. ϵ vs τ for a Partially-Filled Cavity ($f = .790$), Predicted Values and D'Amico Data (Circles) (see Ref 6, Fig 7b), $Re = 5200$, $c/a = 3.013$, m_la^2/I_x Variable
Figure 22. The Total, the Pressure Component and the Stewartson-Wedemeyer Values of C_{LSM} vs τ for $Re = 9000$, $c/a = 3.148$, $f = 1$, $\varepsilon = 0$
Figure 23. The Total, the Pressure Component and the Stewartson-Wedemeyer Values of C_{LSM} vs τ for a Partially-Filled Cavity ($f = .790$), $Re = 5200$, $c/a = 3.013$, $e = 0$
Figure 24a. ε vs Fill Ratio f, Predicted Values and Karpov Data (Circles) (see Ref 6, Fig 3), $Re = 520,000$, $c/a = 3.077$
Figure 24b. ε vs Fill Ratio f, Predicted Values and Karpov Data (Circles) (see Ref 6, Fig 4), Re = 5200, c/a = 3.077
Figure 25a. ϵ vs τ for a Cavity With Rod ($f = .977$), Predicted Curve and Frasier Data (see Ref 6, Fig 9a), Re = 520,000, $c/a = 2.866$, $m_L a^2/l_x = .0240$
Figure 25b. ϵ vs τ for a Cavity with Rod $f_l = .977$), Predicted Curve and Fourier Data (see Ref 6, Fig 4b), Re = 173,000, c/a = 2.856, $m_{l^2}/L_x = .0265$
Figure 25c. \(\epsilon \) vs \(\tau \) for a Cavity With Rod \(\left(f^c_d = .977 \right) \), Predicted Curve and Frasier Data (see Ref 6, Fig 10), \(\text{ke} = 40,000 \), \(c/a = 2.866 \), \(m_L a^2 / I_x = .0276 \)
Figure 26. C_{LSM} vs τ for a Rodded ($f_d = .977$) and for a Partially-Filled ($f = .977$) Cavity, $Re = 40,000$, $c/a = 2.866$, $\varepsilon = 0$
REFERENCES

REFERENCES (Continued)

REFERENCES (Continued)

BIBLIOGRAPHY

A. Yawsonde Data Reports

2. V. Oskay and J. H. Whiteside, "Flight Behavior of 155mm (XM687 Mod I and XM687 Mod II) and 8-Inch (XM736 Mod I) Binary Shell at Nicolet, Canada, During the Winter of 1974-1975," BRL Memorandum Report 2608, March 1976. AD B010566L.

BIBLIOGRAPHY (Continued)

B. Gyroscope Data Reports

87

APPENDIX A

DERIVATIONS OF EQUATIONS (3.7-3.9)

For single mode coning motion, the earth-fixed components of unit vectors along the non-rotating aeroballistic axes have the following simple form accurate to the first order in K_j.

\[
\begin{align*}
\vec{e}_x &= (1, -K_j \cos \phi_j, -K_j \sin \phi_j) \\
\vec{e}_y &= (K_j \cos \phi_j, 1, 0) \\
\vec{e}_z &= (K_j \sin \phi_j, 0, 1)
\end{align*}
\] (A1-A3)

The vector from the projectile's center of mass to any point on the projectile can be given by aeroballistic cylindrical coordinates $(\hat{x}, \hat{r}, \hat{\theta})$ and can then be related to earth-fixed coordinates (x_e, y_e, z_e) by the following equation:

\[
(x_e, y_e, z_e) = \hat{x} \vec{e}_x + \hat{r} \left(\cos \hat{\theta} \vec{e}_y + \sin \hat{\theta} \vec{e}_z \right)
\] (A4)

If we now introduce earth-fixed cylindrical coordinates (x_e, r_e, θ_e), the three component equations of vector Equation (A4) are:

\[
\begin{align*}
x_e &= \hat{x} + \hat{r} K_j \cos (\phi_j - \hat{\theta}) \\
r_e \cos \theta_e &= \hat{r} \cos \hat{\theta} - \hat{x} K_j \cos \phi_j \\
r_e \sin \theta_e &= \hat{r} \sin \hat{\theta} - \hat{x} K_j \sin \phi_j
\end{align*}
\] (A5-A7)

Since the earth-fixed cylindrical coordinates will be used throughout this report, and missile-fixed cylindrical coordinates are never used, we can omit the subscript "e" without any ambiguity problem and will do so as a convenience. Equation (A6) can be multiplied by $\sin \theta$, Equation (A7) by $\cos \theta$, and the results subtracted to yield:

\[
\sin (\theta - \hat{\theta}) = -(\hat{x} K_j/\hat{r}) \sin (\phi_j - \theta)
\] (A8)
Next we square Equations (A6 - A7) and add the results.

\[r^2 = r^2 - 2 \frac{x}{r} K_j \cos (\phi_j - \theta) + K_j^2 x^2 \] \hspace{1cm} (A10)

or

\[r = r + K e^{s \phi} - i \theta \] \hspace{1cm} (A11)

Finally, Equation (A9) can be used to obtain a revised version of Equation (A5).

\[x = x + r \left\{ r K e^{s \phi} - i \theta \right\} \] \hspace{1cm} (A12)

For any fixed point on the projectile, \(\hat{x} = \hat{r} = 0, \hat{\theta} = \phi \). Its velocity in earth-fixed cylindrical coordinates can be computed by differentiating Equations (A9, A11, A12).

\[V_x = \dot{x} = R \left\{ \phi (s - i) r K e^{s \phi} - i \theta \right\} \] \hspace{1cm} (A13)

\[V_r = \dot{r} = -R \left\{ \phi (s - i) x K e^{s \phi} - i \theta \right\} \] \hspace{1cm} (A14)

\[V_\theta = r \dot{\theta} = r \phi + R \left\{ \phi (s - i) x K e^{s \phi} - i \theta \right\} \] \hspace{1cm} (A15)
APPENDIX B
SOLUTION OF BOUNDARY LAYER EQUATIONS

For an incompressible fluid with constant viscosity, the Navier-Stokes and continuity equations in cylindrical coordinates are:

\[
\begin{align*}
\frac{\partial V_r}{\partial t} + V_r \frac{\partial V_r}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_r}{\partial \theta} - \frac{V^2}{r} + V_x \frac{\partial V_r}{\partial x} &= 0 \\
= - \frac{1}{\rho L} \frac{\partial p}{\partial r} + \nu \left[\frac{\nu^2}{c} V_r - \frac{V_\theta}{r^2} - \frac{2 \nu}{r^2} \frac{\partial V_\theta}{\partial \theta} \right] \\
\frac{\partial V_\theta}{\partial t} + V_r \frac{\partial V_\theta}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_\theta}{\partial \theta} + \frac{V_r V_\theta}{r} + V_x \frac{\partial V_\theta}{\partial x} &= 0 \\
= - \frac{1}{\rho L} \frac{\partial p}{\partial \theta} + \nu \left[\frac{\nu^2}{c} V_\theta - \frac{V_\theta}{r^2} + \frac{2 \nu}{r^2} \frac{\partial V_r}{\partial \theta} \right] \\
\frac{\partial V_x}{\partial t} + V_r \frac{\partial V_x}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_x}{\partial \theta} + V_x \frac{\partial V_x}{\partial x} &= - \frac{1}{\rho L} \frac{\partial p}{\partial x} + \nu \left(\frac{\nu^2}{c} V_x \right) \\
\frac{\partial V_r}{\partial r} + \frac{V_r}{r} + \frac{1}{r} \frac{\partial V_\theta}{\partial \theta} + \frac{\partial V_x}{\partial x} &= 0
\end{align*}
\]

where

\[
\frac{\nu^2}{c} = \frac{\nu^2}{c r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial x^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}
\]

Equations (3.10 - 3.13) can be substituted in Equations (B1 - B4), and products of \(u_s, v_s, w_s \) neglected to yield

\[
(s - 1) v_s - 2w_s + \nu \frac{\partial p_s}{\partial r} = \nu Re^{-1} \left[v^2 \nu_s - \frac{a^2 v_s}{r^2} + \frac{2a^2 w_s}{r^2} \right]
\]

\(B5 \)
\[(s - i)u_s + 2v_s - \frac{iap_s}{r} = \gamma Re^{-1} \left[\nabla^2 w_s - \frac{a^2 w_s}{r^2} - \frac{2a^2 i v_s}{r^2} \right] \]
(B6)

\[(s - i)u_s + a \frac{\partial p_s}{\partial x} = \gamma Re^{-1} \nabla^2 u_s \]
(B7)

\[\frac{a(rv_s)}{dr} - iw_s + r \frac{\partial u_s}{\partial x} = 0 \]
(B8)

where

\[\nabla^2 = a^2 \left[\frac{\partial^2}{\partial r^2} + \frac{\partial}{\partial r} + \frac{\partial^2}{\partial x^2} - \frac{1}{r^2} \right] \]

Next we assume that the velocity components and pressure can be written as the sum of inviscid and viscous terms. The inviscid terms satisfy Equations (B5 - B8) for Re\(^{-1}\) = 0 and the viscous terms satisfy Equations (B5 - B8) but are zero except for small regions near the walls extending a distance \(\delta\) from the walls.

We will make the usual boundary layer assumptions that \(\delta \approx Re^{-1/2}\) and derivatives normal to the wall vary as \(\delta^{-1}\) while deviations along the wall are of order unity. Positive spin will be assumed \((\gamma = 1)\) since the effect of negative spin follows from Eq. (2.8).

\[u_s = u_{si} + u_{sv} \]
(B9)

\[v_s = v_{si} + v_{sv} \]
(B10)

\[w_s = w_{si} + w_{sv} \]
(B11)

\[p_s = p_{si} + p_{sv} \]
(B12)

where \(u_{sv} = v_{sv} = w_{sv} = p_{sv} = 0\) far from wall.

\(u_s, v_s, w_s\) must satisfy Eqs. (3.7 - 3.9) at the wall.

\[u_{sv} = (s - i) (r/a) \frac{k}{r} - u_{si} \]
(B13)

\[v_{sv} = -(s - i) (x/a) \frac{k}{r} - v_{si} \]
(B14)

\[w_{sv} = i(s - i) (x/a) \frac{k}{r} - w_{si} \]
(B15)
Near the cylindrical lateral wall, \(r = a \), Eqs. (B5 - B7) become

\[
\frac{3p_{sv}}{ar} = 2w_{sv} - (s - i)v_{sv} + a^2 \text{Re}^{-1} \frac{3v_{sv}}{ar^2}
\]
\hspace{2cm} (B16)

\[
(s - i)w_{sv} = a^2 \text{Re}^{-1} \frac{3^2 w_{sv}}{ar^2} - 2v_{sv} + \frac{iap_{sv}}{r}
\]
\hspace{2cm} (B17)

\[
(s - i)u_{sv} = a^2 \text{Re}^{-1} \frac{3^2 u_{sv}}{ar^2} - a \frac{3p_{sv}}{ax}
\]
\hspace{2cm} (B18)

The continuity Equation (B8) shows that \(\frac{\partial v_{sv}}{\partial r} \) is of order \(w_{sv} \) and, therefore, \(v_{sv} \) is of order \(\delta w_{sv} \) and can be neglected in Equations (B16) and (B17). (B16) now shows that \(p_{sv} \) is of order \(\delta w_{sv} \) and can be neglected in Eq. (B18).

\[
\cdot \quad \frac{3p_{sv}}{ar} = 2w_{sv}
\]
\hspace{2cm} (B19)

\[
(s - i)w_{sv} = a^2 \text{Re}^{-1} \frac{3^2 w_{sv}}{ar^2}
\]
\hspace{2cm} (B20)

\[
(s - i)u_{sv} = a^2 \text{Re}^{-1} \frac{3^2 u_{sv}}{ar^2}
\]
\hspace{2cm} (B21)

The solutions to Eqs. (B20 - B21) that satisfy Eqs. (B13, B15) are:

\[
w_{sv} = \left[(1 + is) \frac{x}{a} \right] \left(\frac{\dot{k}}{w_{si}} \right) e^{(r-a)/a\delta_a}
\]
\hspace{2cm} (B22)

\[
u_{sv} = -\left[(i - s) \frac{\dot{k}}{u_{si}} \right] e^{(r-a)/a\delta_a}
\]
\hspace{2cm} (B23)

where \(\delta_a = \left[\frac{1 + i}{\sqrt{2(1+i)}} \right] \text{Re}^{-1/2} \)

Substituting Eqs. (B22 - B23) in Eq. (B8) and integrating, we can obtain \(v_{sv} \) near the lateral wall \(r = a \).

\[
v_{sv} = \delta_a \left[(i - s) \frac{x}{a} \right] \left(\frac{\dot{k}}{v_{si}} - a \frac{v_{si}}{ar} \right) e^{(r-a)/a\delta_a}
\]
\hspace{2cm} (B24)
Eq. (B24) can then be inserted in boundary condition (B14) to give a boundary condition on the inviscid radial velocity at \(r = a \).

\[
v _{sv} - a \delta \frac{\partial v _{sv}}{\partial r} = (1 - s) (x/a) \hat{K} \tag{B25}
\]

Turning now to the endwalls, \(x \equiv (x-h)/c = \pm 1 \), similar boundary layer size arguments give the following equations:

\[
(s - i)v _{sv} - 2w _{sv} = a^2 Re \frac{\partial^2 v _{sv}}{\partial x^2} \tag{B26}
\]

\[
(s - i)w _{sv} + 2v _{sv} = a^2 Re \frac{\partial^2 w _{sv}}{\partial x^2} \tag{B27}
\]

\[
\frac{\partial p _{sv}}{\partial x} = 0 \tag{B28}
\]

Next Eq. (B26) is multiplied by \(i \) and both added and subtracted from Eq. (B27) to give two simpler differential equations.

\[
(s - 3i)A = a^2 Re \frac{\partial^2 A}{\partial x^2} \tag{B29}
\]

\[
(s + i)B = a^2 Re \frac{\partial^2 B}{\partial x^2} \tag{B30}
\]

where

\[
A = w _{sv} + iv _{sv}
\]

\[
B = w _{sv} - iv _{sv}
\]

The solution to Eqs. (B29 - B30) which satisfies Eqs. (B14 - B15) is

\[
w _{sv} + iv _{sv} = -(w _{si} + iv _{si}) e^{-(1+i)x/a} \tag{B31}
\]

\[
w _{sv} - iv _{sv} = \left[w _{si} - iv _{si} - 2(1-is) \left(\frac{h+c}{a} \right) \hat{K} \right] e^{-(1+i)x/a} \tag{B32}
\]

where

\[
a = (c/a) \delta_a : \sqrt{(3+is)/(1+is)}
\]

94
\[\beta = i(c/a) \delta_a^{-1} \sqrt{(1-i\delta)/(1+i\delta)} \]

Substituting Eqs. (B31 - B32) in Eq. (B8) and integrating, we can obtain \(u_{sv} \) near the end walls \(x = \pm 1 \).

\[u_{sv} = \pm \left(\frac{a}{2c} \right) \delta_a (1+i\delta)^{-1/2} \left\{ \frac{(1-i\delta)}{\sqrt{3+i\delta}} \right\} e^{-(i\pi\hat{x})a} \]

\[+ \frac{i(3+i\delta)}{\sqrt{1-i\delta}} e^{-(i\pi\hat{x})\beta} \left\{ \frac{\partial u_{si}}{\partial x} \right\} \]

(B33) can now be inserted in boundary condition (B13) to give boundary conditions on the inviscid axial velocity at \(\hat{x} = \pm 1 \).

\[u_{si} + \delta_c \frac{\partial u_{si}}{\partial x} = -(1-s)(r/a) \hat{x} \]

(B34)

where

\[\delta = \frac{-(a/c)\delta_a}{2\sqrt{1+i\delta}} \left\{ \frac{1-i\delta}{\sqrt{3+i\delta}} + i \left(\frac{3+i\delta}{\sqrt{1-i\delta}} \right) \right\} \]
APPENDIX C

SOLUTION OF INVISCID EQUATIONS

If the assumed solution for Ψ as given by Eq. (5.11) is placed in the partial differential equation for Ψ (Eq. (5.1)), a pair of ordinary differential equations involving a parameter λ_k can be obtained.

$$X_k''(x) + \lambda_k^2 X_k(x) = 0 \quad (C1)$$

$$r^2 R_k''(r) + r R_k'(r) - \left[1 - (r/c)^2 \lambda_k^2 \right] R_k(r) = 0 \quad (C2)$$

where $\lambda_k^2 = -(s^2 - 2is + 3)(s + i)^{-2} \lambda_k^2$

If the assumed Ψ solution is used in the endwall boundary conditions, Eq. (5.5), two conditions that determine the eigenvalue λ_k can be written.

$$X_k'(1) - \delta_c X_k''(1) = 0 \quad (C3)$$

$$X_k'(-1) + \delta_c X_k''(-1) = 0 \quad (C4)$$

The general solution of Equation (C1) is:

$$X_k = A_k \cos(\lambda_k x) + B_k \sin(\lambda_k x) \quad \lambda_k \neq 0 \quad (C5)$$

$$X_0 = A_0 + B_0 \hat{x} \quad \lambda_k = 0$$

Equations (C3 - C4) can now be used to obtain two sets of solutions from Eq. (C5) for $\lambda_k \neq 0$ and to simplify the X_0 function to $X_0 = 1$.

$$A_k = 1, \quad B_k = 0, \quad \sin \lambda_k - \lambda_k \delta_c \cos \lambda_k = 0 \quad (C6)$$

$$A_k = 0, \quad B_k = 1, \quad \cos \lambda_k + \lambda_k \delta_c \sin \lambda_k = 0 \quad (C7)$$

For $\delta_c = 0$, the solutions to Eq. (C6 - C7) are $\lambda_k = \pi k/2$, where the k's are even integers for Eq. (C6) and odd integers for Eq. (C7). For small δ_c it can be easily shown that the solutions are

$$\lambda_k = k \lambda$$

(C8)
where \(\lambda = \left(\frac{\pi}{2} \right) \left[1 + \delta_c \right] \) \hspace{1cm} (C9)

Finally, direct substitution shows that the solutions to Equation (C2) are

\[
R_0 = \left(\frac{h}{c} \right) \left[E_0 \, \frac{r}{a} + F_0 \, \frac{a}{r} \right] \hspace{1cm} (C10)
\]

\[
R_k = a_k \left[E_k \, J_1 \left(k\lambda \frac{r}{c} \right) + F_k \, Y_1 \left(k\lambda \frac{r}{c} \right) \right] \hspace{1cm} (k \neq 0) \hspace{1cm} (C11)
\]

where \(\lambda^2 = -(s^2 - 2is + 3) \left(s - i \right)^{-2} \lambda^2 \)
APPENDIX D

LEAST SQUARES COEFFICIENTS OF SERIES (5.15)

In solving the inviscid equations it is necessary to expand x as a series in the X_k's.

\[
x/c = \hat{x} + h/c = \sum_{k=0}^{N} a_k X_k (\hat{x})
\]

By observation, $a_0 = h/c$. The remaining a_k's can be determined by requiring the series to be a least squares fit. That is, \hat{R}^2 should be a minimum where

\[
\hat{R}^2 = \int_{-1}^{1} \left(x - \sum_{k=1}^{N} a_k X_k \right) \left(x - \sum_{k=1}^{N} \tilde{a}_k \tilde{X}_k \right) d\hat{x}
\]

If $a_m = a_{Rm} + a_{Im}$, then \hat{R}^2 is a minimum when

\[
\frac{\partial \hat{R}^2}{\partial a_{Rm}} = \frac{\partial \hat{R}^2}{\partial a_{Im}} = 0
\]

Both of these conditions are satisfied when

\[
\sum_{k=1}^{N} b_{mk} a_k = b_m
\]

where

\[
b_m = \begin{cases}
\frac{1}{2} \int_{-1}^{1} \hat{x} \tilde{X}_m d\hat{x} & \quad \text{m even} \\
0 & \quad \text{m odd} \\
\frac{1}{2} \int_{0}^{1} \hat{x} \tilde{X}_m d\hat{x} & \quad \text{m odd}
\end{cases}
\]

\[
b_{mk} = \int_{-1}^{1} \tilde{X}_m X_k d\hat{x}
\]
If the eigenfunctions, \(X_k \), are orthogonal,

\[
b_{mk} = 0 \quad m \neq k \quad (D5)
\]

\[
a_k = b_k / b_{kk} \quad (D6)
\]

For \(\delta_c \neq 0 \), the functions are not orthogonal and the \(a_k \)'s must be computed by inverting an \(N \times N \) order matrix \((b_{mk}) \). This computation can be simplified in a relation that comes from Equation (C1).

\[
b_{mk} = \int_{-1}^{1} X_m X_k \, d\hat{x}
\]

\[
= - \lambda_k^{-2} \int_{-1}^{1} \ddot{X}_m \ddot{X}_k \, d\hat{x}
\]

\[
= - \lambda_k^{-2} \left[\dot{X}_k \dot{X}_m - \dot{X}_k \dot{X}_m \right]_{-1}^{1} + \left(\frac{\lambda_m}{\lambda_k} \right)^2 b_{mk} \quad (D7)
\]

Eqs. (C3 - C4) reduce Eq. (D7) to

\[
\begin{bmatrix} 1 - \left(\frac{\lambda_m}{\lambda_k} \right)^2 \end{bmatrix} b_{mk} = \begin{bmatrix} \delta_c - \left(\frac{\lambda_m}{\lambda_k} \right)^2 \delta_c \end{bmatrix} \begin{bmatrix} \ddot{X}_m (1) \ddot{X}_k (1) \\ \ddot{X}_m (-1) \ddot{X}_k (-1) \end{bmatrix}
\]

\[
= 0 \quad \text{if } m + k \text{ odd}
\]

\[
= 2 \begin{bmatrix} \delta_c - \left(\frac{\lambda_m}{\lambda_k} \right)^2 \delta_c \end{bmatrix} \begin{bmatrix} \ddot{X}_m (1) \ddot{X}_k (1) \\ \ddot{X}_m (-1) \ddot{X}_k (-1) \end{bmatrix}
\]

\[
\quad \text{if } m + k \text{ even} \quad (D9)
\]

100
According to Eq. (D9), the odd and even subscripts separate in the matrix (b_{mk}) so that the odd a_k depend only on the matrix with both m and k odd. Thus, the matrix to be inverted is a square matrix with $(N + 1)/2$ rows and $(N + 1)/2$ columns.
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$w_{sv} + i v_{sv}$</td>
</tr>
<tr>
<td>A_k, B_k</td>
<td>general coefficients in Eq. (C5)</td>
</tr>
<tr>
<td>a</td>
<td>radius of a right-circular cylindrical cavity containing liquid</td>
</tr>
<tr>
<td>a_k</td>
<td>solution of the system $\sum b_k a_k = b$</td>
</tr>
<tr>
<td>a_{Rk}, a_{Ik}</td>
<td>real and imaginary parts of a_k</td>
</tr>
<tr>
<td>B</td>
<td>$w_{sv} - i v_{sv}$</td>
</tr>
<tr>
<td>b</td>
<td>radius of the cylindrical air core within a partially-filled spinning cavity</td>
</tr>
<tr>
<td>b_k</td>
<td>$\int_{-1}^{1} \hat{X}_k(\hat{x}) \hat{dx}$</td>
</tr>
<tr>
<td>b_{mk}</td>
<td>$\int_{-1}^{1} \hat{X}_m(\hat{x}) \hat{X}_k(\hat{x}) \hat{dx}$</td>
</tr>
<tr>
<td>C_{LIM}</td>
<td>liquid in-plane moment coefficient for one-mode coning or spiral motion; the imaginary part of C_{LM}</td>
</tr>
<tr>
<td>C_{LIM_j}</td>
<td>fast ($j=1$) and slow ($j=2$) mode liquid in-plane moment coefficients; the imaginary part of C_{LM_j}</td>
</tr>
<tr>
<td>C_{LM}</td>
<td>$(M_L \hat{\phi} + i M_Z \hat{\phi}) / (m_L a^2 \phi^2 + e^{s\phi})$</td>
</tr>
<tr>
<td>C_{LM_j}</td>
<td>fast ($j=1$) and slow ($j=2$) mode liquid moment coefficients defined by Eq. (7.7)</td>
</tr>
<tr>
<td>C_{LMq}</td>
<td>$\sigma_L C_{LSM}$</td>
</tr>
<tr>
<td>C_{LMq_j}</td>
<td>$\sigma_L C_{LSM_j}$</td>
</tr>
<tr>
<td>C_{LSM}</td>
<td>liquid side moment coefficient for one-mode coning or spiral motion; the real part of C_{LM} is γC_{LSM}</td>
</tr>
<tr>
<td>C_{LSM_j}</td>
<td>fast ($j=1$) and slow ($j=2$) mode liquid side moment coefficients; the real part of C_{LM_j} is γC_{LSM_j}</td>
</tr>
</tbody>
</table>
1-Manus w'oment
[246x741]CM (1/2
[259x728]pSV
[259x728]2
[288x728]V
[335x728]I
[123x691]CM + CM.
[231x691]Isum of the damping moments
[135x679]q
[232x677](1/2
[264x676]pSZ
[264x676]2
[293x676]V
[314x677]I
[123x630]CN
[231x583]-(F;
[265x583]+
[277x581]i
[288x581]F
[290x581]2
[290x581]
[232x559](1/2
[260x561]pSV
[260x561]2
[233x511](Ap) max
[282x511]/
[295x511](K.
[317x511]pL a
[351x511]$)
[375x511]; a nondimensional, real
[243x496]pressure coefficient
[124x478]Cpk(r)
[143x480](r)
[232x409]one-half the length of the cylindrical cavity containing
[243x396]liquid
[124x372]g
[243x383]radius of a central rod within a fully-filled cylindrical
cavity
[125x306]Ek, Fk
determined in the inviscid case by boundary conditions
(6.6-6.7)
Ek
1
Tk
E
(5.1d-5.19) for Rk;
parameters in the expressions
E
F
F
z
kn
unit vectors along the aeroballistic axes X Y Z
1
Tk
F
F
y
1 -(b/a) ; the fill ratio: the fraction of the cavity
occupied by liquid.
1 -(d/a) ; the rodded fill ratio
\[f_j = 1 + \left(m_L \frac{a^2}{I_x} \right) C_{LM_j} \]

\[f^* = \frac{c}{ka}, \text{the reduced fineness ratio} \]

\[G_k (\tau) \text{ the determinant of the boundary value system determining } E_k \text{ and } f_k. \text{ Thus for system (6.6-6.7),} \]

\[G_k = C_{11} C_{22} - C_{12} C_{21} \]

\[\hat{H} = (\rho SL/2m) (V/\xi) \left[C_{N_k} - k_y^{-2} \left(C_{M_0} + C_{M_k} \right) \right] \]

\[\hat{H}_{L,j} = - (\rho SL^3 /2I_y) (V/\xi) C_{LM_q_j} \]

\[h \text{ distance from the projectile's center of mass to the center of the cylindrical cavity} \]

\[I_{Lx}, I_{Ly} \text{ axial and transverse moments of inertia of a "frozen liquid"} \]

\[I_x, I_y \text{ axial and transverse moments of inertia of the projectile} \]

\[J_n(\cdot) \text{ Bessel function (of a complex argument) of the first kind, of order } n \]

\[\hat{k} = K_{j0} \exp (i\phi_{j0}), j = 1 \text{ or } 2 \]

\[K_j \text{ magnitude of the } j-\text{th yaw arm (} j = 1, 2) \]

\[K_{j0} \text{ initial value of } K_j \]

\[k \text{ longitudinal wave number; when } k = 2j+1 \text{ for } j = 0, 1, 2, \ldots, \]

\[k_x = (I_x/mz^2)^{1/2}, \text{ the projectile's axial radius of gyration} \]

\[k_y = (I_y/mz^2)^{1/2}, \text{ the projectile's transverse radius of gyration} \]

\[\xi \text{ reference length} \]

\[\hat{\mathcal{M}} = (\rho SL^3 /2I_y) (V/\xi)^2 C_{M_{\alpha}} \]

\[\hat{M}_{Ly}, \hat{M}_{Lz} \hat{Y}, \hat{Z} \text{ components of the aerodynamic moment} \]

105
m projectile mass

$m_L^2 = 2\pi a c_0 L$, the liquid mass in a fully-filled cylindrical cavity with no rod

$m_p = m_{pe} + m_{p\perp}$

m_{pe} that part of C_LM due to pressure on the two end walls of the cylindrical cavity

$m_{p\perp}$ that part of C_LM due to pressure on the lateral wall of the cylindrical cavity

$m_{p\perp h} = \left(\text{that part of } m_{p\perp} \text{ due to offset } h\right) / (h/c)^2$

m_{ve} that part of C_LM due to shear on the two end walls of the cylindrical cavity; Eq. (7.4)

$m_{veh} = \left(\text{that part of } m_{ve} \text{ due to offset } h\right) / (h/c)^2$

m_{vel} that part of C_LM due to shear on the forward flat end wall of the cylindrical cavity

m_{vel}^* function defined after Eq. (7.3)

$m_{v\perp}$ that part of C_LM due to shear on the lateral wall of the cylindrical cavity; Eq. (7.1)

$m_{v\perp h} = \left(\text{that part of } m_{v\perp} \text{ due to offset } h\right) / (h/c)^2$

$m_{v\perp}^*$ function defined after Eq. (7.1)

N maximum considered value of k

n radial wave number; subscript n refers to the number of nodes in the liquid's radial wave pattern

n_{XE}, n_{YE}, n_{ZE} earth-fixed components of a unit vector along the X-axis

p liquid pressure

p_s liquid pressure perturbation

p_{si} inviscid part of p_s

p_{sv} viscous part of p_s
the residue associated with each eigenfrequency \(\tau_{nk} \); in the Stewartson model, \(CLM \) near an eigenfrequency \(\tau_{nk} \) is proportional to \(R^2 / (s - i \tau_{nk}) \)

the square root of the error function to be minimized in determining \(a_k \), Eq. (D2)

real part of \{ \}

function in the assumed expression (5.11) for \(p_{si} \); the form of this function is given in (5.18-5.19)

\(\Re \)

\(a^2 \lambda \phi / u \), Reynolds number

\(r \)

radial coordinate in an earth-fixed cylindrical system

\(\hat{r} \)

radial coordinate in an aeroballistic non-rolling system

\(S \)

reference area

\(s \)

\((\gamma c + i) \tau \)

\(s_g \)

\(\sigma \theta^2 / 4M \), the gyroscope stability factor

\(s_{kn} \)

eigenvalue of \(s \) for the liquid's \((k, n)\)-th wave mode

\(\hat{t} \)

\((\rho S z / 2m) (V / \lambda) \left[\frac{C_{N_a}}{a} + k x -2 C_{M_p a} \right] \)

\(t \)

time

\(u_s, v_s, w_s \)

components of the liquid velocity perturbation in the earth-fixed cylindrical system \(x, r, \theta \)

\(u_{si}, v_{si}, w_{si} \)

inviscid part of \(u_s, v_s, w_s \)

\(u_{sv}, v_{sv}, w_{sv} \)

viscous part of \(u_s, v_s, w_s \)

\(V \)

magnitude of the projectile's velocity vector

\(V_x, V_r, V_\theta \)

velocity components of any point on the projectile in the earth-fixed cylindrical system (3.7-3.9); assumed to be the liquid's velocity components as well (3.10-3.12)

\(X \)

coordinate axis along the projectile's axis of symmetry, positive forward

\(x_k (\hat{x}) \)

function in the assumed expression (5.11) for \(p_{si} \); the form of this function is approximately that of (5.12-5.13)
missile-fixed axes, origin at the projectile's center of mass

aeroballistic non-rolling axes, origin at the projectile's center of mass, Z-axis initially downward

earth-fixed axes, X_e initially along the velocity vector, Z_e downward

X_e, Y_e, Z_e

X_e-axis coordinate in the earth-fixed Cartesian system

Y_e-axis coordinate in the earth-fixed Cartesian system

Z_e-axis coordinate in the earth-fixed Cartesian system

x, x_e

X_e-axis coordinate in the aeroballistic Cartesian system

X-axis coordinate in the aeroballistic Cartesian system

$x = (x - h)/c$

$Y_n(\cdot)$

Bessel function (of a complex argument) of the second kind, of order n

Y, Y_e

Y_e-axis coordinate in the earth-fixed Cartesian system

Z, Z_e

Z_e-axis coordinate in the earth-fixed Cartesian system

a

$(c/a) \left[(3 + is) / (1 - is) \right]^{1/2} \delta_a^{-1}$

α

angle of attack: the angle in the XZ-plane from the X-axis to the velocity vector

β

$i (c/a) \left[(1 - is) (1 + is) \right]^{1/2} \delta_a^{-1}$

β

angle of side-slip: the angle in the XY-plane from the X-axis to the velocity vector

γ

ψ

the fluctuating part of p

δ

boundary layer thickness

δ_a

$(1 + i) \left[2(1 + is) \text{Re} \right]^{-1/2}$

δ_c

$\frac{-i(a/c)}{2 \sqrt{1 + is}} \left[\frac{1 - is}{\sqrt{3 + is}} + i \left(\frac{3 + is}{\sqrt{1 - is}} \right) \right]$
\(\varepsilon_j \) for one-mode yawing motion

\(\varepsilon_j \)

non-dimensionalized growth rate of the \(j \)-th yaw mode \((j = 1, 2)\)

\(c_{kn} \)

eigenvalue of \(\varepsilon \) for the liquid's \((k, n)\)-th wave mode.

\(\theta \)

aximuthal coordinate in an earth-fixed cylindrical system.

\(\hat{\theta} \)

aximuthal coordinate in an aeroballistic cylindrical system.

\(\lambda \)

\((\pi/2) (1 + \delta_c)\)

\[\lambda = \left[\frac{s^2 - 2is + 3}{- (s - i)^2} \right]^{1/2} \lambda \]

\(\lambda_k \)

solution of the equation

\[\cos \lambda_k + \lambda_k \delta_c \sin \lambda_k = 0, \ k \text{ odd} \]

or of the equation

\[\sin \lambda_k - \lambda_k \delta_c \cos \lambda_k = 0, \ k \text{ even} \]

\[\lambda_k = \left[\frac{s^2 - 2is + 3}{- (s - i)^2} \right]^{1/2} \lambda_k \]

\(v \)

kinematic viscosity.

\(\hat{\zeta} \)

\(\hat{\beta} + i\hat{\alpha} \)

\(\rho \)

air density.

\(\rho_l \)

liquid density.

\(\sigma \)

\(I_x/I_y \)

\(\sigma_l \)

\[2\pi_l a^2 \frac{1}{\rho S^2 V} \]

\(r \)

\(r_j \) for one-mode yawing motion.

\(\tau_j \)

\(\dot{\phi}_j/\dot{\phi} \), the non-dimensionalized frequency of the \(j \)-th yaw mode \((j = 1, 2)\).

\(\tau_{kn} \)

the eigenfrequency of the liquid's \((k, n)\)-th wave mode; root of the equation \(G_k (\tau) = 0 \)

\(\tau_{kn0} \)

inviscid value of \(\tau_{kn} \)

109
\(\dot{\phi} \)

orientation angle associated with \(C_p \)

\(\dot{\phi}_p \)

initial orientation angle of the \(j \)-th yaw arm \((j = 1, 2)\)

\(\dot{\phi}_j \)

spin rate

Superscripts:

\(^\dagger \)

complex conjugate

\(^\dot{} \)

time derivative

\((\)' \)

derivative with respect to the independent variable involved
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 12 | Administrator
Defense Technical Info Center ATTN: UTIC-DDA
Cameron Station Alexandria, VA 22314 |
| 1 | Commander
US Army Engineer Waterways Experiment Station ATTN: R.H. Malter
Vicksburg, MS 39181 |
| 1 | Commander
US Army Materiel Development and Readiness Command ATTN: DRCOMD-ST
5001 Eisenhower Avenue Alexandria, VA 22333 |
| 1 | Commander
US Army Armament Research and Development Command ATTN: DRDAR-TDC (Dr. D. Gyorog)
Dover, NJ 07801 |
| 3 | Commander
US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys) DRDAR-LC, Dr. J. Frasier
Dover, NJ 07801 |
| 6 | Commander
US Army Armament Research and Development Command ATTN: DRDAR-LCA-F
Mr. D. Mertz
Mr. E. Falkowski
Mr. A. Loeb
Mr. R. Kline
Mr. S. Kahn
Mr. S. Wasserman
Dover, NJ 07801 |
| 1 | Commander
| 1 | Director
US Army Armament Research and Development Command Beoet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189 |
| 1 | Commander
US Army Aviation Research and Development Command ATTN: DRDAV-E
4300 Goodfellow Blvd St. Louis, MO 63120 |
| 1 | Director
US Army Air Mobility Research and Development Laboratory ATTN: SAVDL-D, W.J. McCroskey Ames Research Center Moffett Field, CA 94035 |
| 1 | Commander
US Army Communications Research and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703 |
| 1 | Commander
US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703 |
| 1 | Commander
US Army Missile Command ATTN: DRSMI-R
Redstone Arsenal, AL 35898 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>US Army Missile Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSMI-YDL</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Missile Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSMI-RDK</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL 35898</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Tank Automotive Research and Development Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRDTA-UL</td>
</tr>
<tr>
<td></td>
<td>Warren, MI 48090</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Jefferson Proving Ground</td>
</tr>
<tr>
<td></td>
<td>ATTN: STEJP-TD-D</td>
</tr>
<tr>
<td></td>
<td>Madison, IN 47251</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>US Army Research Office</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. R.E. Singleton</td>
</tr>
<tr>
<td></td>
<td>Dr. Jagdish Chandra</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park</td>
</tr>
<tr>
<td></td>
<td>NC 27709</td>
</tr>
<tr>
<td>1</td>
<td>AGARD-NATO</td>
</tr>
<tr>
<td></td>
<td>ATTN: R.H. Korkegi</td>
</tr>
<tr>
<td></td>
<td>APO New York 09777</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Army TRADOC Systems Analysis Activity</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATAA-SL, Tech Lib</td>
</tr>
<tr>
<td></td>
<td>White Sands Missile Range</td>
</tr>
<tr>
<td></td>
<td>NM 88002</td>
</tr>
<tr>
<td>3</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Air Systems Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AIR-604</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20360</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>David W. Taylor Naval Shini Research & Development Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: H.J. Lugt, Code 1802</td>
</tr>
<tr>
<td></td>
<td>S. de los Santos, Head, High Speed Aero Div.</td>
</tr>
<tr>
<td></td>
<td>Bethesda, MD 20084</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: DX-21, Lib Br</td>
</tr>
<tr>
<td></td>
<td>Dahlgren, VA 22448</td>
</tr>
<tr>
<td>5</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Applied Aerodynamics Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: K.R. Enkenhus</td>
</tr>
<tr>
<td></td>
<td>M. Ciment</td>
</tr>
<tr>
<td></td>
<td>S.M. Hastings</td>
</tr>
<tr>
<td></td>
<td>A.E. Winklemann</td>
</tr>
<tr>
<td></td>
<td>W.C. Ragsdale</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>1</td>
<td>AFATL (DLDL, Dr. D.C. Daniel)</td>
</tr>
<tr>
<td></td>
<td>Eglin AFB, FL 32542</td>
</tr>
<tr>
<td>2</td>
<td>AFFDL (W.L. Hankey; J.S. Shang)</td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson AFB, OH 45433</td>
</tr>
<tr>
<td>4</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>Ames Research Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: D.R. Chapman</td>
</tr>
<tr>
<td></td>
<td>P. Kutler</td>
</tr>
<tr>
<td></td>
<td>J. Rakich</td>
</tr>
<tr>
<td></td>
<td>B. Wick</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, CA 94035</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: MS 60-3, Tech Lib</td>
</tr>
<tr>
<td></td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td>Cleveland, OH 44135</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>4</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>National Aeronautics and Space</td>
</tr>
<tr>
<td></td>
<td>Administration</td>
</tr>
<tr>
<td></td>
<td>Langley Research Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: E. Price</td>
</tr>
<tr>
<td></td>
<td>J. South</td>
</tr>
<tr>
<td></td>
<td>J.R. Sterrett</td>
</tr>
<tr>
<td></td>
<td>Tech Library</td>
</tr>
<tr>
<td></td>
<td>Langley Station</td>
</tr>
<tr>
<td></td>
<td>Hampton, VA 23365</td>
</tr>
<tr>
<td>2</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>National Aeronautics and Space</td>
</tr>
<tr>
<td></td>
<td>Administration</td>
</tr>
<tr>
<td></td>
<td>Marshall Space Flight Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: A. R. Felix, Chief</td>
</tr>
<tr>
<td></td>
<td>SAE-AERO-AE</td>
</tr>
<tr>
<td></td>
<td>Dr. W. W. Fowlis</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35812</td>
</tr>
<tr>
<td>2</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: E. Mac</td>
</tr>
<tr>
<td></td>
<td>Tech Library</td>
</tr>
<tr>
<td></td>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td></td>
<td>Pasadena, CA 91103</td>
</tr>
<tr>
<td>3</td>
<td>Arnold Research Organization, Inc.</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. D. Whitfield</td>
</tr>
<tr>
<td></td>
<td>R.K. Matthews</td>
</tr>
<tr>
<td></td>
<td>J. C. Adams</td>
</tr>
<tr>
<td></td>
<td>Arnold AFB, TN 273d9</td>
</tr>
<tr>
<td>1</td>
<td>Aerospace Corporation</td>
</tr>
<tr>
<td></td>
<td>Aero-Engineering Systems Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Walter F. Reddall</td>
</tr>
<tr>
<td></td>
<td>El Segundo, CA 90245</td>
</tr>
<tr>
<td>3</td>
<td>Aerospace Corporation</td>
</tr>
<tr>
<td></td>
<td>ATTN: H. Mirels</td>
</tr>
<tr>
<td></td>
<td>R.L. Varney</td>
</tr>
<tr>
<td></td>
<td>Aerospace Physics Lab</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 92957</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90009</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2</td>
<td>McDonnell-Douglas Corporation Douglas Aircraft Company ATTN: J. Xerikos H. Tang 5301 Bolsa Avenue Huntington Beach, CA 92647</td>
</tr>
<tr>
<td>3</td>
<td>Sandia Laboratories ATTN: F.G. Blottner W.L. Oberkampf Tech Library Albuquerque, NM 87115</td>
</tr>
<tr>
<td>2</td>
<td>United Aircraft Corporation Research Laboratories ATTN: M.J. Werle Library East Hartford, CT 06108</td>
</tr>
<tr>
<td>1</td>
<td>LTV Aerospace Corporation Vought Systems Division ATTN: J.M. Cooksey, Chief Gas Dynamics Lab. 2-53700 P.O. Box 5907 Dallas, TX 75222</td>
</tr>
<tr>
<td>1</td>
<td>Arizona State University Department of Mechanical and Energy Systems Engineering ATTN: G.P. Neitzel Tempe, AZ 85281</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2</td>
<td>North Carolina State University Mechanical and Aerospace Engineering Department</td>
</tr>
<tr>
<td></td>
<td>ATTN: P.F. DeJarnette J.C. Williams Raleigh, NC 27607</td>
</tr>
<tr>
<td>1</td>
<td>Northwestern University Department of Engineering Science and Applied Mathematics</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. S.H. Davis Evanston, IL 60201</td>
</tr>
<tr>
<td>1</td>
<td>Notre Dame University Department of Aero Engr</td>
</tr>
<tr>
<td></td>
<td>ATTN: T.J. Mueller South Bend, IN 46556</td>
</tr>
<tr>
<td>2</td>
<td>Ohio State University Department of Aeronautical and Astronautical Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: S.L. Petrie O.R. Burggraf Columbus, OH 43210</td>
</tr>
<tr>
<td>2</td>
<td>Polytechnic Institute of New York</td>
</tr>
<tr>
<td></td>
<td>ATTN: G. Moretti S.G. Rubin Route 110 Farmingdale, NY 11735</td>
</tr>
<tr>
<td>3</td>
<td>Princeton University James Forrestal Research Center Gas Dynamics Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: S.M. Bogdonoff S.I. Cheng Tech Library Princeton, NJ 08540</td>
</tr>
<tr>
<td>1</td>
<td>Purdue University Thermal Science and Prop Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Library W. Lafayette, IN 47907</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2</td>
<td>University of California-San Diego Department of Aerospace Engineering and Mechanical Engineering Sciences ATTN: P. Libby Tech Library La Jolla, CA 92037</td>
</tr>
<tr>
<td>1</td>
<td>University of Cincinnati Department of Aerospace Engineering ATTN: R. T. Davis Cincinnati, OH 45221</td>
</tr>
<tr>
<td>2</td>
<td>University of Colorado Department of Astro-Geophysics ATTN: E. R. Benton G. R. Inger Boulder, CO 80302</td>
</tr>
<tr>
<td>1</td>
<td>University of Hawaii Department of Ocean Engineering ATTN: G. Venezian Honolulu, HI 96822</td>
</tr>
<tr>
<td>2</td>
<td>University of Maryland ATTN: W. Melnik J. D. Anderson College Park, MD 20742</td>
</tr>
<tr>
<td>2</td>
<td>University of Michigan Department of Aeronautical Engineering ATTN: W. W. Wilmarth Tech Library East Engineering Building Ann Arbor, MI 48104</td>
</tr>
<tr>
<td>1</td>
<td>University of Rochester Department of Mechanical and Aerospace Sciences ATTN: R. Gans Rochester, NY 14627</td>
</tr>
<tr>
<td>1</td>
<td>University of Santa Clara Department of Physics ATTN: R. Greeley Santa Clara, CA 95053</td>
</tr>
<tr>
<td>3</td>
<td>University of Southern California Department of Aerospace Engineering ATTN: T. Maxworthy P. Weidman L. G. Redekopp Los Angeles, CA 90007</td>
</tr>
<tr>
<td>1</td>
<td>University of Tennessee Department of Physics ATTN: Prof. W. E. Scott Knoxville, TN 37916</td>
</tr>
<tr>
<td>1</td>
<td>University of Texas Department of Aerospace Engineering ATTN: J. C. Westkaemper Austin, TX 78712</td>
</tr>
<tr>
<td>1</td>
<td>University of Virginia Department of Aerospace Engineering and Engineering Physics ATTN: I. D. Jacobson Charlottesville, VA 22904</td>
</tr>
<tr>
<td>1</td>
<td>University of Washington Department of Mechanical Engineering ATTN: Tech Library Seattle, WA 98105</td>
</tr>
<tr>
<td>1</td>
<td>University of Wyoming ATTN: D. L. Boyer University Station Laramie, WY 82071</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Virginia Polytechnic Institute and State University</td>
</tr>
<tr>
<td></td>
<td>Department of Aerospace Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Library</td>
</tr>
<tr>
<td></td>
<td>Dr. W. Saric</td>
</tr>
<tr>
<td></td>
<td>Blacksburg, VA 24061</td>
</tr>
<tr>
<td>1</td>
<td>Woods Hole Oceanographic Institute</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. A. Whitehead</td>
</tr>
<tr>
<td></td>
<td>Woods Hole, MA 02543</td>
</tr>
</tbody>
</table>

Aberdeen Proving Ground

Director, USAMSAA
ATTN: DRXSY-D
DRXSY-MP, H. Cohen

Commander, USATECOM
ATTN: DRSTE-TO-F

Commander/Director, USACSL, EA
ATTN: Munitions Div, Bldg. E3330
 E. A. Jeffers
 W. C. Dee
 W. J. Pribyl
 J. McKivigan
 C. Hughes

Director, USACSL, Bldg. E3516, EA
ATTN: DRDAR-CLB-PA
 M. Miller
USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

 Name:

 Telephone Number:

 Organization Address: